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Abstract

We study the set covering polyhedron related to circulant matrices. In particular,
our goal is to characterize the first Chvátal closure of the usual fractional relaxation.
We present a family of valid inequalities that generalizes the family of minor inequal-
ities previously reported in the literature. This family includes new facet-defining
inequalities for the set covering polyhedron.
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1 Introduction

The weighted set covering problem can be stated as

(SCP) min{cTx : Ax ≥ 1, x ∈ {0, 1}n}

where A is an m × n matrix with 0, 1 entries, c ∈ Z
n, and 1 is the m-vector

having all entries equal to one. The SCP is a classic problem in combinatorial
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optimization with important applications (crew scheduling, facility location,
vehicle routing, to cite a few prominent examples), but hard to solve in general.
One established approach to tackle this problem is to study the polyhedral
properties of the set of its feasible solutions.

The set covering polyhedron Q∗(A) is defined as the convex hull of all
feasible solutions of SCP. Its fractional relaxation Q(A) is the feasible region of
the linear programming relaxation of SCP, i.e., Q(A) = {x ∈ [0, 1]n : Ax ≥ 1}.

It is known that SCP can be solved in polynomial time if A belongs to the
particular class of circulant matrices defined in the next section. Hence, it
is natural to ask whether Q∗(A) has a compact description in terms of linear
inequalities in this case, an issue that has been addressed in several recent
studies by researchers in the field (see [2,4,5] among others).

Bianchi et al. obtained in [4] a family of facet-defining inequalities for
Q∗(A) which are associated with certain structures called circulant minors.
Moreover, the authors presented two families of circulant matrices for which
Q∗(A) is completely described by this class of minor inequalities, together with
the full-rank inequality and the inequalities defining Q(A), usually denoted as
boolean facets.

If an inequality aTx ≤ b is valid for a polytope P ⊂ R
n and a ∈ Z

n, then
aTx ≤ �b� is valid for the integer polytope PI := conv(P ∩Zn). This procedure
is called Chvátal-Gomory rounding, and it is known that the system of all
linear inequalities which can be obtained in this way defines a new polytope
P ′, the first Chvátal closure of P . Moreover, iterating this procedure yields PI

in a finite number of steps. An inequality is said to have Chvátal rank of t if it
is valid for the t-th Chvátal closure of a polytope. All inequalities mentioned
above have Chvátal rank less than or equal to one.

With the aim of generalizing the result in [4], we have studied whether
the system consisting of minor inequalities, boolean facets, and the full-rank
inequality is sufficient for describing the first Chvátal closure of Q(A) for any
circulant matrix A. We have obtained a new class of valid inequalities for
Q∗(A) which contains minor inequalities as a proper subclass. All inequalities
from this class have Chvátal rank equal to one, and besides, some of them
define new facets of Q∗(A), as we show by an example.

2 Notations, definitions and preliminary results

For n ∈ N, let [n] denote the additive group defined on the set {1, . . . , n},
with integer addition modulo n. Throughout this article, if A is a 0, 1 matrix
of order m× n, then we consider the columns (resp. rows) of A to be indexed
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by [n] (resp. by [m]). Two matrices A and A′ are isomorphic, denoted by
A ≈ A′, if A′ can be obtained from A by permutation of rows and columns.
Moreover, we say that a row v of A is a dominating row if v ≥ u for some
other row u of A, u 
= v.

Given N ⊂ [n], the minor of A obtained by contraction of N , denoted
by A/N , is the submatrix of A that results after removing all columns with
indices in N and all dominating rows. In this work, when we refer to a minor
of A we always consider a minor obtained by contraction.

In the following, ei will denote the i-th canonical vector in R
n.

Given n, k ∈ N with 2 ≤ k ≤ n−2, let Ci := {i, i+1, . . . , i+(k−1)} ⊂ [n]
for every i ∈ [n]. The circulant matrix Ck

n is the square matrix whose i-th row
is the incidence vector of Ci. Observe that Ci =

∑i+k−1
j=i ej.

It is known that Q∗(Ck
n) is a full dimensional polyhedron. Furthermore,

for every i ∈ [n], the constraints xi ≥ 0, xi ≤ 1 and
∑

j∈Ci xj ≥ 1 are facet

defining inequalities of Q∗(Ck
n) and we call them boolean facets ([6]). We will

denote by S0 the system of linear inequalities corresponding to boolean facets.

The rank constraint
∑n

i=1 xi ≥
⌈
n
k

⌉
is always valid for Q∗(Ck

n) and defines
a facet if and only if n is not a multiple of k (see [6]). In [4] the authors
obtained another family of facet-defining inequalities for Q∗(Ck

n) associated
with circulant minors, i.e., minors isomorphic to circulant matrices. Aguilera
[1] completely characterized the subsets N of [n] for which Ck

n/N is a circulant
minor. In particular, it is known that if i ∈ N then, i+k ∈ N or i+k+1 ∈ N .

Lemma 2.1 [4] Let N ⊂ [n] such that Ck
n/N ≈ Ck′

n′ , and let W = {i ∈ N :
i− k − 1 ∈ N}. Then, the inequality

∑
i∈W

2xi +
∑
i/∈W

xi ≥
⌈
n′

k′

⌉
(1)

is a valid inequality for Q′(Ck
n). Moreover, if 2 ≤ k′ ≤ n′ − 2,

⌈
n′
k′
⌉
>

⌈
n
k

⌉
and

n′ = 1(mod k′), this inequality defines a facet of Q∗(Ck
n).

The authors termed (1) as the minor inequality corresponding to W .

3 Computing the first Chvátal closure

In our attempt at finding a linear description of the first Chvátal closure of
Q(Ck

n), we use the following well-known result from integer programming:
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Lemma 3.1 Let P = {x ∈ R
n : Ax ≥ b} be a nonempty polyhedron with A

integral and Ax ≥ b totally dual integral. Then, P ′ = {x ∈ R
n : Ax ≥ �b�}.

As we shall see below, if all vertices of P are known then a totally dual inte-
gral system describing the polyhedron can be computed from this information.
This is the case for Q(Ck

n), whose vertices have been completely characterized
by Argiroffo and Bianchi [2].

Lemma 3.2 ([2]) Let x∗ be a vertex of Q(Ck
n). If x∗ is not integral, then

either x∗ = 1
k
1 or there exists N ⊂ [n] with Ck

n/N ≈ Ck′
n′ such that x∗

i =
1
k′ if

i /∈ N and x∗
i = 0 otherwise.

In order to express Q(Ck
n) via a totally dual integral system of linear in-

equalities, we use the method described below (see, e.g., [3, Ch. 8]). Given a
polyhedral cone K ⊂ R

n, consider the points in the lattice L := K ∩ Z
n. An

integral generating set for L is a set H ⊆ L having the property that every
x ∈ L can be written as a linear combination

∑k
i=1 αihi of some elements

h1, . . . , hk ∈ H with integral non negative coefficients α1, . . . , αk.

The method consists in adding redundant inequalities to the original sys-
tem S0 until the following property is verified: If

{
aTi x ≥ bi : i ∈ I(x∗)

}
is the

set of linear inequalities satisfied with equality by a vertex x∗ ∈ Q(Ck
n), then

the set of vectors {ai : i ∈ I(x∗)} is an integral generating set of K(x∗) :=
cone({ai : i ∈ I(x∗)}) ∩ Z

n.

This idea leads to the following procedure for computing Q′(Ck
n):

1. Let S := S0.

2. For all x∗ vertex of Q(Ck
n)) do

2.1 Compute an integral generating set H(x∗) of K(x∗) ∩ Z
n.

2.2 For all ai ∈ H(x∗), let bi := aTi x
∗ and add the inequality aTi x ≥ �bi�

to S.
3. Return S as a linear description of Q′(Ck

n).

Observe that the inequality aTi x ≥ bi at step 2.2 is valid for Q(Ck
n), since

x∗ minimizes aTi x over this polytope for any ai ∈ K(x∗). Moreover, if x∗

is integral, then the new inequality added to the system S is redundant, as
bi ∈ Z. Therefore, new inequalities for Q′(Ck

n) may only arise from integer
generating sets H(x∗) related to fractional vertices belonging to one of the two
clases described in Lemma 3.2.
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4 Inequalities describing the first Chvátal closure

Firstly, we analyze all inequalities arising from the vertex x∗ = 1
k
1. The point

x∗ = 1
k
1 is known to be a vertex of Q(Ck

n) if and only if gcd(n, k) = 1. In this
case, {C ix ≥ 1 : i ∈ [n]} are the inequalities of the original system S0 satisfied
at equality by x∗. In order to find an integral generating set for K(x∗) ∩ Z

n

we need the following result.

Lemma 4.1 Let x ∈ R
n, b ∈ Z

n be two vectors such that 0 ≤ x < 1 and
Ck

nx = b, with gcd(n, k) = 1. Then there exists r ∈ {0, 1, . . . , k − 1} such that
x = r

k
1 and b = r1.

With this result we can compute an integral generating set for K(x∗).

Theorem 4.2 Let Ck
n be a circulant matrix such that gcd(n, k) = 1 and

consider the vertex x∗ = 1
k
1 of Q(Ck

n). Then an integral generating set for
K(x∗) ∩ Z

n is given by H(x∗) = {C1, C2, . . . , Cn,1} .
When applying the procedure described in the previous section, the vectors

C i yield the inequalities (C i)Tx ≥ 1 from S0, while for the last vector we obtain
the rank constraint of Q∗(Ck

n):

Corollary 4.3 If gcd(n, k) = 1, then the inequality 1Tx ≥ ⌈
1Tx∗⌉ =

⌈
n
k

⌉
is

valid for Q′(Ck
n).

On the other hand, for a vertex x∗ corresponding to a circulant minor
Ck′

n′ , the task of finding an integral generating set for K(x∗)∩Z
n turns out to

be more complicated. We present here preliminary results concerning some
special cases. Consider a circulant minor Ck′

n′ ≈ Ck
n/N of Ck

n, and let x∗ be
the corresponding vertex of Q(Ck

n), defined as in Lemma 3.2. One can show
that x∗ satisfies the following inequalities with equality:

(Ci)Tx ≥ 1, for all i such that i+ 1 
∈ N ; (2)

(ej)Tx ≥ 0, for all j ∈ N. (3)

There might be, however, other inequalities from S0 satisfied tightly by x∗. In
the following we denote by K the subcone of K(x∗) spanned by the normal
vectors of the left-hand sides of (2) and (3).

Theorem 4.4 An integral generating set for K ∩ Z
n is given by

{
C i : i+ 1 
∈ N

} ∪ {
ej : j ∈ N

} ∪
{
r1+

∑
j∈W

ej : 1 ≤ r ≤ k′ − 1

}
.
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Vectors in the first two sets give rise to boolean inequalities when the
procedure of the previous section is applied. For the third set, we obtain:

Corollary 4.5 Let N ⊂ [n] be such that Ck
n/N ≈ Ck′

n′ . The inequalities

∑
i∈W

(r + 1)xi +
∑
i �∈W

rxi ≥
⌈
r1Tx∗ +

∑
j∈W

(ej)Tx∗
⌉
=

⌈
rn′

k′

⌉
, (4)

with r ∈ {1, . . . , k′ − 1}, are valid for Q′(Ck
n).

For r = 1, these inequalities are the minor inequalities described in [4].
Accordingly, we have called (4) as r-minor inequalities. In some cases, r-
minor inequalities with r > 1 can be obtained from the addition of (clas-
sical) minor inequalities and the rank constraint, and are thus redundant
for Q′(Ck

n). However, this is not true in general. For instance, consider
W := {6 + 5k : 0 ≤ k ≤ 10} and N := W ∪ {1} ⊂ [59]. One can verify
that C4

59/N ≈ C3
47 and the corresponding inequality (4) for r = 2 has the form∑

i∈W 3xi+
∑

i �∈W 2xi ≥ 32. We have shown that this inequality defines a facet

of Q∗(C4
59). As a consequence, we disprove a former conjecture stating that

1-minor inequalities, together with boolean facets and the rank constraint,
provide a complete linear description of Q∗(Ck

n).

Theorem 4.6 There are circulant matrices Ck
n for which minor inequalities,

boolean facets, and the rank constraint, are not enough to describe Q′(Ck
n).

The study of necessary and sufficient conditions for an r-minor inequality
to define a facet, as well as the question whether the system consisting of r-
minor inequalities, boolean facets, and the rank constraint yields a complete
linear description of Q′(Ck

n) for any circulant matrix Ck
n, is a line of research

for future work. All computational experiments we have conducted so far
support this conjecture.
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