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ON CYCLES OF LENGTH THREE

CLAUDIA CHAIO, VICTORIA GUAZZELLI, AND PAMELA SUAREZ

ABSTRACT. We prove that if A is a string algebra then there are not three irreducible mor-
phisms between indecomposable A-modules such that its composition belongs to 8‘36\8‘377 when-
ever the compositions of two of them are not in #°. Moreover, for any positive integer n > 3,
we show that there are n irreducible morphisms such that their composition is in R"T\R" 5,

INTRODUCTION

Introduced by Auslander and Reiten in the early 70’s, the notion of irreducible morphisms
plays an important role in the representation theory of artin algebras.

It is well-known that the composition of n irreducible morphisms between indecomposable
modules over an artin algebra A belongs to R", the n-th power of the radical & of the module
category. Such a composition could be a non-zero morphism in 7+, This is still a problem
of interest in the representation theory of artin algebras, and in the last years, there have been
some advances in such a direction, see for example [7], [9], and [I1].

In [9], Coelho, Trepode and the first named author characterized when the composition of
two irreducible morphisms is non-zero and belongs to 2. Moreover, they proved that if two
irreducible morphisms between indecomposable A-modules such that their composition is non-
zero and belongs to a greater power of the radical, greater than two, then such composition is
at least in R4

Later in [I], Alvares and Coelho proved that if f and g are irreducible morphisms between
indecomposable A-modules such that 0 # fg € R then fg € ®°. Furthermore, they showed
an example of two irreducible morphisms whose composition is in R3\R®. To prove such a
result they used a result due to Hoshino, proved in [14], that if a module X in I"4 is such that
DTrX = X, then either the connected component of I'4 which contains X is a homogeneous
stable tube or A is a local Nakayama algebra.

Finally, in [8], the first named author generalized the result proven in [I]. Precisely, the
author proved that given an artin algebra A where the configurations of almost split sequences
have at most two indecomposable middle terms, then the non-zero composition of n irreducible
morphisms on a left almost pre-sectional path is such that it belongs to ®"*3 for n > 1.

As a consequence of the above mentioned result, for any artin algebra, we know that if
the non-zero composition of any three irreducible morphisms h; between indecomposable A-
modules, is such that hzhohy € R, hshy ¢ R and hohy ¢ R3 then hshohy € RO,

A natural question now is if the composition of three irreducible morphisms between inde-
composable A-modules can be in R6\R7, whenever the composition of any two of them are not
in N3, that is, behaves well.
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In this work, we prove that if A is a string algebra then there are not three irreducible
morphisms such that their composition is in R6\R", if the composition of any two of them is
not in N3, Furthermore, for a string algebras we prove that the minimum for three irreducible
morphisms in such a condition is seven.

We also find families of algebras where their module category have n irreducible morphisms
between indecomposable modules such that its composition belongs to R\ R+ for n > 3,
whenever the compositions of n — 1 of them belong to R*~1\R". It is still an open problem to
see if the minimum n is equal to n + 3, for n > 3.

The paper is organized as follows. The first section is dedicated to recall some preliminaries
definitions and results. In section 2, we prove some general results concerning algebras which
have cycles of length three. In section 3, we present some strings algebras that contains
irreducible morphism from M to 7M, for M an indecomposable A-module. In Section 4, we
prove some technical lemmas and apply the results of the previous sections to prove that if we
consider a string algebra there are not three irreducible morphisms such that their composition
is in RE\R” whenever the composition of any two of them behaves well. Finally, in the last
section we give families of algebras having n irreducible morphisms such that their composition
belongs to R\ RT3 for n > 3 and such that the composition of n — 1 of them behaves well.

The authors thankfully acknowledge partial support from CONICET and from Universidad
Nacional de Mar del Plata, Argentina. The problem solved in this article come up from the
question of ”Which algebras have an irreducible morphism from M to 7M” asked by E. R.
Alvares to the second named author, when she was visiting Universidade Federal do Parand

in Curitiba. This question is still an open problem. The first author is a researcher from
CONICET.

1. PRELIMINARIES

1.1. A quiver (@ is given by a set of vertices Qg and a set of arrows @1, together with two
maps s,e: Q1 — Q. Given an arrow « € @1, we write s(«) the starting vertex of a and e(«)
the ending vertex of . For each arrow a € Q1 we denote by a~! its formal inverse, where
s(a™!) = e(a) and e(a™!) = s(a).

A walk in @) is a concatenation cq ...c¢,, with n > 1, such that ¢; is either an arrow or the
inverse of an arrow, and e(¢;) = s(c¢j+1). We say that ¢; ...c, is a reduced walk provided
ci;éc;_ll foreach i, 1 <i<n—1.

If A is an algebra then there exists a quiver Q) , called the ordinary quiver of A, such
that A is the quotient of the path algebra kQ 4 by an admissible ideal.

1.2. Let A be an artin algebra. We denote by mod A the category of finitely generated left
A-modules and by ind A the full subcategory of mod A which consists of one representative of
each isomorphism class of indecomposable A-modules.

Let X be a non-projective (non-injective) indecomposable A-module. By «o(X) (o/(X),
respectively) we denote the number of indecomposable summands in the middle term of an
almost split sequence ending (starting, respectively) at X. We say that o(T") < 2 if o(X) and
o/(X) are less than or equal to two, whenever they are defined.
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1.3. A morphism f: X — Y, with X,Y € mod A4, is called irreducible provided it does not
split and whenever f = gh, then either h is a split monomorphism or g is a split epimorphism.

If X,Y € mod A, the ideal R(X,Y") is the set of all the morphisms f : X — Y such that,
for each M € ind A, each h : M — X and each h' : Y — M the composition A/ fh is not an
isomorphism. For m > 2, the powers of R(X,Y) are defined inductively. By R*(X,Y) we
denote the intersection of all powers R(X,Y) of R(X,Y), with i > 1.

By [4], it is well-known that a morphism f : X — Y, with X, Y € ind A, is irreducible if
and only if f € R(X,Y) \ R*(X,Y).

We recall the definition of degree of an irreducible morphism given by S. Liu in [I5].

Let f: X — Y be an irreducible morphism in mod A, with X or Y indecomposable. The
left degree d;(f) of f is infinite, if for each integer n > 1, each module Z € ind A and
each morphism g : Z — X with g € R*(Z, X)\R""}(Z, X) we have that fg ¢ R"T2(Z,Y).
Otherwise, the left degree of f is the least natural number m such that there is an A-module
Z and a morphism ¢ : Z — X with g € R™(Z, X)\R™*1(Z, X) such that fg € R™2(Z,Y).

The right degree d,.(f) of an irreducible morphism f is dually defined.

We denote by I'4 its Auslander-Reiten quiver, by 7 the Auslander-Reiten translation, and
71 its inverse.

Let X — Y be an arrow in I'4. Assume that f : X — Y is an irreducible morphism in
mod A. Following [15], we define the left degree of the arrow X — Y to be d;(f), and the right
degree of the arrow X — Y to be d,.(f).

Lemma 1.4. Let A be a finite dimensional k-algebra. Any cycle of irreducible morphisms
between indecomposable A-modules has both a monomorphism and an epimorphism.

Proof. By [15, Lemma 2.2], we know that every oriented cycle in I'4 contains both an arrow
of finite left degree and an arrow of finite right degree.

By [13 Corollary 3.2], the arrows of finite left degree and the ones of finite right degree
correspond to irreducible epimorphisms and monomorphisms, respectively. Then we get the
result. g

An indecomposable A-module M is left (right) 7-stable if for all positive integer n the
module 7" M (77" M) is defined. An indecomposable A-module M is 7-stable if it is both left
and right 7-stable.

In particular, if a 7-stable module M satisfy that 7" M ~ M for some positive integer m,
then we say that M is T-periodic. Moreover, M is T-periodic of rank m if 7" M ~ M and
T*M 2 M for 11 <k <m.

A path My — My — ... = M, of irreducible morphisms with M; € ind A for j = 1,...,n
and n > 3 is called sectional if for each j = 3,...,n we have that M;_o % 7M;.

A path Yy - Y] — .-+ = Y, in I'4 is presectional if for each i, with 1 < ¢ <n — 1, such
that Y;_1 ~ 7Y;11 then there is an irreducible morphism Y; 1 & 7Y;11 — Y;. Equivalently,
if 771Y;_1 ~ Y 1, then there is an irreducible morphism Y; — 77'Y;_; @ Y;4;. Note that a
sectional path is also presectional.

ApathYy =Y, — -+ = Y, in I'4 is left almost presectional if Y, - Y7 — -+ = Y,,_qis
presectional in I'4 and Y,, ~ 771Y},_5. Dually, we can define a right almost presectional path.

In [8], the first named author gave a generalization of the result proven in [I]. Moreover, as
a consequence of such result the author got Corollary
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Theorem 1.5. Let A be an artin algebra and assume that there is a configuration of almost
split sequences as follows

P CIE—— 71Xy
s
D) IR 771X,
o~ L
X3 T Xn_Q
/ \
Xy ] Xpi1
s
n
where f1: X1 — Xo,..., fn 1 Xo — Xna1 are trreducible morphisms between indecomposable

A-modules with fi ... fn—1 in a left almost pre-sectional path such that fn,—1...f1 ¢ R™. Let
hi + X; — X141 be irreducible morphisms for i =1,...,n such that 0 # hy,...hy € R+ Then,
hy...hy € Rrt3,

Corollary 1.6. Let A be an artin algebra and h; : X;—X;41 be irreducible morphisms with
X, €indA fOT’ 1 =1,2,3 such that hghohy € §R4(X1,X4). Then, hshohy € §R6(X1,X4).

1.7. Let A be an algebra such that A = kQ4/I4. The algebra A is called a string algebra
provided:

(1) Any vertex of Q4 is the starting point of at most two arrows.

(1) Any vertex of Q4 is the ending point of at most two arrows.

(2) Given an arrow 3, there is at most one arrow v with s(8) = e(y) and v8 ¢ 14.
(2’) Given an arrow -, there is at most one arrow  with s(8) = e(y) and v3 ¢ 14.
(3) The ideal 1, is generated by a set of paths of @ 4.

Let A = kQa, 14 be a string algebra. A string in Q4 is either a trivial path e, with
v € Qo, or a reduced walk C' = ¢;...¢, of length n > 1 such that no sub-walk ¢; ... c;4; nor
its inverse belongs to I4. We say that a string C' = ¢; ... ¢, is direct (inverse) provided all
¢; are arrows (inverse of arrows, respectively). We consider the trivial walk €, a direct as well
as an inverse string.

We say that a string C' has length n if the number of arrows and inverse of arrows in its
composition is n.

For each string C' = ¢;...¢, in @4, an indecomposable string A-module M (C) is defined.
Conversely, given M an indecomposable string A-module there exists a ”unique” string C' such
that M = M(C) = M(C~!). The band modules are defined over strings C such that all powers
C", with n € N are defined, see [0]. Every module over a string algebra is defined either as
a string module or as a band module, see [6]. Moreover, if A is a representation-finite string
algebra then all the indecomposable A-modules are strings ones.

We say that a string C' starts in a deep (on a peak) provided there is no arrow 8 such
that 371C (BC, respectively) is a string. Dually, a string C' ends in a deep (on a peak)
provided there is no arrow 3 such that C3 (C3~!, respectively) is a string.



ON CYCLES OF LENGTH THREE 5

By [6] we know that given a string algebra A then «(T") < 2. Moreover, the authors also
described all the almost split sequences of mod A in terms of strings.

Consider I(u) to be the injective module corresponding to the vertex u € (Q4)o. Then,
I(u) = M(D1Ds) where Dy is a direct string starting on a peak and Do is an inverse string
ending on a peak.

Dually, if P(u) is the projective corresponding to u € Q¢ then P(u) = M(C1Cs) where Cy
is an inverse string and Cj is a direct string. Moreover, C1C5 is a string that starts and ends
in a deep.

For a detail account on these algebras see [6] and for general Auslander-Reiten theory we
refer the reader to [2] and [3].

2. GENERAL RESULTS

Consider the following family of quivers @,
c(C1e 2 g

for n > 2 and the ideal I =< o2, 312 >. We denote the algebras kQ,, /I by (W(n),I).

Fix an integer n > 3, and consider any algebra A ~ (W (n),I). In such algebras there is
a composition of n irreducible morphisms h; : X; — X;41 for ¢ = 1,...,n between indecom-
posable A-modules such that h,...h; € R*"3(Xy, X)) \R" (X1, Xpp1), with Ay, ... hy €
R™( X, Xnt1)-

We illustrate the above situation in the next example.

Example 2.1. Consider the algebra A ~ (W (3),I). The Auslander-Reiten quiver I'4 is the
following:

P
N
Py o I
SN TS
Pyl S o LT S I
P
TONL TN
Y e Mo S,

N7 s S

Sy M

where we identify the modules which are the same.

Consider the irreducible morphisms fi : I3 — So, fo : So — P; and f3: P — Is.

We define ho : So — P; as follows ho = fo + 939291 fa, where g1 : PL — M, go: M — M
and g3 : TM — P; are irreducible morphisms. Then ho is irreducible. Indeed, otherwise,
hy € R2(Ss, P1). Therefore, fo € R?(Ss, P1) a contradiction since fs is an irreducible morphism
between indecomposable modules. Note that the composition fzhofi € RO(Py, I5)\R" (P2, I2),
but the composition f3he € R3(I3, ).
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We are interested in finding three irreducible morphisms between indecomposable A-modules
such that their composition belongs to R6\R", and moreover, with the property that the
composition of two of such morphisms does not belong to R>.

In Section 4, we shall prove that if A is a string algebra then there are not irreducible
morphisms h; for i = 1,2, 3 between indecomposable A-modules in RE\R", with hoh; ¢ R and
haho & R3.

Throughout this paper, we shall prove all our results for the composition of three irreducible
morphisms h; for i = 1,2 and 3, such that d;(hs) = 2. We observe that, with similar arguments
one can prove the results for the case where d,(hg) = 2.

Now, we show that if for some artin algebra A, there are morphisms as described above,
then there must be a cycle of irreducible morphisms between indecomposable A-modules of
length three.

Proposition 2.2. Let A be an artin algebra and let f1 : X — Y, fo :' Y — W, and f3 :
W — V be irreducible morphisms between indecomposable A-modules such that fsfofi €
ROX,VI\RN(X, V) with fof1 ¢ R¥(X, W) and f3fs ¢ R3(Y, V). Then, there exists a cycle of
length three.

Proof. Since f3faf1 € R(X, V)\R"(X, V), then there is a path ¢ of irreducible morphisms

g1 g2 g3 g4 g5 g6
P XA —> Ay —> A3 — Ay — A5 —V

such that ¢ ¢ R7(X,V). Moreover, since 0 # f3fofi € RYX,V), fofi ¢ R3(X,W) and
f3f2 & R3(Y,V) then by [I0, Theorem 2.2] there is a configuration of almost split sequences
as follows:

(1) X 7

such that hghohy =0, /(X) =1 and o/ (Y) = 2 or its dual.

By [11, Lemma 2.3] and the fact that dj(hs) < 0o, the dimension of the irreducible morphisms
involved in () is one. Since o/(X) =1 and g1 : X — A; is irreducible then A; ~ Y.

We claim that Ay ~ W. In fact, if As ~ Z then gy = a1hs + p1 and go = ashy + s with
ai, a9 € k* and g, po € R2. Since hyhi = 0 we have that gagy = aohapr + aqpiohy + popn €
R3(X,Z). Therefore, we get that ¢ € R7(X,V) a contradiction to our assumption. This
establishes our claim.

With similar arguments as above we can prove that As 2 V.

On the other hand, since a(V') = 2 and there are irreducible morphisms A5 — V, Z — V
and W — V, then A5 ~ Z or A5 ~ W. If A5 >~ W is easy to see that there is a cycle
W — A3 — Ay — W of length three. Now, if A5 ~ Z, since o(Z) = 1 then A4 ~ Y. Hence,
the path v is as follows:

v Xy Bw By By Bz By
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Then, there is a cycle Y — W — A3 — Y in mod A of length three. O
Next, we present a characterization for the existence of cycles of length three in mod A.

Theorem 2.3. Let A be an artin algebra. The following conditions are equivalent.

(a) There is a cycle in mod A which is a composition of irreducible morphisms between
indecomposable A-modules of length three.

(b) There is an indecomposable not projective A-module M and an irreducible morphism
from M to T M.

Proof. (a) = (b). By hypothesis there is a cycle of irreducible morphisms between indecom-
posable A-modules of length three. Let M — M; — My — M be such a cycle. By [5, Theorem
7], any path of the form M — M; — My — M — M; is not sectional. Therefore, one of the
following conditions hold.

(1) M ~ 7Ms;

(2) My ~7M; or

(3) M2 ~ TMl.

In the former case, there is an irreducible morphism from My to 7Ms. In case (2) there is
an irreducible morphism from M to 7M. Finally, in the latter case, we have an irreducible
morphism M; to 7M;.

In conclusion, in all the cases, there is an indecomposable A-module which is not projective
and an irreducible morphism from that module to the Auslander-Reiten translate of such a
module, proving (b).

(b) = (a). Let M be a module as in Statement (b). First, suppose that M is not injective.
Then 7'M is defined and there is an irreducible morphism from 7M to 7—'M. Moreover,
there is an irreducible morphism from 7'M to M. Hence there is a path of irreducible
morphisms between indecomposable A-modules

TIM M=M= 7'M

which is a cycle in mod A of length three.

Secondly, if M is injective, then 7M is not projective. In fact, otherwise, we get to the
contradiction that the irreducible morphism from M to 7M is both a monomorphism and an
epimorphism. Hence, 72M is defined.

With similar arguments as before, there is an irreducible morphism from 72M to M and an
irreducible morphism from 7M to 72M. Therefore, there is a path of irreducible morphisms

M= TM =M — M
which is clearly a cycle of length three, getting (a). O

Remark 2.4. We observe that for any positive integer n, condition (b) state below implies
condition (a).
(a) There is a cycle in mod A which is a composition of irreducible morphisms between
indecomposable A-modules of length 2n + 1.
(b) There are indecomposable not projective A-modules 7'M for i = 1,...,n — 1 and an
irreducible morphism from M to 7" M.
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Proposition 2.5. Let A be an artin algebra. Consider an indecomposable A-module M such
that there is an irreducible morphism from M to T M. If M is T-stable, then M is T-periodic
of rank three.

Proof. Consider M an indecomposable 7-stable A-module such that there is an irreducible
morphism from M to 7M. Assume that M is not 7-periodic. Then for all integer n, the
modules 7" M are defined. Moreover, for all integers r and s such that r £ s, then 7°M 2 7" M.

Since there is an irreducible morphism from M to 7 M, then there is an irreducible morphism
from 75 M to T7F*t1M for every integer k. Furthermore, there is an irreducible morphism from
72M to M. Hence, for all integer k there is an irreducible morphism from 7%M to 7F=2M.

Consider a full subquiver I" of T'4 consisting of modules of the form 7%M for all integer k.
Observe that all the modules in I' are neither projective nor injective. Then for all module
7EM in T, we have that the morphism 7°M — 7t M @ 75=2M is irreducible. Since 7FT1M
7E=2 M | then all the almost split sequences in I' have at least two indecomposable middle terms.
By Theorem [I5] Teorema 2.3] there are not oriented cycles in I', a contradiction to Theorem
23l Then M is 7-periodic.

We claim that M has 7-period three. In fact, let n be the 7-period of M, that is, M ~ 7" M
and M o 7 M for 1 < k < n. Since there are irreducible morphisms from M to 7M and from
72M to M and there are not loops in I'4, then n > 2.

On the other hand, since there is an irreducible morphism M to 7M there is a cycle in I'4
of the form

VM —TM —7*M— ... ="M = M~ M.

By [5, Theorem 7], we know that the path M Y M — M is not sectional. Then 7FM ~
7(TF+2M) ~ 7*3 M for some k < n. In conclusion, for any k satisfying the above condition,
we have that M ~ 73M, proving the result. O

Remark 2.6. In case that M is an indecomposable 7-stable A-module such that there is an
irreducible morphism from M to 7" M for n > 3, then M is 7-periodic of rank n + 3.

3. ON SOME STRING ALGEBRAS

We shall present some string algebras such that their module category has an irreducible
morphism from M to 7 M, with M an indecomposable module. This results shall be fun-
damental to prove that if we consider a string algebra A then there are not three irreducible
morphisms between indecomposable A-modules in R6\R7, when the composition of two of then
behaves well.

We start given a characterization of the string algebras which have an irreducible morphism
from M to 7 M, where M is an indecomposable not 7-stable module.

Proposition 3.1. Let A = kQa/I4 be a string algebra. The following conditions are equiva-
lent.

(1) There is an indecomposable not T-stable A-module M, and an irreducible morphism
from M to T M.
(2) The quiver Q4 has one of the following full subquivers.
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@1 e a —B> x
with o™ € T4 forn > 2, and af € 14. If there is an arrow § : x — y in Q4, then
B € 4. Moreover, there are no arrows in Qa going out or coming in from the
vertices of @1; or

@2 X —ﬁ> a Q «
with o™ € T4 forn > 2, and Ba € 14. If there is an arrow § : y — x in Q4, then
08 € I4. Moreover, there are no arrows in Qa going out or coming in from the
vertices of @2; or

withm > 1, af € Iy and vy ...vmB & 14 . If there is an arrow 6 : a — y in Q4,
then vy ... vmBo € La. If there is an arrow X : @ = 1 in Q4, then Ay1 ...V, € 14.
Moreover, the vertex a is not the end point of any other arrow; or

Qu ® e °

a—s=e 1

with m > 1, fa € T4 and By1 ... vm & 1a. If there is an arrow § : y — a in Q4,
then 681 ... vm € La. If there is an arrow A : 1 — e in Qa, then v ...y € I4.
Moreover, the verter a is not the start point of any other arrow.

Proof. Let M be an indecomposable A-module, not 7-stable, and such that there is an irre-
ducible morphism from M to 7 M. Since M is not 7-stable then there is an integer m such
that 7" M is either projective or injective.

Without loss of generality, we may assume that 7™M = I, where I, is the injective cor-
responding to the vertex a in Q4. Moreover, with our notations, we have that there is an
irreducible morphism from I, to 71,.

Since A is a string algebra, by [6] we know that I, = M(D; Ds) with Dy a direct string
starting on a peak and Dy an inverse string ending on a peak. Assume that 71, = M (D),
where Dj = a, ... 0 if D] = ... .

Now, depending on the string D;, we shall analyze the possible almost split sequences
starting in M (D).

Firstly, assume that D; does not start on a peak and neither ends on a peak. Then the
almost split sequences starting in M (D) is as follows:

0—= M(ay...az) = M(C 'Ba,...a0)® M(a,...ayy 1C") = M(C ' Bay ...y 1C") = 0.

Therefore I, = M(C~Ba, ... azy 1C"). Since I, is injective then [(C') = I(C") = 0. Moreover,
since [(C) = 0, then s(8) is not the start point of any other arrow in @ 4. Similarly, since
[(C") = 0 then s(v) is not the start point of any other arrow in Q4. Then we conclude that
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I, = M(a,...a1Dy) = M(Bay ... 012’7_1)
with oy = 8 for all i = 1,...,r, 7Tt € I4, and v3 € I4. Moreover, if there is an arrow
0 : e — s(y) then 0y € I4. Hence in Q4 there is a full subquiver of the following form:

r—>a Q B
with g7+ € I4 for ,r > 1 and 33 € 4.
Secondly, suppose that D; starts and ends on a peak. In such a case M (D) is injective,
getting a contradiction to the fact that 7=1M(Dq) = I,,.
Now, suppose that D7 does not start on a peak, but ends on a peak. Then the almost split
sequence starting in M (D) is as follows:

0= M(ay...az) = M(C'Ba,...a) ® M(a,...a3) = M(C 'Ba, ...a3) — 0.

Then I, = M(C~'Ba, ...a3) with [(C) = 0. Then there is a path of r — 1 arrows, while Dy
has r, a contradiction.

Finally, assume that D; starts on a peak and does not end on a peak. In this case, since D;
is a direct string then the almost split sequence starting in M (D7) has only one indecomposable
middle term and it is as follows:

0— M(ay...c0) — M(ar...agﬂ_lC) — M(C)—0
with C' a direct string ending in a deep. Then I, = M(C) = M(a ... 1) is uniserial. Hence
@4 has a subquiver of the form

OV B \a2 o

1 e —q

with Baq € I4. In case that there is an arrow X : @ — 1 then Aq,.- ... a9 € 14, because ;. ... a9
starts on a peak. Note that in this case, a; can be all trivial for ¢ = 2,...,r. In such a case,
we have a subquiver as follows:

B e % ¢
where fa € I4 (otherwise, I, # M(a)) and " € I4 (in order to be a finite dimensional
algebra).
With a similar analysis as before and assuming that 7" M is projective, we obtain the
subquivers (a) and (d).
For the converse, it is enough to show that for each configuration there is an indecomposable
A-module M and an irreducible morphism from M to 7 M. O

As an immediate consequence of Proposition B.1], we get the following corollary.

Corollary 3.2. With the notation introduced in Proposition |31, the following conditions hold.
(1) In @1 there are irreducible morphisms from I, to 71, and from 77'P, to P,.
(2) In @2 there are irreducible morphisms from I, to 71, and from T='P, to P,.
(3) In Qs there is an irreducible morphism from I, to T1,.
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(4) In Q4 there is an irreducible morphism from T=1P, to P,.
Example 3.3. Let A be the algebra given by the presentation
71 2 72
/ o \ 8
l———>3—14

with I =< aff >. Let I' be a component of I'4 having the injective I,. Then I' is as follows:

.......... Iy
N
oo P — I
7 N 7N
....... TBIy i P2 i T [y i [y
~ 4 . RN 7N
U PR —— Vg FEm— Vd R mm—— Iy
7 N et N el S 7

where we identify the modules in I" which are the same. Observe all the modules M that belong
to the sectional path starting in I; have the property that there is an irreducible morphism
from M to 7M.

Now, we concentrate our attention in the algebras which have an irreducible morphism from
M to M, where M is an indecomposable T-stable module.

Proposition 3.4. Let A = kQa/I4 be a string algebra. The following conditions are equiva-
lent.

(1) There is a T-stable indecomposable A-module M with o/ (M) = 1 and an irreducible
morphism M — 7M.
(2) The quiver Q4 contains one of the following full subquivers:
i
B

« 1—2
with o € I and a8 ¢ I4. Moreover, there are no arrows coming in the vertex
1, if there is an arrow A : 2 — e then BA € 14 and 2 is not the end point of any
other arrow; or
ii)
with o € I4 and Ba ¢ 1. Moreover, there are no arrows going out from the

vertex 1, if there is an arrow X\ : ¢ — 2 then A3 € Ix and 2 is not the starting
point of any other arrow.

Proof. Let M be an indecomposable A-module as in (1). Since o/ (M) = 1 by [6], we get
that M = M(y;' ...y = M(ByY) and 7M = N(By) = M(6;'...67 Boyy ...y t) =
M(By 15032_ 1). Observe that 7M can not be the starting of an almost split sequence with
indecomposable middle term. Hence, the almost split sequence starting in 7M has two inde-

composable middle terms.
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Now, we shall built such a sequence. We know that the string B 1532_ ! ends on a peak.
Then we analyze two cases:

(a) if Bl_lﬁoBgl starts on a peak; or
(b) if B;'8yBy " does not start on a peak.

Assume that (a) holds, then there is no A € @ such that AB; 1ﬁOBQ_ lis a string. Since
771 M is not injective, then s > 1. The almost split sequence starting in 7M is as follows:

0— M(B) = M(BYo MG .67 BBy ") = MO ...601) — 0.

Therefore

(2) M =M(By"Y) = M6 .60,

Hence ’yl_l...’yr_l = 5__11...(51_1. Then r = s — 1 and ~; = ds—;. If > 1 then there is a

S
subquiver of the form:

where fy0s € I since 7105 ¢ I4. Observe that since the string By ! ends on a peak and
B2_1 = 55__11 . ..51_1 then Bl_1 = 55_1 . ..51_1 also ends on a peak.

On the other hand, since we assume (a) then By 160B2_ ! gtarts on a peak and therefore
Bl_1 starts on a peak. Then M(Bl_l) is injective since B1_1 starts and ends on a peak, a
contradiction to the fact that M is 7-stable and M (B; ') =7 M.

Then r = 0 and By' = e(8y) and B! = §;. From (@) we get that By' = e(8) = s(fo),
and therefore [y is a loop. Since e(/3y) is not the end point of any other arrow, we have that if
Bod1 € 14 then M(41) is injective getting a contradiction. Thus [pd; ¢ I4 and then ﬁg e 1.
Then in Q4 we have a subquiver of the form:

Bo C 1 i> 2
such that 33 € I4, Bod1 ¢ Ia, there are no arrows coming in or going out of the vertex 1, if
there is an arrow A : e(d;) — e then 01\ € I4 and e(d1) is not the end point of any other arrow,
since the string B ! BoBy e 0y 13, starts on a peak.
Assume now, that By 1ﬁoBz_ ! satisfies (b). That is, there is a an arrow A € @1 such that
AB ! BoBy ! In this case, the almost split sequence starting in By ! BoBy s as follows:

0— M(B{'6oByt) — M(B;Y) @ M(D'\AB; ' 8oBy ") — M(D™'AB!) — 0.
Then M = M(By') = M(D™'AB;"). In this case, we obtain that By * = ByA~™'D. Thus,
we deduce that By and D are trivial and By ' = A\~!. Since D is trivial, s(\) is not the starting
point of any other arrow. Similarly, since Bj is trivial then s(fy) is not the starting point of

any other arrow. Furthermore, since the string A\BoA~! is defined, fy is a loop and 58 € Iy
because Bg\ ¢ I4. Then we have a subquiver as follows:
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50C1<>\—2

with ﬁg € I, \By ¢ 14, and where there are not arrows going out the vertex 1, and if there is
p:e— 2then s p\ € I4 and 2 is not the starting point of any other arrow. O

4. ON THE COMPOSITION OF THREE IRREDUCIBLE MORPHISMS
We shall prove several lemmas in order to prove the main result of this work.

Lemma 4.1. Let A be a string algebra. A configuration of almost split sequences as follows:

(3) X 7
Ny AN
L VG U
P
2 WA W
gl\*L% ........... >7_1L
P T

1s a forbidden configuration in I'4.

Proof. Since f is an epimorphism then g; : W — L so is. The A-modules X and Z are the end
points of an almost split sequence with indecomposable middle term Y. Then Y = N(fy) =
M7 .67 Byt t) = M(C) with C a string that starts in a deep and ends in a peak.
Moreover, X = M(y;'...y7Y) and Z = M(5;...67 ).

By [0] and from (B]), we know that fs, g1, g2 and g3 are the irreducible morphisms obtained
by analyzing the beginning of the string corresponding to the domain of such morphisms.

We start considering the case that C' starts on a peak. Then C starts and ends on a
peak. Since Y is not injective, then s > 1. Hence, W = M| 3__11 . ..51_15071_1 o, U =
M(6;1 .67, Consider Dy =61 ...07 8oyt 47t Then W = M(Dy) = M (D).

Since g is an epimorphism, then the string corresponding to W starts on a peak (otherwise,
g1 is a monomorphism). Therefore, 6,1, ...87 Boyy ... ! is a string that starts and ends
on a peak. Now, since W is not injective then s > 2. Thus, L = M| 3__12 . 51_15071_1 e h
and 7MW = M(5Y, . o0 h).

Now, we analyze how is the string corresponding to 7L. In order to do that, we may consider
how is the beginning of the string corresponding to L. Assume that 53__12 .07 ! Bov, Lo At
does not start in a peak. Then 7L = M(y; ' ...y 816, ... 67 Boyy o t) with ¢ > 1 or
L= M(B16 ... 07 Boyyt o).

Assume that 7L = M(z/t_1 . ..1/1_1,8155__12 . ..51_1ﬁ0’yl_1 ...y 1) with £ > 1. Suppose that
Vt_l e 1/1_1,8155__12 e 51_16071_1 ...7, ! starts on a peak. Since t > 1, then there exists an irre-
ducible morphism from 7L to M(Vt__l1 e 1/1_1515;_12 e 51_15071_1 ...71) and, by construction,
this module is W.
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Since D; has only one direct arrow then D; # yt__ll . --’/1_15153_—12 . ..51_15071_1 cooythIf
D1_1 = yt__ll e 1/1_16158__12 e 51_15071_1 ... ! and since s > 2 then the arrows ~; are trivial.
Thus ¢t > 2. Then Dl_1 has length s, while I/t__ll . Vl_lﬂlés__IQ e 51_1ﬁ0’yl_1 ...7, ! has at least
length s + 1, a contradiction. Then I/t_l e Vl_lﬂlés__lQ e (51_1ﬁ0’yl—1 ...7, t does not start on a
peak. Therefore there is an irreducible morphism as follows:

L — MO N Bt Bio 0 Bo )

where the length of such a string is different from the length of D; (and Dy 1), proving that
this case is not possible.

Now, consider that 7L = M(B10,. Y ... .07 Boyyt ooy, I B1o g 67 By b ot
does not start on a peak, then we can add an arrow and the string should have at least
length » + s + 1, while the string corresponding to W has length r + s, a contradiction. If
5153_—12 . 51_150711 ...7 ! starts on a peak, since 7L is not injective then s > 3. Therefore,
there is an irreducible morphism from 7L to M (53_—13 07 ! Bovy L. 4 1) where the length of
such a string and the string corresponding to W are different, proving that this case is not
possible.

Assume that the string corresponding to L starts on a peak. Then gs is an epimorphism
and the string 53__12 e 51_15071_1 ...7 ! starts and ends in a peak. Hence, s > 3, otherwise L
is injective. Then 7L = M (6. 5...67 Boyy by h).

By Lemma [I[.4] since g; and g9 are epimorphisms then g3 is a monomorphism. Since the
existence of g3 is due to the fact of how is the beginning of the string corresponding to 7L, then

;_13 .07 ! Bov, Lo 7! does not start in a peak. Thus, there is an irreducible morphism from
7L to M()‘I;I AT B0 ot oY) Tt is clear that this string is different from Dy,
since Dy has only one arrow. Then we have that Dl_1 = )\,;1 e Al_lﬁlds__lg e 61_16071_1 oy
Since s > 3, this implies that the arrows v; are trivial. If s > 4 then Dy ! has at least three
arrows, a contradiction, because the obtained string has two arrows. Therefore s = 3 and, in
consequence, k = 1. Then Al_lﬂlﬁo = ﬁo_lélég, and we get that Sy = Jo and ﬁo_l = )\1_1 is a
string that starts in a deep. Note that the string 5 152_ 1 05 ! By 1is defined, hence we get a
contradiction. In conclusion, C' can not start on a peak.

In case that C does not start on a peak, with similar arguments as above, we can conclude
that there is not possible to have a configuration of almost split sequences as in ([3), whenever
A is a string algebra. U

Lemma 4.2. A configuration of almost split sequences as follows:

with W an indecomposable injective A-module, L 22 7W an indecomposable injective A-module
such that there is an irreducible morphism from L to TL is not a possible configuration in I 4.
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Proof. Since L is not injective then 77!L is defined. The existence of an irreducible morphism
from L to 7L, implies the existence of an irreducible morphism from 7L to 7~'L. Moreover,
there is an irreducible morphism from 7L to W. Since L % 7W then o/(7L) = 2.

Assume that o/(L) = 2. Then there is a configuration of almost split sequences as follows:

(4) X A

Since W is injective, then g is an epimorphism. By (), we know that f is an epimorphism.
On the other hand, since P is projective then f is a monomorphism, a contradiction. Hence,
o (L) =1.

Now, we analyze the string corresponding to such modules. Since X and Z are the start
and end terms of an almost split sequence with indecomposable middle term Y, then Y =
N(Bo) = M(55' ... 67 Boyy ... Y) = M(C) with C a string that starts on a deep and ends
on a peak. Moreover, X = M(y; ...y ) and Z = M(67%...671).

Firstly, assume that C starts on a peak. Then C' starts and ends on a peak, and therefore,
since Y is not injective then s > 1. Hence, W = M(5; ', ...67 oyt ...y Y) and U =
M(57Y, ... 07Y). Since W is injective then s — 1 = 0, W = M(Boy; ' ...7") = M(D;) and
Dy is a string that starts and ends on a peak. If » = 0, then W/socW is indecomposable,
a contradiction to @). Thus, r > 1 and L = M(y; ...~y ") (if » = 1, L is simple). Since
o/ (L) =1, then 7L = M(/\/l;1 . /\1_15172_1 ...771) and the string corresponding to 7L starts
in a deep and ends on a peak. Now, we analyze the beginning of the string corresponding to
7L to determine the codomain of the irreducible morphisms whose domain is 7L.

If )\;1 . )\1_15172_1 ...} starts on a peak, since 7L is not injective then k > 1. Then there
is an irreducible morphism from 7L to M ()\,;_11 o )\1_1 Bi7y L4711 and this module is W,

therefore injective. Then we get that W = M(ﬁw;l ooy Y) and 5172_1 ... ! has length r a
contradiction.

If )\,;1...)\1_15172_ L. 471 does not start on a peak, then there is an irreducible mor-
phism from 7L to ]\4(6[1 . ..el_lﬂg)\gl . ..Al_lﬁlfyz_l ...7- 1), and this module should be in-
jective. Hence, there is an irreducible morphism from 7L to M (82817, L. Y. Clearly,
B2B17vy Lo 41 is not equal to D;. Similarly, we can see that S3o B17y Lo 7,1 is not equal to
Dt

1Secondly, assume that C' does not start on a peak. In this case, we have that W =
M(l/t_l...yl_lﬁl&;l...51_15071_1...%_1). Since W is injective, then t = 0, s = 0 and W =

M(B1Bov; "t .. .4 Y) = M(Dy) with Dy is a string that starts and ends on a peak. Then r > 1,
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otherwise, W/socW is indecomposable. Then L = M(y;'...7!). Since /(L) = 1, then
7L = M(A,;l e )\l_lﬂlfyz_l ... 1) and the string corresponding to 7L starts in a deep and
ends on a peak.

Again, if we analyze the beginning of the string corresponding to 7L to determine the
codomain of the irreducible morphisms with domain 7L, we can discard the case with similar
arguments as before. O

Lemma 4.3. A configuration of almost split sequences as follows:

with W and L indecomposable injective A-modules such that there is an irreducible morphism
from L to 7L is a forbidden configuration in I 4.
Proof. Since there are not morphisms from an injective to a projective, then o/ (L) = 1. More-
over, 7L is not projective, then 72L is defined and there is an irreducible morphism from 7L
to 72L. Since W is injective, then 72L % W and therefore, o/(7L) = 2. Then there is a
configuration of almost split sequences as follows:

(5) X \ ....... / VA \
Y \ .......... /
Wi
L L .
2L TL
Since W — W is a cycle and g1, g2 are epimorphisms then by Lemma [[.4], g3 is a monomor-
phism.

Since X and Z are the start and end terms of an almost split sequence with indecomposable
middle term Y, then Y = N(By) = M(5;' ... 67 Bory - ..y ") = M(C) with C a string that
starts in a deep and ends on a peak. Moreover, X = M(y; ...y 1) and Z = M(6;%...671).

Assume that C starts on a peak. Then C' starts and ends on a peak and therefore, since Y is
not injective then s > 1. Hence, W = M (6.1, ...67 Boy; by h), and U = M(5.Y, ... 07Y).
Since W is injective, then s —1 =0, W = M(Byy; ' ...~ 1) = M(D;) and D; starts and ends
on a peak. If » = 0, then W/socW is indecomposable, a contradiction with (B). Then r > 1
and L = M(y; ...~y 1). Since L is injective, but not simple then r > 2 and 7L = L/soc L =
M(yst o).

Since the irreducible morphism from 7L to W is a monomorphism, then v L 47! either
does not start on a peak or does not end on a peak. In the former case, there is an irreducible
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morphism from 7L to M(A\; ... A7 81751 ... 97 1) and this module is W and therefore, in-
jective. Then it is of the form M (515 L .4, 1) but the string corresponding to this module
has length r — 1, a contradiction. In the latter case, there is an irreducible morphism from
7L to M(y5' ... 77 By er .. ¢) and this module must be injective. Then it is of the form
M(y3t. . 4718y 1Y) but the string corresponding to this module is of length  — 1, a contradic-
tion.

Assume that C' does not start on a peak. Then W = M(v; ' .. vy B107 . 67 Boyy t e o).
Since W is injective, then t = 0, s = 0 and W = M(B1807; " ... % ") = M(Dy) with Dy
a string that starts and ends on a peak. Then r > 1, otherwise, W/socW is indecom-
posable. Then L = M(’y{l ...y Y. Since L is injective but not simple, then r > 2 and
7L = L/socL = M(v;'...~4;"). With similar arguments as before, we get that this case is
not possible, proving the lemma. ]

Lemma 4.4. A configuration of almost split sequences as follows:

with W an indecomposable injective A-module, L ~ W and o/(L) = 2 is not a possible
configuration in I 4.

Proof. Since o/ (L) = 2 and W is injective, then there is an irreducible morphism from L to a
projective A-module P, where P 2 Y. Then there is a configuration of almost split sequences
as follows:

Since g is a monomorphism, then f is a monomorphism.

Since X and Z are the end points of an almost split with indecomposable middle term Y,
then Y = N(Bg) = M(6;"...67 Boyy ... 4 Y) = M(C) with C a string that starts in a deep
and ends in a peak. Since f is a monomorphism, then the string corresponding to Y does not
start on a peak. Then W = M(/\,;1 A BT 6T By oY), Since W ois injective,
then k = s =0 and W = M (81807, ... 77 1).

On the other hand, since W/soc W is not indecomposable, then r > 1and L = M (v, ' ... 1).
Moreover, there is an irreducible morphism from L to Y.
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If r =1, then L = M(s(v1)) is simple. There are irreducibles morphisms from L to modules
of the form M (el_1 e 61_152). The strings corresponding to such modules are equal to C' or
C~!. In any case, it is a contradiction.

Now, assume that r > 2. If the string corresponding to L starts or ends on a peak, then
there is an irreducible morphism from L to a module whose string has length r — 3 while C
has length r + 2, a contradiction.

If vy L .41 does not start on a peak, then there is an irreducible morphism from L to

M()\l,;1 A P Bayy oY) and this module should be Y. If

)\,;1...)\1_15272_1...77,_1 =C =0t .t
then kK =0 and » = 1. Hence 5 = Blfyl_l, a contradiction. Now, if

A AT B =0 =B

then k = 0 and r = 2 getting a contradiction with the length of the strings.

Finally, if 5 Lo 7~} does not end on a peak, then there is an irreducible morphism from L
to M(’y{l . .’y;lﬁz_lel ...€) and this module should be Y. With a similar analysis as before,
we get that this case is not possible. O

Lemma 4.5. Let A be a string algebra, and I' be a component of I" 4. Let I be an injective (non-
projective) A-module such that there exists an irreducible morphisms from I to I with I € T'.

Then, there are not three irreducible morphisms between indecomposable modules f1 : X =Y,
fo:Y =W and f3: W =V in T such that fsfsf1 € RO\RT and a configuration as follows:

(6) X 7

1]

Proof. First, assume that A is representation-finite. Consider é as described in Proposition
B (a) or (b). We only analyze (a), since (b) follows similarly. If @ is the quiver

aga_ﬁ)x

with o™ = 0 for n > 2 and af = 0, then by Corollary we know that there exists an
irreducible morphism from I, to 71,. Consider the configuration of almost split sequences that
involves such morphism:
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where we identify the modules which are the same. Observe that if there exist other arrows
which start or end in some point of (), then the above configuration does not change. To obtain
([6), we conclude that n = 3. Below, we illustrate the situation.

[ m—— I,
N
s "
I
Ay e N o
S

Even though there are cycles of length three, it is not hard to see that there are not three
irreducible morphisms such that their composition is in R6\R7.

Now, if A is representation-infinite, by Proposition B], we infer that @ is of the form (c).
Then @ is the quiver

withm > 1, af =0, and 71 - - - v, ¢ L4, and there exists an irreducible morphism from I, to
71,. Let I be the component of I' 4 such that I, € I'. Then I' is as follows:

......... I,|
N
o) PR I
7 S 7 S
....... V0 [N £ R o R —— |
0 7 0 PN N
TAL, o TB, e T2, o T,
7 N 7 S 7 0 e
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Observe that if there exist other arrows which start or end in some point of @, the quiver
I' does not change. In this case, we do not have a configuration as (@) since 71, is not an
injective module. Therefore, we dismiss this case. O

Now, we are in position to prove the main result of this paper.

Theorem 4.6. Let A be a string algebra. There are not irreducible morphisms f1 : X —
Y, fo: Y = W, and f3 : W — V between indecomposable A-modules such that f3fofi €
ROX, VI\RT(X, V) with fafi ¢ R}(X, W) and f3fa ¢ R3(Y, V).

Proof. Let f1 : X = Y, fo: Y — W, and f3 : W — V be irreducible morphisms as in the
statement. By [10, Theorem 2.2] there is a configuration of almost split sequences as follows:

(7) X 7

such that hghohy =0, /(X) =1 and o/(Y) = 2 or its dual.
As we proved in Proposition 22 there exists a path of irreducible morphisms between
indecomposable modules as follows:

b Xy Bow By Toa, Boas By

where A3 o2V and A3 % X, otherwise, ¢ € R7(X, V). Moreover, there is cycle of length three
Y ~~Y or W~ W, if A5 >~ Z or A5 ~ W, respectively. We claim that the first cycle is not
possible in our situation. In fact, assume that A5 ~ Z, then Ay ~ Y. Following [5] Theorem
7], the path Y — W — A3 — Y — W is not sectional. Thus,
(1) Y ~7A3, or
(2) W~7Y, or
(3) Ag ~TW.
If Y ~ 7A3 then A3 ~ V contradicting that ¢ ¢ R7(X, V).
If W ~ 7Y, then there is a configuration as follows:

with hghshohy = 0. Again, the dimension over k of the irreducible morphisms involved is one.
Then g; = a;h; + pi, with o; € k* and p; € R? para i = 1,2,3,4. Hence g4g39291 € R°(X,Y)
a contradiction to the fact that ¢ ¢ R7(X, V). Therefore, W % Y.

Finally, suppose that A3 ~ 7. Then o/(A3) = 2, otherwise, o/(A3) = 1, and there is a
configuration of almost split sequences as follows:
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where hghshs = 0. Since any irreducible morphisms g; between the involved modules is of the
form g; = a;h; + pi, with oy € k* and p; € R? for i = 4,5,6 then gegsgs € R* (A3, V), getting
that ¢ € R7(X, V), a contradiction. Thus o/(A3) = 2.

By Lemma 44 W is not an injective module, then there is a configuration of almost split
sequences as follows

X Z
%Y/ ........ \ V
N
W oo 1w
W S
e~

Since g; = a;h; + g, with a; € k* and p; € R? for i = 1,...,6, then ¢ € R7(X,V), a
contradiction. Therefore A5 2 Z.
In consequence, As; >~ W and the path v is as follows:

v X Py w4 o, Bw By

Observe, that there is a cycle ¢ : W — W of length three.

With a similar analysis as before, it is not hard to see that A3 %2 7W and W % 7A4. Then
Ay ~ 7A3. From Lemmas[4.2] and L3 we have that W and Aj are not injective. Moreover,
if A3 is not injective then we get a contradiction to Lemma Il Analyzing all the cases we get
that W % As, proving the result. O

5. ON THE COMPOSITION OF 1 IRREDUCIBLE MORPHISMS IN §Rn+l WHICH DOES NOT
BELONG TO THE INFINITE RADICAL

In this section, we show families of algebras, having n irreducible morphisms such that their
compositions belong to R*T\R"T+1 with n > 3 and ¢ > 4, and moreover, with the condition
that the composition of n — 1 of them is not in R".

We denote by (U(m,n — 1), ) the string algebras whose quiver is
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Y2 Ym—1
’Yl/ ag — ... —> Q %
1 / T
B1 b b Bn—1
28 " Bae !

with I =< Yp_1vm >, for m,n > 2.
We shall prove that in the module category of such algebras there are n irreducible mor-
phisms with composition in R7+2m\Rr+2m+1,

Remark 5.1. We define the following strings in U(m,n — 1):
(1) Gj=7...7j,and Gj = ;... 7pm—1 for 1 <j<m—1.
(2) Bzzﬁlﬁza and Bzzﬁzﬁn—l for 1 SZSTL—l
Note that G,,—1 = G and B,,_; = Bj.

To prove the results of this section, we recall the following notation introduced in [12].

Let A be a string algebra and let I = M (D D3) be an indecomposable injective A-module,
where D1 = 75...71 is a direct string that starts on a peak, Dy = 51_1 ...[71is an inverse
string that ends on a peak. We consider the following set of strings:

Cp, = {DDy where either D is trivial or D = D'y with D' a string}.
In a similar way, we can define Cp, considering I = M(DQ_IDI_I).

Next, we recall the quiver Q¢ defined in [I2], whose vertices are the strings involved in the
sets Cp, and Cp,.
Let A ~ kQ/I and consider the injective I(u), with u € Qg. Then
(1) The vertices of (Qf)o are the strings C' in @ such that e(C') = u, where C' is either the
trivial walk &, or C' = ', with a € Q1.
(2) If a = C and b = C" are two vertices of (QS)g, then there is an arrow from a — b in
Q¢ if C' is the reduced walk of 371C, for some 3 € Q.

Dually, we can consider an indecomposable projective A-module, define the set of strings
and the quiver Q?, see [12].

The following results state below are essential to prove Theorem (.71

Lemma 5.2. Let A be the algebra (U(m,n — 1),1), with m,n > 2. Consider the irreducible
morphisms tq,, : rad P, ~— P, and 0,, : I,, — I, /socl,, , where P, —and I, are
the projective and injective A-modules corresponding to the vertex a,,, respectively. Then
dy(ta,,) = m—+mn— 1. Moreover, d.(t4,,) = di(0a,,)-

Proof. Consider (U(m,n — 1),I), with m,n > 2, and the irreducible morphisms ¢,,, and 6,,,.
By [12, Proposition 3.2], we know that d;(6,,,) and d,(t4,,) can be compute by the number of
vertices of the quivers Qf ~and Q , respectively.

Recall that the vertices of the quiver @ are the strings C such that e(C') = a;,, and
C =¢,,, or Cis of the form C = C'v,,_1, with C’ a string. With the notation of Remark [5.1],
the quiver Qf is the following:
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G1
(e B 'Gy
Gm—1 B ',G1 Ym B, ~1G1
Eam, B;ilal

The cardinal of (Qf )o is m + n. By [12, Proposition 3.2], d(6,,,) = card((Q5 )o) — 1.
Hence d;(0,,,) = m+n — 1.
Dually, the quiver @Q; is the following:

-1

Ym By
ymB;y 'G1 YmBs !
Ym By G2 YmB, L, Cam
Y e
Ym Bl Gm—1 Ym

where Q; ~has m + n vertices. Therefore, by [I2, Proposition 3.2] we have that d,(t4,,) =
m + n — 1, proving the result. O

Remark 5.3. Observe that ’ymgl_le_l = ’ymB;_llal is a vertex in both quivers Q and
5 . We denote by L the A-module whose string is the mentioned one.

am

Given X, Y and Z indecomposable modules, we denote by X ~+ Y ~» Z a path of irreducible
morphisms between indecomposable modules from X to Z, going through Y.

Proposition 5.4. Let A = (U(m,n — 1),1I), with m,n > 2, and P,,,, Sa,, and I,, be the
projective, simple, and injective module corresponding to the vertex a.,, respectively. Let L be
the string module M(ymgl_le_l). Then, there is a sectional path P, ~» L~ S, ~» L ~
1., in mod A. Moreover, the cycle L ~ S, ~> L has length 2m.

am

Proof. Consider the irreducible morphism 6,  : I, — I, /socl, . The module I, /socl,,
is indecomposable. Moreover, Ker(6,,, ) = S,,, and by Lemma B2 d;(0,,) = m+n—1. By
[12] Proposition 2.5], there is a configuration of almost split sequences as follows:
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R ——— T—lsam
My i T—lMl
J2 Mo / T 1Nm+n—3
Mgy - I, /socl,

fmﬂzk I %am

am

where the path S,,, = M1y — ... — M, 112 — I, is sectional.

On the other hand, the modules of such a path are in correspondence with the string modules
M(C), where C are vertices of @ . In particular, L = M (vaIIGm_l), is a module that
appears in such a path. Moreover, L # S, and L # I, . Hence, the path is of the form
Sapp = L~ 1,

We claim that the length of the path S,,, ~+ L is m. To prove our claim, we order the strings
of the set C., ~as follows; C; < Cj1y if there is an irreducible morphism M (C;) — M (Cit1).
To determine such order in the strings, we may analyze if the strings start on a peak.

Let Cy = 6;}1. Since Cy does not start on a peak, we define C7 = ym_legnll = G,,—1. Then
there is an irreducible morphism S,,, = M (Cy) — M (Cy).

Observe that for 2 < j < m — 1, the strings @j = ...Ym-1 do not start on a peak. More-
over, following [6], we observe that there exist irreducible morphisms M(Gy) — M (B, ', Gy)
and M(G;) — M(G;_1), for 3 < j < m — 1. Continuing with the order in the set C., , for
2 < i< m — 2, we define the strings C; = G,,—; and C,,,_1 = B;_llél.

Finally, C,,,_1 does not start on a peak. Then C,, = ymB;_llél and M (C,,) = L. Hence,
we have a path of irreducible morphisms as follows

(8) Sa,, = M(Cy) = M(Cy) = ... > M(Cp—y) = M(Cp,) =L ~ 1,

where the path S,,, ~ L has length m.

Dually, if we consider the irreducible morphism ¢,,, : rad P,,, — F,, then rad P, is in-
decomposable and Coker(tq,,) = Sa,,- By [12, Proposition 2.5] and Lemma 5.2 there is a
sectional path P, ~+ S, of length m+n —1. Again, the modules of such a path are in corre-
spondence with the vertices of Q; . In particular, L = M (’ymﬁl_le_l) is a module of such a
path. Moreover, L # P,  and L # S, . Hence, we have a path of the form P, ~» L~ S, .

Again we can prove that L ~» S, has length m, by considering an order on the strings of
the set D,, ~as follows, D; < D;y if there is an irreducible morphism M (D;y1) — M(D;). In
this case, to order the strings, we have to analyze if the strings ends in a deep.

Similarly, we can prove that M (D,,) = L and that there is a path of irreducible morphisms
of the form:

9) P, ~L=M(Dy)— M(Dpy-1)— ...~ M(Dy) — M(Dy) =S

am

where the path L ~» S, has length m.
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Now, from the paths (§]) and (@) we obtain the path
(10) P, ~» L~ S, ~L~1, |

where the cycle L ~~ S, ~» L clearly has length 2m.

It is left to prove that the path (I0) is sectional. By construction the paths P, ~» L ~> S,
and S, ~» L~ I, are sectional. We must analyze the path M (D;) — S, — M(C7). Note
that M (D) is injective, since Dy = ’ymB;_ll, where B,,_1 and 7, are string ending in a peak.
More precisely, since e(B,,_1) = & = e(V,), then M(D;) = I,. Therefore, M(Cy) % 711, and
the path (I0) is sectional, proving the result. O

Proposition 5.5. Let A= (U(m,n—1),I), withm,n > 2. Consider L = M(’ymB;_llal) and
N = M(B;*,G1). Then f: L — N is an irreducible epimorphism with d;(f) =n — 1.

Proof. Consider L = M(C) and N = M(D), where C = 4,6, ... 6771 ... Ym_1 and D =

;_12 ) ..61_171 ...Ym—1 18 a string not starting in a deep. By [0] we have that f : M(C) —
M (D) is an irreducible epimorphism, where Ker(f) ~ M (C)/M (D) ~ M(yy,) = P,,,. Since A
is representation finite, then d;(f) < oo.

Now, we compute the left degree of f. Since e(v,,) = x, we consider the module I, =
M (Bp-17,;,}). The indecomposable direct summands of I,/socl, are Ji(z) = M(B,_2) and
JQ(.Z') - Sam'

Consider the irreducible morphism h : I, — Ji(z), where Ker(f) ~ M(vmy) ~ Ker(h).
Assume that d;(h) = 1. Then f : L — N is one of the morphisms g; : X; — 77 'X;_; of the
following configuration of almost split sequences:

Py P,
/ ™~
i X e T 11X,
=7 x, 4 ...T_le—2
/gljl \
X Ji(x
fl\I /h‘/

where o/(P,) =1and ¢: P, -+ X7 — --- — X;_1 — I, is a sectional path. The modules that
appear in ¢ are the string modules of the set C., . In particular, L is one of such modules.
Since L % P, and L % I, then L ~ X, for some j, 1 < j <[ —1.

On the other hand, by the proof of Proposition [(£.4] there is a sectional path

p: P, —M —...>L—...>Muyins3s—>1, =S,

of length m +n — 1 and where L ~» S, has length m.

Since dimg(Hom 4 (P,,,, Sq,,)) = 1, then | = m+n—2. We claim that for each i, 1 <i <[—1
we have that M; ~ X;. In fact, since o/(P,,) = 1, then X; ~ M;. Now, since p is a sectional
path, My % 77'P,. Then Xy ~ M,. Following this argument, we get that X; ~ M;, for
1 <¢ <1 —1. Since the path L ~ S, has length m, then L ~ X,,_; and therefore we obtain
that d;(f) =n — 1. O
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Remark 5.6. By the proofs of Proposition [5.4] and 5.5 we have the existence of a sectional
path

Py S LSy Ll

am, am,
where the path ¢ is of length n — 1 and the cycle L ~ L is of length 2m. Moreover, we know
that there exists an irreducible morphism f : L — N. We claim that the module N belongs to
such sectional path. In fact, in the proof of Proposition (.4l we give an order for the strings
C1,...,Cy, of the set C., , where C,, = va;_llél and M(C,,) = L.

Observe that C,, is a string that starts on a peak. Hence C,, = ymﬁg_llB;_B@l. Then
Cmi1 = B;_12@1 and N = M(Cy,+1). Moreover, N does not belong to the path P, , ~ S, ,
because the string B;_12@1 is not a vertex of the quiver @); . Hence, we conclude that the
above sectional path is of the form

P, ~» L~ S, ~L—N~1I,.

where the arrow denotes an irreducible morphism.
Now, we are in position to prove the theorem.

Theorem 5.7. Let A = (U(m,n — 1),1), with m,m > 2. Then there are irreducible mor-
phisms h; @ X; — Xjy1 for 1 < i < n, between indecomposable A—modules, such that
hn PN hl S §Rn+2m(X1’ Xn+1)\%n+2m+l (Xl, Xn+1), hn—l PN h1 ¢ %H(Xl, Xn) and hn PN h2 ¢
R™(Xo, Xpt1)-

Proof. Consider the irreducible epimorphism f : L. — N from Proposition Then d;(f) =
n — 1 and Ker(f) = P,,. Then there is a configuration of almost split sequences as follows:

P ~1p.
s
f2\ Y, / 1Y, 3
P

where § : P, - Y] — ... = Y,_2 — L is a sectional path of length n —1 and ff,_1... f1 =0.
By Remark there is a sectional path

Pl L8, BL NI,
where £(¢) =n — 1 and £(p2p1) = 2m. Moreover, the modules in the path ¢ : P, ~ L are the
same that the ones in the path 6.

Consider X1 = P,,, X;, = L, X;,01 = N and X; = Y4 for 1 <¢ < n — 1. We define the
irreducible morphisms h; = f; for 1 < ¢ <n —2, hy—1 = fn_1 + fn_1p, where p: L ~> L is
a composition of 2m irreducible morphisms which form part of the sectional path pop;, and
h, = f. Then the composition
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ho...hi = f(foo1+ fac1p)fn2... f1
= ffoifo2- i+ flaapfao2.. fi
= ffa-1pfn—2... f1.
belongs to R"2" (X1, X, 11)\R*?™T1(X1, X,,41), because the morphisms belong to a sec-
tional path of length n + 2m. Furthermore, hy,_1...h; ¢ (X1, X,,) and by [8, Proposition
2.3] we have that hy, ... hs ¢ R"(X2, X+1), proving the result. O

In the families of algebras presented in Theorem [5.7] there are n irreducible morphisms such
that their composition belong to R"TH\R"+1 for ¢+ > 4 and moreover where ¢ is an even
number.

Below, we present a family of algebras for ¢t an odd number. Consider (V(m,n),J) for n > 3
and m > 2 as follows:

o w
Y2 Ym—1 /

ag —= ... —= Uy
Y1 TYm
/ \
1 T
Bl S Bn
b T b

with J =< Ym—17m >.
We only state the result, since it can be proved with similar techniques as in Theorem [5.71

Theorem 5.8. Let A = (V(m,n —2),J), withm > 2 and n > 3. Then there are irreducible
morphisms h; @ X; — Xip1 for 1 < i < n, between indecomposable A-modules, such that
hn PN hl S §R7H—2m+1(X1, Xn+1)\§Rn+2m+2(X1, Xn+1), hn—l PN hl ¢ %H(Xl, Xn) and hn PN hg ¢
R™(Xo, Xpt1)-
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