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MULTIPLE RECURRENCE AND HYPERCYCLICITY

RODRIGO CARDECCIA, SANTIAGO MURO

Abstract. We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity,

where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions.

We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators

which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply

recurrent and hypercyclic but not weakly mixing.

1. Introduction

Recurrence is one of the oldest notions in the theory of dynamical systems. It arose at the end of

the IXX century with the Poincaré Recurrence Theorem. In the seventies Furstenberg introduced the

concept of multiple recurrence and proved the Multiple Recurrence Theorems which had a profound

impact in dynamical systems, ergodic theory and its applications to number theory and combinatorics.

In the 90’s, a systematic study of the dynamics of the linear operators on infinite dimensional spaces

began, and it has experienced a lively development in the last decades, see [5, 29]. The main concept in

this theory is that of hypercyclicity: an operator is called hypercyclic if it has a dense orbit. It has been

proved for example that every infinite dimensional and separable Fréchet space supports a hypercyclic

operator [1, 7], or that there are hypercyclic operators T such that T ⊕ T are no longer hypercyclic [24]

(i.e. T is not weakly mixing). Over the last years much of the attention was driven to special types

of hypercyclicity like frequent hypercyclicity [3], upper frequent hypercyclicity [34] and more recently to

F-hypercyclicity [10, 11, 15, 16], for more general families F of subsets of N.

The notion of recurrent linear operators had not been systematically studied until the work Costakis,

Manoussos and Parissis in [22]. Costakis and Parissis [23] were also the first to study multiple recurrence

in the context of linear dynamics. An operator is (topologically) multiply recurrent provided that for

every open set U and every m, there is k such that ∩m
i=0T

−ik(U) 6= ∅. In [23], the authors characterize

the bilateral weighted shifts and adjoints of multiplication operators which are multiply recurrent and

prove a result which assures that for certain sequences of scalars (λn)n the frequent hypercyclicity of the

sequence (λnT
n)n implies that T itself is multiply recurrent. This notion was also studied in [19, 20, 21],

where the authors studied different examples of multiply recurrent operators and in [33] where the author

studied the relation between multiple recurrence and reiterative hypercyclicity.
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In the present note we study multiply recurrent operators from the point of view of F-hypercyclicity.

Our point of departure is the observation that an operator is multiply recurrent if and only if it is AP-

recurrent and that it is multiply recurrent and hypercyclic if and only if it is AP-hypercyclic, where AP
stands for the family of natural numbers supporting arbitrarily long arithmetic progressions. The study

of sets having arbitrarily long arithmetic progressions is a central task in number theory and additive

combinatorics. For instance, the celebrated Szemeredi’s Theorem [35] and the Green-Tao Theorem [28]

establish that the sets having positive lower density and the set of prime numbers belong to AP . Our

observation is not a surprise, since the study of sets with large arithmetic progressions has an intrinsic

relation to ergodic theory, and it is well known that Szemeredi’s Theorem can be proved (and is equivalent

to) Furstenberg’s Multiple Recurrence Theorem.

We start showing some basic properties of AP-hypercyclic operators, including a Birkhoff transitivity

type result, an Ansari type theorem and the existence of AP-hypercyclic operators on arbitrary separable

infinite dimensional Fréchet spaces. In [23, Section 5] it was shown that there are multiply recurrent

and hypercyclic operators that are not frequently hypercyclic. Using deep results by Gowers [27] and by

Bayart and Matheron [6], we show the existence of multiply recurrent hypercyclic operators which are

not even weakly mixing. We also give some characterizations of the operators that are weakly mixing

and AP-hypercyclic, for example, in terms of an AP-hypercyclicity criterion and of AP-hereditary

hypercyclicity. In our final section we study F-hypercyclicity for a related family, which we call AP.

We show that while for a single operator this concept coincides with AP-hypercyclicity, for sequences of

operators both concepts differ. This allows us to prove an enhanced version of the main result in [23].

Let us recall some basic facts on F-hypercyclicity. Given a hereditary upward family F ⊆ P(N) (also

called Furstenberg family) we say that an operator is F-hypercyclic if there is x ∈ X for which the sets

NT (x,U) := {n ∈ N : T n(x) ∈ U} of return times belong to F . Thus, for example, if we take F to be the

family of non empty sets, F-hypercyclicity is simply hypercyclity. Let us recall the following examples

of F-hypercyclicity, which are the most widely studied in the literature:

• D = { sets with positive lower density} (i.e. A ∈ D if dens(A) := lim infn#
{k≤n:k∈A}

n
> 0). An

operator is frequently hypercyclic if and only if it is D- hypercyclic.

• D = { sets with positive upper density} (i.e. A ∈ D if dens(A) := lim supn #
{k≤n:k∈A}

n
> 0). An

operator is upper frequently hypercyclic if and only if it is D- hypercyclic.

• BD = { sets with positive Banach upper density} (i.e. A ∈ BD if limn supk #
#A∩[k,k+n]

n
> 0).

An operator is reiterative hypercyclic if and only if it is BD- hypercyclic.

For more F-hypercyclicity see [10, 15, 16, 18, 25, 34, 31, 33]. The following general result was proved

in [15].

Theorem 1.1 (Bonilla-Grosse Erdmann). Let F be a an upper hereditary upward family and T be a

linear operator on a separable Fréchet space. Then the following are equivalent:

(i) For any open set V there is δ such that for any open set U there is x ∈ U with NT (x,U) ∈ Fδ.
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(ii) For any open set V there is δ such that for every U and m there is x ∈ U with NT (x,U) ∈ Fδ,m.

(iii) The set of F-hypercyclic points is residual.

(iv) T is F-hypercyclic.

Recall that a hereditary upward family is said to be upper provided that ∅ /∈ F and F can be written

as
⋃

δ∈D
Aδ, with Fδ =

⋂

m∈M
Fδ,m,(1)

where M is countable and such that the families Fδ,m and Fδ satisfy

• each Fδ,m is finitely hereditary upward, that means that for each A ∈ Fδ,m, there is a finite set

F such that F ∩A ⊆ B, then B ∈ Fδ,m;

• Fδ is uniformly left invariant, that is, if A ∈ F then there is δ such that for every n, A−n ∈ Fδ.

For example the families D,BD are upper while D is not upper (see [15]).

2. AP-hypercyclic operators and multiple recurrence - Basic properties

An operator is said to be (topologically) multiply recurrent provided that for every open set U and

every m there is k such that

U ∩ T−k(U) ∩ · · · ∩ T−km(U) 6= ∅.

Recall that the arithmetic progression of length m+ 1 (m ∈ N), common difference k ∈ N and initial

term a ∈ N is the subset of N of the form {a, a+k, a+2k, . . . , a+mk}. We denote byAP the (Furstenberg)

family of subsets of the natural numbers that contain arbitrarily long arithmetic progressions.

We will see now that multiple recurrence may be studied from the F-hypercyclicity point of view,

indeed, our next result observes that AP-hypercyclicity is equivalent to multiple recurrence plus hyper-

cyclicity. This concept was also recently studied in [30] for compact dynamical systems. The family AP
is an upper Furstenberg family: just let, in (1), Fm be the family of subsets with arithmetic progressions

of length greater than m and let Fδ = AP. Applying Theorem 1.1 we have the following (see also [30,

Proposition 4.14]).

Proposition 2.1. Let T be a linear operator on a separable Fréchet space. Then the following are

equivalent.

(i) T is hypercyclic and every hypercyclic vector is AP-hypercyclic.

(ii) There is an AP-hypercyclic vector.

(iii) T is hypercyclic and multiply recurrent.

(iv) For each pair of nonempty open sets U, V and each m > 0 there exists x ∈ U such that NT (x, V )

has an arithmetic progression of length m.

(v) The set of AP-hypercyclic vectors is residual.
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Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) and (v) ⇒ (ii) are all straightforward; also (iv) ⇒ (v) is a direct

consequence of Theorem 1.1.

(iii) ⇒ (i). Let x be a hypercyclic vector and U a nonempty open set. Let m > 0. Thus, there is k2

such that V := U ∩ T−k2(U) ∩ · · · ∩ T−k2m(U) 6= ∅ and hence N(x, V ) 6= ∅. If k1 ∈ N(x, V ) it follows

that for every j ≤ m, T k1+jk2(x) ∈ U for every j ≤ m. �

Recall that, given a family F of natural numbers, a vector x is said to be F- recurrent for T provided

that for every open set U containing x the set of hitting times NT (x,U) ∈ F (see [26, 16]). If the set of

F-recurrent vectors is dense, then the operator is said to be F-recurrent. The next result can also be

found in [30, Lemma 4.8].

Proposition 2.2. Let T be a linear operator. The following are equivalent:

(i) T is multiply recurrent,

(ii) T is AP-recurrent.

Proof. (ii) ⇒ (i) is straightforward. For the converse, let U be an open set. By the multiple recurrence

of T we may construct by induction open balls Um and steps km such that

• Um ⊆ Um−1 . . . ⊆ U ;

• for every j ≤ m T jkm(Um) ⊆ Um and

• the radius of Um tends to zero.

Let x ∈ ⋂

m Um. Then x is an AP-recurrent vector. Indeed, given an open set V containing x and m > 0

then there is m′ > m such that Um′ ⊆ V . Hence, for every j < m′ we have that T jk′m(x) ∈ Um′ ⊆ V . �

In [23], the authors showed examples of a hypercyclic bilateral weighted shift on ℓp (hence weakly

mixing) which is not multiply recurrent and a bilateral weighted shift which is multiply recurrent and

hypercyclic but not frequently hypercyclic. Since for weighted backward shifts frequent hypercyclic-

ity is equivalent to reiterative hypercyclicity [10], it follows that weakly mixing does not imply AP-

hypercyclicity and AP-hypercyclicity does not imply reiterative hypercyclicity. We will see in Theorem

4.1 that there are AP-hypercyclic operators that are not weakly mixing.

On the other hand any chaotic operator is AP-hypercyclic. Moreover, AP-hypercyclicity is also

implied by reiterative hypercyclicity. This follows from a direct application of Szemeredi’s Theorem [35].

Proposition 2.3. Let T be a reiterative hypercyclic operator. Then T is AP-hypercyclic.

A typical problem in F-hypercyclicity is to determine whether T−1 and T p are F-hypercyclic provided

that T is F-hypercyclic. For AP-hypercyclicity we obtain an easy answer.

Proposition 2.4. Let T be an invertible AP-hypercyclic operator on a Fréchet space. Then T−1 is

AP-hypercyclic.
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Proof. Since T is hypercylic it follows that T−1 is hypercyclic. Let m ∈ N and U be an open set. Since

T is AP-hypercyclic there is x ∈ U and n ∈ N such that T jnx ∈ U for every j ≤ m. Let y = Tmn(x). It

follows that T−jn(y) = T (m−j)n(x) ∈ U for every 0 ≤ j ≤ m. �

Shkarin in [34, Section 5] proved that for any right shift invariant Ramsey family F , if an operator is

F-hypercyclic then so are its powers and its rotations (see also [16]). Thus by van Waerden’s theorem

we have the following.

Proposition 2.5. Let T be an AP-hypercyclic operator on a Fréchet space. Then T p and λT are

AP-hypercyclic, for any p ∈ N and |λ| = 1. Moreover, they share the AP-hypercyclic vectors.

Recall that a set of operators {T1, . . . , Tr} is said to be d-transitive (respectively, d-mixing) if for every

nonempty open set U and every nonempty open sets Ui, 1 ≤ 1 ≤ r, there is n such that (respectively,

there is N such that for every n ≥ N)

U ∩
⋂

i≤r

T−n
i (Ui) 6= ∅.

The study of disjointness for tuples of linear operators began in [8, 13]. It is clear that if an operator T

is such that {T, T 2, . . . , Tm} is d-transitive for every m then T is AP-hypercyclic.

In [9] the authors showed that any operator T such that T − I is a backward shift satisfies that

{T, T 2, . . . , Tm} is d-mixing for every m. Note that this in particular answers [23, Question 7.1]. Since

in every infinite dimensional and separable Fréchet space there exists an operator that is quasiconjugated

to the the sum of a weighted shift and the identity on ℓ1 ([14]), we have as a corollary an existence result

for AP-hypercyclic operator.

Corollary 2.6. Let X be an infinite dimensional separable Fréchet space. Then there exists an AP-

hypercyclic operator.

The most efective tool to prove that an operator is hypercyclic is to show that it satisfies the

hypercyclicity criterion. In [8, 13], the authors introduced d-hypercyclic operators. In particular if

(T, T 2, . . . , Tm) satisfy the d-hypercyclicity criterion for every m then T is AP-hypercyclic.

Note that an arithmetic progression whose initial term coincides with the common difference is just a

set of the form {q, 2q, . . . ,mq} for some q,m ∈ N. Therefore, by [13, Section 2] we have the following.

Proposition 2.7. Let X be a separable Fréchet space and T an operator such that there exists a dense set

X0 ⊆ X, a function S : X0 → X0 and a sequence (mk)k ∈ AP, which contains arbitrarily long arithmetic

progressions whose initial term coincides with the common difference such that for each x ∈ X0,

(1) Tmk(x) → 0;

(2) Smk(x) → 0 and

(3) TS(x) = x.



6 RODRIGO CARDECCIA, SANTIAGO MURO

Then T is AP-hypercyclic.

Recall that an operator is said to satisfy the strong Kitai’s criterion provided that it satisfies the above

criterion but for the full sequence of natural numbers.

Corollary 2.8. Every operator that satisfies the strong Kitai’s Criterion is AP-hypercyclic.

3. AP-hypercyclic backward shifts

In [23] the authors characterized the bilateral weighted backward shifts on ℓ2 which are multiply

recurrent. They also showed that recurrent bilateral weighted shifts are hypercyclic and hence every

multiply recurrent bilateral weighted shift on ℓ2 is in fact AP-hypercyclic. We will extend this result to

unilateral weighted shifts on Fréchet spaces having a Schauder basis by applying Proposition 2.7.

Theorem 3.1. Let X be a separable Fréchet space with Schauder basis {en} and suppose that B(en+1) =

en is a well defined and continuous backward shift. The following are equivalent:

i) B is AP-hypercyclic;

ii) B is multiply recurrent;

iii) enk
→ 0 for some sequence (nk)k ∈ AP with the following property: given p,m ∈ N there exists

q ∈ N such that the arithmetic progression of length m, common difference q and initial term

p+ q is contained in (nk)k;

iv) B satisfies the AP-hypercyclicity criterion.

v) T, T 2 . . . , Tm are disjoint hypercyclic for every m.

For the proof we will need the following lemma.

Lemma 3.2. Let (nk)k ∈ AP with the property that given p,m ∈ N there exists q ∈ N such that the

arithmetic progression of length m, common difference q and initial term p + q is contained in (nk)k

and such that xnk−j → 0 for every j ≥ 0. Then there is a sequence in AP, (mk)k which contains

arbitrarily long arithmetic progressions whose initial term coincides with the common difference, such

that xmk+j → 0 for every j.

Proof. Let ‖ · ‖ denote the F -norm of X. By our assumptions, for each m, there is an arithmetic

progression of length m, common difference qm and initial term m+ qm such that ‖xlqm+m−j‖ < 1
m

for

every 0 ≤ j ≤ m, 1 ≤ l ≤ m. Thus, ‖xlqm+j‖ < 1
m

for every 0 ≤ j ≤ m, 1 ≤ l ≤ m.

Let (mk)k be the sequence formed by ∪m{lqm : 1 ≤ l ≤ m}. Then (mk)k is in AP , it has arbitrarily

long arithmetic progressions whose initial term coincides with the common difference and satisfies that

‖xmk+j‖ → 0 for every j. �

Proof of Theorem 3.1. Let ‖ · ‖ denote the F -norm of X.
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i)⇒ ii) is obvious by definition.

ii)⇒ iii). Suppose that B is multiply recurrent. It suffices to show that for each ǫ > 0, and each

p,m ∈ N there is q such that ‖ejq+p‖ < ε for every 1 ≤ j ≤ m.

Since {en} is a Schauder basis, there exists δ > 0 such that ‖x− ep‖ < δ implies ‖xnen‖ < ǫ
2 for any

n 6= p and |xp| > 1
2 . Since B is multiply recurrent, there exist q and x such that ‖x − ep‖ < δ and

‖Bjq(x)− ep‖ < δ for every 1 ≤ j ≤ m. Thus, ‖xnen‖ < ǫ
2 for every n 6= p and |Bjq(x)p| = |xjq+p| > 1

2

for every 0 ≤ j ≤ m. It follows that ‖ejq+p‖ < ǫ for every 1 ≤ j ≤ m.

iii)⇒ iv). Let X0 = span(en : n ∈ N) and S be the forward shift defined in X0. We have for free

that Bn(x) → 0 for every x ∈ X0 and that BS(x) = x. It remains to find a sequence (mk)k ∈ AP with

arbitrarily long arithmetic sequences of the form {q, 2q, . . . ,mq} such that Smk(x) → 0 for every x ∈ c00.

Since enk
→ 0 we have that enk−j = Bj(enk

) → 0 for every j. Thus, by Lemma 3.2, there is an

sequence (mk)k ∈ AP with the required property such that emk+j = Smk(ej) → 0 for every j.

iv)⇒i) follows by Proposition 2.7. �

Applying a quasiconjugation argument we obtain an analogous result for weighted backward shifts.

Corollary 3.3. Let X be a Fréchet space with Schauder basis {en} and suppose that Bω(en+1) = ωnen

is a well defined and continuous weighted backward shift. The following are equivalent:

i) Bω is AP-hypercyclic;

ii) Bω is multiply recurrent;

iii)
∏nk

l=1 ω
−1
l enk

→ 0 for some sequence (nk)k ∈ AP with the following property: given p,m ∈ N

there exists q ∈ N such that the arithmetic progression of length m, common difference q and

initial term p+ q is contained in (nk)k;

iv) Bω satisfies the AP-hypercyclicity criterion.

Recall that every hypercyclic backward shift is weakly mixing. Thus, every AP-hypercyclic backward

shift is weakly mixing but the converse is not true. On the other hand, we will see in Theorem 4.1 that

not every AP-hypercyclic operator is weakly mixing.

Recall also that a backward shift on a Fréchet space with basis is mixing if and only if en → 0, thus

every mixing backward shift is AP-hypercyclic but there are AP-hypercyclic backward shifts that are

not mixing. In [30] there is an example of a mixing subshift in {0, 1}N that is not AP-transitive and in

[32] an example of a mixing linear operator such that {T, T 2} is not d-transitive (but it is AP-hypercyclic

because it is chaotic). Note also that if T is mixing then T ⊕ T 2 ⊕ · · · ⊕ Tm is hypercyclic for every m.

But we don’t know the answer to the following.

Question 3.4. Is every mixing linear operator on a separable Fréchet space necessarily AP-hypercyclic?

Or equivalently, is any mixing operator multiply recurrent?
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4. Weakly mixing and multiply recurrent operators

In this section we study the relationship between AP-hypercyclicity and weak mixing for linear op-

erators. It was shown in [30] that if T is AP-hypercyclic then T ⊕ T is AP-recurrent (in the context of

compact dynamical systems, but the proof also works in the non-compact case). On the other hand, we

know that there are weakly mixing operators that are not AP-hypercyclic (see [23, Proposition 5.8] or

the characterization of AP-hypercyclic backward shifts, Theorem 3.1). We show that the converse im-

plication does not hold either. We then characterize operators that are both weakly mixing and multiply

recurrent.

An AP-hypercyclic operator which is not weakly mixing. In 2009 De la Rosa and Read solved

one of the most important problems that were open in linear dynamics: they constructed a hypercyclic

operator that is not weakly mixing or equivalently that does not satisfy the hypercyclicity criterion [24].

The hypercyclicity criterion has many formulations and it is usually implied by some regularity condition.

For instance, every chaotic operator or every reiterative hypercyclic operator is weakly mixing. Thus, it

would be reasonable to expect that AP-hypercyclicity implies weakly mixing.

On the other hand Bayart and Matheron constructed examples of non-weakly mixing hypercyclic op-

erators on classical spaces, such as ℓp, c0,H(C) [4]. They also studied in [6] non-weakly mixing operators

having orbits with a high level of frequency, and proved that if (mk)k satisfies that limk
mk

k
= +∞ then

there exists a hypercyclic non-weakly mixing operator T on ℓ1 satisfying that for each nonempty open

set U , the recurrence set NT (x,U) is O((mk)k). Note that this result is very tight since if (mk

k
)k were

bounded then such a T would be frequently hypercyclic and hence weakly mixing.

We will show next that this result, together with some quantitative upper bounds proved by Gowers

for Szemerédi’s theorem, implies that there are AP-hypercyclic operators which are not weakly mixing.

See also [17], where such an operator is explicitly constructed.

Theorem 4.1. There exists a multiply recurrent and hypercyclic operator on ℓ1 that is not weakly mixing.

Proof. Let f(t) := t
√
2
−
√
log log log t

and ml := [f−1(l)] for l ∈ N, where log is the base 2 logarithm and

[t] denotes the integer part of t ∈ R. Then since l ∼ ml

√
2
−
√
log log logml ,

ml

l
∼ ml

ml√
2
√

log log logml

→ ∞, as l → ∞.

Thus by [6], there exist T on ℓ1 and x ∈ ℓ1 such that T is not weakly mixing and NT (x,U) is O((ml)l)

for every nonempty open set U .

Let us show that such an operator T must be AP-hypercyclic. Let rk(n) be the maximum of all r

such that there exists A ⊂ {1 . . . , n} such that |A| = r and A does not have an arithmetic progression

of length k.



MULTIPLE RECURRENCE AND HYPERCYCLICITY 9

It is known by [27] that rk(n) <
n

(log logn)2−2k+9 − 1. Take k(n) = [log log
√
log log log n− 9]. Then

rk(n)(n) + 1 <
n

(log log n)2
− log

√
log log log n

=
n

(log log n)
1√

log log log n

=
n

2
√
log log logn

.

Then, since l > rk(ml)(ml), there must be an arithmetic progression of length k(ml) contained in

{m1,m2, . . . ,ml}. Moreover if (nl)l = O((ml)l) then nl ≤ Cml for some C > 0 then since l ∼
ml

2
√

log log log
√

ml

rk(nl)(nl)

l
≤

rk(Cml)(Cml)

l
≤

Cml

2
√

log log logCml

C̃ml√
2
√

log log logml

< 1,

for sufficiently large l. Therefore {n1, n2, . . . , nl} contains an arithmetic progression of length k(nl) for

all sufficiently large l. Consequently, T is AP-hypercyclic. �

Weak mixing and multiple recurrence. Now we proceed to characterize operators that are both

weakly mixing and multiply recurrent. We will show that classical results on weakly mixing operators

have an “AP-analogue”.

Theorem 4.2. The following are equivalent:

(i) T is weakly mixing and multiply recurrent.

(ii) T ⊕ T is AP-hypercyclic

(iii) (Furstenberg type theorem) T ⊕ T . . . ⊕ T is AP-hypercyclic for every n ∈ N.

(iv) (T is hereditarily AP-hypercyclic) There is (nk)k ∈ AP such that for every AP-subsequence

(mk)k of (nk)k there is some x satysfying that NT (x,U)∩ (mk)k ∈ AP for every nonempty open

set U .

(v) T satisfies the following criterion: there are an AP-sequence (nk,j)k∈N,0≤j≤k = (ak+jck)k∈N,0≤j≤k,

dense sets X0, Y0 and applications Sk,j : Y0 → X such that for every x ∈ X0 and every y ∈ Y0,

(a) T nk,j(x) → 0,

(b) (Snk,0
+ · · ·+ Snk,k

)(y) → 0,

(c) T nk,j(Snk,0
+ · · ·+ Snk,k

)y → y, as k → ∞ (independently of the choice of j ≤ k).

(vi) For every nonempty open sets U, V1, V2 and every length m there are x1, x2 ∈ U and a, k ∈ N

such that T a+jk(xi) ∈ Vi for every j ≤ m.

Proof. (i) ⇒ (ii). Let U1, U2, V1, V2 be nonempty open sets and m > 0. Since T is weakly mixing, there

are U ′
1 ⊂ U1, V

′
1 ⊂ V1 and N such that TN (U ′

1) ⊂ U2 and TN (V ′
1) ⊂ V2.

On the other hand, since T is AP-hypercyclic, there exist x1 ∈ U ′
1, and a, k ∈ N such that T a+kjx1 ∈

V ′
1 ⊂ V1 for j ≤ m. Let now x2 := TNx1 ∈ TNU ′

1 ⊂ U2. Then T a+kjx2 ∈ TNV ′
1 ⊂ V2. We have proved

that (x1, x2) ∈ U1 × U2 and for any j ≤ m,

(T ⊕ T )a+kj(x1, x2) ∈ V1 × V2.
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(ii) ⇒ (iii) We prove it by induction. Let (Uj)j , (Vj)j be open sets, 1 ≤ j ≤ n+1. Let m > 0. Hence,

there are N , U ′
n ⊆ Un and V ′

n ⊆ V ′
n such that TN (U ′

n) ⊆ Un+1 and TN (V ′
n) ⊆ Vn+1.

By assumption there are k, a ∈ N, xi ∈ Ui, 1 ≤ i ≤ n− 1 and xn ∈ U ′
n ⊆ Un such that T a+jk(xi) ∈ Vi,

1 ≤ i ≤ n − 1 and T a+jk(xn) ∈ Vn′ ⊆ Vn. Finally we define xn+1 = TN (xn) ∈ Un+1. Hence, we have

that for every j, T a+jk(xn+1) = TN+a+jk(xn) ∈ TN (V ′
n) ⊆ Vn+1.

(iii) ⇒ (iv). Let (Uj × Vj)j be a basis of open sets for X × X. By (iii), for every N , there are

aN , kN ∈ N such that for 1 ≤ l, j ≤ N, there is xN,l ∈ Ul such that

T aN+jkN (xN,l) ∈ Vl,

i.e. NT⊕···⊕T ((xN,1, . . . , xN,N ), V1 × · · · × VN ) contains an arithmetic progression of length N .

Let now (nk)k be the sequence formed by {aN + jkN : j ≤ N and N ∈ N}. Moreover, by Proposition

2.5, we may assume that aN+1 > 2(aN + NkN ). Note that every arithmetic progression of length m

contained in (nk)k must be contained in {aN + jkN : j ≤ N} for some N ≥ m.

Let (mk)k ⊂ (nk)k, (mk)k ∈ AP. We will show that there exists an AP-universal vector x for (Tmk)k,

that is NT (x,U) ∩ (mk)k ∈ AP for every nonempty open set U .

Notice that, in the same way as in Proposition 2.1, it is enough to prove that:

for each open sets U, V and m > 0, there is x ∈ U such that:

NT (x, V ) ∩ (mk)k has an arithmetic progression of length m.(2)

Indeed, if (2) holds and (Vn)n is a basis of open sets, then we consider

Ol := {x : NT (x, Vl) ∩ (mk)k admits an arithmetic progression of length l}.

It turns out that each Ol is a dense open set and hence ∩lOl is dense. Thus, each vector in ∩lOl satisfies

that NT (x,U) ∩ (mk)k ∈ AP for every open set U .

We now show (2). Let M > 0.

Take r so that Ur × Vr ⊂ U × V , and let {b+ jc : j = 1, . . . ,m} ⊂ (mk)k ∩ {aN + jkN : j ≤ N} such

that N > max{r,M}. Thus, for every 1 ≤ j, l ≤ N ,

T aN+jkN (xN,l) ∈ Vl.

In particular, for every 1 ≤ j ≤ M ,

T b+jc(xN,r) ∈ V.

(iv) ⇒ (v) Let x ∈ X such that for every open set U , NT (x,U) ∩ (nk)k ∈ AP. Then, for each k, we

may find (bk + jdk)j≤k ⊂ (nk)k such that

T bk+jdk(x) ∈ 1

k
BX .
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By (iv) there exists z ∈ X such that for each open set U ,

N(z, U) ∩ {bk + jdk : k ∈ N, j ≤ k} ∈ AP.

In particular, there exists a sequence (nk,j)j≤k = (ak + jck)j≤k ⊂ (bk + jdk)j≤k such that for 1 ≤ j ≤ k,

T ak+jck(z) ∈ BX(kx, 1).

Define xk,j :=
z
k
for j ≤ k. Then xk,j → 0 and

T nk,j(xk,j) = T ak+jck(z/k) ∈ BX(x,
1

k
),

which implies that T nk,j(xk,j) → x.

Let nowX0 = Y0 = orbT (x), which are dense inX. Thus, if T n(x) ∈ X0, T
nk,j(T nx) = T nT ak+jck(x) →

0 as k → ∞.

We define now Snk,j
on Y0 = orbT (x) as

Snk,j
(T nx) :=

1

k + 1
T nxk,j =

1

k + 1
T n z

k
.

Then (Snk,0
+ · · · + Snk,k

)(T nx) = T n z
k
→ 0 as k → ∞.

Finally, if j ≤ k,

T nk,j(Snk,0
+ · · ·+ Snk,k

)(T nx) =
1

k + 1
T nk,j(T nxk,0 + · · ·+ T nxk,k) = T nT nk,jxk,j → T nx,

as k → ∞.

(v) ⇒ (i) T satisfies the hypercyclicity criterion, thus, by the Bès-Peris theorem [12], T is weakly

mixing.

We prove that it is multiply recurrent. Take U a nonempty open set and m ∈ N. We know that for

each ik, jk ≤ k, y ∈ Y0 ∩ U ,

T ak+jkck(Sak + · · ·+ Sak+kck)y → y.

In particular, for k big enough, z := T ak(Sak + · · ·+ Sak+kck)y belongs to U , and

{T akz, T ak+ckz, . . . , T ak+mckz} ⊂ U,

that is, z ∈ U ∩ (T−ckU) ∩ · · · ∩ (T−mckU). This implies that T is multiply recurrent.

To finish the proof we show that (ii) and (vi) are equivalent.

(ii) ⇒ (vi) is immediate.

(ii) ⇐ (vi). Let U1, U2, V1, V2 open sets and m > 0. By hypothesis there is n1 ∈ N(U1, U2)∩N(U1, V2).

Applying the hypothesis again we obtain that there are a, k and x1 ∈ U1∩T−n1(U2), x2 ∈ U1∩T−n1(U2)

such that T a+jk(x1) ∈ V1 and T a+jk(x2) ∈ T−n(V2) for every j ≤ m. We notice that T n2(x2) ∈ U and

that T a+jk(T n(x2)) ∈ V2 for every j ≤ m. �
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5. Infinitely many arithmetic progressions with the same step

In this short section we study multiple recurrence with the additional property that there are infinitely

many arithmetic progressions with the same step contained in the sets of return times. We see that

these notions coincide for linear operators but differ for families of operators. We study this concept in

connection to a Theorem due to Costakis and Parissis [23].

Given a Furstenberg family F , the following definition was given in [33] (see also [23] and [2, Propo-

sition 4.6]).

Definition 5.1. Given a family F , a sequence of operators (Tn)n is said to satisfy property PF if, for

each non-empty open set U in X, there exists x ∈ X such that {n ∈ N : Tnx ∈ U} ∈ F . An operator T

satisfies PF if (T n)n has the property PF .

The main result in [23] proves that if a sequence of scalars (λn)n is such that λn+τ

λn
→ 1 for some τ

and (λnT
n)n has the property PBD then T itself is multiply recurrent. The key ingredient is that, via

an application of Szemeredi’s Theorem, any set A ∈ BD satisfies that for each m > 0 there is k such

that A contains infinitely many arithmetic progressions of the same step k and length m.

Definition 5.2. We will say that A ∈ AP provided that for every m there is k such that A has infinitely

many arithmetic progressions of step k and length m.

Thus, a close look to the proof of [23, Theorem 3.8] shows that it can be stated in the following form.

Theorem 5.3 (Costakis-Parissis). Let (λn)n be a sequence of complex numbers such that λn+τ

λn
→ 1 for

some τ . Then

(λnT
n)n has property PAP ⇒ T is multiply recurrent.

We show next that, for a single operator, all these forms of recurrence are equivalent.

Proposition 5.4. (a) The following are equivalent.

(i) T is multiply recurrent.

(ii) T has property PAP .

(iii) T is AP-recurrent.

(iv) T has property PAP .

(v) T is AP-recurrent.

(b) T is AP-hypercyclic operator if and only if T is AP- hypercyclic.

Proof. We prove (a), the proof of (b) is similar. Clearly, (iii)⇒(ii)⇒(i) and (v)⇒(iv)⇒(ii).

Hence, by Proposition 2.2, (i), (ii) and (iii) are equivalent.

It remains to show that (iii)⇒(v). Let U be a nonempty open set. By (the proof of) Proposition 2.2,

there is an AP-recurrent vector x ∈ U such that for every neighbourhood V of x and any m, there exists
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k such that

x, T kx, . . . , T kmx ∈ V.

Thus, there is an open set V ′ ⊂ V such that T jkV ′ ⊂ V for 0 ≤ j ≤ m. Moreover, since x is a recurrent

vector, there is a sequence (nl)l such that T nlx ∈ V ′. This implies that x is an AP-recurrent vector

because for j ≤ m and any l,

T nl+jkx ∈ T jkV ′ ⊂ V.

�

This shows that we may see Costakis-Parissis’ result (Theorem 5.3) as a result about property PAP .

Corollary 5.5. Let (λn)n be a sequence of complex numbers such that λn+τ

λn
→ 1 for some τ . Then

(λnT
n)n has property PAP ⇒ T has property PAP .

It is now natural to ask if property PAP can be replaced by property PAP in the above corollary, i.e.

is it true that if λn+τ

λn
→ 1 for some τ ,

(λnT
n)n has property PAP ⇒ T has property PAP ?

We will now prove that this is not true. First we need the following proposition.

Proposition 5.6. Let X = ℓp, B the backward shift and λn → ∞ such that
λj′k
λjk

→ 0 as k → ∞, for

every j > j′. Then (λnB
n)n has the PAP property and it is AP-universal.

Applying the above proposition with λn = e
√
n we have that (λnB

n)n has property PAP . On the

other hand, since the backward shift is not multiply recurrent, we conclude.

Corollary 5.7. There exist an operator T and a sequence (λn)n such that λn+1

λn
→ 1, (λnT

n)n has

property PAP but T is not multiply recurrent.

Note that, in contrast to Proposition 5.4, Corollary 5.7 shows that for families of operators properties

PAP and PAP are not equivalent.

Proof of Proposition 5.6. Let U = B(y, ε) an open ball of radius ε > 0 where y ∈ c00. Let m be any

natural number and k = k(m) to be determined. Let Tn = λnB
n.

We consider ỹ =
∑m

j=0
Sjk(y)
λjk

, where S is the forward shift and we have adopted the convention λ0 := 1.

Let 0 ≤ l ≤ m. If k > supp(y) we have that

λlkTlk(ỹ) = y +

m
∑

j=l+1

λlkS
(j−l)k(y)

λjk
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Therefore, if k is big enough so that |λj′k
λjk

| < ε
m‖y‖ for every j′ < j ≤ m, then we have that for every

l ≤ m,

‖λlkT
lk(ỹ)− y‖ = ‖

m
∑

j=l+1

λlkS
(j−l)k(y)

λjk

‖ < ε.

The proof of AP-universality follows similarly. �

Remark 5.8. In [33], a sequence (λnT
n)n satisfying property PBD was characterized in terms of a

special kind of recurrence for T called topologically D-recurrence with respect to (λn)n.

Let us consider the following type of recurrence with respect to (λn)n (which is similar, but simpler, to

topologically D-recurrence): for each U , there exists x satisfying that for each m, there is some k such

that

card

{

a : λaT
ax ∈

m
⋂

i=0

T−ik(U)

}

= ∞.(3)

Then, it is easy to show that, for a sequence (λn)n with λn+τ

λn
→ 1 for some τ ,

(λnT
n)n has property PAP if and only if (3) holds.

Indeed, suppose that (λnT
n)n has property PAP . Let U be an open set. Let M ∈ N, take δ > 0 and V

a nonempty open set such that V +Bδ ⊂ U , and let x be a vector satisfying {n ∈ N : λnT
nx ∈ U} ∈ AP.

Then in particular, there is k such that for infinitely many a’s,

λa+iτkT
a+ikx ∈ V, for 0 ≤ i ≤ τM ⇒ λa+iτk

λa

λaT
a+iτkx ∈ V, for 0 ≤ i ≤ M

⇒ λaT
a+iτkx ∈ U, for 0 ≤ i ≤ M and a ≥ a(U, δ,M, τ)

⇒ λaT
ax ∈

M
⋂

i=0

T−iτkU, for 0 ≤ i ≤ M and a ≥ a(U, δ,M, τ).

The proof of the converse is similar.

For any sequence (λn)n, the multiple recurrence of T is clearly implied by the recurrence defined in

(3). Thus, the implication proved in the above remark, together with Szemeredi’s Theorem, provides a

simpler proof of [23, Theorem 3.8], although the main idea is the same.
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