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Abstract— In this work we present a general framework for the modeling of the transmission dynamics of macroparasites which do not
reproduce within the host like Ascaris lumbricoides, Trichuris trichiura, Necator americanus y Ancylostoma duodenale. The basic models
are derived from general probabilistic models for the parasite density-dependent mating probability. Here we considered the particular, and
common case, of a negative binomial distribution for the number of parasites in hosts. We find the basic reproductive number and we show
that the system exhibits a saddle-node bifurcation at some value of the basic reproduction number. We also found the equilibria and basic
reproduction number of a model for the more general case of heterogeneous host populations.
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Resumen— En este trabajo presentamos un marco general para la modelizacion de la dindmica de transmisién de macroparasitos que no
se reproducen dentro del hospedador como Ascaris lumbricoides, Trichuris trichiura, Necator americanus 'y Ancylostoma duodenal. Los
modelos basicos se derivan de modelos probabilisticos generales para la probabilidad de apareamiento denso-dependiente del pardsito. Aqui
consideramos el caso particular y comun de una distribucién binomial negativa para el nimero de parasitos en hospedadores. Encontramos
el nimero reproductivo bdsico y mostramos que el sistema presenta una bifurcacion nodo silla en algin valor del nimero reproductivo
basico. También encontramos los equilibrios y el nimero basico de reproduccién de un modelo para el caso mds general de poblaciones
heterogéneas de hospedadores.

Palabras clave—Bifurcacién nodo silla; Distribuciéon binomial negativa; Macroparasito; Modelo matemadtico; Nimero reproductivo basico

INTRODUCTION ce of egg production, and sexual mating functions that de-

pend on parasite distribution and reproductive habits (Ander-

athematical models play an important role in unders-
M tanding the transmission and impact of macroparasi-
te diseases control measures (Anderson and May, 1992; An-
derson et al., 2014; Truscott et al., 2016).

The first works on the theory of helminth infection was
published in the 1960’s by Tallis and Leyton by developing
stochastic models of nematode parasite transmission in sheep
and cattle (Leyton, 1968; Tallis and Leyton, 1966, 1969).

Simultaneously Macdonald show that a consequence of
sexual reproduction of distributed parasites within individual
hosts was the inability to generate fertile infectious material
when prevalence is low (Macdonald et al., 1965).

Anderson and May introduced a much more general des-
criptions of helminth population dynamics based on host age,
distribution of parasite numbers per host, density dependen-

son and May, 1982, 1985, 1992).

In this article we develop an analytical framework to des-
cribe the transmission dynamics of most macroparasite in-
fections. We show how the classical deterministic models are
derived from probabilistic considerations about parasite dis-
tribution in hosts, egg production, and mating probability.

We first describe the dynamics of infection transmission
by macroparasites. Then we present two deterministic mo-
dels for the transmission dynamics. The first model the sim-
pler case of a homogeneous host community while the se-
cond model the more complex case of a heterogeneous host
community.

In both models, reproductive characteristics of the parasite
are considered, such as egg production and mating probabi-
lity, both modeled by the density-dependent fecundity of the
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Figure 1: Distribution of Ascaris lumbricoides parasite numbers
per host in a study in rural populations in Korea (Seo et al., 1979).
Most hosts are uninfected or infected with a low burden of
parasites while few are infected by large numbers of parasites.

parasite and the distribution of parasites per host, which we
assume to be negative binomial.

For both models we computed the endemic equilibrium
and the basic reproduction number Ry, defined as the avera-
ge number of new parasite offspring produced by a typical
female parasite, from one generation to the next. Finally we
show that the homogeneous model undergoes a saddle-node
bifurcation.

GENERAL FRAMEWORK

Microparasite diseases are usually modeled using com-
partmental models. After infection, microparasite population
may rapidly grow into the host. This intra-host parasite dyna-
mics determines the level of infectiousness of the individual.
In a simple compartmental model like the STR-model all the
susceptible individuals are grouped in one class of size S,
all the infected and infectious individuals in a class of size /
and all the recovered individuals in a class of size R. Many
refinements are possible, but the evolution of the parasite po-
pulation within the host it is not considered or very simplified
(for models including intra-host population dynamics see for
example Gandolfi et al. (2015)). The most common refine-
ment consists in dividing infected individuals in two classes,
exposed (those infected but yet not infectious) and infectious,
which leads to the well known SEIR type models.

For most macroparasites, the situation is completely diffe-
rent as these types of parasites do not reproduce within the
host. Most infected individuals have few macroparasites with
a non-bell shaped distribution (see Figure 1) where few indi-
viduals concentrate most of the parasites in the host popula-
tion (Seo et al., 1979; Lopez and Aparicio, 2023). Negative
binomial distributions usually provide a good description of
the data. On the other hand, there is no host-to-host trans-
mission of macroparasites as the life cycle completes in the
environment (from where the host gets infected).

Therefore the number of infected hosts is not a represen-
tative variable of the parasite burden. Simple models for ma-
croparasites consider the evolution of the mean burden of
parasite within the population as well as the environmental
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parasite reservoir (which is composed of eggs and/or larvae).
From the mean burden, the total parasite population is easily
estimated.

A BASIC MODEL
Model structure

The model presented in this paper is based on a model de-
veloped by Anderson and May (Anderson and May, 1992).
The conceptual framework of parasite transmission dyna-
mics is conceptualized as a population of mature parasites
within human hosts and a population of infective stages (eggs
and/or larvae) found in the environment (reservoir). Hosts
may become infected by contact with the infective stages of
the parasites and can contaminate the environment by relea-
sing parasite’s eggs to the environment (see Figure 2).

Human host

Environment

mortality, p. p

mortality, fu
-0

!
mortality, p,

Figure 2: Conceptual framework of parasite transmission
dynamics.

In a simple model for transmission dynamics of parasi-
tes, the dynamic variables are the mean parasite burden in
the host population, m; and the population of infective stages
(reservoir) in the environment, formed by eggs and/or larvae,
L.

In the following we will sketch the procedure to find
parasite-related parameters from a statistical-probabilistic
model for the parasite population.

The environmental parasite reservoir, composed by eggs
or larvae, increases due to the contribution of adult parasites
within the hosts. As most hosts harbor only few parasites,
only hosts with at least one female and one male parasite
will contribute with fertilized eggs to the reservoir. We will
consider that the random variable W, the number of parasites
in a host, follows a negative binomial distribution. Therefore,
the probability of observing n parasites in a host is

I(k+n)
I'(n+1)I'(k)
where I' is the gamma function and p = mi% with m the mean
value (the mean population parasite burden) and k the shape
parameter. The variance may be expressed in terms of m and
k as 6> = m+m?/k. The term p is the host’s probability
of acquiring a parasite and 1 — p is the probability of not
acquiring a parasite, in each of K+ n Bernoulli experiments.

Mean egg production depends on the number of parasites
within the host, and it is a density-dependent process. A sim-
ple model for the mean female fecundity of a female parasite
in competition with n — 1 parasites is given by

An) = A", )

P(W=n)= p"(1-p), (1)
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where A is the rate of egg production per female independent
of parasite density in the host and z = ¢~? with y a parame-
ter quantifying the intensity of the competition. A study of
the Ascaris lumbricoides fecundity is presented in Hall and
Holland (2000).

Using the parasite host distribution (1) we may compute
the mean egg production per host as (Lopez and Aparicio,
2022) Adgoumy(m,k,z) where o is the fraction of female pa-
rasites in a host and y, the average effective contribution per
female parasite to the parasite reservoir (see Churcher et al.
(2006); Lopez and Aparicio (2022)), is given by

) 3)

v(m,k,z) = {1+(1 _Z>g}f(k+1)

k
However, only hosts with at least one female parasite and
one male parasite will effectively contribute to the parasite
reservoir by the production of fertilized (or infective) eggs.
Therefore, the mean fertilized egg production per host is

Aoamy (m,k,z)o (m,k,z), 4

where ¢ (m, k,z) is the mating probability for the negative bi-
nomial distribution Lopez and Aparicio (2022)

1+(1— az)% S
P(mk,z)=1- | ——K NG
1+(1 —Z)%

Therefore, the mean fertilized egg contribution to the en-
vironmental reservoir per host and per unit of time is
proamy(m,k,z)¢(m,k,z) where p is the per-host eggs con-
tribution rate, and then, the total contribution of eggs to the
reservoir per unit of time of a host population of size N is
pAoomy (m,k,z)¢ (m,k,z)N.

The population of eggs and/or larvae in the environment
(0) also decreases due to egg/larval mortality (at the rate )
and due to host infection at the rate $¢ per host, however, we
consider this last term is negligible relative to the size of /.
Therefore, the dynamics of the reservoir is given by

O = phocmy(m k DO(mk N~ il (©

Finally, the dynamics for the mean parasite burden m is ob-

tained as follows. Parasites are taken from the environment at

arate BN/ and therefore, the mean parasite burden increases

at a rate BN{/N = JB{. Parasites within the host die at a rate

Up and hosts at a rate i, (killing all their parasites). Thus, the
dynamics of m is given by

d
= Bl — (up+ pp)m. 7

dr
Because an average host has contact with a small part of
the reservoir £ (by infection and contribution), we rename
the variable, relative reservoir to a host, £/N to £. Then, the
dynamic of the new variable ¢ is given by

de

E Zp)lo(xml//(m,k,z)(])(m,k,z)—ugf. )]

Therefore, the conceptual framework of parasite transmis-
sion dynamics is conceptualized as shown in Figure 2. A
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basic model of the transmission dynamics of macroparasi-
te infection in a homogenous host population is given by the
following the system of nonlinear ordinary differential equa-
tions

dm
o= Bl — (un+ pp)m,
dl

E = pMamW(mak7Z)¢(mak7Z) - #ée

9

Equilibria and basic reproduction number

In this section we find some useful expressions involving
the equilibrium values of the dynamical variables and the ba-
sic reproduction number Ry defined as the average number
of female offspring produced per female adult worm, that
survive to reproductive maturity in the absence of density-
dependent constraints on parasite population growth (Ander-
son and May, 1992). Assuming the mating probability (¢)
and mean fertilized egg production (y) equal to one (this is
an usual, but somewhat strong assumption, which will be dis-
cussed elsewhere), an average female parasite would release
Aop per unit of time to the environment. As the mean life

of a parasite is approximately 1/(u;, + u,) the average total
contribution of fertilized eggs become (ujiizp)' On the other
hand, female parasites in hosts increase as the rate o3 du-
ring an average time 1/ . Therefore, the basic reproduction

number is (Anderson and May, 1992; Truscott et al., 2014,

2016)
Aoapp

S ol (10)
0 2% (.uh + .up)
From the equation (8) we obtain that at equilibrium
. hoa
= mel//(m)gb(m) (In

and substituting (11) in equation (7) we obtain the following
equation for the dynamics of the mean parasite burden m
(12)

%’f = (1 + p) [Roy (m)§ (m) — 1] m,

Therefore from the equation (12), the mean parasite bur-
den (m*) satisfy

l//(m*,k,z)(p(m*,k,z) = 1/R0

This equation presents two equilibrium solutions for the
mean parasite burden.

As shown in the next section, the dynamic system (9) pre-
sents a saddle-node bifurcation. The bifurcation occurs at the
point (m”,Rb) where

13)

k(ﬂ)k%z_k

1—z

(z—l)(‘l;f‘;)ﬂ%ﬂl—az)’

R§ = {‘I’(mb;kx)fb(mb?kﬂ)} N

b:

m
(14)

Therefore, for Ry > Rg there are three equilibria in the dyna-
mic system (9) (see Figure 3),

= An equilibrium is the disease-free equilibrium present
at m™ = 0, which is the trivial solution of equation (12).
This equilibrium is an attractor for all values of Ry.
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» The other equilibrium is the endemic equilibrium,
which is one solution of equation (13). This equilibrium
is an attractor for a range of values of Ry > Rg.

» The last equilibrium is an unstable equilibrium and co-
rresponds to the other solution of equation (13). This
equilibrium is a repulsor in the phase plane, that is, a
barrier where values of m(r) above the unstable equi-
librium are attracted towards the endemic equilibrium
and values of m(r) below the unstable equilibrium are
attracted to the disease-free equilibrium.

mean parasite burden, m

.
......
..............
............................

basic reproductive number, R;

Figure 3: Saddle-node bifurcation generated by eq. (13), parameter
values ¢ = 0.57, k = 0.7 and z = 0.93. The solid line and dotted
line correspond to the stable and unstable branch, respectively.

Dynamics and bifurcation analysis

Dynamics of the reservoir are much faster than the
parasite-host dynamics. This fact allows for a simplification
by adiabatic elimination of the fast variables, that is we may
assume that the dynamical variable ¢ is at a equilibrium at all
times and therefore the two dimensional system (9) reduces
to the one-dimensional system

dm
o = (Wa+pp) [Roy (m) @ (m) — 1] m,
. dm .
which we compactly denote by o f(m,Rp). This system

undergoes a saddle-node bifurcation. A necessary condition
for the existence of a such bifurcation at (m”,R}) is

f(mbaR(l;) =0,
J (15)
%(mhRg) =0,

where the first of these conditions is the equilibrium condi-
tion (13) of the dynamic system

w(m’;k,z)¢(m";k,z) = 1/RY,

and using the second condition of (15) we obtain the follo-
wing equation for m”

%w(mb;k,szb;k,z) =0, (16)
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The value of m” corresponding to this last condition is

k l—az\+2 _ k
mb — ( 1—z ) -+ 7 (17)
~(1-2) (}£) 52 4 (1~ a2)
and its corresponding basic reproductive number is
-1
Ry = [y(m":z o (m"z.k)] as)

A sufficient condition for the existence of a saddle-node
bifurcation at (m”, R}) is

af
IRy
2% f
om2

(m”,RG) #0
(19)
(m”,RG) #0

By a Taylor series expansion of the function f in a neigh-
borhood of (m” 7RS), the equation (12) is given by

dm _ ., m If
ar = RO+ =) ey
af
+ (RO - RI(;) aR() ’(mb,Rg)
1 2% f
=P 3 gy €O

Therefore locally at the point (m”,RS) the equation is of the
form

d
™ — A(Ry—RE) +B(m—m")?,

== @)

where the values A and B are

mb 2

0°F
b b b
A= (“]1—’_“’])?8’ B= (Iih"‘ﬂp)Rom W(m ), (22)

with F(m) = y(m,z,k)¢ (m,z,k), which is the normal form
of a saddle-node bifurcation.
As aresult of the above, we can obtain the following result

Theorem 1 The model (9) exhibits a saddle node bifurcation
at the point (m®,RY), if Ry > R},

Sensitivity analysis

The transmission of macroparasitic diseases is related to
the value of Ry. To predict which parameters have a higher
impact on Ry, we may perform a sensitivity analysis on Ry.

The elasticity index or normalized sensitivity index mea-
sures the relative change of Ry with respect to a parameter
x, denoted by 1"50, and defined as (see Van den Driessche
(2017))

Ry _ %i
L= ox Ry’ 23)
The sign of %0 tells us whether Ry correlates positively or
negatively with the parameter x; whereas its magnitude de-
termines the relative importance of the parameter.
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For this model, the calculation of the elasticity indices are
given by

vk vk ok
L3
o
<%
I
=k
I

0
n
o __ Hn (24)
"ty
o___Hp
Hr .uh+“p’
if ﬁ > i then Fﬁg ~ —1 and Fﬁg ~ 0. In Figure 4 illus-

trated the sensitivity indices of Ry which were obtained and
evaluated using parameter values U, = % and p, = 1.

10=-0.01429

-0.54

Value of sensitivity indices

=] 11,=-0.98592

T T T T T T T
1 2 3 4 5 6 7

Parameters

Figure 4: Sensitivity analysis for Ry with respect to each model
parameter.

Clearly the most sensitive parameters for Ry are Ag, &, p,
B, e and w,. However, Ao, ¢ and i, correspond to parame-
ters related to the life-cycle of the parasite which are quite
difficult to modify, so a control measure for macroparasitic
diseases should target the reduction of p and 3, and the in-
crease of L.

Therefore, we can conclude from this analysis that the re-
duction of Ry is possible by reducing the egg contribution
from the hosts to the reservoir, for example, by building latri-
nes in the host community or by reducing the infection from
the reservoir to the hosts, for example, by washing hands
and personal hygiene, or by increasing parasite mortality, for
example, through the application of periodic and specific an-
tiparasitic treatments.

A HETEROGENEOUS MODEL

In this section, we consider the most general and realistic
case of a heterogenous host population.

For this model, we assume that the host population, H,
is divided into subpopulations, or groups, H;, which present
different characteristics, and therefore different risks of in-
fection (for example, by age differential susceptibility, envi-
ronmental conditions, access to sanitation and hygiene, etc.)
Anderson and May (1992); Anderson et al. (2014); Brooker
et al. (2006); Freeman et al. (2015); Truscott et al. (2014)).

The dynamics of parasitic infection for the case of a hete-
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dm,
= Bil — (un + pp)mi,
dz 25)
— = ﬂanmp,m iF (m;) — el
where i = 1,...,n with n the number of groups in H . The

other parameters corresponding to each group H; are detailed
in the following

= m; is the mean parasite burden,

= f3; and p; are the rate of contact (or exposure) and the
rate of contribution of a host to the reservoir ¢, respecti-
vely,

= N; is the number of hosts in the group i and ; = N;/N,

= [ is a product of two functions: the mean effective con-
tribution per female parasite to the reservoir, Y (see eq
(3)), and the mating probability, ¢ (see eq (5)),

the rest of the parameters are defined as in the previous sec-
tion .

Equilibria and basic reproduction number

In this section we find some useful expressions involving
the equilibrium values of the dynamic variables and the basic
reproduction number Ry defined as in the previous section.

Assuming the reservoir is at equilibrium

0= AZOC Zplﬂ?,m F(m;),

(26)

and substituting this expression in the rest of the equations
of the system (25), we obtain the following equation for the
dynamics of the mean parasite burden, m;, of the host group
H;,

dm; A()(X
= Bi= = Y. pimm;F (mj) = (kn+ pp)mi, (27
dt He 5
where j=1,...,n.
The mean parasite burden m of the host population is given
by
m=Y mm;, (28)
i
where m; = N;/N. Then, the dynamic of the mean parasite

burden is described by

dm Ao
a (; 7Ti,3i> -

x Y pjmimiF (m;) = (W +wp)m.  (29)
J
From this equation, the equilibrium mean parasite burden,
m’*, is given by

y Aoap;
7[4
= Me(Mp+ Up)

(Zn,ﬁ,) ymi —m* =0, (30)
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where m is the equilibrium mean parasite burden correspond
to each group H;. An equilibrium condition for m is given
by

1

R (D

F(m;)
where we define the basic reproductive number of each group
H,‘ by

. LTI P (32)

te (i + tp) 5
which is the number of adult females that are born from an
adult female in the subpopulation H; in the absence of the
effects of density-dependence and mating probability.

Finally, from equation (27), the equilibrium mean parasite
burden of each group H; is given by

o BiERommE (m3)
l L;miB;

Note that this is not an explicit expression for the equilibrium
mj . Therefore, the equilibrium value can only be solved nu-
merically.

The general basic reproductive number Ry for the total po-
pulation is given by

(33)

Ao
R — T:0; i
’ w(uwup); P3P

(34)
where we assume the absence of the effects of density-
dependence and the mating probability (Anderson and May,
1992), that is, we assume in the system (25) th_e function F
equal to unity. A relationship between Ry and R;, is given by

R — Y miBiR;,
0= 5 >
Y miBi

therefore, we obtained that ml’an) <Ry < méfo), then we
can interpret Ry as an average value of the R;,.

In the heterogeneous model (25), bifurcation analysis is
more complicated, however, numerical tests by considering
different values of R6 can be considered, in order to better
understand the dynamics of the model. A similar analysis can
be found in (Biirger et al., 2016).

(35)

D1SCUSSION AND CONCLUSIONS

In this work, we developed deterministic mathematical
models for the transmission dynamics of macroparasite in-
fections.

We show how fundamental parameters related to produc-
tion of fertilized parasite eggs are estimated from statistical
models for the distribution of parasites within hosts.

We considered both homogeneous and heterogeneous host
communities. The analyzed models show that the basic re-
production number Ry strongly depends on the host egg con-
tributions to the reservoir (which depend of the parameters
p, o, and the parasite fecundity at low densities Ag), on the
host contact (or exposure) to the reservoir (which depend of
the parameter 3), and on the reservoir and parasite mortality
(¢ and ,, respectively). Therefore, to achieve a reduction
in Ry we must, for example, provide access to hygiene and
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build latrines in the host community, or implement regular
and specific antiparasitic treatments.

For the homogeneous model we present a bifurcation
analysis and show that this model undergoes a saddle-node
bifurcation. The bifurcation parameter depends on the fun-
ctions Y and ¢ which in turn depend on the assumed distri-
bution of parasites (see Lopez and Aparicio (2022)).

A puzzling result is that the disease-free equilibrium is lo-
cally asymptotically stable for all values of the basic repro-
duction number Ry. Moreover, stable endemic equilibrium
only exists for Ry greater than one (for realistic parameter va-
lues we obtained that the stable endemic equilibrium exists
for Ry > 2, see Figure 3). These results suggest that a bet-
ter definition of the basic reproduction number should in-
clude the mating probability at low densities, however, as
¢ (m=0) =0 (see expression (5)) some other approximation
should be used.

As the unstable equilibrium goes to zero as Ry increases
eventually any small perturbation will drive the system solu-
tions to the stable endemic equilibrium which is not close to
zero. Further reductions in Ry will have little impact on the
level of the infection in the population.

More refined models may be developed from the simple
models presented here which may be useful in the design
and evaluation of different control strategies.
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