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Abstract We extend the work of Schanuel, Lawvere, Blass and Gates in Objective Number
Theory by proving that, for any L(X) ∈ N[X], the rig N[X]/(X = L(X)) is the Burnside
rig of a prextensive category.

Keywords Objective number theory · Extensive category · Topos

1 Outline

The present paper solves a problem in objective number theory, a subject initiated by
S. H. Schanuel through his 1990 work on negative sets [16], and whose collaboration with
F. W. Lawvere for 20 more years advanced the subject [17, 18] and inspired others to do
so. (We will use the terminolgy in [17], so that prextensive means extensive with finite
products.) From the linear equation for Negative Sets, the next advance [11] concerned the
quadratic equation descriptive of lists of words or trees. The key question became, that
while it is trivial that these polynomial equations have solutions in the category of abstract
countable sets, whether there exist examples of objects in suitable categories which satisfy
no other equations than consequences of the given equation; for example, the tree equation
T = 1 + T 2 implies that T 7 = T , but what else does it imply? It was partly to give a precise
sense to this notion of ‘consequence’ that Lawvere and Schanuel had invented the theory of
rigs and of prextensive categories. With the explicit use of classifying toposes, A. Blass was
able to prove that indeed there are no polynomial isomorphisms in the concrete prexten-
sive setting beyond those that are guaranteed by the abstract Rig-theoretic setting, a striking
‘completeness theorem’ which shed light on the classification of the difficulty of certain
transformations of data types. Shortly thereafter a student of R. F. C. Walters in Australia,
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R. Gates, was able to show that a similar result holds, not only for the Tree equation, but
for a vast number of other polynomial fixed point equations. (Namely, for polynomials that
are not constant and have a non-zero constant term.) The objective of the present paper is to
remove all restrictions on the polynomial involved in the fixed point equation and to begin
to point the way toward multi-variable extensions.

We now describe the contents of the paper in some technical detail. The reader will be
assumed to be familiar with (pr)extensive and distributive categories and their Burnside rigs
as discussed in [16] and [14]. If C is a small distributive category, then its Burnside rig
will be denoted by BC. We also need to assume that the reader is familiar with algebraic
theories [13] and some topos theory including the construction of classifying toposes as in
Section D3.1 of [10].

Let R = N[X]/(X = L(X)) for some L(X) ∈ N[X].
Is R the Burnside rig of a distributive category?
If L(X) is constant the answer is ‘yes’ because in this case R = N, which is the Burnside

rig of the category of finite sets. As recalled above, the main result in [16] shows that the
answer is positive for L(X) = X + 1 + X = 2X + 1; indeed, in this case R is the Burnside
rig of the category of bounded polyhedra. Using a different technique, [3] proves that the
answer is also positive for L(X) = 1 + X2. A related but different approach is used in [8]
to show that the answer is positive if L(X) is not constant and L0 �= 0.

We show that the answer is positive for all L(X) ∈ N[X]. Our proof is a combination
of the techniques used in [3] and [8], synthesising the use of toposes and of calculi of
fractions. (We will only deal with one-variable presentations, but it must be mentioned that
it is also proved in [16] thatN[X, Y ]/(X = 2X + 1, Y = X + 1 + Y, Y 2 = 2Y 2 + Y ) is the
Burnside rig of the category of unbounded polyhedra.)

Let T be a small category with finite products and let ̂T be the induced topos of
presheaves. Denote the (finite-)coproduct completion of T by FamT . Since T has prod-
ucts, FamT is prextensive (see paragraph before Proposition 4.6 in [5]) and the essentially
unique functor FamT → ̂T making the following diagram commute

is fully faithful and preserves products and coproducts. (Of course, the diagonal map is the
Yoneda embedding and the horizontal one is the universal inclusion of its domain into the
coproduct completion.)

Now let J be a Grothendieck topology on T and j : Sh(T , J ) → ̂T be the induced
subtopos. The inverse image of j may be precomposed with the inclusion FamT → ̂T to
obtain a functor FamT → Sh(T , J ).

Definition 1.1 The full image of the functor FamT → Sh(T , J ) will be denoted by

Fam(T , J ) → Sh(T , J )

as in the following diagram
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Every Rig with a One-Variable Fixed Point Presentation. . .

where the left-bottom pair is the bo-ff (bijective on objects, fully faithful) factorization of
FamT → Sh(T , J ).

Since both the top and right functors in the square of Definition 1.1 preserve
finite products and coproducts, the category Fam(T , J ) is prextensive and the inclusion
Fam(T , J ) → Sh(T , J ) preserves products and coproducts. In particular, we can apply
the above to the case where T is a free algebraic theory. Let us quickly recall the basic
definitions and introduce some notation.

Fix a small version fSet of the category of finite sets. An (algebraic) theory is a small
category T with finite products together with a bijective-on-objects functor T : fSetop → T
that preserves finite products [13]. When there is no risk of confusion we will omit the
functor T and simply say that T is a theory. It is convenient to use ‘exponential notation’ so
that if f : A → B is a map in fSet then T f : T B → T A is the corresponding map in T . In
particular, we will write T instead of T 1 and, for each element i : 1 → I in fSet, we may let
πi = T i : T I → T . A morphism of theories is a functor F : T → T ′ that preserves finite
products and makes the following diagram

commute. Let Th be the category of theories.
Fix a natural numbers object N in Set and consider it as a discrete category. An object

P in the topos SetN may be thought of as a ‘signature’ such that for each n ∈ N, Pn is
the set of ‘operations of arity n’. Now fix an inclusion N → fSet sending each n ∈ N to a
finite set n of cardinality n. This inclusion induces a functor U : Th → SetN such that for
any T in Th and n ∈ N, (UT )n = T (T n, T ). It is well-known that the functor U has a left
adjoint F : SetN → Th. (See Section II.2 in [13].) For any P in SetN, FP is the free theory
determined by P .

Any polynomial L(X) ∈ N[X] determines a ‘signature’ � ∈ SetN such that if m is the
coefficient of degree n then �n = m. The free theory determined by � will be denoted by L.
(So that L-algebras are sets S equipped with a function L(S) → S.)

Let BL denote the (multiplicative) commutative monoid of iso clases of objects of L.
The product preserving inclusion L → FamL induces a (multiplicative-)monoid morphism
BL → B(FamL) as below

where [T n] is the object (determined by T n) in the Burnside monoid BL. This induces a
morphism BL → (N[X], ·, 1) of multiplicative monoids and so, a canonical composite

BL −−→ (N[X], ·, 1) −−→ (N[X]/(L(X) = X), ·, 1)
that sends [T ] to X.
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For every n ≥ 0, each f ∈ �n induces a map in L that we denote by f : T n → T . Let
JL be the least Grothendieck topology on L such that T is covered by the sieve gener-
ated by the family (f : T n → T | n ∈ N, f ∈ �n). Our main result (Theorem 15.2) shows
that: if L(X) ∈ N[X] is not constant, the canonical BL → N[X]/(L(X) = X) extends
to a unique iso B(Fam(L, JL)) → N[X]/(L(X) = X) of rigs. We will also present the
geometric theory classified by Sh(L, JL).

The purpose of Sections 2 to 5 is, roughly, to show that the more complicated part of the
proof of the main result may be confined, as in Blass’ paper [3], to a site with finite products
(Proposition 5.7). The notion of semi-saturated subcategory (admitting a calculus of (right)
fractions) plays here the most important role.

In Blass’ paper, the more difficult part of the proof takes place in a site whose underlying
category is the free algebraic theory generated by a constant and a binary operation. A key
Lemma (see p. 16 in [3]) shows that the relevant covering sieves may be characterized as
those that contain all constants. Of course, this must change since the theories we consider
may lack constants. Yet, there is a sense in which the same idea works. We try to capture
the essence of the idea via the notion of ample family introduced in Section 6 in the context
of forts.

Sections 7 to 11 culminate in the definition of ranked (algebraic) theory and the result
that free theories are ranked in a canonical way. Intuitively, ranked theories form a class of
algebraic theories where most of Blass’ argument makes sense. We decided to formulate
such a concept because all the attempts to mimic Blass’ proof in an arbitrary free theory
described using syntactic terms led to calculations that were impossible to read. Fortunately,
all that is needed about free theories may be expressed as in Proposition 11.5. Unfortunately,
this requires some new auxiliary concepts such as that of rigged theories but, altogether, we
believe that the abstract formulation is better than the alternative using strings of symbols.

Sections 12 to 14 mimic Blass’ proof. In particular, the notion of development is the
natural analogue of Blass’ notion in our more general context.

In Section 15 we combine our results on calculi of fractions (inspired by Gates’ work)
with our generalization of Blass’ ideas. This combination proves the main result (Theo-
rem 15.2). In Section 16 we give a presentation of the theory classified by the topos used to
prove the main result.

2 Calculi of Fractions

Here we recall some well-known material on calculi of fractions (see, e.g., [4, 7] or [9]).

Definition 2.1 A bijective-on-objects subcategory � → X is said to admit a calculus of
(right) fractions if:

CF1 Every cospan as on the left below

can be completed to a commutative square as on the right above.
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CF2 For every commutative diagram as on the left below

X

f−−−→
−−−→

g

Y
s∈�−−−→ Z W

s′∈�−−−→ X

f−−−→
−−−→

g

Y

there exists an s′ : W → X in � such that the diagram on the right above commutes.

For the rest of the section fix a bijective-on-objects subcategory � → X admitting a
calculus of fractions. Notice that if every map in � is mono then condition (CF2) is trivially
satisfied.

The category of fractions X [�−1] has the same objects as X and, as arrows X → Y ,
equivalence classes of spans

with s ∈ �. Two such spans (f, s) and (g, t) are equivalent if there is a commutative diagram

with sa = tb ∈ �. The equivalence class determined by (f, s) will be denoted by f
s
.

The obvious functor from X to X [�−1] sending f to f
id

is many times denoted by
P� : X → X [�−1] and it is universal among functors fromX sending all maps in � to isos.

Lemma 2.2 Let f : X → Y be a map in X . Let u : U → X in � and g : U → Y . Then
f
id

= g
u
if and only if there is aw : W → U such that uw : W → X is in� and the following

diagram

W
w−−−→ U

f u−−−→
−−−→

g

Y

commutes.

Proof The condition f
id

= g
u
means that there is a commutative diagram

with w′ = uw ∈ �.
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The following result is essentially that appearing in Section I.3.5 of [7].

Lemma 2.3 Let f : X → Y be a map in X . The map f
id

is an iso in X [�−1] if and only if
there is a diagram as below

with α and β in � and such that both triangles inside the square commute.

Let F : X0 → X be a full subcategory and �0 → X0 be a bijective-on-objects subcate-
gory admitting a calculus of fractions such that, for every f in �0, Ff is in �. Then there
exists a unique functor G : X0[�−1

0 ] → X [�−1] such that the following diagram

commutes.

Lemma 2.4 If for every B in X0 and f : X → FB in � there exists a map g : FA → X

such that fg = Fh for some h : A → B in �0, then G : X0[�−1
0 ] → X [�−1] is fully

faithful.

Proof To prove that G is full, let A and B be in X0 and f
s

: FA → FB in X [�−1] with
s : Xs → FA in �. By hypothesis there exists g : FA′ → Xs such that sg = F t for some
t : A′ → A in �0 as in the following diagram

and, since F is full, there exists b : A′ → B such that Fb = fg. Clearly f
s

= Gb
t
so G

is full. To prove that G is faithful let f
s
,

g
t

: A → B in X0[�−1
0 ] with s : As → A and

t : At → A both in �0. Assume that G
f
s

= G
g
t
so there exists a commutative diagram as

on the left below

such that (F s)a = (F t)b ∈ �. Let us call this map c : X′ → FA. By hypothesis there exists
a map k : FA′ → X′ such that ck = Fh for some h : A′ → A in �0. Since F is full there are
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a′ : A′ → As and b′ : A′ → At in X0 such that Fa′ = ak and Fb′ = bk and the diagram
on the right above commutes. We also have that (F s)(Fa′) = Fh = (F t)(Fb′) and, since
F is faithful, a′ and b′ witness that f

s
= g

t
.

An important ingredient in the proof of our main result is a weakening of the following
concept.

Definition 2.5 The subcategory � → X (admitting a calculus of fractions) is called
saturated if for every map f in X , f

id
an iso implies that f ∈ �.

We end this section with a relevant example of a saturated subcategory. Let j be a
(Lawere-Tierney) topology in a topos E and let L : E → ShjE be the associated-sheaf
functor. We assume that the reader is familiar with the relation between Lawvere-Tierney
topologies and closure operators, and with the concept of (j -)dense monos.

Definition 2.6 Let f : X → Y be a morphism in E . It is called almost epi if its image
is dense (as a subobject of Y ). Also, let 〈a, b〉 : R → X × X be the kernel pair of f and
τ : X → R be the factorization of the diagonal X → X × X through 〈a, b〉 : R → X × X.
The map f is called almost mono if τ is dense. Finally, f is called bidense if f is both
almost epi and almost mono.

The next result follows from the material in Section 3.4 in [9].

Proposition 2.7 The subcategory � → E of bidense morphisms admits a calculus of frac-
tions and the composite ShjE → E → E[�−1] is an equivalence. Moreover, � → E is
saturated.

In other words, ShjE is a category of fractions.

3 Proper Families

Let C be a small category. We assume that the reader is familiar with the notion of
Grothendieck topology but we recall the related notion of basis.

Definition 3.1 A basis (for a Grothendieck topology) on C is a function assigning to each
object U of C a collection KU of families (fi : Ui → U | i ∈ I ) of maps in C (called K-
covering families) such that:

1. If f : U ′ → U is an iso then the singleton family (f | 1) is in KU .
2. If (fi : Ui → U | i ∈ I ) is a K-covering family and g : V → U is any map in C then

there exists a K-covering family (hj : Vj → V | j ∈ J ) such that each ghj factors
through some fi .

3. If (fi : Ui → U | i ∈ I ) is in KU and, for each i ∈ I , (hi,j : Ui,j → Ui | j ∈ Ji)

∈ KUi then the family of composites (fihi,j | i ∈ I, j ∈ Ji) is in KU .

Let K be a basis on C such that every K-covering family is finite.
For any U in C, a map [fi : Ui → U | i ∈ I ] : ∑

i∈I Ui → U in FamC is called basic
if the family (fi : Ui → U | i ∈ I ) is in KU . We now extend this definition to maps with
arbitrary codomain in FamC. Each object in FamC is of the form

∑

i∈I Ui for a finite set
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I and, for each i ∈ I , Ui an object in C. Any map with codomain
∑

i∈I Ui is of the form
∑

i∈I gi : ∑

i∈I Xi → ∑

i∈I Ui . (Notice that we are not requiring the Xi’s to be in C.) We
say that such a map is selected if gi : Xi → Ui is basic for every i ∈ I .

Lemma 3.2 The selected maps form a bijective-on-objects subcategory that we denote by
�K → C. If every K-covering family is finite then condition (CF1) in Definition 2.1 is
satisfied.

Proof The first condition for bases implies that all identities are selected. The third con-
dition for bases implies that selected maps are closed under composition. The second
condition for bases, together with finiteness, implies that (CF1) holds.

In order to establish a sufficient condition for �K → C to admit a calculus of fractions
we introduce the following.

Definition 3.3 A family (fi : Ci → C | i ∈ I ) of maps in C is called monic if the existence
of a commutative diagram

implies that i = j and g = h.

The following result gives two alternative formulations.

Lemma 3.4 For any family F = (fi : Ci → C | i ∈ I ) of maps in C the following are
equivalent:

1. The family F is monic.
2. The following two conditions hold:

(a) the map fi : Ci → C is mono for each i ∈ I and
(b) for every i, j ∈ I the existence of a commutative diagram

in C implies that i = j .

If, moreover, I is finite then the above are also equivalent to:
3. The induced map [fi | i ∈ I ] : ∑

i∈I Ci → C is mono in FamC.

Proof The equivalence between the first two items is left for the reader. We prove that the
last two items are equivalent when I is finite. So let f = [fi | i ∈ I ] : ∑

i∈I Ci → C in
FamC. Since every object of FamC is a finite coproduct of objects in C, f is mono if and
only if for every object D in C, and maps g, h : D → ∑

i∈I Ci , fg = f h implies g = h.
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Since D is connected in FamC, g = inigi for some i ∈ I and gi : D → Ci and, similarly,
h = injhj for some j ∈ I and hj : D → Cj . So, the equality fg = f h simply means that
the square below

commutes. It follows that the map f is mono in FamC if and only if the family F is monic
in the sense of Definition 3.3.

The next somewhat ad-hoc terminology will prove efficient.

Definition 3.5 A family (fi : Ci → C | i ∈ I ) of maps in C will be called proper if it is
finite and monic.

We can exhibit our source of calculi of fractions coming from bases.

Lemma 3.6 If everyK-covering family is proper then the subcategory �K → FamC admits
a calculus of fractions such that every map in �K is mono.

Proof Follows from Lemma 3.2 and the fact that if every K-covering family is monic then
every map in �K is mono.

Let Sh(C,K) → ̂C be the associated topos of sheaves and a : ̂C → Sh(C,K) be the asso-
ciated sheaf functor. Adapting the notation in Definition 1.1 from topologies to bases, the
full image of FamC → ̂C → Sh(C,K) will be denoted by Fam(C,K) → Sh(C,K).

Proposition 3.7 If every K-covering family is proper then there is full and faithful
(FamC)[�−1

K ] → Sh(C,K) making the following diagram

commute. Therefore, Fam(C,K) is canonically equivalent to (FamC)[�−1
K ].

Proof By Proposition 2.7, Sh(C, J ) coincides with ̂C[�−1] where � → ̂C is the subcate-
gory of bidense maps. So it is enough to check that Lemma 2.4 is applicable to FamC → ̂C.
First we need to check that the full inclusion FamC → ̂C sends maps in �K to dense monos.
This follows from the fact that the inclusion FamC → ̂C preserves monos and coproducts,
and the fact that Yoneda sends K-covers to families of maps generating a dense subob-
ject. It remains to prove that the condition in the statement of Lemma 2.4 holds. It is
enough to restrict to bidense maps X → C in ̂C with codomain in C. Its image s : S → C

is a dense subobject. Since K is a basis, the sieve S must contain the maps in a K-cover
(fi : Ci → C | i ∈ I ). In other words, the induced map f : ∑

i∈I Ci → C factors through
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S → C and, since the domain of f is projective in ̂C, f factors through the bidense X → C.
That is, we obtain a map

∑

i∈I Ci → X such that the composite
∑

i∈I Ci → X → C is in
�K .

We will need the following closure property.

Lemma 3.8 Let G be a proper family of maps with codomain Y and let f : X → Y . If the
pullback family f ∗G exists then it is proper.

Proof If f ∗G exists then it is clearly a finite family of monos. To prove that it is monic
letG = (gi : Ai → Y | i ∈ I ) and let f ∗G = (f ∗gi : f ∗Ai → X | i ∈ I ). Assume that the
diagram on the left below

commutes for some i, j ∈ I . Then the diagram on the right above commutes and, since G

is monic, i = j . So f ∗G is monic by Lemma 3.4.

For example, in an algebraic theory, pullbacks along projections always exist.

4 Semi-Saturation

Let � → X be a bijective-on-objects subcategory admitting a calculus of fractions. The
second paragraph of page 9 in [3] says that very explicit bijections are determined by two
families of patterns (pi)i∈I and (qi)i∈I such that, for each i, “the same labels occur in pi as
in qi”. This condition motivates the following.

Definition 4.1 The subcategory � → X (admitting a calculus of fractions) is called semi-
saturated if for every iso f

s
: X → Y in X [�−1] there are m, v ∈ � such that f

s
= m

v
.

The next result provides a useful alternative formulation.

Lemma 4.2 The subcategory � → X is semi-saturated if and only if for every map
f : X → Y , f

id
an iso implies that there are m, v ∈ � such that f

id
= m

v
.

Proof One direction is trivial, for the other assume that f
s

: X → Y is an iso in X [�−1],
with f : Xs → Y . Clearly, f

s
= f

id
id
s

and id
s

: X → Xs is an iso, so f
id

is an iso. By

hypothesis, there are m, v ∈ � such that f
id

= m
v
. But then

f

s
= f

id

id

s
= m

v

id

s
= m

sv

so � is semi-saturated.

Clearly, if � is saturated in the sense of Definition 2.5 then it is semi-saturated.
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Definition 4.3 A bijective-on-objects subcategory � → X is said to admit a calculus of
dense monos if it admits a calculus of fractions, every map in � is mono and for every
diagram of monos as below

u ∈ � implies v ∈ �.

Our source of semi-saturated subcategories is based on the following.

Proposition 4.4 If � → X admits a calculus of dense monos then it is semi-saturated.

Proof Assume that f
id

: X → Y is an iso. Then there is a diagram

as in the statement of Lemma 2.3 with α and β in �. By hypothesis, β is mono, so g is
also mono. But then α, h and g form a triangle as in Definition 4.3 so g ∈ � and we have a
diagram

A
h−−−→B

fg−−−→
−−−→

β

Y

such that gh ∈ �. Lemma 2.2 implies that f
id

= β
g
, so Lemma 4.2 implies that � is semi-

saturated.

The semi-saturated subcategories we are interested in come from bases.

Definition 4.5 A basis K on a small category C is called a basis of dense monos if:

1. every K-cover is proper and
2. for every C in C, for any F ∈ K(C) and any proper family P of maps with codomain

C, if every map in F factors through some map in P then P ∈ K(C).

Recall (Lemma 3.6) that any basis K on C such that all K-covers are proper determines
a subcategory �K → FamC admitting a calculus of fractions such that every map in �K is
mono.

Corollary 4.6 If K is a basis of dense monos on C then �K → FamC is semi-saturated.

Proof By Proposition 4.4 it is enough to show that �K → FamC admits a calculus of dense
monos. So consider a diagram of monos in FamC as below
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and assume that [ui | i ∈ I ] is in the subcategory �K → FamC. We need to show that
[vj | j ∈ J ] is in �K . It is enough to concentrate on the case when Z is in C. By Lemma 3.4
the families (ui | i ∈ I ) and (vj | j ∈ J ) are proper and, by hypothesis, the former is in
KZ. Since K is assumed to be a basis of dense monos, the latter family is also in KZ. So
[vj | j ∈ J ] is also in �K → C.

5 Compatibility and Weights

Let X be a distributive category and � → X a bijective-on-objects subcategory admitting
a calculus of fractions. The only assumption that we make on � → X is that X [�−1] is
distributive and that the universal functorX → X [�−1] preserves finite coproducts. (Recall
that this functor preserves finite products automatically. In fact, all finite limits by the ‘right-
fractions’ analogue of Proposition I.3.1 in [7].) For example, this is what happens in the
case of Proposition 3.7. See also remark after Definition 1.1.

Fix also a rig R.

Definition 5.1 A rig morphism γ : BX → R is called compatible (with the inclusion
� → X ) if for every map X → Y in �, γ [X] = γ [Y ].

Compatibility interacts well with semi-saturation.

Proposition 5.2 If � is semi-saturated and γ : BX → R is compatible then there exists a
unique map γ ′ : B(X [�−1]) → R such that the following diagram

commutes.

Proof Uniqueness follows becauseX → X [�−1] is bijective on objects and so the induced
BX → B(X [�−1]) is surjective. We need to define γ ′. For any X inX , the induced object
inBX will be denoted by [X] and that inB(X [�−1]) by [[X]]. The only possible definition
is γ ′[[X]] = γ [X]. To prove that it is well defined assume that [[X]] = [[Y ]]. So there exists
an iso f

s
: X → Y in X [�−1], say, with s : Xs → X and f : Xs → Y . Because � is semi-

saturated, we can assume that f (as well as s) is in �. Our hypothesis on γ implies that
γ [X] = γ [Xs] = γ [Y ], so γ ′[[X]] = γ ′[[Y ]]. The function γ ′ is a rig morphism because
BX → B(X [�−1]) is surjective.

Let C be a small category with finite products and denote by BC the multiplicative
monoid of iso-clases of objects.

Lemma 5.3 For any morphism γ : BC → R of multiplicative monoids there exists a
unique map of rigs γ ′ : B(FamC) → R such that the following diagram

commutes.
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Proof The morphism γ ′ sends coproducts in FamC to sums in R. We leave the details for
the reader.

Let us fix a map γ : BC → R of multiplicative monoids. We now explain how the
compatibility of the extension B(FamC) → R with a subcategory (admitting a calculus of
fractions) induced by a basis on C can be reduced to a condition in terms of the basis.

Definition 5.4 For any finite family F = (f : Ci → C | i ∈ I ) of maps in C with common
codomain, the weight (relative to γ ) of F is the element wF = ∑

i γ [Ci] in R.

This notion of weight is analogous to the one introduced in p. 11 of Blass’ paper. It plays
essentially the same role in the proof.

Assume now that C is equipped with a basis K such that every K-cover is proper. (So
that FamC is equipped with the subcategory �K → FamC, admitting a calculus of fractions,
as explained in Lemma 3.6.)

Definition 5.5 The function γ : BC → R is called compatible (with K) if for every
G ∈ KC, wG = γ [C].

This is justified by the following.

Lemma 5.6 The monoid map γ : BC → R is compatible with K if and only if the rig map
γ ′ : B(FamC) → R is compatible with �K .

Proof Assume first that γ : BC → R is compatible with K . A morphism m in the
subcategory �K → FamC (admitting a calculus of fractions) is given by a coproduct
∑

i∈I mi : ∑

i Yi → ∑

i Ci where each Ci is in C and, for each i ∈ I , mi : Yi → Ci is a
‘basic’ morphism in the sense discussed after Definition 3.1. That is, Yi = ∑

j∈Ii
Ui,j and

mi = [ni,j | j ∈ J ] : ∑

j∈Ji
Ui,j → Ci for a family (ni,j : Ui,j → Ci | j ∈ Ji) ∈ KCi . By

hypothesis,
∑

j∈Ji
γ [Ui,j ] = γ [Ci] for each i ∈ I . Therefore,

γ ′
([

∑

i∈I

Yi

])

=
∑

i∈I

γ ′
⎡

⎣

∑

j∈Ii

Ui,j

⎤

⎦ =
∑

i∈I

⎛

⎝

∑

j∈Ji

γ
[

Ui,j

]

⎞

⎠ =
∑

i∈I

γ [Ci] = γ ′
[

∑

i∈i

Ci

]

as we needed to prove. The converse holds because if γ ′ is compatible then, for every
(Ui → C | i ∈ I ) in KC,

∑

i∈I

γ [Ui] = γ ′
[

∑

i∈I

Ui

]

= γ ′[C] = γ [C]

so the proof is complete.

Let us summarize what we have achieved so far.

Proposition 5.7 Let C be a small category with finite products. Let R be a rig and let
γ : BC → R be a map of multiplicative monoids (inducing the unique extension to a rig
mapB(FamC) → R). If K is a basis of dense monos on C and γ is compatible with it then
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there exists a unique map B(Fam(C,K)) → R of rigs such that the right triangle below
commutes.

Proof By Corollary 4.6, the basis of dense monos K induces the semi-saturated subcat-
egory �K → FamC and, by Proposition 3.7, Fam(C,K) = (FamC)[�−1

K ]. By Lemma 5.6
the extension γ ′ : B(FamC) → R is compatible with �K and Proposition 5.2 implies the
existence of a unique B((FamC)[�−1

K ]) → R as in the statement.

To prove the main result we will take C to be the free theory L determined by a non-
constant polynomial L(X) ∈ N[X]. The hard part is to find a basis of dense monos K

such that the canonical L → N[X]/(X = L(X)) is compatible with K in the sense of
Definition 5.5. For this purpose the following will be useful eventually.

Lemma 5.8 (Weights of composite families) LetG = (gi : Yi → Z | i ∈ I ) be a finite fam-
ily and, for each i ∈ I , let Fi = (fi,j : Xi,j → Yi | j ∈ Ii) be a finite family so that the
composite family H = (gifi,j | i ∈ I, j ∈ Ii) is also finite. Then wH = ∑

i∈I wFi .

Proof Just calculate

wH =
∑

i∈I

∑

j∈Ii

γ [Xi,j ] =
∑

i∈I

wFi

using the definition of weight.

6 Amplitude

The Lemma in p. 16 of [3] deals with a Grothendieck topology on a free (algebraic) theory
and, among other things, identifies the sieves in J (C) as those that contain a finite family
such that every constant 1 → C in the theory factors through a map in that finite family.
I claim that such a characterization is possible because the polynomial L(X) = 1 + X2 is
such that L0 �= 0. Part of our proof was influenced by the wish to generalize this lemma to
theories that may lack constants. This is the origin of the notion of ‘ample family’ that we
introduce in this section.

We first recall the notion of normed category suggested in pages 139-140 of [12] and,
after that, we define ample families in suitable normed categories.

Let (V, ⊗,k) be a monoidal category.

Definition 6.1 A V-normed category is a category C together with the assignment of
an object dX,Y f of V to every map f : X → Y in C, the assignment of a morphism
(dY,Zg) ⊗ (dX,Y f ) → dX,Z(gf ) in V for every pair of maps f : X → Y and g : Y → Z in
C, and the assignment of a morphism k → dX,XidX in V for every object X in C, subject
to the evident associativity and unit conditions (that we need not emphasize because they
automatically hold in our main example of base monoidal category).
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(Although I have not been able to obtain a copy of [2], it appears that normed categories
have been also considered there. Indeed, it seems clear from the Zentralblatt Autorreferat
and the AMS review by Linton that it is proved loc. cit. that normed categories may be seen
as categories enriched in suitable monoidal categories; solving, in a general way, an exercise
suggested in page 140 of [12].)

Let (N, +, 0) be the usual commutative monoid of natural numbers under addition and
consider its extension N∞ = (N + {∞},+, 0) with an element ∞ such that, for every
n ∈ N + {∞}, ∞ + n = ∞ = n + ∞. The monoid structure induces a total order (N∞,≤)

with ∞ as terminal object. Moreover, addition extends to a symmetric monoidal structure
on the category (N∞, ≤). The resulting monoidal category ((N∞,≤), +, 0) will be denoted
simply by (N∞, ≤).

In concrete terms, an (N∞,≤)-normed category is a category C equipped with a
collection (dX,Y : C(X, Y ) → N∞ | X, Y ∈ C) of functions such that:

(dY,Zg) + (dX,Y f ) ≤ dX,Z(gf )

holds for every f : X → Y and g : Y → Z. (Notice that it automatically holds that, for
every X in C, 0 ≤ dX,XidX .) We will drop the subscripts and write d instead of dX,Y ; so the
key condition may be expressed as dg + df ≤ d(gf ).

Assume from now on that C is an (N∞,≤)-normed category with ‘norm’ d.

Lemma 6.2 For any f : X → Y with df finite, d(idX) = 0 = d(idY ).

Proof Simply observe that d(idY ) + df ≤ df and similarly for the other equality.

On the other hand, if we let df = ∞ for all f then we obtain a somewhat extreme sort
of N∞-normed category.

Definition 6.3 Let F be a family of maps in C with codomain Y . For k ∈ N, the family F

is called k-ample if for every f : X → Y in C, df ≥ k implies that f factors through some
map in F . The family F is called ample if it is k-ample for some k ∈ N.

For brevity let us say that F is a family on Y if it is a family of maps with codomain Y .
Also, if F is a family on Y then we will say that f : X → Y factors through F if it factors
through some map in F .

Lemma 6.4 Let g : Y → Z and H be a family on Z such that the pullback g∗H exists. If
H is n-ample then so is g∗H .

Proof Let f : X → Y be such that df ≥ n. Then d(gf ) ≥ (dg) + (df ) ≥ (dg) + n ≥ n so
gf : X → Z factors through H by hypothesis, but then f factors through g∗H .

The family of all maps f with codomain Y and df ≥ n is clearly n-ample. We are
interested in categories that contain less trivial examples. In fact, we are going to be mainly
interested in ample families that are also proper in the sense of Definition 3.5.

Definition 6.5 A family F on Y is strictly n-ample if it is n-ample and for every f ∈ F ,
df ≥ n. A family will be called strictly ample if it is strictly n-ample for some n.

Proper strictly ample families are unique up to iso in the following sense.

Author's personal copy



M. Menni

Lemma 6.6 If F = (fi : Xi → Y | i ∈ I ) and H = (hj : Aj → Y | j ∈ J ) are both
proper and strictly n-ample families then there exists a unique bijection φ : I → J such
that for every i ∈ I , hφi is iso to fi over Y .

Proof Let i ∈ I . Since dfi ≥ n there exists a j ∈ J and a t : Xi → Aj such that hj t = fi .
Since H is monic, this j is unique so we may call it φi and in this way we obtain a func-
tion φ : I → J . Moreover, this t is unique (because hφi is mono) and mono (because fi is
mono). We claim that t is an iso. Indeed, since dhφi ≥ n, there exists a unique k ∈ I and
mono u : Aφi → Xk such that fku = hφi . Then fkut = hφi t = fi and, since F is monic,
i = k and ut = idXi

. So u is a monic with section t and hence t is an iso.
It remains to show that φ : I → J is bijective. To prove surjectivity let j ∈ J . As before,

there exists an i ∈ I such that hj factors through fi which, in turn, factors through hφi . So
hj factors through hφi and, since H is monic, j = φi.

Finally, for i0, i1 ∈ I assume that φi0 = j = φi1 for some j ∈ J . Once again, hj factors
through fk for some k ∈ I and then both fi0 and fi1 factor through fk . Since F is monic,
i0 = k = i1. So φ is injective.

Assume for the rest of the section that K is a function that assigns to each X in C a
collection of ample and proper families on X.

Definition 6.7 We say K has long covers if for every Y in C and k ∈ N there exists an
F ∈ KY such that for all f ∈ F , df ≥ k.

We are interested in cases where K is the basis of a Grothendieck topology. For the
moment we just show that having long covers is sufficient to ensure the key Coverage
condition for bases.

Lemma 6.8 The following hold:

1. If f : X → Y is an iso then the family (f | 1) on Y is 0-ample and in KY .
2. If K has long covers then for every G ∈ KZ and g : Y → Z there exists an F ∈ KY

such that for every f ∈ F , gf factors through G.

Proof The first item is easy because every map with codomain Y factors through f . For
the second item assume that G is k-ample. Since K has long covers there exists an F ∈ KY

such that for every f in F , df ≥ k. Then d(gf ) ≥ (dg) + (df ) ≥ (dg) + k ≥ k and so, gf
factors through G.

In a category with terminal object 1, a map X → Y is constant if it factors through the
terminal object.

Definition 6.9 A fort is an (N∞, ≤)-normed category C with terminal object such that
for every constant f : X → Y in C, df = ∞. A fort will be called strong if, for every
f : X → Y , df = ∞ implies that f is constant.

Sieves on an object containing all the points of that object play an important role in [3].
For this reason we highlight the following.

Lemma 6.10 If C is a fort and F is an ample family on Y in C then every point 1 → Y

factors through F .

Author's personal copy



Every Rig with a One-Variable Fixed Point Presentation. . .

Proof Assume that F is k-ample for k ∈ N. If p : 1 → X in C then dp = ∞ > k.

Part of the remaining work involves showing that free theories with some non-constant
operation are strong forts in a canonical way. This will follow from the acquisition of more
subtle information present in free theories.

7 Rigged Theories

Fix a rigR = (R, ·, 1, +, 0) in Set. For anyA in fSet,RA will denote the exponential in Set.

Definition 7.1 A(n algebraic) theory T is rigged (in R) if it is equipped with a family of
functions (( )

�
A,B = ( )� : T (T A, T B) → RA | A,B ∈ fSet) such that the following hold:

(T a : T I → T J )
�
(i ∈ I ) = (T a)

�
i =

∑

aj=i

1

for every a : J → I in fSet and,

(gf )�(i ∈ A) =
∑

j∈B

(g�j) · ((πjf )�i)

for every f : T A → T B and g : T B → T C .

We are going to use the formulas as displayed above but it seems also useful to express
them in more general terms. For any A in fSetwe have a function

∑

A : RA → R that sends
φ ∈ RA to

∑

i∈A φi. If B is also in fSet then the composite

RB×A × A
∼=−−→(RB)A × A

ev−−→RB

∑

B−−→R

transposes to a map that, with little risk of confusion, we may call
∑

B : RB×A → RA. It
sends ψ ∈ RB×A to

∑

j∈B ψ(j, ) in RA. So far this has nothing to do with any algebraic

theory, but if we are given the family (( )
�
A,B = ( )� : T (T A, T B) → RA | A,B ∈ fSet)

then there is a function

T (T B, T C) × T (T A, T B)
∗−−→RB×A

such that the second equation of Definition 7.1 may be formulated as (gf )� = ∑

B(g ∗ f )

or by requiring that the diagram

commutes.
Fix a theory T rigged in R.

Lemma 7.2 For any f : T A → T B in T
f �i =

∑

j∈B

(πjf )�i

for every i ∈ A.

Author's personal copy



M. Menni

Proof Calculate (idBf )� using the second item in Definition 7.1.

That is, the function f � : A → R is determined by the projections πjf : T A → T .

Definition 7.3 For any A, B in fSet define dA,B = d : T (T A, T B) → R by the formula

df =
∑

i∈A

f �i

for each f : T A → T B .

The operation d can also be calculated in terms of the projections, in the following sense.

Lemma 7.4 For any f : T A → T B the following holds:

df =
∑

k∈B

d(πkf )

Proof Just calculate:

df =
∑

i∈A

f �i =
∑

i∈A

∑

k∈B

(πkf )�i =
∑

k∈B

∑

i∈A

(πkf )�i =
∑

k∈B

d(πkf )

using Definition 7.3 and Lemma 7.2.

The next result explains how d behaves with respect to composition.

Lemma 7.5 For every f : T A → T B and g : T B → T C in T ,

d(gf ) =
∑

j∈B

(g�j) · d(πjf ) and d(gf ) + n = (dg) · (df )

for some n ∈ R.

Proof The calculation below

d(gf ) =
∑

i∈A

(gf )�i =
∑

i∈A

∑

j∈B

(g�j) · ((πjf )�i) =
∑

j∈B

(g�j) ·
∑

i∈A

((πjf )�i)

=
∑

j∈B

(g�j) · d(πjf )

shows that the left equality in the statement holds. Using Lemma 7.4 we may calculate as
follows

(dg) · (df ) =
⎛

⎝

∑

j∈B

g�j

⎞

⎠ ·
(

∑

k∈B

d(πkf )

)

=
∑

j∈B

∑

k∈B

(g�j) · d(πkf )

= d(gf ) +
∑

j,k∈B
j �=k

(g�j) · d(πkf )

which proves that the right equality in the statement holds because we can take n to be the
right summand in the last binary addition.

The following will also be relevant.
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Lemma 7.6 If T is rigged in R and F : T ′ → T is a map of theories then T ′ is also rigged
in R. (The ‘rigging’ of T ′ sends α : T A → T B in T ′ to (Fα)� : A → R.)

Proof For any a : J → I in fSet,

(F (T a))
�
i = (T a)

�
i =

∑

aj=i

1

and for α : T A → T B and β : T B → T C in T ′,

(F (βα))�i = ((Fβ)(Fα))�i =
∑

j∈B

((Fβ)�j) · ((πj (Fα))�i) =
∑

j∈B

((Fβ)�j) · ((F (πjα))�i)

so T ′ is rigged in R.

Let us now consider a concrete rig. The monoid N∞ = (N + {∞},+, 0) introduced in
Section 6 may be extended to a rig N∞ = (N∞,+, 0, ∧,∞) where ∧ denotes infima in the
order (N∞,≤). Notice that + distributes over ∧ so that (N∞, +, 0) is the ‘multiplicative’
part of the rig and (N∞,∧,∞) is the ‘additive’ part.

An algebraic theory rigged in N∞ is then an algebraic theory T equipped with a family
(( )� : T (T A, T B) → N

A∞ | A,B ∈ fSet) such that:

1. For every a : J → I in fSet,

(T a : T I → T J )
�
(i ∈ I ) = (T a)

�
i =

∧

aj=i

0

2. For every f : T A → T B and g : T B → T C ,

(gf )�(i ∈ A) =
∧

j∈B

(g�j) + ((πjf )�i)

hold. Readers familiar with [3] may recognize the idea of ‘depth of a node in a tree’. If we
picture a map f : T A → T as a tree with leaves in A then f �(i ∈ A) may be thought of as
measure of how far is the leaf i from the root of f . We will give a precise meaning to this
analogy later. For the moment, consider the following alternative formulation of the first
item above.

Lemma 7.7 For any a : J → I in fSet and the induced T a : T I → T J in T ,

(T a)
�
i =

{

0 if i ∈ aJ ⊆ I

∞ otherwise

for every i ∈ I .

For example, for k : 1 → I in fSet and the induced projection πk = T k : T I → T ,

(πk)
�i =

{

0 if i = k

∞ otherwise

for every i ∈ I . As another example of how the general facts manifest in the case of N∞,
and also for future reference, we state the following particular case of Lemma 7.2.

Lemma 7.8 For every f : T A → T B ,

f �i =
∧

j∈B

(πjf )�i

for each i ∈ A.
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Definition 7.3 says that for f : T A → T B in T ,

df =
∧

i∈A

f �i ∈ N∞

and so the following holds.

Lemma 7.9 For a : J → I in fSet,

d(T a) =
{ ∞ if J = 0
0 otherwise

and, for every f : T A → T B and g : T B → T C in T ,

d(gf ) =
∧

j∈B

(g�j) + d(πjf ) d(gf ) ≥ (dg) + (df )

hold in N∞.

Proof We have

d(T a) =
∧

i∈I

(T a)
�
i =

∧

i∈I

∧

aj=i

0 =
∧

j∈J

0 =
{ ∞ if J = 0
0 otherwise

and the other statements follow from Lemma 7.5 which, in particular, implies the existence
of an n ∈ N∞ such that d(gf ) ∧ n = (dg) + (df ).

We can now relate theories rigged in N∞ with the material of Section 6.

Proposition 7.10 With the notation above, d makes T into a fort.

Proof Lemma 7.9 shows that d makes T into an (N∞,≤)-normed category and

dp =
∧

i∈0
p�i = ∞

holds for any point p : 1 = T 0 → T B .

In particular, ample families make sense inside theories rigged in N∞. We now embark
on the construction of rigged theories.

8 Extensivity of Fibered Categories

In this section we make explicit a particular case of the Grothendieck semi-direct prod-
uct construction. Let C be a category with finite limits and equipped with a monoid
M = (M, ·, 1). The representable functor C( , M) : Cop → Set has a natural lifting to a
functor C( ,M) : Cop → Mon with the category of monoids as codomain and so, to a
functor C( , M) : Cop → Cat. We may then consider the Grothendieck semi-direct product
construction that we denote here by C � M .

More explicitly, the objects of C � M are the objects of C. A map X → Y in C � M is a
pair (f, f ′) with f : X → Y and f ′ : X → M in C. For any X, the identity on X is the pair
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(idX, 1) where 1 : X → M is the unique map that factors through the unit 1 : 1 → M . For
(f, f ′) : X → Y and (g, g′) : Y → Z as on the left below

the composite (g, g′)(f, f ′) is defined by (gf, (g′f ) · f ′) where the map
(g′f ) · f ′ : X → M is the composite on the right above.

(If we force the notation a little bit then we could write (gf )′ = (g′f ) · f ′, which is
reminiscent of the chain rule; but we stress: in the notation above, f ′ is not determined
by f .)

There is an obvious functor C � M → C which is the identity on objects and sends
(f, f ′) to f . This functor has a section C → C � M that sends f : X → Y in C to
(f, 1) : X → Y in C � M .

It is relevant to observe that maps in the image of C → C � M remain in C after pulling
back along any map in C � M . More precisely:

Lemma 8.1 Let the square on the left below

be a pullback in C and g′ : Y → M a map in C. Then the square on the right above is a
pullback in C � M .

Proof The diagram on the right of the statement commutes because the left one does and
because (g′π0) · 1 = g′π0 = 1 · (g′π0) = (1π1) · (g′π0). Assume now that the following
square commutes

in C � M , which means that gf = uh and (g′f ) · f ′ = (1h) · h′ = h′ in C.
Consider now a map (t, t ′) : X → P in C � M such that the equations

(π0, 1)(t, t
′) = (f, f ′) (π1, g

′π0)(t, t
′) = (h, h′)

hold. This means that the equations below

(π0t, (1t) · t ′) = (π0t, t
′) = (f, f ′) (π1t, (g

′π0t) · t ′) = (h, h′)
hold. Equivalently, the following hold

π0t = f t ′ = f ′ π1t = h (g′π0t) · t ′ = h′

and it is clear that the first three equations uniquely determine t and t ′. The last equation
holds automatically, given the first one, because (g′π0t) · t ′ = (g′f ) · f ′ = h′. Altogether,
the map (t, t ′) exists and is unique.
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If C has finite coproducts then so does C � M . More explicitly:

Lemma 8.2 If 0 is initial in C then it is initial as an object in C � M . If the diagram on the
left below is a coproduct in C

X
in0−−−→X + Y

in1←−−−Y X
(in0,1)−−−−−−−→X + Y

(in1,1)←−−−−−−−Y

then the diagram on the right above is a coproduct in C � M .

Proof We concentrate on binary coproducts. Let (f, f ′) : X → Z, (g, g′) : Y → Z in
C � M . Assume that (h, h′) : X + Y → Z in C � M is such that (h, h′)(in0, 1) = (f, f ′)
and (h, h′)(in1, 1) = (g, g′). That is, the equations below hold

(h in0, (h
′in0)·1) = (h in0, h

′in0) = (f, f ′) (h in1, (h
′in1)·1) = (h in1, h

′in1) = (g, g′)
or, equivalently, the equations below

h in0 = h h′in0 = f ′ h in1 = g h′in1 = g′

hold; but these equations uniquely determine h : X + Y → Z and h′ : X + Y → M .

In the examples we are interested in C is extensive.

Proposition 8.3 If C is extensive then so is C � M .

Proof Recall that a category with finite coproducts is extensive if and only if coproducts are
stable and disjoint [5]. Stability and disjointness are easy to prove using the description of
coproducts in Lemma 8.2 and the description of the relevant pullbacks in Lemma 8.1.

We say that M is conical if the following square

is a pullback.

Lemma 8.4 If M is conical then, a map (f, f ′) : X → Y in C � M is an iso if and only if
f is an iso in C and f ′ = 1.

Proof Let (g, g′) : Y → Z in C � M be such that (g, g′)(f, f ′) = (id, 1). That is gf = id

and (g′f ) · f ′ = 1. If C is conical then f ′ = 1. In other words, if (f, f ′) is a section then
f is a section and f ′ = 1. It is easy to show that if (f, 1) is a retraction then f is a
retraction.

9 The Category of Restricted Spans

In this section we let C be an extensive category with finite limits and equipped with a
monoid M = (M, ·, 1). We can then consider the (non full) coproduct-preserving inclusion
C → C � M .
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Definition 9.1 A restricted span (from X to Y in C) is a span from X to Y in C � M whose
left leg is in the subcategory C → C � M .

More concretely, a restricted span is a span as on the left below

and, for example, for each object X in C, we have the distinguished span on the right above
from X to X.

Given consecutive spans as on the left below

and a pullback square as on the right above (recall Lemma 8.1) then we define the induced
composite as the span

which is clearly a restricted span from X to Z.
Notice that this is just the usual composition of spans, relying on Lemma 8.1, to conclude

that restricted spans are closed under composition. We will not need general spans so, from
now on, we use the word ‘span’ to mean ‘restricted span’.

Given spans from X to Y as on the left below

then a map from the first to the second is a morphism (s, s′) : A → B in C � M such that
the triangles in the right square above commute. This is the standard definition of mor-
phism of spans, but notice that in this case, the lower triangle means that the composite
(b, 1)(s, s′) = (bs, (1s) · s′) = (bs, s′) equals (a, 1). That is, bs = a and s′ = 1. Then, the
upper triangle means that (g, g′)(s, 1) = (gs, (g′s) · 1) = (gs, g′s) equals (f, f ′). That is,
gs = f : A → Y and g′s = f ′ : A → M . So it is convenient to simplify the notation as
follows.
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From now on, spans from X to Y will be denoted as on the left below

and a map from the first to the second will be just a map s : A → B in C such that bs = a,
gs = f and g′s = f ′.

Given a choice of pullbacks in C (which gives a choice of the relevant pullbacks in
C � M) we define ‘the’ bicategory Sp(C, C � M) as in [1]. The objects of Sp(C, C � M)

are the objects of C. For any pair of objects X, Y , the category Sp(C, C � M)(X, Y ) is the
category of spans from X to Y and morphisms between them. Composition is defined using
pullbacks as above and the rest of the structure is determined by the universal property of
pullbacks as in the standard case.

(Surely, the above discussion generalizes to a setting starting with a category D with a
suitable bijective on objects subcategory C that is closed under pullbacks inD; but we have
not found the details spelled out in the literature.)

The associated ‘classifying category’ (7.2 in [1]) will be denoted by Span(C, C � M).
Concretely, the objects of Span(C, C � M) are the objects of C and a map from X to Y is
an equivalence class of spans from X to Y . Two spans being equivalent if they are iso in
Sp(C, C � M)(X, Y ). More explicitly:

Lemma 9.2 Two spans from X to Y as on the left below

determine the same map from X to Y in Span(C,C � M) if and only if there is an iso
σ : A → B in C such that bσ = a : A → X, gσ = f : A → Y and g′σ = f ′ : A → M in
C.

The equivalence class of the span X
a←−−−−A

(f,f ′)−−−−→Y as in Lemma 9.2 will be denoted
by [a; f, f ′] : X → Y .

Proposition 9.3 The assignment that sends a : Y → X in C to [a; idY , 1] : X → Y in
Span(C,C � M) extends to a conservative functor Cop → Span(C,C � M). On the other
hand, the assignment ((f, f ′) : X → Y ) �→ ([idX; f, f ′] : X → Y ) extends to a faithful
functor C � M → Span(C, C � M) which is conservative if M is conical. Moreover, every
map in Span(C,C � M) factors as a map in the subcategory Cop → Span(C, C � M)

followed by a map in the subcategory C � M → Span(C,M).

Proof It is easy to check that the assignments in the statement are functorial. It is also easy
to check that Cop → Span(C,C � M) is faithful. To prove that it reflects isos assume first
that the map [a; id, 1] has a retraction [b; (g, g′)] with b : B → Y and g : B → X. That
is, [b; g, g′][a; id, 1] = [ba; g, g′] = [idX, idX, 1]. So, without loss of generality, we may
assume that B = X and conclude that a is a section of b, g = idX and g′ = 1. Now, assume
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further that [b; g, g′] = [b; id, 1] is a section of [a; id, 1]. Then it is easy to check that b is
a section of a, so a is an iso.

To prove that C � M → Span(C,C � M) is faithful let (f, f ′), (g, g′) : X → Y in
the category C � M and assume that [idX; f, f ′] = [idX; g, g′]. Then there exists an iso
σ : X → X in C such that idXσ = idX , gσ = f and g′σ = f ′ in C. So σ = idX , f = g

and f ′ = g′. To prove that the functor C � M → Span(C, C � M) reflects isos assume first
that [idX; f, f ′] : X → Y has a section. This means that there is a span

such that [id; f, f ′][b; g, g′] = [id; id, 1]. This implies that [b; fg, (f ′g) · g′] =
[id; id, 1], so b is an iso, g is a section of f and (f ′g) · g′ = 1. Since M is conical
g′ = 1. Without loss of generality, we may assume that b is the identity on Y . Now
let us assume that [b; g, g′] = [idY , g, 1] is also a retraction for [id; f, f ′]. That is,
[id; g, 1][id; f, f ′] = [id; id, 1] and it implies that gf = id and that (1f ) · f ′ = 1. So g

is a retract of f and f ′ = 1. Altogether, if [id; f, f ′] is an iso then f is an iso and f ′ = 1.
Equivalently, by Lemma 8.4, (f, f ′) is an iso in C � M .

Finally any map [a; f, f ′] : X → Y with a : A → X in C factors as
[idA; f, f ′][a; idA, 1] with [a; id, 1] : X → A and [id; f, f ′] : A → Y .

One may ask if the pair of subcategories (Cop, C � M) form a factorization system for
Span(C,C � M).

Lemma 9.4 Let b : B → A in C, g : Y → Z in C � M and assume that the square on the
left below

commutes in Span(C,C � M). Then there exists a map B → Y making the two obvious
triangles commute.

Proof The top-right composite of the square equals [bc; h, h′] : A → Z and the left-bottom
composite equals [a; gf, (g′f ) · f ′] : A → Z. Since both composites are assumed equal
there exists an iso σ : X → C in C such that bcσ = a : X → A, gf = hσ : X → Z and
h′σ = (g′f ) · f ′. Now consider the map [cσ ; f, f ′] : B → Y . Easily,

[cσ ; f, f ′][b; id, 1] = [bcσ ; f, f ′] = [a; f, f ′]

and, on the other hand, [id; g, g′][cσ ; f, f ′] = [cσ ; gf, (g′f ) · f ′] = [cσ ; hσ, h′σ ] =
[c; h, h′].
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In general, though, the diagonal fill-in need not be unique. To see this it seems clearer to
make explicit the phenomenon in the usual category of spans of sets. Take the commutative
square

so that the composite is just the map determined by the span 1 ← 2 → 1. Consider now the
two maps [id; id], [τ ; id] : 2 → 2 where τ : 2 → 2 is the only non-identity bijection. It is
clear that the two maps are different and it is easy to check that they both make the relevant
triangles commute.

Proposition 9.5 If C is extensive then the category Span(C, C � M) has finite prod-
ucts and the functor Cop → Span(C, C � M) is product preserving. Also, every object in
Span(C,C � M) has a unique point.

Proof We claim that the spans below

induce a product in Span(C,C � M), i.e., that the maps π0 = [in0; idX, 1] : X + Y → X

and π1 = [in1; idY , 1] : X + Y → Y in Span(C,C � M) are the projections of a product
of X and Y . To prove this let the following spans

represent a span X
x←−−A

y−−→Y in Span(C, C � M). We have the induced map
[b, c] : B + C → A in C and (f, f ′) + (g, g′) = (f + g, [f ′, g′]) : B + C → X + Y

in C � M by Proposition 8.3. It is easy to check that
〈x, y〉 = [[b, c]; f + g, [f ′, g′]] : A → X + Y is such that π0〈x, y〉 = [b; f, f ′] = x and
π1〈x, y〉 = [c; g, g′] = y.

To prove uniqueness first observe that a map A → X + Y in Span(C, C � M)

is determined by some span given by a map d : D → A and a map
(h, h′) : D → X + Y in C � M . By Proposition 8.3 again, D = D0 + D1,
(h, h′) = (h0, h

′
0) + (h1, h

′
1) : D0 + D1 → X + Y , d = [d0, d1] : D0 + D1 → A as in the

diagram below
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and then, the conditions π0[d; h, h′] = x and π1[d; h, h′] = y imply that
[d; h, h′] = 〈x, y〉.

The object 0 is terminal because every restricted span X ← A → 0 is forced to be
the unique X ← 0 → 0. Finally, for every X, points 0 → X are determined by spans
0 ← A → X; that is, by the unique span 0 ← 0 → X.

10 Rigged Theories of Finite Spans

Fix a conical monoid M = (M, ·, 1) in Set so that, by Proposition 9.5, we can consider
the category Span(Set,Set� M) with finite products and the product preserving inclusion
Setop → Span(Set,Set� M).

Let fSet → Set the fixed small version of the category of finite sets and functions that
we used to introduce algebraic theories. We may consider the full subcategory of Set� M

determined by fSet. We will denote this subcategory by fSet� M → Set� M , even if M

is not in fSet.

Definition 10.1 A finite (restricted) span in Set� M is a span as on the left below

with A,X and Y in fSet. As before, we will denote the span as on the right above.

A map X → Y in Span(Set,Set� M) is called finite if it is represented by a finite span.
Notice that if [b; g, g′] : X → Y is a finite map then, by Lemma 9.2, the representing span
given by b : B → X and (g, g′) : B → Y is finite in the sense of Definition 10.1.

If X is in fSet then the identity on X in Span(Set, Set � M) is finite. Also, since fSet
has finite limits and the inclusion fSet → Set preserves them, it is easy to check that finite
maps are closed under composition.

Let TM → Span(Set,Set� M) be the (non-full) subcategory determined by the finite
maps. More concretely, the objects of TM are the objects of fSet and, for X and Y in fSet, a
map X → Y in Span(Set, Set� M) is in the subcategory TM if and only if it is represented
by a finite span.

Lemma 10.2 The inclusions Setop → Span(Set,Set� M) ← Set� M restrict to conser-
vative and bijective-on-objects functors as in the top span of the commutative diagram
below

Moreover, TM has finite products and fSetop → TM preserves them, resulting in an
algebraic theory with a unique constant.
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Proof The first part follows from the description of the functors in Proposition 9.3. Also,
since fSet is extensive and the inclusion fSet → Set preserves finite coproducts then it
is easy to check (from their construction in Proposition 9.5) that the non-full subcate-
gory TM → Span(Set,Set� M) is closed under the products. It is also easy to check
that, given two maps in TM with common domain, the induced pairing to the product
in Span(Set,Set� M) is also a finite map. Therefore, TM has finite products and the
inclusion TM → Span(Set,Set� M) preserves them.

By Lemma 10.2 we have an algebraic theory that we denote by E : fSetop → TM . So the
objects of TM will be denoted by EX for X in fSet. The ‘operations’ EX → E1 are in bijec-
tive correspondence with equivalence clases [a; !, f ′] : X → 1 of spans with a : A → X

and ! : A → 1 in fSet and f ′ : A → M in Set. Among these we have the operations deter-
mined by equivalence classes of the form above but with a an iso. These are essentially
the maps (!, f ′) : X → 1 in the subcategory fSet� M → TM (Lemma 10.2). In turn, these
are essentially functions f ′ : X → M . Roughly speaking, we have built an algebraic theory
where the functions X → M are among the X-ary operations.

Now fix a rig R = (R,+, 0, ·, 1) together with a morphism M → R of multiplicative
monoids that, for simplicity, we assume that it is an inclusion. We will show that the theory
E : fSetop → TM can be rigged in R.

Definition 10.3 For any finite span as in Definition 10.1 given by a function a : A → X

and map (f, f ′) : A → Y we define (a; f, f ′)� : X → R by the formula

(a; f, f ′)�(x ∈ X) =
∑

aj=x

f ′j

where the
∑

is, of course, taken in R.

This process sending spans to R-valued functions is well behaved with respect to the
equivalence of spans.

Lemma 10.4 If [a; f, f ′] = [b; g, g′] : EX → EY in TM then (a; f, f ′)� = (b; g, g′)�.

Proof The hypothesis implies the existence of an iso σ in fSet such that bσ = a, gσ = f

and g′σ = f ′ in Set. The calculation

(a; f, f ′)�i =
∑

aj=i

f ′j =
∑

b(σj)=i

g′(σj) =
∑

bk=i

g′k = (b; g, g′)�i

proves the result.

So, if α : EX → EY is a morphism in TM then it makes sense to write α� : X → R.
Moreover, we can equip the algebraic theory TM with the indexed family of functions
(( )� : TM(EX,EY ) → RX | X, Y ∈ fSet).

Proposition 10.5 The family (( )� : TM(EX,EY ) → RX | X, Y ∈ fSet) makes the theory
TM rigged in R.
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Proof For every a : J → I in fSet, Ea = [a; idJ , 1] : EI → EJ so

(Ea)
�
i =

∑

aj=i

1j =
∑

aj=i

1

which is the first condition defining rigged theories (Definition 7.1). For the second
condition let α : EX → EY and β : EY → EZ . We need to prove that

(βα)�i =
∑

j∈Y

(β�j) · ((πjα)�i)

holds in R. First let α = [a; f, f ′] with a : A → X and j : 1 → Y in fSet. Then the
composite πjα : EX → E can be calculated using a pullback

so that πjα = [aq0; q1, f
′q0]. Then
(πjα)�i =

∑

k∈Aj

a(q0k)=i

f ′(q0k) =
∑

u∈A
f u=j
au=i

f ′u

for every i ∈ X. Now let β = [b; g, g′] with b : B → Y . To calculate the composition βα

construct the pullback

so that βα = [aπ0; gπ1, (g
′π1) · (f ′π0)]. Then

(βα)�i =
∑

a(π0w)=i

(g′(π1w)) · (f ′(π0w)) =
∑

(u,v)∈A×B
f u=bv
au=i

(g′v) · (f ′u) =

=
∑

j∈Y

∑

v∈B
bv=j

∑

u∈A
f u=j
au=i

(g′v) · (f ′u) =
∑

j∈Y

∑

v∈B
bv=j

(g′v) ·
∑

u∈A
f u=j
au=i

f ′u =
∑

j∈Y

(β�j) · ((πjα)�i)

for every i ∈ X.

A further relevant fact is that the morphism M → R interacts well with the inclusion
fSet� M → TM .

Lemma 10.6 For any map (f, f ′) : X → Y in fSet� M the function [id; f, f ′]� : X → R

factors through the inclusion M → R.

Proof Indeed, [idX; f, f ′]�(i ∈ X) = ∑

idXj=i f ′j = f ′i ∈ M .
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Bear in mind that, in the case X = 0, Lemma 10.6 only says that 0 → R factors through
M → R; trivially, of course.

Consider now the ‘multiplicative inclusion’N = (N, +, 0) → (N∞, +, 0, ∧,∞) = N∞.
In this case, for any [a; f, f ′] : EX → EY in TN with a : A → X, we have that the function
[a; f, f ′]� : X → N∞ is defined by

[a; f, f ′]�(x ∈ X) =
∧

aj=x

f ′j

and the functions dX,Y : TN(EX,EY ) → N∞ considered in Section 7 are defined by

d[a; f, f ′] =
∧

x∈X

[a; f, f ′]�x =
∧

x∈X

∧

aj=x

f ′j =
∧

j∈A

f ′j

so that we may conclude the following.

Corollary 10.7 With the notation above, d makes TN into a strong fort. Moreover, for
every (f, f ′) : X → Y in the category fSet�N the function [id; f, f ′]� : X → N∞ factors
through the inclusion N → N∞.

Proof The theory TN, rigged as in Proposition 10.5, induces a fort as in Proposition 7.10.
Now, as explained above, for every α = [a; f, f ′] : T X → T Y in TN with a : A → X in
fSet, dα = ∧

j∈A f ′j so it is clear that dα = ∞ if and only if A = 0 if and only if α is
constant. That is, the fort is strong (Definition 6.9). Lemma 10.6 completes the proof.

(Notice that for the unique point [id0; ! : 0 → 1, ! : 0 → N] : 1 → E1,
[id; !, !]� : 0 → N∞ factors trivially through N → N∞ and that d[id; !, !] = ∞ ∈ N∞.)

It is fair to picture a map f : X → 1 in fSet�N as the record of certain information
related to a tree with leaves in X. In practice f will record the distances from the leaves
to the roots. If we embed fSet�N into the algebraic theory TN then we need the rig N∞
in order to extend the information recorded by maps in fSet�N to arbitrary maps in the
theory TN.

We are going to use TN to record relevant information of maps in free theories. On the
other hand, it should be possible to generalize our construction of TM in order to give an
alternative construction of free theories; a construction that is intermediate between their
conceptual construction as ‘coproducts of operations’ as in [13] and their construction in
terms of strings of symbols.

11 Ranked Theories

If T is an algebraic theory such that T : fSetop → T is conservative then the maps in this
subcategory will be called bureaucratic. The intuition is that bureaucratic maps just forget
things, repeat things or permute things.

Definition 11.1 An algebraic theory T : fSetop → T is called liberal if the functor T is
conservative and the pair (fSetop, (fSetop)↓) is a factorization system in T .

If T is liberal then the maps in (fSetop)↓ → T will be called efficient.
It follows from the results in [19] that free theories are liberal. In relation to the work just

cited some remarks on terminology are in order. Notice that if the subcategory fSetop → T
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is part of a factorization system then it must contain all the isos. So, in this case, the bureau-
cratic maps coincide with the class of structural maps as defined loc. cit. For this reason
the maps in the subcategory (fSetop)↓ → T are exactly the analytic maps defined there. In
other words, if structural maps are bureaucratic then efficient and analytic maps coincide.
We keep the bureaucratic/efficient terminology in order to emphasize the condition that
bureaucratic maps are part of a factorization system. (A theory is called analytic if structural
and analytic maps form a factorization system. Marek Zawadowski observes that it follows
from [19] that liberal theories are exactly the analytic theories with no non-trivial unary
invertible operations. For example, any free theory. He also produced a characterization of
the analytic theories which satisfy that analytic maps are mono. It follows easily from this
characterization that efficient maps in free theories are mono.)

Lemma 11.2 If T : fSetop → T is liberal then, e : T X → T Y is efficient if and only if
there is a family (ei : T Xi → T | i ∈ Y ) of efficient maps and an iso b : ∑

i∈Y Xi → X in
fSet such that the following diagram

commutes.

Proof First notice that, for general reasons about factorization systems, if the family
(ei | i ∈ Y ) of efficient maps exists then the product

∏

ei is also efficient. Let fi : T X → T

be the composite of e : T X → T Y followed by the projection T i : T Y → T 1 = T , so that
e = 〈fi | i ∈ Y 〉. Let fi = ei(T

bi ) with bi : Xi → X in fSet and ei efficient. Define b as
the unique map [bi | i ∈ Y ] : ∑

i∈Y Xi → X determined by the universal property of the
coproduct. Then the diagram in the statement commutes and since the product

∏

ei is
efficient then the top map T b is an iso and hence b is an iso.

In other words, efficient maps are products of efficient maps with codomain T .
Before the next definition recall the algebraic theory TN rigged in N∞ and exalted in

Corollary 10.7.

Definition 11.3 An algebraic theory T is called ranked if it is liberal and it is equipped
with a morphism of theories ρ : T → TN that sends efficient maps in T to maps in the
subcategory fSet�N → TN.

We stress that TN is not liberal. (Recall Lemma 9.4 and discussion beneath it.) For our
main result we only need the following source of examples.

Lemma 11.4 Free theories are ranked in a canonical way.

Proof We have already observed that free theories are liberal. The monoid (N, +, 0) has a
distinguished element 1 ∈ N and, for anyX in fSet, we have the associated constant function
1 : X → N. (To avoid a possible confusion we stress that 1 ∈ N is not the multiplicative unit
of the rig N∞.) The map [idX; !, 1] : EX → E1 in the subcategory fSet�N → TN will be
denoted by fX : EX → E. Notice that f0 : 1 → E1 is the unique point of TN.
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Recall the adjunction F � U : Th → SetN. For any ‘signature’ P ∈ SetN we have the
constant function

Pn → (UTN)n = TN(En,E)

that sends everything in Pn to fn. These functions underlie a natural transformation
P → UTN and hence a morphism of theories FP → TN. It remains to show that this mor-
phism sends efficient maps to maps in the subcategory fSet�N → TN. For this, notice that
every efficient map in FP is a composite of products of maps coming from P . Since the
elements in Pn are sent to fn : En → E in the subcategory fSet�N → TN, the morphism
of theories FP → TN sends efficient maps to maps in the same subcategory.

The other basic fact we need about ranked theories is the following.

Proposition 11.5 If ρ : T → TN is a ranked theory then the assignment that sends
f : T A → T B in T to (ρf )� : A → N∞ makes T rigged in N∞. Moreover, if f is efficient
then (ρf )� factors through N → N∞.

Proof The theory T is rigged in N∞ by Lemma 7.6 and Corollary 10.7. Now
let us assume that β : T A → T B is efficient in T . By hypothesis ρβ = [id; g, g′]
for some (g, g′) : A → B in fSet�N and so, by Corollary 10.7 again,
(ρβ)� = [id; g, g′]� : A → N∞ factors through N → N∞.

We invite the reader to think of an efficient map f : T X → T 1 in T as a tree with leaves
in X; and the function (ρf )� as assigning to each x ∈ X its distance from the root. The
fact that (ρf )� lands in N means that all these distances are finite. If X is non-empty then
df ∈ N. If X = 0 then (ρf )� : 0 → N → N∞ and df = ∞.

Fix a ranked category ρ : T → TN. For any f : T X → T Y in T we write f � instead of
(ρf )�. Similarly, we write df ∈ N∞ instead of d(ρf ). As we have already mentioned, we
can consider ample families in T .

Lemma 11.6 If G is a strictly ample and proper family on T Z then every map in G is
efficient.

Proof Assume that G is strictly n-ample. Let g : T Y → T Z be a map in G and let
g = h(T b) with b : A → Y in fSet and h : T A → T Z efficient. Before the next calculation
notice that, for any j : 1 → A, d(T bj ) = 0 by Lemma 7.9. Since G is strictly n-ample we
have that:

n ≤ d(h(T b)) =
∧

j∈A

h�j + d(πj (T
b)) =

∧

j∈A

h�j + d(T bj ) =
∧

j∈A

h�j + 0 =
∧

j∈A

h�j = dh

so h factors through some map g′ in G. In this case g also factors through g′ but, since G

is monic, g = g′. In other words, h factors through g, say, as h = gr with r : T A → T Y .
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Since g is mono, gr(T b) = h(T b) = g implies that r is a retraction of T b. We also have
h(T b)r = gr = h so the following diagram

commutes and since T b is bureaucratic and h is efficient (T b)r = id so T b is an iso. (The
last part is, of course, an instance of a more general fact about factorization systems.)

Another feature of ranked theories is that they are naturally equipped with a notion of
covering family that is closed under composition. In the cases we are interested in, these
families will form the basis of a Grothendieck topology.

Definition 11.7 (The natural potential basis of a ranked theory) Let K be the function that
assigns to each T X in T , the collection of ample and proper families of efficient maps.

Notice that K(T 0) = K1 = {(id1 | 1)} because, for any X, the unique map T X → 1 is
bureaucratic.

Before the next result recall that we could not prove that ample families compose in the
general context of a fort.

Lemma 11.8 (K-families compose) Let the family G = (gi : T Yi → T Z | i ∈ I ) be in
K(T Z) and, for each i ∈ I , let Fi = (fi,j : T Xi,j → T Yi | j ∈ Ii) be in K(T Yi ). Then the
composite family H = (gifi,j | i ∈ I, j ∈ Ii) is in K(T Z).

Proof It is clear that H is a proper family of efficient maps. Assume that G is n-ample.
Since all the maps in G are efficient then {(gi)

�y | i ∈ I, y ∈ Yi} is a finite set of natural
numbers by Proposition 11.5. So we can choose an N ∈ N that is above all these and also
above n. Similarly, for each i ∈ I , if Fi is mi-ample then we can choose an M ∈ N that
is above every mi . We claim that H is (N + M)-ample. Let h : T X → T Z be such that
dh ≥ N + M . Since M + N ≥ N ≥ n there exists an i ∈ I and an f : T X → T Yi such that
gif = h. Now calculate

N +mi ≤ dh =
∧

y∈Yi

((gi)
�y)+ d(πyf ) ≤

∧

y∈Yi

N + d(πyf ) = N +
∧

y∈Yi

d(πyf ) = N + df

and, since N ∈ N, conclude that mi ≤ df . Then f factors through Fi and this implies that
h factors through H .

By Lemma 6.8, K would be the basis of a Grothendieck topology if it had long covers in
the sense of Definition 6.7.
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12 Developments

Let T be a ranked theory with associated natural potential basis K (Definition 11.7). In
this section we assume that T is equipped with a distinguished family B ∈ K(T ) of ‘basic
operations’. Notice that for any j : 1 → Y , the pullback π∗

j B exists.

Lemma 12.1 For any j : 1 → Y in fSet, π∗
j B ∈ K(T Y ).

Proof The family π∗
j B is proper by Lemma 3.8 and ample by Lemma 6.4. Finally, the maps

in π∗
j B are efficient by the basic properties of factorization systems.

The next concept is analogous to the notion of development introduced in p. 10 of [3].

Definition 12.2 (Development of a cover) For G = (gk : T Yk → T Z | k ∈ K) ∈ K(T Z),
l ∈ K and j ∈ Yl , the development of G at gl and j is the family obtained by composing G

with the families Fk on T Yk , where Fk is the trivial family (idYk
| 1) if k �= l and Fl = π∗

j B.

Roughly speaking the development of G at gl and j is the result of replacing gl with the
family gl(π

∗
j B). Lemmas 11.8 and 12.1 imply that any such development is in K(T Z).

Lemma 12.3 Let G = (gk : T Yk → T Z | k ∈ K) ∈ K(T Z) be n-ample. Let l ∈ K and
j ∈ Yl . If B is 1-ample and (gl)

�j < n then the development H of G at gl and j is also
n-ample.

Proof Let h : T X → T Z be such that dh ≥ n. By hypothesis, h factors through G. That is,
there exists k ∈ K and f : X → Yk such that h = gkf . If k �= l then f factors through the
trivial family and so h factors through H . If k = l then it is enough to show that f factors
through π∗

j B. In turn, it is enough to prove that πjf : T X → T factors through B. Since B
is 1-ample we are left to show that d(πjf ) ≥ 1. Calculate:

n ≤ dh = d(glf ) =
∧

y∈Yl

(gl)
�y + d(πyf ) ≤ (gl)

�j + d(πjf ) < n + d(πjf )

so d(πjf ) ≥ 1.

Let us say that the family G can be developed to H if there exists a sequence of families
G = G0,G1,G2, . . . , Gn = H such that for each m < n, Gm+1 is the development of Gm

at some g : T Y → T Z in Gm and j ∈ Y .

Proposition 12.4 If B is strictly 1-ample then any n-ample family in K(T Z) can be
developed to a strictly n-ample family.

Proof Let G ∈ K(T Z) be n-ample. If it is not strictly n-ample there exists a g : T Y → T Z

in G such that dg = ∧

k∈Y g�k < n. Then there exists j ∈ Y such that g�j < n. Let G′ be
the result of developing G at g and j . If every map h in G′ is such that dh ≥ n then we
are done. If not, repeat the process. If the process terminates then the resulting family H is
such that for every h in H , dh ≥ n. Moreover, Lemma 12.3 implies that, at each stage of
the development, n-amplitude is preserved; so H is strictly n-ample.
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Now, why does the process terminate? Loosely speaking the reason is that since B is
strictly 1-ample then, at each stage, the chosen ‘tree’ g is replaced by a family of trees
whose ‘leaves’ are further from the root. Since this ‘distance’ can only grow up to n, and all
the families involved are finite, then the process must terminate.

To be more precise let g : T Y → T Z in G and j ∈ Y as above. Each map in g(π∗
j B) is

of the form g(π∗
j f ) for some f : T X → T in B. Since B is strictly 1-ample, df ≥ 1. That

is, for every x ∈ X, f �x ≥ 1. If we let Yj → Y be the complement of j : 1 → Y then we
can picture g(π∗

j f ) as follows

where the square is a pullback. For each z ∈ Yj + X,

(g(π∗
j f ))

�
z =

∧

w∈Yj +1

g�w + (πw(π∗
j f ))

�
z =

⎛

⎝

∧

y∈Yj

g�y + (πy(π
∗
j f ))

�
z

⎞

⎠

∧ (g�j + (πj (π
∗
j f ))

�
z) =

=
⎛

⎝

∧

y∈Yj

g�y + (πy)
�z

⎞

⎠ ∧ (g�j + (f (T in1))
�
z)

and

(f (T in1))
�
z =

∧

x∈X

(f �x) + (πx(T
in1))

�
z =

∧

x∈X

(f �x) + (πx)
�z

so we can distinguish two cases. Either z ∈ Yj or z ∈ X. If z ∈ Yj then

(f (T in1))
�
z =

∧

x∈X

(f �x) + ∞ = ∞

and so

(g(π∗
j f ))

�
z =

∧

y∈Yj

g�y + (πy)
�z = g�z

which is reasonable because we have developed at j �∈ Yj .
On the other hand, if z ∈ X then πy

�z = ∞ for every y ∈ Yj so

(g(π∗
j f ))

�
z = (g�j) +

∧

x∈X

(f �x) + (πx)
�z = (g�j) + (f �z) > g�j
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because f �z ≥ 1. Roughly speaking, the new labels that have appeared in the tree g(π∗
j f ),

i.e. those in X, are further from the root than the label j in the tree g. (Of course, if f is a
constant the X is empty.)

The proof of Proposition 12.4 should be compared with the discussion in p. 10 of [3].
Also on the relation with [3], notice that one can develop the trivial family in K(T X) to a
strictly n-ample one. These are analogous to the families denoted by Sn in [3].

Corollary 12.5 (Potential is actual) If B is strictly 1-ample then K is the basis for a
Grothendieck topology on T .

Proof Lemma 11.8 implies that K-coverings compose. So, by Lemma 6.8, it is enough to
check that K has long covers in the sense of Definition 6.7. That is, that for every T Z in T
and n ∈ N there is a H ∈ K(T Z) such that for all h ∈ H , dh ≥ n. The trivial family (id | 1)
on T Z is 0-ample so it is also n-ample and, by Proposition 12.4, can be developed to a
strictly n-ample family.

The next result is analogous to the lemma in p. 16 of [3]. Notice that the structure of the
proof is essentially the same.

Corollary 12.6 If B is strictly 1-ample then the following Grothendieck topologies on T
coincide:

1. The smallest topology for which T is covered by B.
2. The smallest topology in which, for each A ∈ fSet, T A is covered by the strictly ample

proper families on T A.
3. The topology where the covering sieves of T A are those that include some strictly ample

proper family.
4. The topology generated by K.

Proof By our current hypotheses, B is in K so the topology in the first item is included in
that of the fourth.

To prove that the topology of the second item is included in that of the first we must show
that, for everyA in fSet and n ∈ N, the essentially unique proper and strictly n-ample family
on T A is a cover with respect to the topology of the first item. This follows from Proposi-
tion 12.4 because it shows that using only B one can develop the trivial family (idT A | 1) to
‘the’ strictly n-ample family (Lemma 6.6).

It is trivial that all the sieves described in the third item are in the topology of the second.
(The fact that the sieves in the third item form a topology will follow once we show that it
includes K, for then all four items are equal.)

So, to complete the proof, we consider an arbitrary sieve R on T A containing a K-cover
and show that this sieve is among the sieves described in the third item. Assume that R

contains an n-ample family F in K(T A). It is clear that the maps in any development of F

must be inR but then, by Proposition 12.4, the strictly n-ample family on T Y must be inR.

It must be stressed that Corollary 12.6 above is, in a sense, weaker than the lemma in p. 16
of [3] because the latter does not resort to efficient maps; something we used in the proof
that K is a basis (see Lemma 11.8). So it is natural to search for a result showing that, under
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reasonable hypotheses, the efficiency requirement in the definition of K is superfluous. We
do this in the next section.

13 Inconstant Maps

Let T be a ranked theory with associated natural potential basis K (Definition 11.7). In this
section we assume that T is equipped with a distinguished strictly 1-ample family B ∈ K(T )

so that K is the basis for a Grothendieck topology by Corollary 12.5. We will show that in
certain cases the efficiency requirement in the definition of K is unnecessary. First, a piece
of very basic category theory.

Lemma 13.1 Let the following diagram

be a pullback. If π1 is an iso, r is split epi and π0 is epi then r is an iso.

Proof Without loss of generality we can assume that the following diagram

is a pullback. Let s : B → C be a section of r . Since rsa = a the pullback property implies
that sa = π0. Since, π0 is epi, so is s.

By Lemma 11.2 every efficient map f : T A → T B is a B-indexed product of effi-
cient maps. More explicitly, f : T A → T B is efficient if and only if there is a function
a : A → B such that for every i : 1 → B and pullback as on the left below

there is an efficient fi : T Ai → T 1 such the diagram on the right above commutes.

Definition 13.2 Such an efficient map f : T A → T B will be called inconstant if the map
a : A → B is surjective.

Loosely speaking, the family of maps that determines f does not have constants. In
particular, an efficient map f : T A → T is inconstant if and only if A �= ∅. In other words,
f : T A → T is inconstant if and only if it is not a constant.
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Lemma 13.3 Let f : T A → T B be inconstant and g : T B → T C be mono and bureau-
cratic. If the composite gf : T A → T C is efficient then g is an iso.

Proof Let f : T A → T B be efficient with a : A → B as above. Now let r : C → B be any
map in fSet and let the diagram on the left below

be a pullback in fSet. It follows that the rectangle on right above is also a pullback, and it
induces a canonical qj : Arj → P as displayed there, which is mono because inrj is. Let
h : T P → T C be the unique map such that the square on the left below commutes

for every j ∈ C. Notice that h is a product of fi’s so it is efficient. We claim that
(T r )f = h(T p1) : T A → T C . In other words, that h, T p1 form the efficient/bureaucratic
factorization of (T r )f . To prove the claim calculate as on the right above and, together
with (T j )(T r ) = T rj : T B → T 1, we may conclude that for every point j : 1 → C,
(T j )(T r )f = (T j )h(T p1). That is, (T r )f = h(T p1), so the claim is proved.

Consider now g as in the statement. Since g is bureaucratic it is of the form T r

for some r : C → B in fSet and, as g is mono, r must be epi. Since f is incon-
stant, there is an a : A → B as above which is also surjective. By the argument above,
gf = (T r )f = h(T p1) so, if gf is efficient, then T p1 is an iso; so p1 is an iso and, by
Lemma 13.1, r is an iso.

Efficiency is ‘reflected by developments’ in the following sense.

Lemma 13.4 Let G be a proper family on T Z and let H be a development of G such that
every map in H is efficient. If B contains an inconstant map then every map in G is efficient.

Proof LetH be the development ofG at g : T Y → T Z and i ∈ Y . Then, to prove the result,
we need only check that g is efficient. So let g = h(T b) with h efficient and b : B → Y .
Since g is mono, so is (T b). We need to prove that T b is actually an iso.

By hypothesis there is an inconstant map in B and, since inconstant maps are closed under
pullback, there is an inconstant map in π∗

i B. Let us call this inconstant map f : T X → T Y

and consider the composite gf = h(T b)f . Since h is efficient, and gf is efficient by
hypothesis, (T b)f is also efficient (by general considerations about factorizations systems).
Then T b is an iso by Lemma 13.3.
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We believe that Corollary 12.6, together with the next result, form a fair generalization
of the lemma in p. 16 of [3] to our context.

Proposition 13.5 If B has an inconstant map then the basis K may be described as
assigning, to each T X in T , the collection of ample and proper families on T X .

Proof Definition 11.7 introduces K as the function that assigns, to each T X in T , the collec-
tion of ample and proper families of efficient maps on T X . So it is enough to show that the
requirement that the maps are efficient is superfluous. LetG be a proper and n-ample family
on T X . Let H be the result of developing G to a strictly n-ample family. By Lemma 11.6,
every map in H is efficient. By Lemma 13.4, every map in G is efficient.

We will use the following.

Corollary 13.6 If B has an inconstant map then K is a basis of dense monos in the sense of
Definition 4.5.

Proof Every K-cover is proper by definition of K so to prove that K is a basis of dense
monos consider an F ∈ K(T Y ) and a proper family P on T Y such that every map in F

factors through P . Since F is ample then so is P . By Proposition 13.5, P is in K.

14 Weights for a Ranked Theory

Let T be a ranked theory with natural potential basis K. Assume that T is equipped with
a distinguished strictly 1-ample family B ∈ K(T ) so that K is the basis for a Grothendieck
topology. Moreover, let R be a rig and let γ : B(T ) → R be a multiplicative-monoid
morphism so that we can consider weights as in Section 5.

Lemma 14.1 If wB = γ [T ] then, for any Y in fSet and j : 1 → Y , w(π∗
j B) = γ [T ]Y .

Proof Let B = (bi : T Xi → T | i ∈ I ) and Yj ⊆ Y be the complement of j : 1 → Y . For
each i ∈ I let the following square

be a pullback in T . Of course, [T Xi+Yj ] = [T Xi × T Yj ] = [T Xi ] · [T Yj ] = [T ]Xi · [T ]Yj

so γ ([T Xi+Yj ]) = γ [T ]Xi · γ [T ]Yj and we can calculate

w(π∗
j B) =

∑

i∈I

γ ([T Xi+Yj ]) =
∑

i∈I

γ [T ]Xi · γ [T ]Yj =

= γ [T ]Yj ·
∑

i∈I

γ [T ]Xi = γ [T ]Yj · wB = γ [T ]Yj · γ [T ] = γ [T ]Y

to complete the proof.
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The following is also easy.

Lemma 14.2 (Development does not change weight) Assume that wB = γ [T ] ∈ R. If
G = (gk : T Yk → T Z | k ∈ K) in K(T Z) and H is the development of G at gl : T Yl → T Z

and j ∈ Yl then wH = wG.

Proof By definition H is the family obtained by composing G with the families Fk on
T Yk , where Fk is the trivial family (idYk

| 1) if k �= l and Fl = π∗
j B. Clearly, for any k �= l,

wFk = γ [T ]Yk and, by Lemma 14.1, wFl = γ [T ]Yl . Then, by Lemma 5.8,

wH =
∑

k∈K

wFk =
⎛

⎝

∑

l �=k∈K

wFk

⎞

⎠ + wFl =
⎛

⎝

∑

l �=k∈K

γ [T ]Yk

⎞

⎠ + γ [T ]Yl = wG

and the proof is complete.

Notice how Proposition 12.4 appears again in the next result.

Lemma 14.3 If wB = γ [T ] then γ is compatible with K.

Proof Let B in fSet. Clearly, w(idT B | 1) = γ [T ]B . By Lemma 14.2 ‘the’ strictly n-ample
familyH on T B has weight γ [T ]B . On the other hand, by Proposition 12.4, anyG ∈ K(T Y )

can be developed to H so, again by Lemma 14.2, wG = wH .

It is time to summarize. We are assuming that T is a ranked theory equipped a strictly 1-
ample family B in K(T ) so that K is the basis for a Grothendieck topology by Corollary 12.5.
We are also assuming a rig R and a morphism γ : BT → R of multiplicative monoids.

Proposition 14.4 If B contains an inconstant map and wB = γ [T ] then there exists a
uniqueB(Fam(T ,K)) → R such that the right triangle below commutes.

Proof Corollary 13.6 implies that K is a basis of dense monos and Lemma 14.3 implies that
γ is compatible with K so Proposition 5.7 is applicable.

15 The Main Result

It may be convenient to start by recalling a basic fact. A morphism in a category is iso if
and only if it is epi and has a retraction. In particular, if R is a rig and C is a distributive
category then, a surjective R → BC is an iso if and only if it has a retraction. Most of the
work in the paper was done to construct such a retraction. Lemma 15.1 below completes the
construction. Theorem 15.2 makes explicit the simple surjection R → BC and proves that
it is a section of the previous morphism.
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Fix a polynomial L(X) ∈ N[X]. As discussed in Section 1, L(X) determines a ‘signa-
ture’ � ∈ SetN and its associated free theory that we denote by L.

We let L be ranked as in Lemma 11.4 and we consider its natural potential basis K

(Definition 11.7). For every n ≥ 0, each f ∈ �n induces an efficient monic map in L that
we denote by f : T n → T . (In free theories, efficient maps are mono. See discussion after
Definition 11.1.) Let B be the (proper) family (f : T n → T | n ∈ N, f ∈ �n). The proof
of Lemma 11.4 implies that df ≥ 1 for each f . The family B is also 1-ample because any
map h : T X → T with dh ≥ 1 is of the form fg for some f in B. Altogether, B in K(T ) is
strictly 1-ample so K is the basis for a Grothendieck topology by Corollary 12.5 and we can
consider the distributive category Fam(L,K).

Lemma 15.1 If L(X) is not constant then there exists a unique morphism of rigs
B(Fam(L,K)) → N[X]/(X = L(X)) such that the following diagram

commutes.

Proof As discussed in Section 1, the product preserving inclusion L → FamL induces a
(multiplicative-)monoid morphismBL → B(FamL) as below

and we may denote the composite

BL −−→ (N[X], ·, 1) −−→ N[X]/(X = L(X))

by γ : BL → N[X]/(X = L(X)). It is clearly a morphism of multiplicative monoids. If
L(X) is not constant then B contains an inconstant map and

wB =
∑

n∈N

∑

f ∈�n

γ [T ]n = L(γ [T ]) = γ [T ] ∈ N[X]/(X = L(X))

so Proposition 14.4 completes the proof.

We can now prove our main result.

Theorem 15.2 If L(X) is not constant then the rig morphism

B(Fam(L,K)) → N[X]/(X = L(X))

is an iso.
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Proof The family B in K(T ) induces a map L(T ) → T in �K and so, an iso L(T ) → T in
(FamL)[�−1

K
] = Fam(L,K). Then L([T ]) = [T ] holds inB(Fam(L,K)) and the universal

property of the rig quotient N[X] → N[X]/(X = L(X)) implies the existence of a unique
rig map N[X]/(X = L(X)) → B(Fam(L,K)) making the following diagram

commute. As FamL → Fam(L,K) is bijective on objects, the induced rig morphism
B(FamL) → B(Fam(L,K)) is surjective, and it follows that the induced rig morphism
N[X]/(X = L(X)) → B(Fam(L,K)) is also surjective.

If we stack the rectangle in the previous paragraph on top of that in Lemma 15.1 then the
universal property of the quotient N[X] → N[X]/(X = L(X)) implies that the composite

N[X]/(X = L(X)) → B(Fam(L,K)) → N[X]/(X = L(X))

is the identity. It follows that N[X]/(X = L(X)) → B(Fam(L,K)) is an iso.

16 A Presentation of the Theory Classified by Sh(L,K)

In this section we give a presentation of the theory classified by the topos Sh(L,K). The
argument is a straightforward generalization of the argument used in the proof of Theorem 4
in [3], but it seems useful to split it in a way that gives a solution to a particular case of a
more general problem

Let T be an algebraic theory and let T ‡ be the opposite of the category of finitely pre-
sented T -models. It is well-known that the classifying topos for T may be identified with
the presheaf topos ̂T ‡. See, e.g., Corollary D3.1.1 in [10]. The full subcategory T → T ‡

induces a subtopos ̂T → ̂T ‡. What does ̂T classify? Diaconescu’s Theorem gives one
answer, but it is natural to strive for a more specific one when starting with an algebraic
theory instead of an arbitrary (internal) category. We don’t know of a general satisfactory
answer to this question but we observe that a simple variation of Theorem 4 in [3] provides
an answer for the case of free algebraic theories.

Theorem 16.1 Let T be the free algebraic theory generated by a ‘signature’ � ∈ SetN.
Then ̂T classifies the (geometric) theory presented by the same operations and the following
coherent sequents:

1. (Basic operations are injective)

f (x1, . . . , xn) = f (y1, . . . , yn) �x1,...,xn,y1,...,yn

n
∧

i=1

xi = yi

for every n ∈ N and f ∈ �n.
2. (Basic operations are disjoint)

f (x1, . . . , xm) = f ′(y1, . . . , yn) �x1,...,xm,y1,...,yn⊥
for all m, n ∈ N, f ∈ �m, f ′ ∈ �n and f �= f ′.

3. (No proper ‘subselves’)
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For any term t that contains the variable x but is not just x,

t = x �FV (t)⊥
where FV (t) denotes a list of the distinct free variables that appear in t .

Proof We show that the method of D3.1.10 in [10] to construct the classifying topos for the
presentation in the statement leads to the site given by T with the trivial topology. Since the
sequents are very simple it is easy to check that the method is indeed applicable. According
to this method the classifying topos may be identified with Sh(C, J )where C is the syntactic
category determined by the signature � and the axioms in the first item (equivalently, the
opposite of the category of finitely presented models in Set) and J is the Grothendieck
topology generated by the remaining axioms. (Notice that C-models are T -algebras whose
basic operations are injective, and that free T -algebras satisfy this property.) So we need
to analyse the finitely presented models. These may be described as 〈A | E〉 where A is a
finite set ‘of generators’ and E is a finite set of equations between terms built using the
basic operations and the generators (see, e.g., D2.4 in [10]).

The axioms in the second and third items simply say that some objects of C are covered
with the empty family and so may be removed from C. We claim that all non free models
are cocovered by the empty family. Consider a model 〈A | E〉.
1. Assume that a constant occurs as one side of an equation in E. Without loss of gen-

erality we can assume that the equation is of the form f = t with f ∈ �0 and t a
term.

(a) If t = f then we can delete the equation from E leaving us with a ‘smaller’
presentation of the same model.

(b) If t = f ′(t1, . . . , tn) for some f ′ ∈ �n with f �= f ′ then there is a morphism
〈{y1, . . . , yn} | {f = f ′(y1, . . . , yn)}

〉 → 〈A | E〉. Since basic operations are dis-
joint, the domain of this map is cocovered by the empty family and so, 〈A | E〉 is
cocovered by the empty family too.

(c) If t ∈ A then 〈A | E〉 can also be presented as
〈

A − {t} | E′〉 where E′ is the result
of removing the equation f = t and replacing all the occurrences of t in the rest of
the equations by f . So, again we obtain a ‘smaller’ presentation.

2. So we may assume that no constant occurs as the side of an equation. Suppose next
that and element a ∈ A occurs as a side of an equation in E. We can assume that the
equation is of the form a = t .

(a) If t = a then we can delete the equation to obtain a smaller presentation.
(b) If t is not a but involves a then there is a morphism 〈FV (t) | {a = t}〉 → 〈A | E〉.

Since there are no proper subselves, the domain is cocovered by the empty family
and then so is the codomain.

(c) So we can assume that t does not involve a. We can then remove a from A, remove
the equation a = t and replace all other occurrences of a inE by t . Again, a smaller
presentation.

3. We may now assume that every equation in E is f (t1, . . . , tm) = f ′(u1, . . . , un) for
some f ∈ �m and f ′ ∈ �n.

(a) If f �= f ′ then there is a morphism
〈{x1, . . . , xm, y1, . . . , yn} | {f (x1, . . . , xm) = f ′(y1, . . . , yn)}

〉 → 〈A | E〉
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and, since basic operations are disjoint, 〈A | E〉 is cocovered by the empty family.
(b) If f = f ′ then m = n and, as basic operations are injective, we can replace this

equation f = f ′ with the ‘smaller’ equations t1 = u1, . . . , tm = um. So again we
obtain a smaller presentation of 〈A | E〉.

At each set we have either proved that 〈A | E〉 is cocovered by the empty family or
obtained a smaller presentation of the same model. In the second case we can repeat the
steps. We can only do this a finite number of times because the size of A cannot decrease
infinitely often and, after it stops decreasing, the ‘total length’ of E cannot decrease
infinitely often. So the only way that the process can stop is if 〈A | E〉 is cocovered by the
empty family or E has become empty.

Notice also that, at each step, the conclusion that 〈A | E〉 is cocovered by the empty
family is the result of exhibiting a map from the model presented by the antecedent of one
of the sequents in the second or third items in the statement. But free models cannot receive
maps from these, so the topos Sh(C, J ) is equivalent to the topos Sh(T , J ′) where T → C
is the full subcategory determined by the free models and J ′ is the trivial topology. In other
words, the presheaf topos ̂T classifies the theory presented in the statement.

Notice that the models of the theory classified by ̂T are very similar to the Peano algebras
discussed in [6]. See also Section 8 in [15].

We now give the analogue of Theorem 4 in [3] in the more general context of the present
paper. Let L(X) ∈ N[X], let � ∈ SetN be the induced signature, and L be the resulting free
algebraic theory.

Corollary 16.2 If L(X) is not constant then the topos Sh(L,K) classifies the theory
presented by the sequents in Theorem 16.1 together with:

4. (Basic operations are jointly surjective)

� �x

∨

n∈N

∨

f ∈�n

(∃y1, . . . , yn)(x = f (y1, . . . , yn))

(we stress that this is a finite disjunction because �n = ∅ if n > degL(X)).

Proof The method of D3.1.10 in [10], together with the calculations performed in The-
orem 16.1, show that the classifying topos for the ‘extended’ presentation of the present
result may be described as the topos of sheaves on the site (L, J ) where J is the
Grothendieck topology generated by the new axiom; but this axiom simply says that the
family (f : T n → T | n ∈ N, f ∈ �n) covers T . So J is the smallest topology generated
by this family. In other words, J is the topology generated by K (Corollary 12.6).

Much of the above seems to work without the one-sorted restriction. In particular, the
notion of ample family. So it might be possible to extend the results in this paper to fixed-
point quotients of N[X1, . . . , Xn].
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