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To Pola Harboure and Roberto Maćıas

Arde de abejas el aguaribay, arde.
Ŕıen los ojos, los labios, hacia las islas azules
a través de la cortina
de los racimos
pálidos.

Juan L. Ortiz

HAAR WAVELET CHARACTERIZATION OF DYADIC

LIPSCHITZ REGULARITY

HUGO AIMAR, CARLOS EXEQUIEL ARIAS, AND IVANA GÓMEZ

Abstract. We obtain a necessary and sufficient condition on the Haar co-

efficients of a real function f defined on R+ for the Lipschitz α regularity of
f with respect to the ultrametric δ(x, y) = inf{|I| : x, y ∈ I; I ∈ D}, where

D is the family of all dyadic intervals in R+ and α is positive. Precisely,

f ∈ Lipδ(α) if and only if
∣∣∣〈f, hjk〉∣∣∣ ≤ C2−(α+

1
2
)j , for some constant C, every

j ∈ Z and every k = 0, 1, 2, . . . Here, as usual hjk(x) = 2j/2h(2jx − k) and
h(x) = X[0,1/2)(x)−X[1/2,1)(x).

1. Introduction

In [HT91] and [HT90], see also [Dau92], M. Holschneider and Ph. Tchamitchian
provide characterizations of the Lipschitz α regularity of a function in L2(R) for
0 < α < 1 in terms of the behaviour of the continuous wavelet transform. The
result is that a given function is Lipschitz α if and only if its continuous wavelet
transform satisfies a power law in the absolute value of the scale parameter. Here
Lipschitz α refers to the classical definition with respect to the usual metric in
R, i.e. |f(x)− f(y)| ≤ C |x− y|α for some constant C > 0 and every x and y
in R. In [AB96] these results are extended to more general moduli of regularity
of functions when the basic wavelet is the Haar wavelet. The method used in
[AB96] provides the tool for the analysis of pointwise regularity through the discrete
wavelet transform associated to dyadic scaling and integer translations of the Haar
wavelet. The natural Lipschitz α class, in our setting, is defined through the dyadic
distance instead of the usual one.

The result of this paper is contained in the next statement.
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Theorem 1.1. Let f be a real valued function in L1
loc(R+). Let hjk(x) = 2j/2h(2jx−

k) where h(x) = X[0,1/2)(x) − X[1/2,1)(x), j ∈ Z, k = 0, 1, 2, . . ., and
〈
f, hjk

〉
=∫

R+ f(x)hjk(x)dx. Let α be any positive number. Then, the boundedness of the
sequence {

2(α+
1
2 )j
∣∣∣〈f, hjk〉∣∣∣ : j ∈ Z, k = 0, 1, 2, . . .

}
is equivalent to the essential boundedness of the quotients

|f(x)− f(y)|
δα(x, y)

, x 6= y,

where δ(x, y) = inf{|I| : x, y ∈ I; I ∈ D} with D the family of all dyadic intervals
in R+.

In Section 2 we introduce the basic facts and notation and Section 3 is devoted
to the proof of Theorem 1.1.

2. Dyadic distance in R+ and the Haar system

The set of nonnegative real numbers is denoted here by R+. The family of
all dyadic intervals in R+ is the disjoint union of the classes Dj , j ∈ Z, where
Dj = {Ijk = [k2−j , (k + 1)2−j) : k = 0, 1, 2, . . .} are the dyadic intervals of level
j. Notice that with this notation, when j grows the partitions of R+ get refined
and the intervals smaller. Since given two points x and y of R+ there exists some
j0 ∈ Z such that 0 ≤ max{x, y} < 2j0 , we have that x, y ∈ Ij00 . Hence, the class of
all dyadic intervals I ∈ D such that x and y, both, belong to I, is non-empty. So
that, if |E| denotes the Lebesgue length of the measurable set E, we have that

δ(x, y) = inf {|I| : x, y ∈ I; I ∈ D}
is a well defined nonnegative real number. Even more, δ is an ultrametric in R+.
In other words,

(i) δ(x, y) = 0 if and only if = y;
(ii) δ(x, y) = δ(y, x), for every x and every y both in R+;
(iii) δ(x, z) ≤ max{δ(x, y), δ(y, z)} for every x, y, z in R+.

The triangle inequality follows from the properties of the family D. In fact,
given x, y and z in R+, let I(x, y) and I(y, z) denote the smallest dyadic inter-
vals containing x, y and y, z respectively, then, one of these intervals contains
the other because y ∈ I(x, y) ∩ I(y, z) 6= ∅. Assume I(x, y) ⊇ I(y, z), then
δ(x, z) ≤ |I(x, y)| = max{|I(y, z)| , |I(x, y)|} = max{δ(y, z), δ(x, y)}. In particu-

lar, δ is a metric in R+. Notice that |x− y| ≤ δ(x, y), but δ(x,y)
|x−y| is unbounded.

Hence every Lipschitz(α) function f in the usual sense (|f(x)− f(y)| ≤ C |x− y|α)
is also a Lipδ(α) function, i.e.

|f(x)− f(y)| ≤ Cδα(x, y)

for some constant C and every x and y in R+. On the other hand, there are Lipδ(α)
functions which are not Lipschitz(α) in the classical sense. In fact, XI , I ∈ D, is in
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the class Lipδ(1). We also observe that in contrast with the class Lipschitz(α) for
every α > 1, which is trivial, there exist non constant Lipδ(α) functions for every
α > 0.

Let us now review the basic properties of the Haar system. Set h00(x) =

X[0,1/2)(x) − X[1/2,1)(x) and hjk(x) = 2j/2h00(2jx − k) for j ∈ Z and k = 0, 1, 2, . . .

The family H = {hjk : j ∈ Z, k = 0, 1, 2, . . .} is the Haar system in R+. It is
well known that H is an orthonormal basis for L2(R+). Since for each I ∈ D
there is one and only one h ∈H supported in I, we write sometimes hI to denote
the h ∈H supported in I ∈ D and sometimes Ih to denote the dyadic support of
h ∈H . From the basic character of H in L2(R+) we have that, given f ∈ L2(R+),

f =
∑
h∈H

〈f, h〉h,

in the L2(R+)-sense, with 〈f, h〉 =
∫
R+ f(x)h(x)dx. The sequence of coefficients

{〈f, h〉 : h ∈ H } is well defined even for functions in L1
loc(R+), since the Haar

functions are bounded and have bounded support.

3. Proof of Theorem 1.1

The easy part of Theorem 1.1 follows as usual from the vanishing of the mean
of the Haar functions. Let us state and prove it.

Proposition 3.1. Let f ∈ Lipδ(α), α > 0. Set [f ]Lipδ(α) to denote the infimum

of the constants C > 0 such that |f(x)− f(y)| ≤ Cδα(x, y), x, y ∈ R+. Then

|〈f, hI〉| ≤ [f ]Lipδ(α) |I|
α+

1
2 for every I ∈ D.

Proof. For I = [aI , bI) ∈ D we have
∫
R+ hI(x)dx = 0, hence

|〈f, hI〉| =
∣∣∣∣∫

R+

f(x)hI(x)dx

∣∣∣∣
=

∣∣∣∣∫
R+

(f(x)− f(aI))hI(x)dx

∣∣∣∣
≤
∫
I

|f(x)− f(aI)| |hI(x)| dx

≤ [f ]Lipδ(α)

∫
I

δα(x, aI) |I|−
1
2 dx

= [f ]Lipδ(α) |I|
α− 1

2

∫
I

dx

= [f ]Lipδ(α) |I|
α− 1

2+1

= [f ]Lipδ(α) |I|
α+

1
2 .

�

In order to prove that the size of the coefficients guarantee the regularity of f
we start by stating and proving a lemma. Given an interval I ∈ D we denote with
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I− and I+ its left and right haves respectively. Notice that when I ∈ Dj then I−

and I+ both belong to Dj+1.
Given a locally integrable function f we write mI(f) to denote the mean value

of f on I ∈ D. In other words mI(f) = 1
|I|
∫
I
f(x)dx.

Lemma 3.2. Let f ∈ L1
loc(R+). Then, for every I ∈ D we have

|mI−(f)−mI+(f)| = 2 |I|−
1
2 |〈f, hI〉| .

Proof. Let I ∈ D be given, then

|mI−(f)−mI+(f)| =
∣∣∣∣ 2

|I|

∫
I−
f(x)dx− 2

|I|

∫
I+
f(x)dx

∣∣∣∣
= 2 |I|−

1
2

∣∣∣∣∫
I

|I|−
1
2 (XI−(x)−XI+(x)) f(x)dx

∣∣∣∣
= 2 |I|−

1
2

(∫
R+

hI(x)f(x)dx

)
= 2 |I|−

1
2 |〈f, hI〉| .

�

Proposition 3.3. Let f ∈ L1
loc(R+) be such that for some constant A > 0 we have

|〈f, hI〉| ≤ A |I|α+
1
2

for every I ∈ D, then f ∈ Lipδ(α) and [f ]Lipδ(α) ≤ CαA with Cα = sup{2, 1
2α−1}.

Proof. Let x < y be two points in R+. Let I ∈ D be the smallest dyadic interval
containing x and y. In other words |I| = δ(x, y). Since x < y, necessarily x ∈ I−
and y ∈ I+. Set Ix1 = I− and Iy1 = I+. Now let Ix2 be the half of Ix1 to which x
belongs, and Iy2 the half of Iy1 with y ∈ Iy2 . In general, once Ixl and Iyl are defined,
we select Ixl+1 as the only half of Ixl with x ∈ Ixl+1 and Iyl+1 as the only half of Iyl
with y ∈ Iyl+1. In this way for a fixed positive integer k we have

Ixk ⊂ Ixk−1 ⊂ · · · ⊂ Ix2 ⊂ Ix1 ⊂ I,
and

Iyk ⊂ I
y
k−1 ⊂ · · · ⊂ I

y
2 ⊂ I

y
1 ⊂ I.

Hence

f(x)− f(y) =
(
f(x)−mIxk

(f)
)

+

+
(
mIxk

(f)−mIxk−1
(f)
)

+ · · ·+
(
mIx2

(f)−mIx1
(f)
)

+

+
(
mIx1

(f)−mIy1
(f)
)

+

+
(
mIy1

(f)−mIy2
(f)
)

+ · · ·+
(
mIyk−1

(f)−mIyk
(f)
)

+
(
mIyk

(f)− f(y)
)
.
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Then

|f(x)− f(y)| ≤
∣∣f(x)−mIxk

(f)
∣∣+

+
k∑
l=2

∣∣∣mIxl
(f)−mIxl−1

(f)
∣∣∣+

+
∣∣∣mIx1

(f)−mIy1
(f)
∣∣∣+

+
k−1∑
l=1

∣∣∣mIyl
(f)−mIyl+1

(f)
∣∣∣+

+
∣∣∣mIyk

(f)− f(x))
∣∣∣

= I + II + III + IV + V.

Let us start by bounding the central term III. Notice that Ix1 = I− and Iy1 = I+,
with |I| = δ(x, y). Then by Lemma 3.2,

III =
∣∣∣mIx1

(f)−mIy1
(f)
∣∣∣

= |mI−(f)−mI+(f)|

= 2 |I|−
1
2 |〈f, hI〉|

≤ 2A |I|−
1
2 |I|α+

1
2

= 2A |I|α

= 2Aδα(x, y),

which has the desired form. The terms II and IV can be handled in the same way,
let us deal with II. Take a generic term of the sum II, and use again Lemma 3.2.

∣∣∣mIxl
(f)−mIxl−1

(f)
∣∣∣ =

∣∣∣∣∣ 1

|Ixl |

∫
Ixl

f − 1∣∣Ixl−1∣∣
(∫

Ixl

f +

∫
Ixl−1\I

x
l

f

)∣∣∣∣∣
=

∣∣∣∣∣12 1

|Ixl |

∫
Ixl

f − 1

2

1∣∣Ixl−1 \ Ixl ∣∣
∫
Ixl−1\I

x
l

f

∣∣∣∣∣
=

1

2

∣∣∣mIxl
(f)−mIxl−1\I

x
l
(f)
∣∣∣

=
1

2
2
∣∣Ixl−1∣∣− 1

2

∣∣∣〈f, hIxl−1

〉∣∣∣
≤ A

∣∣Ixl−1∣∣− 1
2
∣∣Ixl−1∣∣α+1

2

= A
∣∣Ixl−1∣∣α

= A
2α

2αl
|I|α .
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Then

II =
k∑
l=2

∣∣∣mIxl
(f)−mIxl−1

(f)
∣∣∣

≤ A2α |I|α
∑
l≥2

1

2αl

=
A

2α − 1
δα(x, y).

Also

IV ≤ A

2α − 1
δα(x, y).

Let Cα = sup{2, 1
2α−1}, then

|f(x)− f(y)| ≤
∣∣f(x)−mIxk

(f)
∣∣+ACαδ

α(x, y) +
∣∣∣f(y)−mIyk

(f)
∣∣∣

uniformly in k. Now, from the differentiation theorem, we have that for almost all
x and almost all y,

mIxk
(f) −→ f(x); k →∞

and
mIyk

(f) −→ f(y); k →∞.
Hence, for those values of x and y in R+ we get the result

|f(x)− f(y)| ≤ ACαδα(x, y).

�

Propositions 3.1 and 3.3 prove Theorem 1.1.
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différentiable” de Riemann, Les ondelettes en 1989 (Orsay, 1989), Lecture Notes in
Math., vol. 1438, Springer, Berlin, 1990, pp. 102–124, 209–210. MR 1083586

[HT91] M. Holschneider and Ph. Tchamitchian, Pointwise analysis of Riemann’s “nondifferen-
tiable” function, Invent. Math. 105 (1991), no. 1, 157–175. MR 1109624

Hugo Aimar, Carlos Exequiel Arias and Ivana Gómez. Instituto de Matemática Aplicada
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