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Abstract. The so-called Positive Approximate Karush-Kuhn-Tucker sequen-
tial condition and the strict constraint qualification associated with this con-

dition for general scalar problems with equality and inequality constraints

have recently been introduced. In this paper, we extend them to optimiza-
tion problems with additional abstract set constraints. We also present an

extension of the Approximate Karush-Kuhn-Tucker sequential condition and

its related strict constraint qualification. Furthermore, we explore the rela-
tions between the new constraint qualification and other constraint qualifica-

tions known in the literature as Abadie, quasi-normality and the approximate
Karush-Kuhn-Tucker regularity constraint qualification. Finally, we introduce

an Augmented Lagrangian Method for solving the optimization problem with

abstract set constraints and we show that it is possible to obtain global con-
vergence under the new condition.

1. Introduction

While equality and inequality constraints are more widely used in represent-
ing the constraint sets for many optimization problems, optimality conditions and
numerical algorithms may become more convenient when some of these equal-
ity/inequality constraints as well as additional complicated side conditions are
lumped into suitable abstract set constraints. For this reason we will consider
the constrained nonlinear programming problem with additional abstract set con-
straints of the form:

Minimize f(x)
s. t. hi(x) = 0, i = 1, . . . ,m

gj(x) ⩽ 0, j = 1, . . . , p
x ∈ X

(1.1)

where the functions f : Rn → R, h = (h1, . . . , hm)t : Rn → Rm and g =
(g1, . . . , gp)

t : Rn → Rp are continuously differentiable in Rn and X ⊂ Rn is the
additional abstract set. Throughout the paper, we assume that X is a nonempty,
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closed and regular set (see Definition 2.4) in Rn. We denote Ω = {x ∈ Rn : h(x) =
0, g(x) ⩽ 0 and x ∈ X}. For each x ∈ Ω, we define Ig(x) = {j ∈ {1, . . . , p} :
gj(x) = 0} the index set of active inequality constraints at x.

The development of optimality conditions for optimization problems which in-
clude abstract set constraints has started with [29, 33, 42] and has been followed
by [17, 34, 37].

Sequential optimality conditions are asymptotic versions of the Karush-Kuhn-
Tucker conditions and they play a central role in the design and analysis of nu-
merical algorithms. Thus, several papers have been devoted to the study of such
conditions in other contexts, for example: variational inequality problems [32],
Nash equilibrium problems [27], mathematical programs with equilibrium con-
straints (MPECs) [39, 40], mathematical programs with complementarity con-
straints (MPCCs) [8], nonlinear vector optimization with conic constraints [43],
general nonlinear conic programming [6], the multiobjective case [31], optimization
problems in Banach spaces [25], variational problems in Banach spaces [35], quasi-
equilibrium problems [26], the study of a KKT-proximity measure as a termination
condition [28], among others.

The purpose of the present paper is to extend the Positive Aproximate Karush-
Kuhn-Tucker (PAKKT) sequential optimality condition and the companion strict
constraint qualification associated with it, which is called PAKKT regular con-
straint qualification and is defined in [5], to the scalar optimization problem with
abstract set constraints (1.1). In order to fulfill this task, we first assume that X is
a regular set (see Definition 2.4) and include the use of normal cone properties (see
Definition 2.3). Secondly, we extend for (1.1) the well-known approximate Karush-
Kuhn-Tucker (AKKT) sequential condition (see Definition 3.1) and its associated
strict constraint qualification defined in [11] (see Definition 4.1). Thirdly, we estab-
lish the relationship between the new constraint qualification and other well-known
conditions such as the quasi-normality [37], Abadie [1] and AKKT regularity [11]
conditions

Finally, we propose an Augmented Lagrangian Method (ALM) for solving (1.1)
using the quadratic penalty function to penalize equality and inequality constraints
and we analyze the global convergence to stationary points using the new constraint
qualification. In [3, 4, 22] the ALM with general lower-level constraints is consid-
ered. In [4] the lower-level constraint set is defined by a finite number of equalities
and inequalities and the global convergence to stationary points is proved un-
der the Constant Positive Linear Dependence constraint qualification (CPLD CQ)
presented in [12, 38]. In [3, 22], the ALM for problems in which the lower-level
constraint set is a box is considered and again the global convergence results are
obtained using the CPLD CQ.

This paper is organized as follows. Section 2 is devoted to preliminaries and
some basic definitions. In Section 3, we present the extension of the well-known
approximate sequential conditions for problems with abstract set constraints and
the associated strict constraint qualification. In Section 4, the relationship between
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the new condition and other constraint qualifications is studied. Section 5 is de-
voted to the definition of the ALM and the analysis of the global convergence of the
proposed method. Finally, in Section 6, conclusions and lines for future research
are given.

Notation.
Let us introduce the following notation:
R+ = {t ∈ R | t ⩾ 0}, N = {0, 1, 2, . . .}, ∥ · ∥ denotes an arbitrary vector norm

and ∥ · ∥∞ the supremum norm. Rp
+ := {x ∈ Rp : xi ⩾ 0, i = 1, . . . , p} is the

positive orthant.
The i−th component of the vector v is vi.
If K = {k0, k1, k2, . . .} ⊂ N (kj+1 > kj ,∀j), we denote

lim
k∈K

xk = lim
j→∞

xkj .

For all y ∈ Rn, y+ = (max{0, y1}, . . . ,max{0, yn}).
If {γk} ⊂ R, γk > 0, and γk → 0, we write γk ↓ 0.
We define the “sign function” sgn a putting sgn a = 1 if a > 0 and sgn a = −1 if

a < 0. We have sgn (a · b) = sgn a · sgn b.
The Euclidean projection of y ∈ Rn onto a nonempty closed convex set X in Rn

is PX(y).

2. Preliminaries and Definitions

In this section we will provide some definitions and basic concepts which will be
employed in the present paper.

We will use the definition of an usual local conical approximation to the con-
straint set, namely the tangent cone, which is particularly useful in characterizing
local optimality of feasible solutions of (1.1), see for example [36].

Definition 2.1. A vector y is a tangent of a set S ⊂ Rn at a point x ∈ S if either
y = 0 or there exists a sequence {xk} ⊂ S such that xk ̸= x for all k and

xk → x,
xk − x

∥xk − x∥
−→ y

∥y∥
.

The set of the tangent vectors of S at x is denoted by TS(x) and is called tangent
cone of S at x.

It can be proved that TS(x) is closed but not necessarily convex.

Definition 2.2. The polar cone of any nonempty set T ⊂ Rn is defined by

T ◦ = {z ∈ Rn : zty ⩽ 0, y ∈ T}.

Note that T ◦ is a closed convex cone.

Definition 2.3. The limiting normal cone NS(x) to a closed set S ⊂ Rn at x ∈ S
is defined as

NS(x) =
{
z ∈ Rn : ∃{xk} ⊂ S, {zk} ⊂ Rn, xk → x, zk → z and zk ∈ (TS(x

k))◦ ∀k
}
.

(2.1)
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In general, for x ∈ S, we have (TS(x))
◦ ⊂ NS(x), but NS(x) may not always be

equal to (TS(x))
◦. If we assume, for example, that S is convex and closed, we have

that NS(x) = (TS(x))
◦.

Definition 2.4. (see, [41]) We say that S ⊂ Rn is regular at x ∈ S if NS(x) =
(TS(x))

◦.

Regularity is, in fact, an important property because it distinguishes problems
which have satisfactory Lagrange multiplier theory from those which do not, as it
can be seen for example in [41].

As regards the tangent cone, we consider the linearized cone of the feasible set
Ω at a point x ∈ Ω as follows:

LΩ(x) =
{
d ∈ TX(x) : ∇hi(x)

td = 0,∀i = 1, . . . ,m,∇gj(x)td ⩽ 0,∀j ∈ Ig(x)
}
.

When X = Rn, LΩ(x) can be considered to be the well-known first-order linear
approximation of the tangent cone TΩ(x) at x ∈ Ω.

Let x∗ be a local minimizer of (1.1). The geometrical first-order necessary opti-
mality condition in [41] establishes that

∇f(x∗)tw ⩾ 0, ∀w ∈ TΩ(x
∗).

Although this is a necessary basic optimality condition for (1.1), it is generally
difficult to apply because it is not easy to obtain a representation of the tangent
cone TΩ(x

∗). Therefore, in this case we choose for analytical conditions.

Assumption A. Throughout this paper, we assume that the abstract set X in
(1.1) is a regular closed set (see Definition 2.4).

When X is regular, we apply the definition of the Karush-Kuhn-Tucker condi-
tions for problems with abstract set constraints in the following alternative way:

Definition 2.5. We say that a feasible point x∗ ∈ Ω is a Karush-Kuhn-Tucker
(KKT) point for problem (1.1) if there exist λ ∈ Rm, µ ∈ Rp

+ such that

(a) −

∇f(x∗) +

m∑
i=1

λi∇hi(x
∗) +

p∑
j=1

µj∇gj(x∗)

 ∈ NX(x∗);

(b) µjgj(x
∗) = 0, ∀j = 1, . . . , p.

Observe that, by Assumption A, item (a) of Definition 2.5 is equivalent to the
definition given in [36]:∇f(x∗) +

m∑
i=1

λi∇hi(x
∗) +

p∑
j=1

µj∇gj(x∗)

t

w ⩾ 0, ∀w ∈ TX(x∗).

For the present paper, we prefer the definition which considers NX(x∗) instead
of the previous one which considers TX(x∗), since it is more suitable to define an
approximate KKT condition.
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Given x∗ ∈ Ω, x ∈ X, x̃ ∈ X we consider the following convex cone

KΩ(x, x̃) =

{ m∑
i=1

λi∇hi(x)+
∑

j∈Ig(x∗)

µj∇gj(x)+ω : λ ∈ Rm, µ ∈ Rp
+, ω ∈ NX(x̃)

}
.

(2.2)
Observe that x∗ ∈ Ω is a KKT point of (1.1) if and only if−∇f(x∗) ∈ KΩ(x

∗, x∗).
We end this section providing the notion of outer semi-continuity which will be

used in the following ones.

Definition 2.6. (see[41]) Given a set-valued mapping (multifunction) F : Rs ⇒
Rd, the outer limit of F (z) as z → z∗ is denoted by

lim sup
z→z∗

F (z) = {w∗ ∈ Rd : ∃ (zk, wk)→ (z∗, w∗) with wk ∈ F (zk)}.

Then, the multifunction F is said to be outer semi-continuous at z∗ if lim sup
z→z∗

F (z) ⊂

F (z∗).

The outer limit is always a closed set. Furthermore, the normal cone enjoys the
nice closedness property, as the proposition below shows :

Proposition 2.7. (see[41]) The set-valued mapping NX : x 7→ NX(x) is outer
semi-continuous at x∗: NX(x∗) = lim sup

x→x∗
NX(x).

3. Sequential optimality conditions for problems with additional
abstract set

Sequential optimality conditions are properties of feasible points of nonlinear
programming problems which are necessarily satisfied by any local minimizer x∗

and are formulated in terms of sequences converging to x∗. In the case of X =
Rn one of the most popular sequential optimality conditions is the Approximate
Karush-Kuhn-Tucker (AKKT), which has been defined in [7]. For the abstract set
X ̸= Rn we propose as a natural extension of the AKKT condition for problems
with abstract set constraints of the form (1.1) the following definition:

Definition 3.1. We say that a feasible point x∗ ∈ Ω is an approximate Karush-
Kuhn-Tucker point for (1.1) (AKKT) if there are sequences {xk} ⊂ X, {x̃k} ⊂ X,
{λk} ⊂ Rm, {µk} ⊂ Rp

+ and {εk} ⊂ Rn such that lim
k→∞

xk = lim
k→∞

x̃k = x∗,

lim
k→∞

εk = 0 and

εk −
(
∇f(xk) +

m∑
i=1

λk
i∇hi(x

k) +
∑

j∈Ig(x∗)

µk
j∇gj(xk)

)
∈ NX(x̃k), (3.1)

lim
k→∞

∥min{−g(xk), µk}∥ = 0. (3.2)

A new general sequential optimality condition called PAKKT has recently been
introduced in [5] when X = Rn. Thus, we propose the definition below as an
extension of the PAKKT condition for (1.1):
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Definition 3.2. We say that x∗ ∈ Ω is a Positive Approximate Karush-Kuhn-
Tucker point for problem (1.1) (PAKKT) if there are sequences {xk} ⊂ X, {x̃k} ⊂
X, {λk} ⊂ Rm, {µk} ⊂ Rp

+ and {εk} ⊂ Rn such that lim
k→∞

xk = lim
k→∞

x̃k = x∗,

lim
k→∞

εk = 0, (3.1), (3.2) hold and

λk
i hi(x

k) > 0 if lim
k→∞

|λk
i |

δk
> 0, (3.3)

µk
j gj(x

k) > 0 if lim
k→∞

µk
j

δk
> 0, (3.4)

where δk = ∥(1, λk, µk)∥∞.

As it has been mentioned in [5], the expressions (3.1) and (3.2) are related
to the KKT conditions of the original problem and they are used in the AKKT
optimality condition. The expressions (3.3) and (3.4) aim to control the sign of
Lagrange multipliers, in the way mentioned in [5] when X = Rn. Hence, when the
abstract set X = Rn, NX(x) = {0} for each x ∈ X, Definition 3.2 is the PAKKT
sequential condition introduced in [5].

Theorem 3.3. PAKKT is a necessary optimality condition for problem (1.1).

Proof. The proof follows that of Theorem 2.2 in [5] by incorporating the abstract
set X as we establish here for completeness.

Let x∗ be a local minimizer of (1.1). Therefore, we know that there exists α > 0
such that x∗ is a global minimizer of f(x) on Ω ∩B(x∗, α). Then x∗ is the unique
global minimizer of the problem

Minimize f(x) +
1

2
∥x− x∗∥22

s. t. x ∈ Ω ∩B(x∗, α).

For k ∈ N, consider the penalized problem

Minimize f(x) +
1

2
∥x− x∗∥22 +

ρk
2

[
∥h(x)∥22 + ∥g(x)+∥22

]
s. t. x ∈ X, ∥x− x∗∥2 ⩽ α,

(3.5)

ρk > 0. Since B(x∗, α)∩X is a compact set, by Bolzano Weierstrass’ theorem, this
problem admits a solution xk ∈ X ∩B(x∗, α). We suppose that ρk →∞. Since x∗

is the unique global minimizer of f(x) +
1

2
∥x − x∗∥22 subject to Ω ∩ B(x∗, α) we

have that
lim
k→∞

xk = x∗. (3.6)

For k large enough (let us say for all k ∈ K), we can suppose that ∥xk − x∗∥2 < α.
Then, by the stationarity condition for problem (3.5)

−

∇f(xk) +

m∑
i=1

ρkhi(x
k)∇hi(x

k) +

p∑
j=1

ρkgj(x
k)+∇gj(xk)

+x∗−xk ∈ NX(xk).

(3.7)
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For each k ∈ K we define

λk = ρkh(x
k) and µk = ρkg(x

k)+ ⩾ 0. (3.8)

Thus, by (3.6), (3.7) and (3.8) we obtain that

εk −
(
∇f(xk) +

m∑
i=1

λk
i∇hi(x

k) +

p∑
j=1

µk
j∇gj(xk)

)
∈ NX(xk)

with εk = x∗ − xk. Therefore, (3.1) holds with x̃k = xk for all k. By (3.8), we
have that µk

i = 0 if gi(x
k) < 0. Hence, (3.2) is satisfied. If µk

i > 0, k ∈ K, then
gi(x

k) > 0 and hence µk
i gi(x

k) = ρk[gi(x
k)]2 > 0. Analogously, if λk

i ̸= 0, k ∈ K,
then hi(x

k) ̸= 0 and hence λk
i hi(x

k) = ρk[hi(x
k)]2 > 0. Thus, (3.3) and (3.4) are

fulfilled independently of the limits of the dual sequences. □

Remark 3.4. Note that the AKKT condition is exactly the same as the PAKKT
one, but without (3.3) and (3.4). In consequence, PAKKT implies AKKT, as it is
mentioned in [5] when X = Rn.

In [5] the authors provide the weakest strict constraint qualification for the
PAKKT condition, which they call PAKKT regular. Using the terminology in
[11], any property of feasible points of a constrained optimization problem which
guarantees that an AKKT point is already a KKT point is called a strict constraint
qualification. We will extend the PAKKT regular condition to the case in which
an abstract set constraint is considered. For this purpose, given x∗ ∈ Ω, for x ∈
X, x̃ ∈ X and α, β ⩾ 0, we define the set

K+
Ω (x, x̃, α, β) =

m∑
i=1

λi∇hi(x) +
∑

j∈Ig(x∗)

µj∇gj(x) + ω

∣∣∣∣∣∣∣∣∣∣
λihi(x) ⩾ α if |λi| > β∥(1, λ, µ)∥∞
µjgj(x) ⩾ α if µj > β∥(1, λ, µ)∥∞
λ ∈ Rm, µ ∈ Rp

+, µj = 0 j /∈ Ig(x
∗)

ω ∈ NX(x̃)

 .

Remark 3.5. Observe that:

(a) The KKT conditions for the problem (1.1) can be written as −∇f(x∗) ∈
K+

Ω (x∗, x∗, 0, 0).

(b) When α = β = 0, we have that K+
Ω (x, x̃, 0, 0) = KΩ(x, x̃).

The definition of the PAKKT regular constraint qualification for problems with
abstract set constraints imposes an outer semicontinuity-like on the multifunction
(x, x̃, α, β) ∈ X ×X × R+ × R+ ⇒ K+

Ω (x, x̃, α, β).

Definition 3.6. We say that x∗ ∈ Ω satisfies the PAKKT regular condition for
the problem with abstract set constraints (1.1) if

lim sup
(x,x̃)→(x∗,x∗), α↓0, β↓0

K+
Ω (x, x̃, α, β) ⊂ K+

Ω (x∗, x∗, 0, 0).
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Next we prove the main result of this section, which guarantees that PAKKT
regular is the weakest Constraint Qualification for the PAKKT sequential optimal-
ity condition of Definition 3.2.

Theorem 3.7. If x∗ is a PAKKT point which fulfills the PAKKT regular condition
then x∗ is a KKT point for (1.1). Reciprocally, if for every continuously differen-
tiable function f the PAKKT point x∗ is also KKT, then x∗ satisfies the PAKKT
regular condition of Definition 3.6.

Proof. If x∗ is a PAKKT point, there are sequences {xk} ⊂ X, {x̃k} ⊂ X, {λk} ⊂
Rm, {µk} ⊂ Rp

+ and {εk} such that xk → x∗, x̃k → x∗, εk → 0 and conditions
(3.1), (3.2), (3.3) and (3.4) hold. Following (3.2), we can suppose without loss of
generality that µk

j = 0 whenever j /∈ Ig(x
∗).

Consider the sequence yk defined by

yk =

m∑
i=1

λk
i∇hi(x

k) +

p∑
j=1

µk
j∇gj(xk).

Then, by (3.1)

ωk := εk −∇f(xk)− yk ∈ NX(x̃k).

We consider δk = ∥(1, λk, µk)∥∞. Let us define the sets I+ = {i ∈ {1, . . . ,m}|
lim
k
|λk

i |/δk > 0} and J+ = {j ∈ Ig(x
∗) | lim

k
µk
j /δk > 0}, and for each k we take

αk = min

{
1

k
, min
i∈I+
{λk

i hi(x
k)} , min

j∈J+

{µk
j gj(x

k)}
}

and

βk = max

{
1

k
, max

i/∈I+

|λk
i |

δk
, max
j /∈J+

µk
j

δk

}
+

1

k
.

We note that αk ↓ 0, βk ↓ 0 and yk+ωk ∈ K+
Ω (xk, x̃k, αk, βk) for all k large enough.

As x∗ fulfills the PAKKT regular condition, we have

−∇f(x∗) = lim
k→∞

−∇f(xk) + εk = lim
k→∞

yk + ωk ∈ lim sup
k→∞

K+
Ω (xk, x̃k, αk, βk) ⊂

⊂ lim sup
(x,x̃)→(x∗,x∗), α↓0, β↓0

K+
Ω (x, x̃, α, β) ⊂ K+

Ω (x∗, x∗, 0, 0),

that is, x∗ is a KKT point for (1.1). This proves the first statement.
Now let us show the reciprocal. Let v∗ ∈ lim sup

(x,x̃)→(x∗,x∗), α↓0, β↓0
K+

Ω (x, x̃, α, β).

Then there are sequences {xk} ⊂ X, {x̃k} ⊂ X, {vk} ⊂ Rn, {αk} ⊂ R+,
{βk} ⊂ R+ such that xk → x∗, x̃k → x∗, vk → v∗, αk ↓ 0, βk ↓ 0 and
vk ∈ K+

Ω (xk, x̃k, αk, βk) for all k. Furthermore, for each k there are vectors
λk ∈ Rm, µk ∈ Rp

+ and ωk ∈ NX(x̃k) such that µk
j = 0 if j /∈ Ig(x

∗) and

vk =

m∑
i=1

λk
i∇hi(x

k) +
∑

j∈Ig(x∗)

µk
j∇gj(xk) + ωk. (3.9)
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We define f(x) = −(v∗)tx. If lim
k
|λk

i |/δk > 0 then |λk
i | > βkδk for all k sufficiently

large (the same happens with µk). In other words, the control over the sign of
the multipliers performed by (3.3) and (3.4) is encapsulated in the expression vk ∈
K+

Ω (xk, x̃k, αk, βk). Therefore, by taking εk = vk − v∗ → 0, we conclude that x∗ is
a PAKKT point of (1.1). By hypothesis, x∗ is a KKT point for (1.1), and hence
−∇f(x∗) = v∗ = lim

k→∞
vk ∈ K+

Ω (x∗, x∗, 0, 0). This concludes the proof. □

As a consequence of Theorems 3.3 and 3.7, it follows that any local minimizer
of (1.1) which satisfies the PAKKT regular condition is a KKT point for (1.1).
Equivalently, we can conclude that PAKKT regular is a constraint qualification for
problems with abstract set constraints.

The following Lemma, which has been inspired by the proof of Lemma 2.6 in
[5], provides a powerful tool to show that every KKT point for (1.1) always admits
Lagrange multipliers with adequate signs for the PAKKT condition.

Lemma 3.8. Let x∗ ∈ Ω. The inclusion

K+
Ω (x∗, x∗, 0, 0) ⊆ lim sup

(x,x̃)→(x∗,x∗), α↓0, β↓0
K+

Ω (x, x̃, α, β)

is always true.

Proof. Let v ∈ K+
Ω (x∗, x∗, 0, 0). Then there exist ω ∈ NX(x∗) and vectors λ ∈ Rm,

µ ∈ Rp
+ such that µjgj(x

∗) = 0 and

v =

m∑
i=1

λi∇hi(x
∗) +

p∑
j=1

µj∇gj(x∗) + ω.

Let us consider the sets I and J of indexes of nonzero multipliers λi and µj ,
respectively. If I = J = ∅, v ∈ lim sup

(x,x̃)→(x∗,x∗), α↓0, β↓0
K+

Ω (x, x̃, α, β) by taking vk = v,

xk = x̃k = x∗ for all k and any sequences αk ↓ 0, βk ↓ 0.
If at least one of the sets I and J are nonempty, according to Lemma 1 in [10],

there are sets I ⊂ I and J ⊂ J as well as vectors λ̂I , µ̂J such that

v =
∑
i∈I

λ̂i∇hi(x
∗) +

∑
j∈J

µ̂j∇gj(x∗) + ω,

with ω ∈ NX(x∗), λ̂i ̸= 0 for all i ∈ I, µ̂j > 0 for all j ∈ J , and the set of gradients

{∇hi(x
∗)}i∈I ∪ {∇gj(x∗)}j∈J

is linearly independent.
Thus, using the same arguments as in the proof presented in Lemma 2.6 of

[5] we can show that there exists a sequence {xk} converging to x∗ such that
(3.3) and (3.4) are satisfied for the sequences {x̃k}, {λk}, {µk} and {εk} given by

x̃k = x∗, λk = λ̂, µk = µ̂ and εk = 0 for all k large enough, where we consider

λ̂i = 0, i /∈ I, µ̂j = 0, j /∈ J . Since (3.3) and (3.4) hold, by the proof of Theorem
3.7, we observe that there are sequences αk ↓ 0, βk ↓ 0 and a sequence {vk} such
that vk ∈ K+

Ω (xk, x̃k, αk, βk) and vk → v. This concludes the proof. □



10 N. S. FAZZIO, M. D. SÁNCHEZ, AND M. L. SCHUVERDT

Corollary 3.9. Every KKT point is a PAKKT point for (1.1).

4. Relation between the PAKKT-regular condition and other
constraint qualifications

In this section, as we have already mentioned in the Introduction, we analyze
the relation between the PAKKT regular condition and the following well-known
constraint qualifications, namely AKKT regularity, Abadie and quasi-normality.

In the following exposition, we generalize the definition of the AKKT regular con-
straint qualification introduced in [11] for problems with abstract set constraints.

Definition 4.1. (see [11]) We say that x∗ ∈ Ω satisfies the AKKT regular con-
straint qualification for problem (1.1) if, given x ∈ X, x̃ ∈ X, the multifunction
(x, x̃) ⇒ KΩ(x, x̃) is outer semicontinuous at (x∗, x∗), where KΩ(x, x̃) is given in
(2.2). That is

lim sup
(x,x̃)→(x∗,x∗)

KΩ(x, x̃) ⊂ KΩ(x
∗, x∗).

Therefore, it can be proved that, as in the case in which X = Rn, AKKT regular
(see Definition 4.1) is the least stringent constraint qualification associated with
the AKKT sequential condition (see Definition 3.1). Definition 4.1 corresponds to
the natural extension of AKKT regular for problems which include an additional
abstract set X.

Definition 4.2. (see [30, 36]) We say that a feasible point x∗ ∈ Ω of problem (1.1)
verifies the Abadie’s constraint qualification if

LΩ(x
∗) = TΩ(x

∗)

holds and KΩ(x
∗, x∗) is closed.

The condition that set KΩ(x
∗, x∗) must be closed is necessary in order to apply

the Farkas Lemma and characterize a solution to subproblem (1.1) using KKT
conditions.

Definition 4.3. (see [36]) We say that x∗ ∈ Ω is a quasi-normal point if there are
no vectors λ ∈ Rm, µ ∈ Rp

+ and no sequence {xk} ⊂ X such that:

(1) −

 m∑
i=1

λi∇hi(x
∗) +

p∑
j=1

µj∇gj(x∗)

 ∈ NX(x∗).

(2) µj = 0 if j /∈ Ig(x
∗), for all j = 1, . . . , p.

(3) λ1, . . . , λm, µ1, . . . , µp are not all equal to 0.
(4) {xk} converges to x∗ and for each k, λihi(x

k) > 0 for all i with λi ̸= 0 and
µjgj(x

k) > 0 for all j with µj ̸= 0.

Quasi-normality is a general constraint qualification, which has been introduced
in [34], for classical nonlinear optimization problems with X = Rn and which has
been extended for problems with X ̸= Rn in [36].

The following theorem is an extension of Theorem 3.4 described in [5] to (1.1).
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Theorem 4.4. If x∗ is a quasi-normal point of (1.1), then x∗ is a PAKKT regular
point of (1.1).

Proof. We suppose that x∗ is not PAKKT regular. Then there exists

v∗ ∈

(
lim sup

(x,x̃)→(x∗,x∗), α↓0, β↓0
K+

Ω (x, x̃, α, β)

)
\K+

Ω (x∗, x∗, 0, 0).

Let us take sequences {xk} ⊂ X, {x̃k} ⊂ X, {vk} ⊂ Rn, {αk} ⊂ R+ and {βk} ⊂ R+

such that xk → x∗, x̃k → x∗, vk → v∗, αk ↓ 0, βk ↓ 0 and vk ∈ K+
Ω (xk, x̃k, αk, βk)

for all k ⩾ 1. Then, for each k, there exist λk ∈ Rm, µk ∈ Rp
+ and ωk ∈ NX(x̃k)

such that µk
j = 0 if j /∈ Ig(x

∗) and vk is as in (3.9). Then, we have that

vk −
m∑
i=1

λk
i∇hi(x

k)−
∑

j∈Ig(x∗)

µk
j∇gj(xk) = ωk ∈ NX(x̃k). (4.1)

We define δ̃k = ∥(λk, µk)∥∞. The sequence {δ̃k} must be unbounded because,
otherwise, after taking an adequate sequence, we would have v∗ ∈ K+

Ω (x∗, x∗, 0, 0)

since vk ∈ K+
Ω (xk, x̃k, αk, βk) for all k. Thus, dividing (4.1) by δ̃k and taking the

limit on an appropriate subsequence, by Proposition 2.7, we obtain

−

 m∑
i=1

λ∗
i∇hi(x

∗) +
∑

j∈Ig(x∗)

µ∗
j∇gj(x∗)

 ∈ NX(x∗)

where (λ∗, µ∗) ̸= 0 is a limit point of
(λk, µk)

δ̃k
.

Given a neighbourhood B(x∗) of x∗, we have for some k large enough xk ∈ B(x∗)

and sgn (λ∗
i hi(x

k)) = sgn (λk
i hi(x

k)) = 1 whenever λ∗
i ̸= 0 (note that limk λ

k
i /δ̃k =

λ∗
i ̸= 0 implies |λk

i | > βk δ̃k = βk∥(λk, µk)∥∞ = βk∥(1, λk, µk)∥∞ for all k suffi-

ciently large where the last equality holds since the sequence {δ̃k} is unbounded).
The same happens with µ∗. Hence, x∗ does not satisfy the quasi-normality CQ,
which completes the proof. □

The relationship between the AKKT regular condition, for the case X = Rn,
and other constraint qualifications as Abadie’s presented in [1] and quasi-normality
described in [16, 34] can be found in [11].

To prove the relation between AKKT regular and Abadie for problems with
abstract set constraints, we need the following lemmas:

Lemma 4.5. (KΩ(x
∗, x∗))◦◦ ⊂ (LΩ(x

∗))◦.

Proof. To justify this inclusion, we will prove that LΩ(x
∗) ⊂ (KΩ(x

∗, x∗))
◦
.

Let d ∈ LΩ(x
∗). We want to prove that dts ⩽ 0 for any s ∈ KΩ(x

∗, x∗).
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Let s =

m∑
i=1

λi∇hi(x
∗) +

p∑
j=1

µj∇gj(x∗) + ω with µj ⩾ 0, µjgj(x
∗) = 0 and

ω ∈ NX(x∗). Then,

std =

m∑
i=1

λi∇hi(x
∗)td+

p∑
j=1

µj∇gj(x∗)td+ ωtd.

Since d ∈ LΩ(x
∗) we know that, for all i = 1, . . . ,m, ∇hi(x

∗)td = 0 and for each
j = 1, . . . , p, ∇gj(x∗)td ⩽ 0. Then,

std ⩽ ωtd.

By Assumption A, we have that NX(x∗) = (TX(x∗))
◦
and ωtd ⩽ 0 since d ∈

TX(x∗) and ω ∈ NX(x∗). In consequence, std ⩽ 0 and d ∈ (KΩ(x
∗, x∗))

◦
. Thus,

the Lemma is obtained by the polarity relation: if A ⊂ B implies B◦ ⊂ A◦, for A,
B cones. □

Lemma 4.6. For all x∗ ∈ Ω and v ∈ (TΩ(x
∗))◦, there exist sequences {xk} ⊂ X,

{λk} ⊂ Rm, {µk} ⊂ Rp
+ and ω̃k ∈ NX(xk) for each k ⩾ 1 such that

(a)

m∑
i=1

λk
i∇hi(x

k) +

p∑
j=1

µk
j∇gj(xk) + ω̃k→k→∞v,

(b) λk = kh(xk) and µk = kg(xk)+.

Proof. Let v ∈ (TΩ(x
∗))◦. Following Theorem 6.11 presented in [41], there exists a

smooth function F such that −∇F (x∗) = v, where x∗ is the unique global minimum
of F relative to Ω.

From now on, the proof of (a) and (b) follows directly that of Proposition 2.1
in [36]. □

In the following theorem, we will prove that PAKKT regular is stronger than
Abadie’s constraint qualification.

Theorem 4.7. If x∗ ∈ Ω satisfies the PAKKT regular condition, then it verifies
Abadie’s constraint qualification.

Proof. Firstly, observe that, according to Lemma 3.8, equality holds in Definition
3.6: PAKKT regularity implies

lim sup
(x,x̃)→(x∗,x∗), α↓0, β↓0

K+
Ω (x, x̃, α, β) = K+

Ω (x∗, x∗, 0, 0).

Thus, since the outer limit is always a closed set, this yields that K+
Ω (x∗, x∗, 0, 0)

is closed. Then, by Remark 3.5(b), KΩ(x
∗, x∗) is a closed set.

Now our aim is to prove that TΩ(x
∗) = LΩ(x

∗). The inclusion TΩ(x
∗) ⊂ LΩ(x

∗)
is always true.

However, to prove the other inclusion, LΩ(x
∗) ⊂ TΩ(x

∗), we will first prove that
NΩ(x

∗) ⊂ K+
Ω (x∗, x∗, 0, 0).

Let z ∈ NΩ(x
∗), by (2.1), there exist sequences {xl} ⊂ Ω, {zl} ⊂ Rn such that

xl → x∗, zl → z and zl ∈
(
TΩ(x

l)
)◦
.
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Then, following Lemma 4.6, for each l ∈ N, there exist sequences {xk
l }k ⊂ X,

{λk
l }k ⊂ Rm, {µk

l }k ⊂ Rp
+ and {ω̃k

l }k, ω̃k
l ∈ NX(xk

l ) for each k ⩾ 1 such that items
(a) and (b) hold. This means that

vkl :=

m∑
i=1

khi(x
k
l )∇hi(x

k
l ) +

p∑
j=1

kgj(x
k
l )+∇gj(xk

l ) + ω̃k
l →k→∞ zl.

The multipliers in the item (b) of Lemma 4.6 have the same sign of their cor-
responding constraints for all k: sgn(khi(x

k
l )) = sgn(hi(x

k
l )) and sgn(kgj(x

k
l )+)=

sgn(gj(x
k
l )+). Therefore, there are appropriate sequences {xk

l(k)}k, {λ
k
l(k)}k, {µ

k
l(k)}k,

{vkl(k)}k and sequences of scalars {αk}, {βk}, such that vkl(k) ∈K+
Ω (xk

l(k), x
k
l(k), αk, βk),

lim
k→∞

xk
l(k) = x∗ and lim

k→∞
vkl(k) = z. Thus, using the PAKKT regularity condition

we obtain that z ∈ lim sup
k→∞

K+
Ω (xk

l(k), x
k
l(k), αk, βk) ⊂ K+

Ω (x∗, x∗, 0, 0). Therefore,

NΩ(x
∗) ⊂ K+

Ω (x∗, x∗, 0, 0) = KΩ(x
∗, x∗) as we wanted to prove.

Then,on one hand following (b) of Remark 3.5 and Lemma 4.5, we conclude that

NΩ(x
∗) ⊂ KΩ(x

∗, x∗) ⊂ (KΩ(x
∗, x∗))◦◦ ⊂ (LΩ(x

∗))◦. (4.2)

On the other hand, the inclusion TΩ(x
∗) ⊂ LΩ(x

∗) always holds, so, by polarity
(LΩ(x

∗))◦ ⊂ (TΩ(x
∗))◦. Thus, using (4.2), we have that

NΩ(x
∗) ⊂ (TΩ(x

∗))◦ (4.3)

which means that Ω is regular at x∗, since (TΩ(x
∗))◦ ⊂ NΩ(x

∗) always holds by
Theorem 6.28(a) of [41].

Finally, according to the polarity in (4.2), (4.3) and the Corollary 6.30 of [41],
we obtain that

LΩ(x
∗) ⊂ (LΩ(x

∗))◦◦ ⊂ (NΩ(x
∗))◦ ⊂ TΩ(x

∗)

as we wanted to prove. □

Note that K+
Ω (x, x̃, α, β) ⊂ K+

Ω (x, x̃, 0, 0) = KΩ(x, x̃) for all x ∈ Rn, x̃ ∈ X and
α, β > 0. Then, we obtain the next result.

Theorem 4.8. If x∗ ∈ Ω verifies the AKKT regular condition, then it verifies the
PAKKT regular constraint qualification.

As it happens when X = Rn, AKKT regularity and quasi-normality are inde-
pendent constraint qualifications, as described in [11].

The present paper contributes mainly to the development of first-order opti-
mality conditions in the sequential approximate form (AKKT) for (1.1) when the
additional abstract set X verifies Assumption A. However, in recent years many
optimality conditions and constraint qualifications have been successfully general-
ized to minimize objective functions on smooth manifolds, see for example [15, 44]
and references there in.
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Quasi-normalityAKKT regular

PAKKT regular

Abadie

Figure 1. Relations between the PAKKT regularity condition
and other constraint qualifications. An arrow between two condi-
tions means that one is strictly stronger than the other.

We assume, as in [44], that X is a d-dimensional Riemannian manifold in Rn

given by

X = {x ∈ Rn : Φ(x) = 0} (4.4)

where Φ : Rn → Rm is a smooth mapping for which JΦ(x) (Jacobian matrix of Φ
at x) is full row rank m (where m = n − d) for all x ∈ X. Thus, by Example 6.8
in [41] we have that X is regular and

TX(x) = {w ∈ Rn : JΦ(x)w = 0} (4.5)

NX(x) = {JΦ(x)ty : y ∈ Rm} (4.6)

which shows that the tangent and the normal cones are linear subspaces orthogo-
nally complementary to each other.

Therefore, in this particular case, we have that condition (a) of Definition 2.5 is
equivalent to

−

∇f(x∗) +

m∑
i=1

λi∇hi(x
∗) +

p∑
j=1

µj∇gj(x∗)

 =

d∑
i=1

γi∇Φi(x
∗) (4.7)

where γ ∈ Rd.
Then, taking into account that the results of the present work are developed for

the differentiable case, we can state that the first-order optimality condition (5.20)
given in [44] directly follows from equality (4.7) and condition (b) of Definition 2.5.

From our research, we realize that many real-world problems are formulated as
(1.1) when X is a manifold constraint, not necessarily given in a functional equality
and/or inequality constraint form. For example, the group of special orthogonal
matrices SO(n), the Grassmannian manifold and the Stiefel manifold problems
developed in [2]. Consequently, the study of sequential optimality conditions for
optimization subject to smooth manifolds is a challenge for future analysis, as the
examples previously mentioned show.

5. An Augmented Lagrangian Method for Problems with Abstract
Constraints
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The authors in [5] have recently proved that PAKKT regular constraint qualifi-
cation and quasi-normality can be used to validate the convergence of the ALM for
general nonlinear optimization problems with X = Rn. As it is mentioned in [5],
it can be proved that the ALM generates PAKKT limit points but not necessarily
PAKKT sequences.

In this section, we are interested in the analysis of the convergence of the ALM
applied to (1.1).

To penalize the set of equality and inequality constraints we consider the qua-
dratic penalty Augmented Lagrangian function (see [22]). Thus, we have the fol-
lowing form:

L(x, λ, µ, ρ) = f(x)+

m∑
i=1

λihi(x)+

m∑
i=1

ρ

2
(hi(x))

2+

p∑
j=1

1

2ρ
(max{0, µj+ρgj(x)}2−µ2

j ).

We focus on the case in whichX is a closed and convex set, perhaps not described
by a finite number of equalities or inequalities as in [4]. However, we consider that
computing the Euclidean projection onto X is affordable.

Assumption B. Throughout this section, we assume that the abstract set X in
(1.1) is closed and convex.

Algorithm 1 Let x0 ∈ X be an arbitrary initial point. The given parameters
for the execution of the algorithm are: τ ∈ [0, 1), γ > 1, −∞ < λ̄min

i < λ̄max
i <

∞, ∀i = 1, . . . ,m, λ̄0
i ∈ [λ̄min

i , λ̄max
i ] ∀i = 1, . . . ,m, 0 ⩽ µ̄max

i <∞, ∀ i = 1, . . . , p,

ρ0 ∈ R++, µ̄
0
i , µ̄

1
i ∈ [0, µ̄max

i ], σ0
i =

µ̄1
i − µ̄0

i

ρ0
, ∀i = 1, . . . , p, {ϵk} ⊂ R, lim

k→∞
ϵk = 0.

Initialize k ← 1.

Step 1. Find an approximate solution xk ∈ X of the subproblem

Minimize L(x, λ̄k, µ̄k, ρk)
s. t. x ∈ X,

(5.1)

that is, compute a point xk ∈ X satisfying∥∥PX

(
xk −∇xL

(
xk, λ̄k, µ̄k, ρk

))
− xk

∥∥
∞ ⩽ ϵk. (5.2)

If it is not possible, stop the execution of the algorithm.

Step 2. Estimate new multipliers and define a new infeasibility and comple-
mentarity measure.

For i = 1, . . . ,m compute

λk+1
i = λ̄k

i + ρkhi(x
k) and λ̄k+1

i := P[λ̄min
i ,λ̄max

i ](λ
k+1
i ). (5.3)

For j = 1, . . . , p compute

µk+1
j = max

{
0, µ̄k

j + ρkgj(x
k)
}

and µ̄k+1
j := P[0,µ̄max

j ](µ
k+1
j ). (5.4)
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Define

σk
j := max

{
gj(x

k),−
µ̄k
j

ρk

}
. (5.5)

Step 3. Update the penalty parameter.
If k = 0 or

max{∥h(xk)∥∞, ∥σk∥∞} ⩽ τ max{∥h(xk−1)∥∞, ∥σk−1∥∞}
define ρk+1 = ρk. Else, define ρk+1 = γρk.

Step 4. Set k ← k + 1 and go to Step 1.

Let us denote by l(x, λ, µ) the usual Lagrangian function for the optimization
problem (1.1):

l(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

p∑
j=1

µjgj(x).

By Assumption B, the projection is well-defined and condition (a) of Definition 2.5
is equivalent to

PX(x∗ −∇xl(x
∗, λ, µ))− x∗ = 0. (5.6)

In this case, the projection satisfies the following property:

Proposition 5.1. (see [41]) Let S be a nonempty convex closed set and x ∈ S.
Then, ω ∈ NS(x) if and only if PS(x+ ω) = x.

Observe that, by combining (5.6) and Proposition 5.1, (5.2) is a natural approx-
imate condition for the subproblem (5.1).

When X is a box (X = {x ∈ Rn : l ⩽ x ⩽ u}), the active set Method GENCAN
can be used to obtain (5.2), see for example chapter 9 in [22] and [20, 21]. If n is
large, the Spectral Projected Gradient Method (SPG) mentioned in [18, 19, 23, 24]
is an alternative to solve the subproblem (5.1).

We aim for the feasibility of the limit points, but we know that it could be im-
possible since we realize that feasible points might not exist at all. In the following
theorem, we prove a “feasibility result” which determines that those limit points of
the sequence generated by Algorithm 1 are stationary points for some infeasibility
measure of the constraints of the feasible set Ω.

Theorem 5.2. Assume that the sequence {xk} is an infinite sequence generated
by Algorithm 1. Then, every limit point x∗ is a KKT point of

Minimize 1
2 (∥h(x)∥

2
2 + ∥g(x)+∥22)

s. t. x ∈ X.
(5.7)

Proof. Let {xk}, {λk}, {µk} and {ρk} be sequences generated by Algorithm 1.
Let x∗ be a limit point of {xk}. Then, there exists a subset K ⊂ N such that
lim
k∈K

xk = x∗.
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Since xk ∈ X for all k and X is closed, we have that x∗ ∈ X.
Now, we consider two possibilities: (a) the sequence {ρk} is bounded and (b)

the sequence {ρk} is unbounded.
In the Case of (a), from some iteration on, the penalty parameter is not updated.

Therefore, lim
k→∞

∥h(xk)∥∞ = 0 and lim
k→∞

∥σk∥∞ = 0. Now, if gj(x
∗) > 0, then

gj(x
k) > c > 0 for k ∈ K large enough and this would contradict the fact that

lim
k→∞

∥σk∥ = 0. Therefore, gj(x
∗) ⩽ 0 for j = 1, . . . , p.

Consider now Case (b). Let yk = PX

(
xk −∇xL

(
xk, λ̄k, µ̄k, ρk

))
− xk. Then,

∥yk∥ ⩽ ϵk and by Proposition 5.1, we have that

−∇xL
(
xk, λ̄k, µ̄k, ρk

)
− yk ∈ NX(xk + yk).

Since ρk →∞ and {µ̄k} is a bounded sequence we have, for k ∈ K large enough,
max

{
0, µ̄k

j + ρkgj(x
k)
}
= 0 whenever gj(x

∗) < 0. Therefore,

−∇f(xk)−
m∑
i=1

(λ̄k
i + ρkhi(x

k))∇hi(x
k)− (5.8)

∑
j:gj(x∗)⩾0

max
{
0, µ̄k

j + ρkgj(x
k)
}
∇gj(xk)− yk ∈ NX(xk + yk).

Dividing by ρk ⩾ 1 in (5.8) and using the continuity of ∇f , ∇hi, ∇gj , the bound-
edness of the sequences {λ̄k}, {µ̄k}, the definition of the normal cone and the fact
that lim

k→∞
ϵk = 0, taking the limit on an appropriate subsequence, we obtain that

−
m∑
i=1

hi(x
∗)∇hi(x

∗)−
∑

j:gj(x∗)⩾0

max {0, gj(x∗)}∇gj(x∗) ∈ NX(x∗) (5.9)

and x∗ is KKT point of (5.7). □

These kinds of feasibility results were previously proved in [4, 22] considering
that the lower-level set, given the structure:

{x ∈ Rn : h̃(x) = 0, g̃(x) ⩽ 0} (5.10)

for h̃ = (h̃1, . . . , h̃m̃)t : Rn → Rm̃, g̃ = (g̃1, . . . , g̃p̃)
t : Rn → Rp̃ continuously

differentiable in Rn satisfies the CPLD CQ. Then, if an abstract setX has structure
(5.10), the results of Theorem 5.2 in the present paper and Theorem 4.2 of [4] are
independent since the following conditions are not mutually implied: (i)X is convex
and closed; (ii) the CPLD CQ with respect to X given by (5.10) holds.

In the following theorem, we prove that under the PAKKT regular constraint
qualification, feasible limit points are stationary (KKT) points of the original prob-
lem (1.1). This is the strongest result about global convergence of the ALM for
problems with abstract set constraints which can be proved.
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Theorem 5.3. Assume that the sequence {xk} is an infinite sequence generated
by Algorithm 1. Then, every limit point x∗ which verifies the PAKKT regular
constraint qualification is a KKT point for (1.1).

Proof. Let {xk}, {λk}, {µk} and {ρk} be sequences generated by Algorithm 1.
Let x∗ be a limit point of {xk}. Then, there exists a subset K ⊂ N such that
lim
k∈K

xk = x∗.

Following (5.2) and Proposition 5.1, we have that

ωk := −∇xL
(
xk, λ̄k, µ̄k, ρk

)
− yk ∈ NX(xk + yk),

where yk = PX

(
xk −∇xL

(
xk, λ̄k, µ̄k, ρk

))
− xk and

∥∥yk∥∥ ⩽ ϵk.
Then, by (5.3) and (5.4), we have that

∇f(xk) +

m∑
i=1

λk+1
i ∇hi(x

k) +

p∑
j=1

µk+1
j ∇gj(xk) + ωk + yk = 0 (5.11)

with ωk ∈ NX(xk + yk).

If ρk → ∞ then µk+1
j = 0 whenever gj(x

∗) < 0 and k is sufficiently large. If

{ρk} is bounded, then lim
k→∞

σk = 0, and thus lim
k→∞

µk+1
j = 0 whenever gj(x

∗) < 0.

Thus, we can suppose without loss of generality that µk+1
j = 0 whenever gj(x

∗) <
0.

Let us define δk+1 = ∥(1, λk+1, µk+1)∥∞.
If we assume that {δk+1} is bounded, then, by (5.11) we have that

ωk = −∇f(xk)−
m∑
i=1

λk+1
i ∇hi(x

k)−
p∑

j=1

µk+1
j ∇gj(xk)− yk (5.12)

with ωk ∈ NX(xk + yk). Since {δk+1} is bounded, we can extract a convergent
subsequence and there exist K1 ⊂ K and λ ∈ Rm, µ ∈ Rp

+ such that

lim
k∈K1

ωk = −∇f(x∗)−
m∑
i=1

λi∇hi(x
∗)−

p∑
j=1

µj∇gj(x∗) (5.13)

due to the continuity of the gradients and the fact that
∥∥yk∥∥ ⩽ ϵk, lim

k→∞
ϵk =

0. Thus, according to Proposition 2.7, (5.13) implies that x∗ is a KKT point of
problem (1.1).

If we assume that {δk+1} is unbounded, we define the sets

I+ = {i ∈ {1, . . . ,m} | lim
k

|λk+1
i |

δk+1
> 0},

J+ = {j ∈ Ig(x
∗) | lim

k

µk+1
j

δk+1
> 0},

and for each k we take

αk = min

{
1

k
, min
i∈I+
{λk+1

i hi(x
k)} , min

j∈J+

{µk+1
j gj(x

k)}
}
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and

βk = max

{
1

k
, max

i/∈I+

|λk+1
i |

δk+1
, max
j /∈J+

µk+1
j

δk+1

}
+

1

k
.

We note that αk ↓ 0, βk ↓ 0 and we have that

λk+1
i hi(x

k) ⩾ αk when |λk+1
i | > βkδk+1

µk+1
j gj(x

k) ⩾ αk when µk+1
j > βkδk+1.

(5.14)

Thus, by (5.11) and (5.14), if we define x̃k = xk + yk, we can affirm that, for all
k large enough, −∇f(xk) − yk ∈ K+

Ω (xk, x̃k, αk, βk). As x∗ fulfills the PAKKT
regular condition and lim

k→∞
ϵk = 0, we have

−∇f(x∗) = lim
k→∞

−∇f(xk)− yk ∈ lim sup
k→∞

K+
Ω (xk, x̃k, αk, βk) ⊂

⊂ lim sup
(x,x̃)→(x∗,x∗), α↓0, β↓0

K+
Ω (x, x̃, α, β) ⊂ K+

Ω (x∗, x∗, 0, 0),

that is, x∗ is a KKT point of problem (1.1). □

It is worth mentioning that the global convergence result for the proposed ALM
has been obtained using the least restrictive constraint qualification known in the
literature in this context. In [4, 22], the authors established global convergence
using the CPLD CQ. Since PAKKT regularity is weaker than CPLD CQ, the
theoretical result given in the previous theorem is stronger than the theoretical
results proved with CPLD CQ.

In [9], a scaled version of the PAKKT condition is defined when the abstract set
X is a box and a variation of the ALGENCAN (the well-established safeguarded
ALM has been defined in [4, 22]) is studied by carrying out a vast amount of
numerical experiments.

We know that the global convergence of the ALM has been substantially im-
proved over the last years due to the introduction of sequential optimality condi-
tions. For X = Rn there are stronger sequential optimality conditions than AKKT
such as CAKKT [13] and PCAKKT [14] conditions:

• A feasible point x∗ ∈ Ω, X = Rn is a Complementarity Approximate KKT
(CAKKT) point [13], if there are sequences {xk} ⊂ X, {λk} ⊂ Rm, and
{µk} ⊂ Rp

+ such that lim
k→∞

xk = x∗and

lim
k→∞

∇f(xk) +

m∑
i=1

λk
i∇hi(x

k) +

p∑
j=1

µk
j∇gj(xk) = 0, (5.15)

lim
k→∞

λk
i hi(x

k) = 0 and lim
k→∞

µk
j gj(x

k) = 0. (5.16)

• A feasible point x∗ ∈ Ω, X = Rn is a Positive Complementary AKKT
(PCAKKT) point, if x∗ is a CAKKT point and conditions (3.3) and (3.4)
of Definition 3.2 hold.
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In [14], it is proved that PCAKKT is stronger than CAKKT and PAKKT and,
in [5], the authors prove that PAKKT is independent of the CAKKT condition.

In Theorem 5.1 of [13] (respectively, in Theorem 3.1 of [14]), it is demonstrated
that: If x∗ is a feasible limit point of the sequence {xk} generated by the safe-
guarded ALM (Algorithm 1 for X = Rn), then x∗ is a CAKKT (respectively
PCAKKT) point, provided that a generalized Lojasiewicz (GL) inequality is satis-
fied at the limit point (see Section 3 in [13]).

We aim to study suitable extensions and applications of CAKKT and PCAKKT
for problem (1.1) in the future.

6. Conclusions

In this work, we have shown that the Positive Approximate KKT condition can
be gen- eralized for problems with abstract set constraints. We have also presented
the appropriate strict constraint qualification associated with the PAKKT sequen-
tial optimality condition. As necessary sequential optimality conditions provide
a natural stopping criterion for nonlinear iterative methods, we have studied the
convergence of an ALM for solving problems with equality, inequality and abstract
set constraints under the new constraint qualification. Furthermore, we have shown
that every limit point generated by the algorithm is a stationary point of a problem
of minimizing the infeasibility of the equality and inequality constraints subject to
the abstract set. Finally, it is important to mention that the study of sequential
optimality conditions for optimization problems subject to particular abstract con-
straints, such as positive definiteness or Grassmannian/Stiefel manifolds, smooth
or nonsmooth, remains a challenge for future analysis.
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