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ON CYCLES OF LENGTH THREE

CLAUDIA CHAIO, VICTORIA GUAZZELLI, AND PAMELA SUAREZ

Abstract. We prove that if A is a string algebra then there are not three irreducible mor-
phisms between indecomposable A-modules such that its composition belongs to ℜ6\ℜ7, when-
ever the compositions of two of them are not in ℜ3. Moreover, for any positive integer n ≥ 3,
we show that there are n irreducible morphisms such that their composition is in ℜn+4\ℜn+5.

Introduction

Introduced by Auslander and Reiten in the early 70’s, the notion of irreducible morphisms
plays an important role in the representation theory of artin algebras.

It is well-known that the composition of n irreducible morphisms between indecomposable
modules over an artin algebra A belongs to ℜn, the n-th power of the radical ℜ of the module
category. Such a composition could be a non-zero morphism in ℜn+1. This is still a problem
of interest in the representation theory of artin algebras, and in the last years, there have been
some advances in such a direction, see for example [7], [9], and [11].

In [9], Coelho, Trepode and the first named author characterized when the composition of
two irreducible morphisms is non-zero and belongs to ℜ3. Moreover, they proved that if two
irreducible morphisms between indecomposable A-modules such that their composition is non-
zero and belongs to a greater power of the radical, greater than two, then such composition is
at least in ℜ4.

Later in [1], Alvares and Coelho proved that if f and g are irreducible morphisms between
indecomposable A-modules such that 0 6= fg ∈ ℜ3 then fg ∈ ℜ5. Furthermore, they showed
an example of two irreducible morphisms whose composition is in ℜ5\ℜ6. To prove such a
result they used a result due to Hoshino, proved in [14], that if a module X in ΓA is such that
DTrX = X, then either the connected component of ΓA which contains X is a homogeneous
stable tube or A is a local Nakayama algebra.

Finally, in [8], the first named author generalized the result proven in [1]. Precisely, the
author proved that given an artin algebra A where the configurations of almost split sequences
have at most two indecomposable middle terms, then the non-zero composition of n irreducible
morphisms on a left almost pre-sectional path is such that it belongs to ℜn+3 for n ≥ 1.

As a consequence of the above mentioned result, for any artin algebra, we know that if
the non-zero composition of any three irreducible morphisms hi between indecomposable A-
modules, is such that h3h2h1 ∈ ℜ4, h3h2 /∈ ℜ3 and h2h1 /∈ ℜ3 then h3h2h1 ∈ ℜ6.

A natural question now is if the composition of three irreducible morphisms between inde-
composable A-modules can be in ℜ6\ℜ7, whenever the composition of any two of them are not
in ℜ3, that is, behaves well.
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2 CHAIO, GUAZZELLI, AND SUAREZ

In this work, we prove that if A is a string algebra then there are not three irreducible
morphisms such that their composition is in ℜ6\ℜ7, if the composition of any two of them is
not in ℜ3. Furthermore, for a string algebras we prove that the minimum for three irreducible
morphisms in such a condition is seven.

We also find families of algebras where their module category have n irreducible morphisms
between indecomposable modules such that its composition belongs to ℜn+4\ℜn+5 for n ≥ 3,
whenever the compositions of n− 1 of them belong to ℜn−1\ℜn. It is still an open problem to
see if the minimum n is equal to n+ 3, for n ≥ 3.

The paper is organized as follows. The first section is dedicated to recall some preliminaries
definitions and results. In section 2, we prove some general results concerning algebras which
have cycles of length three. In section 3, we present some strings algebras that contains
irreducible morphism from M to τM , for M an indecomposable A-module. In Section 4, we
prove some technical lemmas and apply the results of the previous sections to prove that if we
consider a string algebra there are not three irreducible morphisms such that their composition
is in ℜ6\ℜ7 whenever the composition of any two of them behaves well. Finally, in the last
section we give families of algebras having n irreducible morphisms such that their composition
belongs to ℜn+4\ℜn+5, for n ≥ 3 and such that the composition of n− 1 of them behaves well.

The authors thankfully acknowledge partial support from CONICET and from Universidad
Nacional de Mar del Plata, Argentina. The problem solved in this article come up from the
question of ”Which algebras have an irreducible morphism from M to τM” asked by E. R.
Alvares to the second named author, when she was visiting Universidade Federal do Paraná
in Curitiba. This question is still an open problem. The first author is a researcher from
CONICET.

1. preliminaries

1.1. A quiver Q is given by a set of vertices Q0 and a set of arrows Q1, together with two
maps s, e : Q1 → Q0. Given an arrow α ∈ Q1, we write s(α) the starting vertex of α and e(α)
the ending vertex of α. For each arrow α ∈ Q1 we denote by α−1 its formal inverse, where
s(α−1) = e(α) and e(α−1) = s(α).

A walk in Q is a concatenation c1 . . . cn, with n ≥ 1, such that ci is either an arrow or the
inverse of an arrow, and e(ci) = s(ci+1). We say that c1 . . . cn is a reduced walk provided
ci 6= c−1

i+1 for each i, 1 ≤ i ≤ n− 1.
If A is an algebra then there exists a quiver QA, called the ordinary quiver of A, such

that A is the quotient of the path algebra kQA by an admissible ideal.

1.2. Let A be an artin algebra. We denote by modA the category of finitely generated left
A-modules and by indA the full subcategory of modA which consists of one representative of
each isomorphism class of indecomposable A-modules.

Let X be a non-projective (non-injective) indecomposable A-module. By α(X) (α′(X),
respectively) we denote the number of indecomposable summands in the middle term of an
almost split sequence ending (starting, respectively) at X. We say that α(Γ) ≤ 2 if α(X) and
α′(X) are less than or equal to two, whenever they are defined.
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1.3. A morphism f : X → Y , with X,Y ∈ modA, is called irreducible provided it does not
split and whenever f = gh, then either h is a split monomorphism or g is a split epimorphism.

If X,Y ∈ modA, the ideal ℜ(X,Y ) is the set of all the morphisms f : X → Y such that,
for each M ∈ indA, each h : M → X and each h′ : Y → M the composition h′fh is not an
isomorphism. For n ≥ 2, the powers of ℜ(X,Y ) are defined inductively. By ℜ∞(X,Y ) we
denote the intersection of all powers ℜi(X,Y ) of ℜ(X,Y ), with i ≥ 1.

By [4], it is well-known that a morphism f : X → Y , with X,Y ∈ indA, is irreducible if
and only if f ∈ ℜ(X,Y ) \ ℜ2(X,Y ).

We recall the definition of degree of an irreducible morphism given by S. Liu in [15].
Let f : X → Y be an irreducible morphism in modA, with X or Y indecomposable. The

left degree dl(f) of f is infinite, if for each integer n ≥ 1, each module Z ∈ indA and
each morphism g : Z → X with g ∈ ℜn(Z,X)\ℜn+1(Z,X) we have that fg /∈ ℜn+2(Z, Y ).
Otherwise, the left degree of f is the least natural number m such that there is an A-module
Z and a morphism g : Z → X with g ∈ ℜm(Z,X)\ℜm+1(Z,X) such that fg ∈ ℜm+2(Z, Y ).

The right degree dr(f) of an irreducible morphism f is dually defined.

We denote by ΓA its Auslander-Reiten quiver, by τ the Auslander-Reiten translation, and
τ−1 its inverse.

Let X → Y be an arrow in ΓA. Assume that f : X → Y is an irreducible morphism in
modA. Following [15], we define the left degree of the arrow X → Y to be dl(f), and the right
degree of the arrow X → Y to be dr(f).

Lemma 1.4. Let A be a finite dimensional k-algebra. Any cycle of irreducible morphisms
between indecomposable A-modules has both a monomorphism and an epimorphism.

Proof. By [15, Lemma 2.2], we know that every oriented cycle in ΓA contains both an arrow
of finite left degree and an arrow of finite right degree.

By [13, Corollary 3.2], the arrows of finite left degree and the ones of finite right degree
correspond to irreducible epimorphisms and monomorphisms, respectively. Then we get the
result. �

An indecomposable A-module M is left (right) τ-stable if for all positive integer n the
module τnM (τ−nM) is defined. An indecomposable A-moduleM is τ-stable if it is both left
and right τ -stable.

In particular, if a τ -stable module M satisfy that τmM ≃ M for some positive integer m,
then we say that M is τ-periodic. Moreover, M is τ -periodic of rank m if τmM ≃ M and
τkM ≇M for ll 1 ≤ k < m.

A path M1 → M2 → . . . → Mn of irreducible morphisms with Mj ∈ indA for j = 1, ..., n
and n ≥ 3 is called sectional if for each j = 3, ..., n we have that Mj−2 6≃ τMj.

A path Y0 → Y1 → · · · → Yn in ΓA is presectional if for each i, with 1 ≤ i ≤ n − 1, such
that Yi−1 ≃ τYi+1 then there is an irreducible morphism Yi−1 ⊕ τYi+1 → Yi. Equivalently,
if τ−1Yi−1 ≃ Yi+1, then there is an irreducible morphism Yi → τ−1Yi−1 ⊕ Yi+1. Note that a
sectional path is also presectional.

A path Y0 → Y1 → · · · → Yn in ΓA is left almost presectional if Y0 → Y1 → · · · → Yn−1 is
presectional in ΓA and Yn ≃ τ−1Yn−2. Dually, we can define a right almost presectional path.

In [8], the first named author gave a generalization of the result proven in [1]. Moreover, as
a consequence of such result the author got Corollary 1.6.
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Theorem 1.5. Let A be an artin algebra and assume that there is a configuration of almost
split sequences as follows

X1

f1
##●

●●
●

τ−1X1

''❖❖
❖❖

X2

f2 %%▲
▲▲

▲▲
▲

99rrrrr
τ−1X2

X3

77♦♦♦♦♦♦
τ−1Xn−2

''PP
PP

P

Xn−1

fn−1 ((◗◗
◗◗

◗◗
◗

66♠♠♠♠♠
Xn+1

Xn
fn

66♠♠♠♠♠♠♠

where f1 : X1 → X2, . . . , fn : Xn → Xn+1 are irreducible morphisms between indecomposable
A-modules with f1 . . . fn−1 in a left almost pre-sectional path such that fn−1 . . . f1 /∈ ℜn. Let
hi : Xi → Xi+1 be irreducible morphisms for i = 1, . . . , n such that 0 6= hn...h1 ∈ ℜn+1. Then,
hn...h1 ∈ ℜn+3.

Corollary 1.6. Let A be an artin algebra and hi : Xi→Xi+1 be irreducible morphisms with
Xi ∈ indA for i = 1, 2, 3 such that h3h2h1 ∈ ℜ4(X1,X4). Then, h3h2h1 ∈ ℜ6(X1,X4).

1.7. Let A be an algebra such that A ∼= kQA/IA. The algebra A is called a string algebra
provided:

(1) Any vertex of QA is the starting point of at most two arrows.
(1’) Any vertex of QA is the ending point of at most two arrows.
(2) Given an arrow β, there is at most one arrow γ with s(β) = e(γ) and γβ /∈ IA.
(2’) Given an arrow γ, there is at most one arrow β with s(β) = e(γ) and γβ /∈ IA.
(3) The ideal IA is generated by a set of paths of QA.

Let A = kQA�IA be a string algebra. A string in QA is either a trivial path εv with
v ∈ Q0, or a reduced walk C = c1 . . . cn of length n ≥ 1 such that no sub-walk ci . . . ci+t nor
its inverse belongs to IA. We say that a string C = c1 . . . cn is direct (inverse) provided all
ci are arrows (inverse of arrows, respectively). We consider the trivial walk εv a direct as well
as an inverse string.

We say that a string C has length n if the number of arrows and inverse of arrows in its
composition is n.

For each string C = c1 . . . cn in QA, an indecomposable string A-module M(C) is defined.
Conversely, given M an indecomposable string A-module there exists a ”unique” string C such
thatM =M(C) =M(C−1). The band modules are defined over strings C such that all powers
Cn, with n ∈ N are defined, see [6]. Every module over a string algebra is defined either as
a string module or as a band module, see [6]. Moreover, if A is a representation-finite string
algebra then all the indecomposable A-modules are strings ones.

We say that a string C starts in a deep (on a peak) provided there is no arrow β such
that β−1C (βC, respectively) is a string. Dually, a string C ends in a deep (on a peak)
provided there is no arrow β such that Cβ (Cβ−1, respectively) is a string.
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By [6] we know that given a string algebra A then α(Γ) ≤ 2. Moreover, the authors also
described all the almost split sequences of modA in terms of strings.

Consider I(u) to be the injective module corresponding to the vertex u ∈ (QA)0. Then,
I(u) = M(D1D2) where D1 is a direct string starting on a peak and D2 is an inverse string
ending on a peak.

Dually, if P (u) is the projective corresponding to u ∈ Q0 then P (u) = M(C1C2) where C1

is an inverse string and C2 is a direct string. Moreover, C1C2 is a string that starts and ends
in a deep.

For a detail account on these algebras see [6] and for general Auslander-Reiten theory we
refer the reader to [2] and [3].

2. General results

Consider the following family of quivers Qn

1α 99
β1 // 2

β2 // . . .
βn // n+ 1

for n ≥ 2 and the ideal I =< α2, β1β2 >. We denote the algebras kQn/I by (W (n), I).

Fix an integer n ≥ 3, and consider any algebra A ≃ (W (n), I). In such algebras there is
a composition of n irreducible morphisms hi : Xi → Xi+1 for i = 1, . . . , n between indecom-
posable A-modules such that hn . . . h1 ∈ ℜn+3(X1,Xn+1)\ℜ

n+4(X1,Xn+1), with hn . . . h2 ∈
ℜn(X2,Xn+1).

We illustrate the above situation in the next example.

Example 2.1. Consider the algebra A ≃ (W (3), I). The Auslander-Reiten quiver ΓA is the
following:

P2

$$❍
❍❍

❍❍

P3

::✉✉✉✉✉

$$■
■■

■■
I3

f1 %%❏
❏❏

❏❏

P4

::✉✉✉✉✉
S3

::✈✈✈✈✈
S2

f2 %%❑
❑❑

❑❑
I2

%%❑
❑❑

❑❑
❑

P1
f3

::✉✉✉✉✉

g1 $$■
■■

■■
I1

%%❑❑
❑❑

❑❑

τM
g3

99sssss

%%❑
❑❑

❑❑
M

99ssssss

g2 %%❑❑
❑❑

❑ S1

S1

::✉✉✉✉✉
τM

99sssss

where we identify the modules which are the same.
Consider the irreducible morphisms f1 : I3 → S2, f2 : S2 → P1 and f3 : P1 → I2.
We define h2 : S2 → P1 as follows h2 = f2 + g3g2g1f2, where g1 : P1 → M , g2 : M → τM

and g3 : τM → P1 are irreducible morphisms. Then h2 is irreducible. Indeed, otherwise,
h2 ∈ ℜ2(S2, P1). Therefore, f2 ∈ ℜ2(S2, P1) a contradiction since f2 is an irreducible morphism
between indecomposable modules. Note that the composition f3h2f1 ∈ ℜ6(P2, I2)\ℜ

7(P2, I2),
but the composition f3h2 ∈ ℜ3(I3, I2).
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We are interested in finding three irreducible morphisms between indecomposable A-modules
such that their composition belongs to ℜ6\ℜ7, and moreover, with the property that the
composition of two of such morphisms does not belong to ℜ3.

In Section 4, we shall prove that if A is a string algebra then there are not irreducible
morphisms hi for i = 1, 2, 3 between indecomposable A-modules in ℜ6\ℜ7, with h2h1 /∈ ℜ3 and
h3h2 /∈ ℜ3.

Throughout this paper, we shall prove all our results for the composition of three irreducible
morphisms hi for i = 1, 2 and 3, such that dl(h3) = 2. We observe that, with similar arguments
one can prove the results for the case where dr(h3) = 2.

Now, we show that if for some artin algebra A, there are morphisms as described above,
then there must be a cycle of irreducible morphisms between indecomposable A-modules of
length three.

Proposition 2.2. Let A be an artin algebra and let f1 : X → Y, f2 : Y → W, and f3 :
W → V be irreducible morphisms between indecomposable A-modules such that f3f2f1 ∈
ℜ6(X,V )\ℜ7(X,V ) with f2f1 /∈ ℜ3(X,W ) and f3f2 /∈ ℜ3(Y, V ). Then, there exists a cycle of
length three.

Proof. Since f3f2f1 ∈ ℜ6(X,V )\ℜ7(X,V ), then there is a path ψ of irreducible morphisms

ψ : X
g1 // A1

g2 // A2

g3 // A3

g4 // A4

g5 // A5

g6 // V

such that ψ /∈ ℜ7(X,V ). Moreover, since 0 6= f3f2f1 ∈ ℜ4(X,V ), f2f1 /∈ ℜ3(X,W ) and
f3f2 /∈ ℜ3(Y, V ) then by [10, Theorem 2.2] there is a configuration of almost split sequences
as follows:

(1) X

h1
$$■

■■
■■

Z

$$❏
❏❏

❏❏

Y

h2
$$❏

❏❏
❏❏
h4

::ttttt
V

W h3

::ttttt

such that h3h2h1 = 0, α′(X) = 1 and α′(Y ) = 2 or its dual.
By [11, Lemma 2.3] and the fact that dl(h4) <∞, the dimension of the irreducible morphisms

involved in (7) is one. Since α′(X) = 1 and g1 : X → A1 is irreducible then A1 ≃ Y .
We claim that A2 ≃ W . In fact, if A2 ≃ Z then g1 = α1h4 + µ1 and g2 = α2h4 + µ2 with

α1, α2 ∈ k∗ and µ1, µ2 ∈ ℜ2. Since h4h1 = 0 we have that g2g1 = α2h4µ1 + α1µ2h1 + µ2µ1 ∈
ℜ3(X,Z). Therefore, we get that ψ ∈ ℜ7(X,V ) a contradiction to our assumption. This
establishes our claim.

With similar arguments as above we can prove that A3 6≃ V .
On the other hand, since α(V ) = 2 and there are irreducible morphisms A5 → V , Z → V

and W → V , then A5 ≃ Z or A5 ≃ W . If A5 ≃ W is easy to see that there is a cycle
W → A3 → A4 → W of length three. Now, if A5 ≃ Z, since α(Z) = 1 then A4 ≃ Y . Hence,
the path ψ is as follows:

ψ : X
g1 // Y

g2 // W
g3 // A3

g4 // Y
g5 // Z

g6 // V.
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Then, there is a cycle Y → W → A3 → Y in modA of length three. �

Next, we present a characterization for the existence of cycles of length three in modA.

Theorem 2.3. Let A be an artin algebra. The following conditions are equivalent.

(a) There is a cycle in modA which is a composition of irreducible morphisms between
indecomposable A-modules of length three.

(b) There is an indecomposable not projective A-module M and an irreducible morphism
from M to τ M .

Proof. (a) ⇒ (b). By hypothesis there is a cycle of irreducible morphisms between indecom-
posable A-modules of length three. LetM →M1 →M2 →M be such a cycle. By [5, Theorem
7], any path of the form M → M1 → M2 → M → M1 is not sectional. Therefore, one of the
following conditions hold.

(1) M ≃ τM2;
(2) M1 ≃ τM ; or
(3) M2 ≃ τM1.

In the former case, there is an irreducible morphism from M2 to τM2. In case (2) there is
an irreducible morphism from M to τM . Finally, in the latter case, we have an irreducible
morphism M1 to τM1.

In conclusion, in all the cases, there is an indecomposable A-module which is not projective
and an irreducible morphism from that module to the Auslander-Reiten translate of such a
module, proving (b).

(b) ⇒ (a). Let M be a module as in Statement (b). First, suppose that M is not injective.
Then τ−1M is defined and there is an irreducible morphism from τM to τ−1M . Moreover,
there is an irreducible morphism from τ−1M to M . Hence there is a path of irreducible
morphisms between indecomposable A-modules

τ−1M →M → τM → τ−1M

which is a cycle in modA of length three.
Secondly, if M is injective, then τM is not projective. In fact, otherwise, we get to the

contradiction that the irreducible morphism from M to τM is both a monomorphism and an
epimorphism. Hence, τ2M is defined.

With similar arguments as before, there is an irreducible morphism from τ2M to M and an
irreducible morphism from τM to τ2M . Therefore, there is a path of irreducible morphisms

M → τM → τ2M →M

which is clearly a cycle of length three, getting (a). �

Remark 2.4. We observe that for any positive integer n, condition (b) state below implies
condition (a).

(a) There is a cycle in modA which is a composition of irreducible morphisms between
indecomposable A-modules of length 2n+ 1.

(b) There are indecomposable not projective A-modules τ iM for i = 1, . . . , n − 1 and an
irreducible morphism from M to τnM .
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Proposition 2.5. Let A be an artin algebra. Consider an indecomposable A-module M such
that there is an irreducible morphism from M to τ M . If M is τ -stable, then M is τ -periodic
of rank three.

Proof. Consider M an indecomposable τ -stable A-module such that there is an irreducible
morphism from M to τM . Assume that M is not τ -periodic. Then for all integer n, the
modules τnM are defined. Moreover, for all integers r and s such that r 6= s, then τ sM 6≃ τ rM .

Since there is an irreducible morphism fromM to τM , then there is an irreducible morphism
from τkM to τk+1M for every integer k. Furthermore, there is an irreducible morphism from
τ2M to M . Hence, for all integer k there is an irreducible morphism from τkM to τk−2M .

Consider a full subquiver Γ of ΓA consisting of modules of the form τkM for all integer k.
Observe that all the modules in Γ are neither projective nor injective. Then for all module
τkM in Γ, we have that the morphism τkM → τk+1M ⊕τk−2M is irreducible. Since τk+1M 6≃
τk−2M , then all the almost split sequences in Γ have at least two indecomposable middle terms.
By Theorem [15, Teorema 2.3] there are not oriented cycles in Γ, a contradiction to Theorem
2.3. Then M is τ -periodic.

We claim that M has τ -period three. In fact, let n be the τ -period of M , that is, M ≃ τnM
and M 6≃ τkM for 1 ≤ k < n. Since there are irreducible morphisms from M to τM and from
τ2M to M and there are not loops in ΓA, then n > 2.

On the other hand, since there is an irreducible morphism M to τM there is a cycle in ΓA
of the form

ψ :M → τM → τ2M → . . .→ τn−1M → τnM ≃M.

By [5, Theorem 7], we know that the path M
ψ
 M → τM is not sectional. Then τkM ≃

τ(τk+2M) ≃ τk+3M for some k ≤ n. In conclusion, for any k satisfying the above condition,
we have that M ≃ τ3M , proving the result. �

Remark 2.6. In case that M is an indecomposable τ -stable A-module such that there is an
irreducible morphism from M to τnM for n ≥ 3, then M is τ -periodic of rank n+ 3.

3. On some string Algebras

We shall present some string algebras such that their module category has an irreducible
morphism from M to τ M , with M an indecomposable module. This results shall be fun-
damental to prove that if we consider a string algebra A then there are not three irreducible
morphisms between indecomposable A-modules in ℜ6\ℜ7, when the composition of two of then
behaves well.

We start given a characterization of the string algebras which have an irreducible morphism
from M to τ M , where M is an indecomposable not τ -stable module.

Proposition 3.1. Let A = kQA/IA be a string algebra. The following conditions are equiva-
lent.

(1) There is an indecomposable not τ -stable A-module M , and an irreducible morphism
from M to τ M .

(2) The quiver QA has one of the following full subquivers.
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(a)

Q̃1 : aα 99
β

// x

with αn ∈ IA for n ≥ 2, and αβ ∈ IA. If there is an arrow δ : x→ y in QA, then
βδ ∈ IA. Moreover, there are no arrows in QA going out or coming in from the

vertices of Q̃1; or
(b)

Q̃2 : x
β

// a αee

with αn ∈ IA for n ≥ 2, and βα ∈ IA. If there is an arrow δ : y → x in QA, then
δβ ∈ IA. Moreover, there are no arrows in QA going out or coming in from the

vertices of Q̃2; or
(c)

Q̃3 : • •
γm

""❊
❊❊

❊❊

1

γ1 <<②②②②② α // •
β

// a

with m ≥ 1, αβ ∈ IA and γ1 . . . γmβ /∈ IA . If there is an arrow δ : a→ y in QA,
then γ1 . . . γmβδ ∈ IA. If there is an arrow λ : • → 1 in QA, then λγ1 . . . γm ∈ IA.
Moreover, the vertex a is not the end point of any other arrow; or

(d)

Q̃4 : • •
γm

""❊
❊❊

❊❊

a
β

// •

γ1 <<②②②②② α // 1

with m ≥ 1, βα ∈ IA and βγ1 . . . γm /∈ IA. If there is an arrow δ : y → a in QA,
then δβγ1 . . . γm ∈ IA. If there is an arrow λ : 1 → • in QA, then γ1 . . . γmλ ∈ IA.
Moreover, the vertex a is not the start point of any other arrow.

Proof. Let M be an indecomposable A-module, not τ -stable, and such that there is an irre-
ducible morphism from M to τ M . Since M is not τ -stable then there is an integer m such
that τmM is either projective or injective.

Without loss of generality, we may assume that τmM = Ia where Ia is the injective cor-
responding to the vertex a in QA. Moreover, with our notations, we have that there is an
irreducible morphism from Ia to τIa.

Since A is a string algebra, by [6] we know that Ia = M(D1 D2) with D1 a direct string
starting on a peak and D2 an inverse string ending on a peak. Assume that τIa = M(D1),
where D1 = αr . . . α2 if D1 = αr . . . α1.

Now, depending on the string D1, we shall analyze the possible almost split sequences
starting in M(D1).

Firstly, assume that D1 does not start on a peak and neither ends on a peak. Then the
almost split sequences starting in M(D1) is as follows:

0 →M(αr . . . α2) →M(C−1βαr . . . α2)⊕M(αr . . . α2γ
−1C ′) →M(C−1βαr . . . α2γ

−1C ′) → 0.

Therefore Ia =M(C−1βαr . . . α2γ
−1C ′). Since Ia is injective then l(C) = l(C ′) = 0. Moreover,

since l(C) = 0, then s(β) is not the start point of any other arrow in QA. Similarly, since
l(C ′) = 0 then s(γ) is not the start point of any other arrow in QA. Then we conclude that
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Ia =M(αr . . . α1D2) =M(βαr . . . α2γ
−1)

with αi = β for all i = 1, . . . , r, βr+1 ∈ IA, and γβ ∈ IA. Moreover, if there is an arrow
δ : • → s(γ) then δγ ∈ IA. Hence in QA there is a full subquiver of the following form:

x
γ

// a βee

with βr+1 ∈ IA for , r ≥ 1 and γβ ∈ IA.
Secondly, suppose that D1 starts and ends on a peak. In such a case M(D1) is injective,

getting a contradiction to the fact that τ−1M(D1) = Ia.
Now, suppose that D1 does not start on a peak, but ends on a peak. Then the almost split

sequence starting in M(D1) is as follows:

0 →M(αr . . . α2) →M(C−1βαr . . . α2)⊕M(αr . . . α3) →M(C−1βαr . . . α3) → 0.

Then Ia = M(C−1βαr . . . α3) with l(C) = 0. Then there is a path of r − 1 arrows, while D1

has r, a contradiction.
Finally, assume that D1 starts on a peak and does not end on a peak. In this case, since D1

is a direct string then the almost split sequence starting inM(D1) has only one indecomposable
middle term and it is as follows:

0 →M(αr . . . α2) →M(αr . . . α2β
−1C) →M(C) → 0

with C a direct string ending in a deep. Then Ia = M(C) = M(αr . . . α1) is uniserial. Hence
QA has a subquiver of the form

• •
α2

""❊
❊❊

❊❊

1

αr
<<②②②②② β

// •
α1 // a

with βα1 ∈ IA. In case that there is an arrow λ : • → 1 then λαr . . . α2 ∈ IA, because αr . . . α2

starts on a peak. Note that in this case, αi can be all trivial for i = 2, . . . , r. In such a case,
we have a subquiver as follows:

•β 99
α // a

where βα ∈ IA (otherwise, Ia 6= M(α)) and βn ∈ IA (in order to be a finite dimensional
algebra).

With a similar analysis as before and assuming that τmM is projective, we obtain the
subquivers (a) and (d).

For the converse, it is enough to show that for each configuration there is an indecomposable
A-module M and an irreducible morphism from M to τ M . �

As an immediate consequence of Proposition 3.1, we get the following corollary.

Corollary 3.2. With the notation introduced in Proposition 3.1, the following conditions hold.

(1) In Q̃1 there are irreducible morphisms from Ix to τIx and from τ−1Pa to Pa.

(2) In Q̃2 there are irreducible morphisms from Ia to τIa and from τ−1Px to Px.

(3) In Q̃3 there is an irreducible morphism from Ia to τIa.
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(4) In Q̃4 there is an irreducible morphism from τ−1Pa to Pa.

Example 3.3. Let A be the algebra given by the presentation

2
γ2

!!❉
❉❉

❉❉

1

γ1 ==③③③③③ α // 3
β

// 4

with I =< αβ >. Let Γ be a component of ΓA having the injective I4. Then Γ is as follows:

I4
''PP

PPP

τI4
''❖❖

❖❖
I4

''❖❖
❖❖

❖

τ3I4
''◆◆

◆

77♦♦♦♦
τ2I4

''◆◆
◆

77♦♦♦♦
τI4

''◆◆
◆◆

I4
&&▼▼

▼▼

τ4I4
''◆◆

◆

77♣♣♣
τ3I4

''◆◆
◆

77♣♣♣♣
τ2I4

''◆◆
◆

77♣♣♣♣
τI4

τ6I4

77♣♣♣
τ5I4

77♣♣♣
τ4I4

77♣♣♣
τ3I4

88qqq

where we identify the modules in Γ which are the same. Observe all the modulesM that belong
to the sectional path starting in I4 have the property that there is an irreducible morphism
from M to τM .

Now, we concentrate our attention in the algebras which have an irreducible morphism from
M to τM , where M is an indecomposable τ -stable module.

Proposition 3.4. Let A = kQA/IA be a string algebra. The following conditions are equiva-
lent.

(1) There is a τ -stable indecomposable A-module M with α′(M) = 1 and an irreducible
morphism M → τM .

(2) The quiver QA contains one of the following full subquivers:
i)

1α 99
β

// 2

with α2 ∈ IA and αβ /∈ IA. Moreover, there are no arrows coming in the vertex
1, if there is an arrow λ : 2 → • then βλ ∈ IA and 2 is not the end point of any
other arrow; or

ii)

1α 99 2
β

oo

with α2 ∈ IA and βα /∈ IA. Moreover, there are no arrows going out from the
vertex 1, if there is an arrow λ : • → 2 then λβ ∈ IA and 2 is not the starting
point of any other arrow.

Proof. Let M be an indecomposable A-module as in (1). Since α′(M) = 1 by [6], we get
that M = M(γ−1

1 . . . γ−1
r ) = M(B−1

2 ) and τM = N(β0) = M(δ−1
s . . . δ−1

1 β0γ
−1
1 . . . γ−1

r ) =

M(B−1
1 β0B

−1
2 ). Observe that τM can not be the starting of an almost split sequence with

indecomposable middle term. Hence, the almost split sequence starting in τM has two inde-
composable middle terms.
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Now, we shall built such a sequence. We know that the string B−1
1 βB−1

2 ends on a peak.
Then we analyze two cases:

(a) if B−1
1 β0B

−1
2 starts on a peak; or

(b) if B−1
1 β0B

−1
2 does not start on a peak.

Assume that (a) holds, then there is no λ ∈ Q1 such that λB−1
1 β0B

−1
2 is a string. Since

τ−1M is not injective, then s ≥ 1. The almost split sequence starting in τM is as follows:

0 →M(B) →M(B−1
1 )⊕M(δ−1

s−1 . . . δ
−1
1 β0B

−1
2 ) →M(δ−1

s−1 . . . δ
−1
1 ) → 0.

Therefore

(2) M =M(B−1
2 ) =M(δ−1

s−1 . . . δ
−1
1 ).

Hence γ−1
1 . . . γ−1

r = δ−1
s−1 . . . δ

−1
1 . Then r = s − 1 and γi = δs−i. If r ≥ 1 then there is a

subquiver of the form:

• •
γ1=δs−1

""❊
❊❊

❊❊

1

γr=δ1 <<②②②②② β0 // •
δs // •

where β0δs ∈ IA since γ1δs /∈ IA. Observe that since the string B−1
2 ends on a peak and

B−1
2 = δ−1

s−1 . . . δ
−1
1 then B−1

1 = δ−1
s . . . δ−1

1 also ends on a peak.

On the other hand, since we assume (a) then B−1
1 β0B

−1
2 starts on a peak and therefore

B−1
1 starts on a peak. Then M(B−1

1 ) is injective since B−1
1 starts and ends on a peak, a

contradiction to the fact that M is τ -stable and M(B−1
1 ) = τ M .

Then r = 0 and B−1
2 = e(β0) and B−1

1 = δ1. From (2) we get that B−1
2 = e(β0) = s(β0),

and therefore β0 is a loop. Since e(β0) is not the end point of any other arrow, we have that if
β0δ1 ∈ IA then M(δ1) is injective getting a contradiction. Thus β0δ1 /∈ IA and then β20 ∈ IA.
Then in QA we have a subquiver of the form:

1β0 99
δ1 // 2

such that β20 ∈ IA, β0δ1 /∈ IA, there are no arrows coming in or going out of the vertex 1, if
there is an arrow λ : e(δ1) → • then δ1λ ∈ IA and e(δ1) is not the end point of any other arrow,
since the string B−1

1 β0B
−1
2 = δ−1

1 β0 starts on a peak.

Assume now, that B−1
1 β0B

−1
2 satisfies (b). That is, there is a an arrow λ ∈ Q1 such that

λB−1
1 β0B

−1
2 . In this case, the almost split sequence starting in B−1

1 β0B
−1
2 is as follows:

0 →M(B−1
1 β0B

−1
2 ) →M(B−1

1 )⊕M(D−1λB−1
1 β0B

−1
2 ) →M(D−1λB−1

1 ) → 0.

Then M = M(B−1
2 ) = M(D−1λB−1

1 ). In this case, we obtain that B−1
2 = B1λ

−1D. Thus,

we deduce that B1 and D are trivial and B−1
2 = λ−1. Since D is trivial, s(λ) is not the starting

point of any other arrow. Similarly, since B1 is trivial then s(β0) is not the starting point of
any other arrow. Furthermore, since the string λβ0λ

−1 is defined, β0 is a loop and β20 ∈ IA
because β0λ /∈ IA. Then we have a subquiver as follows:
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1β0 99 2
λ

oo

with β20 ∈ IA, λβ0 /∈ IA, and where there are not arrows going out the vertex 1, and if there is
ρ : • → 2 then s ρλ ∈ IA and 2 is not the starting point of any other arrow. �

4. On the composition of three irreducible morphisms

We shall prove several lemmas in order to prove the main result of this work.

Lemma 4.1. Let A be a string algebra. A configuration of almost split sequences as follows:

(3) X

f1
##●

●●
● Z

##❍
❍❍

❍

Y

f2
##●

●●
●
f

;;✈✈✈✈
U

&&▲▲
▲▲

W

g1 ##❋
❋❋

❋❋
f3

;;✇✇✇✇
τ−1W

''❖❖
❖❖

❖

L

g2 &&▲▲
▲▲

▲▲

s1

99ssssss
τ−1L

%%❑
❑❑

❑❑

τL

g3 ''PP
PP

PP
P

s2

77♦♦♦♦♦♦
L

W
g1

99sssss

is a forbidden configuration in ΓA.

Proof. Since f is an epimorphism then g1 : W → L so is. The A-modules X and Z are the end
points of an almost split sequence with indecomposable middle term Y . Then Y = N(β0) =
M(δ−1

s . . . δ−1
1 β0γ

−1
1 . . . γ−1

r ) =M(C) with C a string that starts in a deep and ends in a peak.

Moreover, X =M(γ−1
1 . . . γ−1

r ) and Z =M(δ−1
s . . . δ−1

1 ).
By [6] and from (3), we know that f2, g1, g2 and g3 are the irreducible morphisms obtained

by analyzing the beginning of the string corresponding to the domain of such morphisms.
We start considering the case that C starts on a peak. Then C starts and ends on a

peak. Since Y is not injective, then s ≥ 1. Hence, W = M(δ−1
s−1 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ), U =

M(δ−1
s−1 . . . δ

−1
1 ). Consider D1 = δ−1

s−1 . . . δ
−1
1 β0γ

−1
1 . . . γ−1

r . Then W =M(D1) =M(D−1
1 ).

Since g1 is an epimorphism, then the string corresponding toW starts on a peak (otherwise,
g1 is a monomorphism). Therefore, δ−1

s−1 . . . δ
−1
1 β0γ

−1
1 . . . γ−1

r is a string that starts and ends

on a peak. Now, since W is not injective then s ≥ 2. Thus, L = M(δ−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r )

and τ−1W =M(δ−1
s−1 . . . δ

−1
1 ).

Now, we analyze how is the string corresponding to τL. In order to do that, we may consider
how is the beginning of the string corresponding to L. Assume that δ−1

s−2 . . . δ
−1
1 β0γ

−1
1 . . . γ−1

r

does not start in a peak. Then τL = M(ν−1
t . . . ν−1

1 β1δ
−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ) with t ≥ 1 or

τL =M(β1δ
−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ).

Assume that τL = M(ν−1
t . . . ν−1

1 β1δ
−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ) with t ≥ 1. Suppose that

ν−1
t . . . ν−1

1 β1δ
−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r starts on a peak. Since t ≥ 1, then there exists an irre-

ducible morphism from τL to M(ν−1
t−1 . . . ν

−1
1 β1δ

−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ) and, by construction,
this module is W .
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Since D1 has only one direct arrow then D1 6= ν−1
t−1 . . . ν

−1
1 β1δ

−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r . If

D−1
1 = ν−1

t−1 . . . ν
−1
1 β1δ

−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r and since s ≥ 2 then the arrows γi are trivial.

Thus t ≥ 2. Then D−1
1 has length s, while ν−1

t−1 . . . ν
−1
1 β1δ

−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r has at least

length s + 1, a contradiction. Then ν−1
t . . . ν−1

1 β1δ
−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r does not start on a
peak. Therefore there is an irreducible morphism as follows:

τL →M(λ−1
k . . . λ−1

1 β2ν
−1
t . . . ν−1

1 β1δ
−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r )

where the length of such a string is different from the length of D1 (and D−1
1 ), proving that

this case is not possible.
Now, consider that τL = M(β1δ

−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ). If β1δ
−1
s−2 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r

does not start on a peak, then we can add an arrow and the string should have at least
length r + s + 1, while the string corresponding to W has length r + s, a contradiction. If
β1δ

−1
s−2 . . . δ

−1
1 β0γ

1
1 . . . γ

−1
r starts on a peak, since τL is not injective then s ≥ 3. Therefore,

there is an irreducible morphism from τL to M(δ−1
s−3 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ) where the length of
such a string and the string corresponding to W are different, proving that this case is not
possible.

Assume that the string corresponding to L starts on a peak. Then g2 is an epimorphism
and the string δ−1

s−2 . . . δ
−1
1 β0γ

−1
1 . . . γ−1

r starts and ends in a peak. Hence, s ≥ 3, otherwise L

is injective. Then τL =M(δ−1
s−3 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ).
By Lemma 1.4, since g1 and g2 are epimorphisms then g3 is a monomorphism. Since the

existence of g3 is due to the fact of how is the beginning of the string corresponding to τL, then
δ−1
s−3 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r does not start in a peak. Thus, there is an irreducible morphism from

τL toM(λ−1
k . . . λ−1

1 β1δ
−1
s−3 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ). It is clear that this string is different fromD1,

since D1 has only one arrow. Then we have that D−1
1 = λ−1

k . . . λ−1
1 β1δ

−1
s−3 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r .

Since s ≥ 3, this implies that the arrows γi are trivial. If s ≥ 4 then D−1
1 has at least three

arrows, a contradiction, because the obtained string has two arrows. Therefore s = 3 and, in
consequence, k = 1. Then λ−1

1 β1β0 = β−1
0 δ1δ2, and we get that β0 = δ2 and β−1

0 = λ−1
1 is a

string that starts in a deep. Note that the string δ−1
3 δ−1

2 = δ−1
3 β−1

0 is defined, hence we get a
contradiction. In conclusion, C can not start on a peak.

In case that C does not start on a peak, with similar arguments as above, we can conclude
that there is not possible to have a configuration of almost split sequences as in (3), whenever
A is a string algebra. �

Lemma 4.2. A configuration of almost split sequences as follows:

X

$$■
■■

■■
Z

%%❑
❑❑

❑❑

Y

$$■
■■

■■

99sssss
V

W |

$$■
■■

■■

::✉✉✉✉✉

L

with W an indecomposable injective A-module, L 6≃ τW an indecomposable injective A-module
such that there is an irreducible morphism from L to τL is not a possible configuration in ΓA.
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Proof. Since L is not injective then τ−1L is defined. The existence of an irreducible morphism
from L to τL, implies the existence of an irreducible morphism from τL to τ−1L. Moreover,
there is an irreducible morphism from τL to W . Since L 6≃ τW then α′(τL) = 2.

Assume that α′(L) = 2. Then there is a configuration of almost split sequences as follows:

(4) X

%%❑
❑❑

❑❑
Z

&&▼▼
▼▼

▼▼

Y

&&▼▼
▼▼

▼▼

77♣♣♣♣♣♣♣
V

W |
g

%%❑
❑❑

❑❑
❑

99rrrrrr
|P

&&▲▲
▲▲

▲

τL
&&▼▼

▼▼

88rrrrrr
L

$$■
■■

■■

f ;;✈✈✈✈✈
τ−1L

L

::✉✉✉✉✉

f $$❍
❍❍

❍❍
τ−1L

99rrrrr
τL

88qqqqqq

|P

88rrrrrr

Since W is injective, then g is an epimorphism. By (4), we know that f is an epimorphism.
On the other hand, since P is projective then f is a monomorphism, a contradiction. Hence,
α′(L) = 1.

Now, we analyze the string corresponding to such modules. Since X and Z are the start
and end terms of an almost split sequence with indecomposable middle term Y , then Y =
N(β0) =M(δ−1

s . . . δ−1
1 β0γ

−1
1 . . . γ−1

r ) =M(C) with C a string that starts on a deep and ends

on a peak. Moreover, X =M(γ−1
1 . . . γ−1

r ) and Z =M(δ−1
s . . . δ−1

1 ).
Firstly, assume that C starts on a peak. Then C starts and ends on a peak, and therefore,

since Y is not injective then s ≥ 1. Hence, W = M(δ−1
s−1 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ) and U =

M(δ−1
s−1 . . . δ

−1
1 ). Since W is injective then s − 1 = 0, W = M(β0γ

−1
1 . . . γ−1

r ) = M(D1) and
D1 is a string that starts and ends on a peak. If r = 0, then W/socW is indecomposable,
a contradiction to (4). Thus, r ≥ 1 and L = M(γ−1

2 . . . γ−1
r ) (if r = 1, L is simple). Since

α′(L) = 1, then τL = M(λ−1
k . . . λ−1

1 β1γ
−1
2 . . . γ−1

r ) and the string corresponding to τL starts
in a deep and ends on a peak. Now, we analyze the beginning of the string corresponding to
τL to determine the codomain of the irreducible morphisms whose domain is τL.

If λ−1
k . . . λ−1

1 β1γ
−1
2 . . . γ−1

r starts on a peak, since τL is not injective then k ≥ 1. Then there

is an irreducible morphism from τL to M(λ−1
k−1 . . . λ

−1
1 β1γ

−1
2 . . . γ−1

r ) and this module is W ,

therefore injective. Then we get that W =M(β1γ
−1
2 . . . γ−1

r ) and β1γ
−1
2 . . . γ−1

r has length r a
contradiction.

If λ−1
k . . . λ−1

1 β1γ
−1
2 . . . γ−1

r does not start on a peak, then there is an irreducible mor-

phism from τL to M(ǫ−1
l . . . ǫ−1

1 β2λ
−1
k . . . λ−1

1 β1γ
−1
2 . . . γ−1

r ), and this module should be in-

jective. Hence, there is an irreducible morphism from τL to M(β2β1γ
−1
2 . . . γ−1

r ). Clearly,

β2β1γ
−1
2 . . . γ−1

r is not equal to D1. Similarly, we can see that β2β1γ
−1
2 . . . γ−1

r is not equal to

D−1
1 .
Secondly, assume that C does not start on a peak. In this case, we have that W =

M(ν−1
t . . . ν−1

1 β1δ
−1
s . . . δ−1

1 β0γ
−1
1 . . . γ−1

r ). Since W is injective, then t = 0, s = 0 and W =

M(β1β0γ
−1
1 . . . γ−1

r ) =M(D2) with D2 is a string that starts and ends on a peak. Then r ≥ 1,
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otherwise, W/socW is indecomposable. Then L = M(γ−1
2 . . . γ−1

r ). Since α′(L) = 1, then

τL = M(λ−1
k . . . λ−1

1 β1γ
−1
2 . . . γ−1

r ) and the string corresponding to τL starts in a deep and
ends on a peak.

Again, if we analyze the beginning of the string corresponding to τL to determine the
codomain of the irreducible morphisms with domain τL, we can discard the case with similar
arguments as before. �

Lemma 4.3. A configuration of almost split sequences as follows:

X

$$■
■■

■■
Z

%%❑❑
❑❑

❑❑

Y

$$■
■■

■■

99sssss
V

W |

$$❍
❍❍

❍❍

::ttttt

L|

with W and L indecomposable injective A-modules such that there is an irreducible morphism
from L to τL is a forbidden configuration in ΓA.

Proof. Since there are not morphisms from an injective to a projective, then α′(L) = 1. More-
over, τL is not projective, then τ2L is defined and there is an irreducible morphism from τL
to τ2L. Since W is injective, then τ2L 6≃ W and therefore, α′(τL) = 2. Then there is a
configuration of almost split sequences as follows:

(5) X

%%❑
❑❑

❑❑
Z

&&▲▲
▲▲

▲▲

Y

%%❑
❑❑

❑❑

88qqqqqq
V

W |
g1

$$■
■■

■■

99sssss

τL

%%❑
❑❑

❑❑

g3 ::ttttt
L|

g2
$$❍

❍❍
❍❍

τ2L

::ttttt
τL

Since W →W is a cycle and g1, g2 are epimorphisms then by Lemma 1.4, g3 is a monomor-
phism.

Since X and Z are the start and end terms of an almost split sequence with indecomposable
middle term Y , then Y = N(β0) =M(δ−1

s . . . δ−1
1 β0γ

−1
1 . . . γ−1

r ) =M(C) with C a string that

starts in a deep and ends on a peak. Moreover, X =M(γ−1
1 . . . γ−1

r ) and Z =M(δ−1
s . . . δ−1

1 ).
Assume that C starts on a peak. Then C starts and ends on a peak and therefore, since Y is

not injective then s ≥ 1. Hence, W =M(δ−1
s−1 . . . δ

−1
1 β0γ

−1
1 . . . γ−1

r ), and U = M(δ−1
s−1 . . . δ

−1
1 ).

Since W is injective, then s− 1 = 0, W =M(β0γ
−1
1 . . . γ−1

r ) =M(D1) and D1 starts and ends
on a peak. If r = 0, then W/socW is indecomposable, a contradiction with (5). Then r ≥ 1
and L = M(γ−1

2 . . . γ−1
r ). Since L is injective, but not simple then r ≥ 2 and τL = L/socL =

M(γ−1
3 . . . γ−1

r ).

Since the irreducible morphism from τL to W is a monomorphism, then γ−1
3 . . . γ−1

r either
does not start on a peak or does not end on a peak. In the former case, there is an irreducible
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morphism from τL to M(λ−1
k . . . λ−1

1 β1γ
−1
3 . . . γ−1

r ) and this module is W and therefore, in-

jective. Then it is of the form M(β1γ
−1
3 . . . γ−1

r ) but the string corresponding to this module
has length r − 1, a contradiction. In the latter case, there is an irreducible morphism from
τL to M(γ−1

3 . . . γ−1
r β−1

2 ǫ1 . . . ǫl) and this module must be injective. Then it is of the form

M(γ−1
3 . . . γ−1

r β−1
2 ) but the string corresponding to this module is of length r− 1, a contradic-

tion.
Assume that C does not start on a peak. ThenW =M(ν−1

t . . . ν−1
1 β1δ

−1
s . . . δ−1

1 β0γ
−1
1 . . . γ−1

r ).

Since W is injective, then t = 0, s = 0 and W = M(β1β0γ
−1
1 . . . γ−1

r ) = M(D2) with D2

a string that starts and ends on a peak. Then r ≥ 1, otherwise, W/socW is indecom-
posable. Then L = M(γ−1

2 . . . γ−1
r ). Since L is injective but not simple, then r ≥ 2 and

τL = L/socL = M(γ−1
3 . . . γ−1

r ). With similar arguments as before, we get that this case is
not possible, proving the lemma. �

Lemma 4.4. A configuration of almost split sequences as follows:

X

$$■
■■

■■
Z

%%❑
❑❑

❑❑

Y

$$■
■■

■■

99sssss
V

W |

$$■
■■

■■

::✉✉✉✉✉

L

with W an indecomposable injective A-module, L ≃ τW and α′(L) = 2 is not a possible
configuration in ΓA.

Proof. Since α′(L) = 2 and W is injective, then there is an irreducible morphism from L to a
projective A-module P , where P 6≃ Y . Then there is a configuration of almost split sequences
as follows:

X

%%❏
❏❏

❏❏
Z

%%❑
❑❑

❑❑

Y

f
$$❏

❏❏
❏❏

99ssssss
V

L

g ##●
●●

●●

::✈✈✈✈✈
W |

##❍
❍❍

❍❍

::✉✉✉✉✉

|P

::✈✈✈✈✈
L

Since g is a monomorphism, then f is a monomorphism.
Since X and Z are the end points of an almost split with indecomposable middle term Y ,

then Y = N(β0) =M(δ−1
s . . . δ−1

1 β0γ
−1
1 . . . γ−1

r ) =M(C) with C a string that starts in a deep
and ends in a peak. Since f is a monomorphism, then the string corresponding to Y does not
start on a peak. Then W = M(λ−1

k . . . λ−1
1 β1δ

−1
s . . . δ−1

1 β0γ
−1
1 . . . γ−1

r ). Since W is injective,

then k = s = 0 and W =M(β1β0γ
−1
1 . . . γ−1

r ).

On the other hand, sinceW/socW is not indecomposable, then r ≥ 1 and L =M(γ−1
2 . . . γ−1

r ).
Moreover, there is an irreducible morphism from L to Y .
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If r = 1, then L =M(s(γ1)) is simple. There are irreducibles morphisms from L to modules
of the form M(ǫ−1

l . . . ǫ−1
1 β2). The strings corresponding to such modules are equal to C or

C−1. In any case, it is a contradiction.
Now, assume that r ≥ 2. If the string corresponding to L starts or ends on a peak, then

there is an irreducible morphism from L to a module whose string has length r − 3 while C
has length r + 2, a contradiction.

If γ−1
2 . . . γ−1

r does not start on a peak, then there is an irreducible morphism from L to

M(λ−1
k . . . λ−1

1 β2γ
−1
2 . . . γ−1

r ) and this module should be Y . If

λ−1
k . . . λ−1

1 β2γ
−1
2 . . . γ−1

r = C = β1γ
−1
1 . . . γ−1

r

then k = 0 and r = 1. Hence β2 = β1γ
−1
1 , a contradiction. Now, if

λ−1
k . . . λ−1

1 β2γ
−1
2 . . . γ−1

r = C−1 = γr . . . γ1β
−1
1

then k = 0 and r = 2 getting a contradiction with the length of the strings.
Finally, if γ−1

2 . . . γ−1
r does not end on a peak, then there is an irreducible morphism from L

to M(γ−1
2 . . . γ−1

r β−1
2 ǫ1 . . . ǫl) and this module should be Y . With a similar analysis as before,

we get that this case is not possible. �

Lemma 4.5. Let A be a string algebra, and Γ be a component of ΓA. Let I be an injective (non-
projective) A-module such that there exists an irreducible morphisms from I to τI with I ∈ Γ.
Then, there are not three irreducible morphisms between indecomposable modules f1 : X → Y ,
f2 : Y →W and f3 :W → V in Γ such that f3f3f1 ∈ ℜ6\ℜ7 and a configuration as follows:

(6) X

$$■
■■

■■
Z

$$❏
❏❏

❏❏

Y

$$❏
❏❏

❏❏

::ttttt
V

W

$$❍
❍❍

❍❍

::ttttt

I|

Proof. First, assume that A is representation-finite. Consider Q̃ as described in Proposition

3.1 (a) or (b). We only analyze (a), since (b) follows similarly. If Q̃ is the quiver

aα 99
β

// x

with αn = 0 for n ≥ 2 and αβ = 0, then by Corollary 3.2 we know that there exists an
irreducible morphism from Ix to τIx. Consider the configuration of almost split sequences that
involves such morphism:
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|Pa

&&▼▼
▼▼

▼▼
Ia|

%%▲▲
▲▲

▲

Px

99rrrrrr

&&▼
▼▼

▼▼
τM1

''❖❖
❖❖

❖

τM1

88♣♣♣♣♣

&&◆◆
◆◆

M1

88qqqqq

&&▲▲
▲▲

▲
τM2

τM2

88rrrrr
M2

77♦♦♦♦♦♦
τMn−2

''◆◆
◆◆

◆

Mn−2

66♥♥♥♥♥

''PP
PP

PP
τIx

τIx

88♣♣♣♣♣
Ix|

77♣♣♣♣♣♣♣

where we identify the modules which are the same. Observe that if there exist other arrows

which start or end in some point of Q̃, then the above configuration does not change. To obtain
(6), we conclude that n = 3. Below, we illustrate the situation.

|Pa

&&▲▲
▲▲

▲▲
Ia|

%%▲▲
▲▲

▲

Px
%%❑

❑❑
❑❑

99sssss
τM1

&&▼▼
▼▼

▼

τM1

&&▲▲
▲▲

▲

88qqqqq
M1

%%▲
▲▲

▲▲

88qqqqq
τIx

τIx

99sssss
Ix|

88rrrrr

Even though there are cycles of length three, it is not hard to see that there are not three
irreducible morphisms such that their composition is in ℜ6\ℜ7.

Now, if A is representation-infinite, by Proposition 3.1, we infer that Q̃ is of the form (c).

Then Q̃ is the quiver

• •
γm

""❊
❊❊

❊❊

1

γ1 <<②②②②② α // •
β

// a

with m ≥ 1, αβ = 0, and γ1 · · · γmβ /∈ IA, and there exists an irreducible morphism from Ia to
τIa. Let Γ be the component of ΓA such that Ia ∈ Γ. Then Γ is as follows:

Ia|
''◆◆

◆◆

τIa
&&◆◆

◆◆
Ia|

&&◆◆
◆◆

τ3Ia
&&◆◆

◆

88♣♣♣♣
τ2Ia

&&◆◆
◆

88♣♣♣♣
τIa

&&◆◆
◆◆

Ia|
&&▼▼

▼▼

τ4Ia
''◆◆

◆

88♣♣♣
τ3Ia

''◆◆
◆

88♣♣♣♣
τ2Ia

''◆◆
◆

88♣♣♣♣
τIa

τ6Ia

77♣♣♣
τ5Ia

77♣♣♣
τ4Ia

77♣♣♣
τ3Ia

88qqq
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Observe that if there exist other arrows which start or end in some point of Q̃, the quiver
Γ does not change. In this case, we do not have a configuration as (6) since τ4Ia is not an
injective module. Therefore, we dismiss this case. �

Now, we are in position to prove the main result of this paper.

Theorem 4.6. Let A be a string algebra. There are not irreducible morphisms f1 : X →
Y, f2 : Y → W, and f3 : W → V between indecomposable A-modules such that f3f2f1 ∈
ℜ6(X,V )\ℜ7(X,V ) with f2f1 /∈ ℜ3(X,W ) and f3f2 /∈ ℜ3(Y, V ).

Proof. Let f1 : X → Y, f2 : Y → W, and f3 : W → V be irreducible morphisms as in the
statement. By [10, Theorem 2.2] there is a configuration of almost split sequences as follows:

(7) X

h1
$$■

■■
■■

Z

$$❏
❏❏

❏❏

Y

h2
$$❏

❏❏
❏❏
h4

::ttttt
V

W h3

::ttttt

such that h3h2h1 = 0, α′(X) = 1 and α′(Y ) = 2 or its dual.
As we proved in Proposition 2.2, there exists a path of irreducible morphisms between

indecomposable modules as follows:

ψ : X
g1 // Y

g2 // W
g3 // A3

g4 // A4

g5 // A5

g6 // V

where A3 6≃ V and A3 6≃ X, otherwise, ψ ∈ ℜ7(X,V ). Moreover, there is cycle of length three
Y  Y or W  W , if A5 ≃ Z or A5 ≃ W , respectively. We claim that the first cycle is not
possible in our situation. In fact, assume that A5 ≃ Z, then A4 ≃ Y . Following [5, Theorem
7], the path Y →W → A3 → Y →W is not sectional. Thus,

(1) Y ≃ τA3, or
(2) W ≃ τY , or
(3) A3 ≃ τW.

If Y ≃ τA3 then A3 ≃ V contradicting that ψ /∈ ℜ7(X,V ).
If W ≃ τY , then there is a configuration as follows:

X

h1
$$■

■■
■■

Z

%%❑
❑❑

❑❑

Y

h2
$$❏

❏❏
❏❏

::ttttt
V

%%❏
❏❏

❏❏

W

99sssss

h3
%%❏❏

❏❏
❏ Y

A3
h4

::✉✉✉✉✉

with h4h3h2h1 = 0. Again, the dimension over k of the irreducible morphisms involved is one.
Then gi = αihi + µi, with αi ∈ k∗ and µi ∈ ℜ2 para i = 1, 2, 3, 4. Hence g4g3g2g1 ∈ ℜ5(X,Y )
a contradiction to the fact that ψ /∈ ℜ7(X,V ). Therefore, W 6≃ τY.

Finally, suppose that A3 ≃ τW . Then α′(A3) = 2, otherwise, α′(A3) = 1, and there is a
configuration of almost split sequences as follows:
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A3

h4 $$■
■■

■■
W

$$■
■■

■■

Y

h5 $$❏
❏❏

❏❏

::✉✉✉✉✉
V

X

99ttttt
Z h6

::ttttt

where h6h5h4 = 0. Since any irreducible morphisms gi between the involved modules is of the
form gi = αihi + µi, with αi ∈ k∗ and µi ∈ ℜ2 for i = 4, 5, 6 then g6g5g4 ∈ ℜ4(A3, V ), getting
that ψ ∈ ℜ7(X,V ), a contradiction. Thus α′(A3) = 2.

By Lemma 4.4, W is not an injective module, then there is a configuration of almost split
sequences as follows

X

h1
$$■

■■
■■

Z

%%❑
❑❑

❑❑

Y

h2
$$■

■■
■■

::ttttt
V

''◆◆
◆◆

◆

W

99ttttt

h3
$$❏

❏❏
❏❏

τ−1W

&&▼▼
▼▼

▼▼

A3

h4 ''◆◆
◆◆

◆◆
◆

88♣♣♣♣♣♣
W

$$■
■■

■■

Y

h5 ''❖❖
❖❖

❖❖
❖

77♣♣♣♣♣♣♣
V

Z h6

::ttttt

Since gi = αihi + µi, with αi ∈ k∗ and µi ∈ ℜ2 for i = 1, . . . , 6, then ψ ∈ ℜ7(X,V ), a
contradiction. Therefore A5 6≃ Z.

In consequence, A5 ≃W and the path ψ is as follows:

ψ : X
g1 // Y

g2 // W
g3 // A3

g4 // A4

g5 // W
g6 // V.

Observe, that there is a cycle ϕ :W →W of length three.
With a similar analysis as before, it is not hard to see that A3 6≃ τW and W 6≃ τA4. Then

A4 ≃ τA3. From Lemmas 4.2, 4.3 and 4.5 we have that W and A3 are not injective. Moreover,
if A3 is not injective then we get a contradiction to Lemma 4.1. Analyzing all the cases we get
that W 6≃ A5, proving the result. �

5. On the composition of n irreducible morphisms in ℜn+1 which does not

belong to the infinite radical

In this section, we show families of algebras, having n irreducible morphisms such that their
compositions belong to ℜn+t\ℜn+t+1, with n ≥ 3 and t ≥ 4, and moreover, with the condition
that the composition of n− 1 of them is not in ℜn.

We denote by (U(m,n − 1), I) the string algebras whose quiver is
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a2
γ2 // . . .

γm−1 // am γm

&&▲
▲▲

▲▲

1

γ1 ::✉✉✉✉✉

β1
##●

●●
●●

x

b2
β2

// . . .
βn−2

// bn−1
βn−1

99sssss

with I =< γm−1γm >, for m,n ≥ 2.
We shall prove that in the module category of such algebras there are n irreducible mor-

phisms with composition in ℜn+2m\ℜn+2m+1.

Remark 5.1. We define the following strings in U(m,n − 1):

(1) Gj = γ1 . . . γj, and Gj = γj . . . γm−1 for 1 ≤ j ≤ m− 1.

(2) Bi = β1 . . . βi, and Bi = βi . . . βn−1 for 1 ≤ i ≤ n− 1.

Note that Gm−1 = G1 and Bn−1 = B1.

To prove the results of this section, we recall the following notation introduced in [12].

Let A be a string algebra and let I =M(D1D2) be an indecomposable injective A-module,
where D1 = γs . . . γ1 is a direct string that starts on a peak, D2 = β−1

1 . . . β−1
r is an inverse

string that ends on a peak. We consider the following set of strings:

CD2
= {DD2 where either D is trivial or D = D′γ1 with D′ a string}.

In a similar way, we can define CD1
considering I =M(D−1

2 D−1
1 ).

Next, we recall the quiver Qeu defined in [12], whose vertices are the strings involved in the
sets CD1

and CD2
.

Let A ≃ kQ/I and consider the injective I(u), with u ∈ Q0. Then

(1) The vertices of (Qeu)0 are the strings C in Q such that e(C) = u, where C is either the
trivial walk εu or C = C ′α, with α ∈ Q1.

(2) If a = C and b = C ′ are two vertices of (Qeu)0, then there is an arrow from a → b in
Qeu if C ′ is the reduced walk of β−1C, for some β ∈ Q1.

Dually, we can consider an indecomposable projective A-module, define the set of strings
and the quiver Qsu, see [12].

The following results state below are essential to prove Theorem 5.7.

Lemma 5.2. Let A be the algebra (U(m,n − 1), I), with m,n ≥ 2. Consider the irreducible
morphisms ιam : radPam → Pam and θam : Iam → Iam/soc Iam , where Pam and Iam are
the projective and injective A-modules corresponding to the vertex am, respectively. Then
dr(ιam) = m+ n− 1. Moreover, dr(ιam) = dl(θam).

Proof. Consider (U(m,n − 1), I), with m,n ≥ 2, and the irreducible morphisms ιam and θam .
By [12, Proposition 3.2], we know that dl(θam) and dr(ιam) can be compute by the number of
vertices of the quivers Qeam and Qsam , respectively.

Recall that the vertices of the quiver Qeam are the strings C such that e(C) = am, and
C = εam or C is of the form C = C ′γm−1, with C

′ a string. With the notation of Remark 5.1,
the quiver Qeam is the following:
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G1

##●
●●

●●

}}③③
③③
③

G2

��

B
−1

1
G1

��
.

.

.

��

.

.

.

��
Gm−1

��

B
−1

n−2
G1

%%❑
❑❑

❑❑
❑

γmB
−1

n−1
G1

xxqqq
qq
q

εam
B

−1

n−1
G1

The cardinal of (Qeam)0 is m + n. By [12, Proposition 3.2], dl(θam) = card((Qeam)0) − 1.
Hence dl(θam) = m+ n− 1.

Dually, the quiver Qsam is the following:

γmB
−1

1

%%❏
❏❏

❏❏
❏

xx♣♣♣
♣♣
♣

γmB
−1

1
G1

��

γmB
−1

2

��
.

.

.

��

.

.

.

��
γmB

−1

1
Gm−2

��

γmB
−1

n−1

""❋
❋❋

❋❋
❋

εam

��⑧⑧
⑧⑧
⑧⑧

γmB
−1

1
Gm−1 γm

where Qsam has m + n vertices. Therefore, by [12, Proposition 3.2] we have that dr(ιam) =
m+ n− 1, proving the result. �

Remark 5.3. Observe that γmB
−1

1 Gm−1 = γmB
−1
n−1G1 is a vertex in both quivers Qeam and

Qsam . We denote by L the A-module whose string is the mentioned one.

Given X,Y and Z indecomposable modules, we denote by X  Y  Z a path of irreducible
morphisms between indecomposable modules from X to Z, going through Y .

Proposition 5.4. Let A = (U(m,n − 1), I), with m,n ≥ 2, and Pam , Sam and Iam be the
projective, simple, and injective module corresponding to the vertex am, respectively. Let L be

the string module M(γmB
−1

1 Gm−1). Then, there is a sectional path Pam  L Sam  L  
Iam in modA. Moreover, the cycle L Sam  L has length 2m.

Proof. Consider the irreducible morphism θam : Iam → Iam/socIam . The module Iam/socIam
is indecomposable. Moreover, Ker(θam) = Sam and by Lemma 5.2, dl(θam) = m + n − 1. By
[12, Proposition 2.5], there is a configuration of almost split sequences as follows:
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Sam

f1
%%❏❏

❏❏
❏

τ−1Sam
((❘❘

❘❘
❘

M1

88♣♣♣♣♣♣

f2 ''◆◆
◆◆

◆◆
◆ τ−1M1

M2

66❧❧❧❧❧❧❧❧
τ−1Nm+n−3

**❚❚❚
❚❚❚

Mm+n−2

fm+n−1 ))❚❚
❚❚❚

❚❚❚

55❦❦❦❦❦❦
Iam/socIam

Iam
θam

44✐✐✐✐✐✐✐✐✐

where the path Sam →M1 → . . .→Mm+l−2 → Iam is sectional.
On the other hand, the modules of such a path are in correspondence with the string modules

M(C), where C are vertices of Qeam . In particular, L = M(γmB
−1

1 Gm−1), is a module that
appears in such a path. Moreover, L 6= Sam and L 6= Iam . Hence, the path is of the form
Sam  L Iam .

We claim that the length of the path Sam  L is m. To prove our claim, we order the strings
of the set Cεam as follows; Ci < Ci+1 if there is an irreducible morphism M(Ci) → M(Ci+1).
To determine such order in the strings, we may analyze if the strings start on a peak.

Let C0 = ε−1
am . Since C0 does not start on a peak, we define C1 = γm−1ε

−1
am = Gm−1. Then

there is an irreducible morphism Sam =M(C0) →M(C1).
Observe that for 2 ≤ j ≤ m− 1, the strings Gj = γj . . . γm−1 do not start on a peak. More-

over, following [6], we observe that there exist irreducible morphisms M(G2) → M(B−1
n−1G1)

and M(Gj) → M(Gj−1), for 3 ≤ j ≤ m − 1. Continuing with the order in the set Cεam , for

2 ≤ i ≤ m− 2, we define the strings Ci = Gm−i and Cm−1 = B−1
n−1G1.

Finally, Cm−1 does not start on a peak. Then Cm = γmB
−1
n−1G1 and M(Cm) = L. Hence,

we have a path of irreducible morphisms as follows

(8) Sam =M(C0) →M(C1) → . . .→M(Cm−1) →M(Cm) = L  Iam

where the path Sam  L has length m.
Dually, if we consider the irreducible morphism ιam : radPam → Pam then radPam is in-

decomposable and Coker(ιam) = Sam . By [12, Proposition 2.5] and Lemma 5.2, there is a
sectional path Pam  Sam of length m+n−1. Again, the modules of such a path are in corre-

spondence with the vertices of Qsam . In particular, L =M(γmB
−1

1 Gm−1) is a module of such a
path. Moreover, L 6= Pam and L 6= Sam . Hence, we have a path of the form Pam  L Sam .

Again we can prove that L Sam has length m, by considering an order on the strings of
the set Dεam as follows, Di < Di+1 if there is an irreducible morphism M(Di+1) →M(Di). In
this case, to order the strings, we have to analyze if the strings ends in a deep.

Similarly, we can prove that M(Dm) = L and that there is a path of irreducible morphisms
of the form:

(9) Pam  L =M(Dm) →M(Dm−1) → . . .→M(D1) →M(D0) = Sam

where the path L Sam has length m.
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Now, from the paths (8) and (9) we obtain the path

(10) Pam  L Sam  L Iam ,

where the cycle L Sm  L clearly has length 2m.
It is left to prove that the path (10) is sectional. By construction the paths Pam  L Sam

and Sam  L Iam are sectional. We must analyze the path M(D1) → Sam →M(C1). Note
that M(D1) is injective, since D1 = γmB

−1
n−1, where Bn−1 and γm are string ending in a peak.

More precisely, since e(Bn−1) = x = e(γm), then M(D1) = Ix. Therefore, M(C1) 6≃ τ−1Ix and
the path (10) is sectional, proving the result. �

Proposition 5.5. Let A = (U(m,n−1), I), with m,n ≥ 2. Consider L =M(γmB
−1
n−1G1) and

N =M(B−1
n−2G1). Then f : L→ N is an irreducible epimorphism with dl(f) = n− 1.

Proof. Consider L = M(C) and N = M(D), where C = γmβ
−1
n−1 . . . β

−1
1 γ1 . . . γm−1 and D =

β−1
n−2 . . . β

−1
1 γ1 . . . γm−1 is a string not starting in a deep. By [6] we have that f : M(C) →

M(D) is an irreducible epimorphism, where Ker(f) ≃M(C)/M(D) ≃M(γm) = Pam . Since A
is representation finite, then dl(f) <∞.

Now, we compute the left degree of f . Since e(γm) = x, we consider the module Ix =
M(Bn−1γ

−1
m ). The indecomposable direct summands of Ix/socIx are J1(x) = M(Bn−2) and

J2(x) = Sam .
Consider the irreducible morphism h : Ix → J1(x), where Ker(f) ≃ M(γm) ≃ Ker(h).

Assume that dl(h) = l. Then f : L → N is one of the morphisms gi : Xi → τ−1Xi−1 of the
following configuration of almost split sequences:

Px

f1
$$❍

❍❍
❍❍

τ−1Px
''PP

PPP

X1

g1

88qqqqq

f2 &&▲▲
▲▲

▲▲
τ−1X1

X2

g2

77♦♦♦♦♦♦♦
τ−1Xl−2

((PP
PP

P

Xl−1

fl ((❘❘
❘❘

❘❘
❘❘

gl−1

66♠♠♠♠♠♠
J1(x)

Ix
h

66♠♠♠♠♠♠♠♠

where α′(Px) = 1 and φ : Px → X1 → · · · → Xl−1 → Ix is a sectional path. The modules that
appear in φ are the string modules of the set Cγm . In particular, L is one of such modules.
Since L 6≃ Px and L 6≃ Ix, then L ≃ Xj , for some j, 1 ≤ j ≤ l − 1.

On the other hand, by the proof of Proposition 5.4, there is a sectional path

ρ : Pam →M1 → . . .→ L→ . . .→Mm+n−3 → Ix → Sam
of length m+ n− 1 and where L Sam has length m.

Since dimk(HomA(Pam , Sam)) = 1, then l = m+n−2. We claim that for each i, 1 ≤ i ≤ l−1
we have that Mi ≃ Xi. In fact, since α′(Pm) = 1, then X1 ≃ M1. Now, since ρ is a sectional
path, M2 6≃ τ−1Px. Then X2 ≃ M2. Following this argument, we get that Xi ≃ Mi, for
1 ≤ i ≤ l − 1. Since the path L Sam has length m, then L ≃ Xn−1 and therefore we obtain
that dl(f) = n− 1. �
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Remark 5.6. By the proofs of Proposition 5.4 and 5.5, we have the existence of a sectional
path

Pam
φ
 L Sam  L Iam

where the path φ is of length n− 1 and the cycle L L is of length 2m. Moreover, we know
that there exists an irreducible morphism f : L→ N . We claim that the module N belongs to
such sectional path. In fact, in the proof of Proposition 5.4, we give an order for the strings
C1, . . . , Cm of the set Cεam , where Cm = γmB

−1
n−1G1 and M(Cm) = L.

Observe that Cm is a string that starts on a peak. Hence Cm = γmβ
−1
n−1B

−1
n−2G1. Then

Cm+1 = B−1
n−2G1 and N = M(Cm+1). Moreover, N does not belong to the path Pam  Sam ,

because the string B−1
n−2G1 is not a vertex of the quiver Qsam . Hence, we conclude that the

above sectional path is of the form

Pam  L Sam  L → N  Iam
where the arrow denotes an irreducible morphism.

Now, we are in position to prove the theorem.

Theorem 5.7. Let A = (U(m,n − 1), I), with m,m ≥ 2. Then there are irreducible mor-
phisms hi : Xi → Xi+1 for 1 ≤ i ≤ n, between indecomposable A−modules, such that
hn . . . h1 ∈ ℜn+2m(X1,Xn+1)\ℜ

n+2m+1(X1,Xn+1), hn−1 . . . h1 /∈ ℜn(X1,Xn) and hn . . . h2 /∈
ℜn(X2,Xn+1).

Proof. Consider the irreducible epimorphism f : L → N from Proposition 5.5. Then dl(f) =
n− 1 and Ker(f) = Pm. Then there is a configuration of almost split sequences as follows:

Pm

f1 $$❍
❍❍

❍❍
τ−1Pm

''PP
PP

P

Y1

88qqqqqq

f2 &&▼▼
▼▼

▼▼
▼ τ−1Y1

Y2

77♦♦♦♦♦♦♦
τ−1Yn−3

''◆◆
◆◆

◆◆

Yn−2

fn−1 ((❘❘
❘❘

❘❘
❘❘

66♠♠♠♠♠♠
N

L
f

77♦♦♦♦♦♦♦♦

where δ : Pm → Y1 → . . .→ Yn−2 → L is a sectional path of length n− 1 and ffn−1 . . . f1 = 0.
By Remark 5.6 there is a sectional path

Pm
φ
 L

ρ1
 Sm

ρ2
 L→ N  Im

where ℓ(φ) = n− 1 and ℓ(ρ2ρ1) = 2m. Moreover, the modules in the path φ : Pm  L are the
same that the ones in the path δ.

Consider X1 = Pm, Xn = L, Xn+1 = N and Xi = Yi+1 for 1 ≤ i ≤ n − 1. We define the
irreducible morphisms hi = fi for 1 ≤ i ≤ n − 2, hn−1 = fn−1 + fn−1ρ, where ρ : L  L is
a composition of 2m irreducible morphisms which form part of the sectional path ρ2ρ1, and
hn = f . Then the composition
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hn . . . h1 = f(fn−1 + fn−1ρ)fn−2 . . . f1
= ffn−1fn−2 . . . f1 + ffn−1ρfn−2 . . . f1
= ffn−1ρfn−2 . . . f1.

belongs to ℜn+2m(X1,Xn+1)\ℜ
n+2m+1(X1,Xn+1), because the morphisms belong to a sec-

tional path of length n + 2m. Furthermore, hn−1 . . . h1 /∈ ℜn(X1,Xn) and by [8, Proposition
2.3] we have that hn . . . h2 /∈ ℜn(X2,Xn+1), proving the result. �

In the families of algebras presented in Theorem 5.7, there are n irreducible morphisms such
that their composition belong to ℜn+t\ℜn+t+1, for t ≥ 4 and moreover where t is an even
number.

Below, we present a family of algebras for t an odd number. Consider (V (m,n), J) for n ≥ 3
and m ≥ 2 as follows:

w

a2
γ2 // . . .

γm−1// am γm

%%❑❑
❑❑

❑

α 99rrrrr

1

γ1 ::✉✉✉✉✉

β1
##❍

❍❍
❍❍

x

b2
β2

// . . .
βn−1

// bn
βn

::ttttt

with J =< γm−1γm >.
We only state the result, since it can be proved with similar techniques as in Theorem 5.7.

Theorem 5.8. Let A = (V (m,n − 2), J), with m ≥ 2 and n ≥ 3. Then there are irreducible
morphisms hi : Xi → Xi+1 for 1 ≤ i ≤ n, between indecomposable A-modules, such that
hn . . . h1 ∈ ℜn+2m+1(X1,Xn+1)\ℜ

n+2m+2(X1,Xn+1), hn−1 . . . h1 /∈ ℜn(X1,Xn) and hn . . . h2 /∈
ℜn(X2,Xn+1).
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