

XXII CONGRESO ARGENTINO DE FISICOQUÍMICA Y QUÍMICA INORGÁNICA LA PLATA 2021

ADSORCIÓN DE DIFERENTES ESPECIES DE DOPAMINA SOBRE ÓXIDO DE GRAFENO


<u>Domancich Nicolás</u>¹,Meier Lorena¹, Rossi F. Ana²,Fuente Silvia¹ y Castellani Norberto¹ Instituto de Física del Sur, Av. Alem 1253, (8000) Bahía Blanca ²Instituto de Química del Sur, Av. Alem 1253, (8000) Bahía Blanca syn811@hotmail.com

Introducción: Uno de los métodos más utilizados para producir láminas de grafeno se basa en la reducción química de óxido de grafeno (GO), en cuya superficie predominan grupos epoxi e hidroxilo¹. Entre los reductores utilizados, se demostró que la dopamina actúa menos severamente que otros como la hidracina o NaBH4². En el presente trabajo se estudia la adsorción de diferentes formas de la dopamina (DA) sobre la superficie de GO.

Resultados: Los presentes cálculos se basan en la teoría DFT y fueron implementados con el código VASP. La energía de adsorción fue calculada como: $E_{ads} = E_{ato/sto} - E_{sto} - E_{ato}$, donde $E_{ato/sto}$, E_{sto} y E_{ato} son las energías totales para el sistema adsorbato/substrato, el substrato y el adsorbato en fase gas, respectivamente. Las cargas atómicas se calcularon según el método DDEC06. Se consideró la adsorción disociativa y no disociativa de las especies neutra (NDA), zwitteriónica (ZDA), protonada (PDA) y desprotonada (DPDA) de DA sobre un substrato de GO con un epoxi (GO1) o un hidroxilo (G(OH)1). En las fig. 1-4 se observan las geometrías más favorables de ZDA aproximándose a la superficie por el grupo amino. Los valores de E_{ads} para las cuatro especies adsorbidas, con una aproximación similar entre adsorbato y substrato, están resumidos en la Tabla 1.

Tabla 1. E_{ads} en eV para los casos de adsorción asociativa (A) y disociativa (D)

	Sitio/Tipo de	Especie			
	adsorción	DPDA	NDA	ZDA	PDA
	901/A (F.1)	-0.343	-0.418	-0.671	-0.661
	901/D (F.2)	1.121	1.072	-2.791	-3.730
G(OH)1/A (F.3)	-0.273	-0.464	-0.816	-0.539
G(OH)1/D (F.4)	-0.298	0.258	-3.584	-4.564

Conclusiones: Se observan adsorciones tanto asociativas como disociativas para las cuatro especies. La adsorción disociativa sobre GO1 implica la formación de un grupo hidroxilo, mientras que aquella sobre G(OH)1, la eliminación del grupo hidroxilo. Las especies ZDA y PDA, tanto en forma asociativa como disociativa, poseen más actividad adsortiva que DPDA y NDA. Esta actividad se puede relacionar con una mayor transferencia de carga electrónica hacia el substrato.

Referencias:

- 1) S. Eigler, A. Hirsch, Angew. Chem. Int., 2014, 53, 2.
- 2) H.J. Shin, K.K. Kim, Adv. Funct. Mater., 2009, 1987, 19.

Dezalay	Jordan	239	
Dganit	Danino	10	
Di Donato	Andrès	142	
Di Salvo	Florencia	77, 90, 602	
Di Tocco	Aylén	159, 376	
Diaz	Carolina	33, 343	
Diaz	Florencia	362	
Diaz	Jorge	66	
Diaz	Liliana	365, 366, 412	
Diaz	Ma. Soledad	422	
Diaz	Mario	222, 469	
Diaz	Narciso	385	
Diaz	Sonia	29, 55	
Diaz Coello	Sergio	377	
Diaz Compañy	Andrés	522	
Diaz Durán	Ana	173	
Diaz Vázquez	Daniela	201	
Dib	Nahir	293	
Diez	Alejandra	308	
Diguilio	Eliana	335	
Dinamarca	Angela	627	
Dionisi	Carla	378	
Disalvo	Edgardo	28, 49	
Dittler	María	149	
Dittrich	Thoms	136	
Diz	Virginia	54, 114, 158, 289	
Doctorovich	Fabio	24, 57, 69, 77	
Dodero	Gabriela	504	
Domancich	Nicolás	470	
Dominguez	Cecilia	379	
Domínguez	Sofia	75	
Dominguez-Alfaro	Antonio	599	
Donadelli	Jorge	160	
DongHui	Chen	543	
dos Santos Ferreira	Cristina	243	
Drajlin	Sebastián	128	
Duarte	Darío	498	
Duchowicz	Pablo	450, 471, 517, 527, 529, 530	
Duque	Melina	161	
Durán Alvarez	Carlos	480	
Durantini	Andrés	265, 544, 631	
Durantini	Edgardo	124, 136, 244, 309, 572, 631	
Durantini	Javier	136, 244, 309, 572, 624	
Duré	Andrea	30	

Libro de Actas: XXII Congreso Argentino de Fisicoquímica y Química Inorgánica: XXII CAFQI / Robert Marc... [et al.]; compilado por María Paula Badenes... [et al.]. - 1a ed. - La Plata: Universidad Nacional de La Plata. Facultad de Ingeniería, 2021.
Libro digital, PDF

Archivo Digital: descarga y online ISBN 978-950-34-1999-1

1. Química Inorgánica. I. Marc, Robert. II. Badenes, María Paula, comp.

CDD 546.071