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Approximations structurelles dans les jeux semi-Markoviens

actualisés

Résumé : Nous considérons le problème de l'approximation des valeurs et des équilibres
d'un jeu semi-Markovien actualisé, en horizon in�ni avec des ensembles d'actions compacts, en
présence d'incertitude sur plusieurs paramètres du modèle. Spéci�quement: d'une part nous
étudions les approximations sur les probabilités de transition, sur le facteur d'actualisation et
sur les coûts, quand l'espace d'états est un ensemble Borélien. D'autre part, nous étudions les
approximations de l'ensemble d'états quand celui-ci est dénombrable. Nos résultats sont basés
sur ceux de Tidball et Altman [9]. Nous donnons des conditions sous lesquelles ces résultats
peuvent être appliqués. Nous discutons aussi de l'application de telles approximations à des jeux
en horizon �ni, en relation avec la procédure de l'horizon roulant approchée, proposée dans [3].

Mots-clés : Théorie des jeux, jeux semi-Markoviens, jeux à somme nulle
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1 Introduction

In this work we analyze several approximation procedures applied on zero-sum semi-Markov
games with the expected total discounted reward as the performance criterion.

Semi-Markov games (SMG) generalize Markov games in continuous-time (MG) by allowing
the decision maker to choose actions whenever the system state changes and allowing the time
spent in a particular state to follow an arbitrary probability distribution.

Semi-Markov discounted games are studied, for example, in [5], [6] and [7]. In particular, we
study some approximation issues in [3], including a widely applied heuristic method, the Rolling
Horizon procedure.

In this paper we analyze approximations of the value function and of the equilibrium policies of
the in�nite horizon game, when it can be considered the limit game of a sequence of approximating
games. The approximating games are designed by considering approximations of the parameters
of the original game. In particular we work with approximations on the transition and the holding
time probabilities of the models, approximations on the discount factor, approximations on the
reward functions, and with approximations on the space of the states, conveniently truncated. In
all cases we estimate the errors arising in the approximation. To do that, we use a key result on
approximations for zero-sum games, and other ideas presented in [9]. As application, we adapt
also these results for the �nite horizon game, which gives approximations needed when applying
the Approximate Rolling Horizon procedure studied in [3].

In Section 2, we introduce the notation and the model, and we state preliminary results,
including the �Key Theorem� of [9] on which we base our analysis. In Section 3, we develop
approximation results for in�nite-horizon games. In Section 4, we apply these results to �nite-
horizon games. Section 5 is devoted to the concluding remarks.

2 Preliminaries and notations

We consider a semi-Markov game of the form

G := (S,A,B, {As : s ∈ S}, {Bs : s ∈ S}, Q, F, ℓ, α) (1)

where S is the state space, and, for each s ∈ S, As and Bs denote the sets of actions available
in state s for players 1 and 2. A =

⋃

s∈S As and B =
⋃

s∈S Bs. Let K := {(s, a, b) : s ∈ S, a ∈
As, b ∈ Bs}. Moreover, Q(·|s, a, b) is a stochastic kernel on S given K called the transition
law, and F (·|s, a, b) is a probability distribution on [0,∞) given K called the transition time
distribution. The real function ℓ on K represents the reward for player 1 and the cost function
for player 2. Finally, α is a discount factor.

The game is played as follows: if s is the state of the game at some decision (or transition)
epoch, the players independently choose actions a ∈ As and b ∈ Bs. Then several things happen.
First, the system moves to a new state according to the probability measure Q(.|s, a, b). Second,
the time until the next transition/decision occurs is determined. This time interval is a random
variable having the distribution function F (·|s, a, b). This de�nes a sequence of decision epochs
are Tn := Tn−1 + δn for n ∈ N, and T0 = 0. The random variable δn+1 = Tn+1 − Tn is called the
sojourn or holding time at stage n. During two transition epochs, player 1 receives a constant
reward rate ℓ(s, a, b), discounted over time at rate α, and player 2 incurs in a cost rate ℓ(s, a, b),
also discounted. We consider that the reward just depends on the current state and the actions
but not on time, i.e. ℓ stationary.
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4 E. Della Vecchia, S. Di Marco and A. Jean-Marie

Let M(S) denote the space of measurable functions on S. For Borel sets X and Y , P(X)
denotes the family of probability measures on X endowed with the weak topology and P(X|Y )
is the family of transition probabilities from Y to X.

The space Hn of admissible histories of the process at the n-th decision epoch, consists of
sequences of states, decisions and holding times up to that epoch. At the initial epoch T0, the
history consists of the initial state s0 ∈ S. At the �rst decision epoch T1, the two initial actions
chosen by the players, the holding time at initial state and the new state are added to the initial
state, and so on. A typical element of Hn = (K × R+)n × S is therefore written as

hn = (s0, a0, b0, δ1, s1, a1, b1, δ2 . . . , , sn−1, an−1, bn−1, δn, sn).

A Markov strategy (or Markov policy) for player 1 is a sequence π = {πn} of stochastic
kernels πn ∈ P(A|Hn) such that for every hn ∈ Hn and n ∈ N, πn(Asn

|hn) = 1. We denote by
Π the set of all Markov strategies of player 1. A Markov strategy π = {πn} is called stationary
if there exists f ∈ P(A|S) such that f(s) ∈ P(As) and πn = f for all s ∈ S and n ∈ N. In this
case, we identify π with f , i.e., π = f = {f, f, ...}. We denote by Πstat the set of all stationary
strategies.

Similarly, a Markov strategy for player 2 is a sequence γ = {γn}, where γn ∈ P(B|Hn), such
that for every hn ∈ Hn and n ∈ N, γn(Bsn

|hn) = 1. In this case we note with Γ the set of all
Markov strategies of player 2. A Markov strategy γ is called stationary if there exists g ∈ P(B|S)
such that g(s) ∈ P(Bs) and γn = g for all s ∈ S and n ∈ N. For player 2, we denote Γstat the set
of its stationary strategies.

We note

β(s, a, b) :=

∫ ∞

0

e−αtF (dt|s, a, b) (2)

and

ϑ(s, a, b) =
1 − β(s, a, b)

α
. (3)

From here on, we make the following abuse of notation: for each s ∈ S and given a pair of
probability distributions ξ and ζ on As and Bs respectively,

∫

As

∫

Bs
h(s, a, b)ζ(db)ξ(da) whenever

the integral is well de�ned, will be denoted by h(s, ξ, ζ). Also, for a function φ de�ned on K, we
note φ(s, f, g) instead of φ(s, f(s), g(s)), for given stationary policies f and g.

As mentioned previously, in order to evaluate the performance of policies, we use a total
discounted criterion. We assume that rewards are continuously discounted over time with a
discount factor α. More precisely let, for n ≧ 1, s ∈ S, π ∈ Π and γ ∈ Γ, the expected n-stage
α-discounted reward be de�ned by

V π,γ
n (s) := Eπ,γ

s

n−1
∑

k=0

∫ Tk+1

Tk

e−αtℓ(Sk, Ak, Bk)dt

:= Eπ,γ
s

n−1
∑

k=0

e−αTk
1 − e−αδk+1

α
ℓ(Sk, Ak, Bk)

= Eπ,γ
s

[

n−1
∑

t=0

t−1
∏

k=0

β(Sk, Ak, Bk)ϑ(St, At, Bt)ℓ(St, At, Bt)

]

,

Inria



Structural approximations in discounted semi-Markov games 5

where T0 = 0 and Tn = Tn−1 + δn. The in�nite-horizon total expected α-discounted payo� is

V π,γ(s) := Eπ,γ
s

∞
∑

k=0

e−αTk
1 − e−αδk+1

α
ℓ(Sk, Ak, Bk)

= Eπ,γ
s

[

∞
∑

t=0

t−1
∏

k=0

β(Sk, Ak, Bk)ϑ(St, At, Bt)ℓ(St, At, Bt)

]

,

where we adopt the usual conventions that
∏−1

k=0 Xk = 1 and
∑−1

t=0 Yt = 0.

At this point, we observe that we can work with an instantaneous one-step reward functions
r: K → R de�ned by r(s, a, b) = ϑ(s, a, b)ℓ(s, a, b). We obtain the new expressions

V π,γ(s) = Eπ,γ
s

[

∞
∑

t=0

t−1
∏

k=0

β(Sk, Ak, Bk)r(St, At, Bt)

]

, (4)

V π,γ
n (s) = Eπ,γ

s

[

n
∑

t=0

t−1
∏

k=0

β(Sk, Ak, Bk)r(St, At, Bt)

]

. (5)

We shall make further assumptions under which we work.

Assumption 1.

(a) The state space S is a Borel subset of a complete and separable metric space.

(b) For each s ∈ S, the sets As and Bs are compact.

(c) r is a bounded function on K, i.e. there exist M > 0 such that, for all (s, a, b) ∈ K,
|r(s, a, b)| ≦ M .

(d) For each s ∈ S, and b ∈ Bs, r(s, ·, b) is upper semi-continuous on As.

(e) For each s ∈ S, and a ∈ As, r(s, a, ·) is lower semi-continuous on Bs.

(f) For each s ∈ S and each bounded measurable function v on S, the function (a, b) 7→
∫

v(y)Q(dy|s, a, b) is continuous on As × Bs.

(g)
∫ ∞

0
tF (dt|·) is continuous on K.

Assumption 2. ρ := sup(s,a,b)∈K β(s, a, b) < 1.

The lower and the upper value functions of the in�nite horizon game are de�ned, as usual,
for s ∈ S, as

V ∗(s) = sup
π∈Π

inf
γ∈Γ

V π,γ(s) and V
∗
(s) = inf

γ∈Γ
sup
π∈Π

V π,γ(s)

respectively. We know that, in general V ∗ ≦ V
∗
. If V ∗ = V

∗
, we refer to this common value as

the value of the game, and we note it with V ∗. Similar values are de�ned for the �nite horizon
games.

Suppose that our games have a value, then, the objective of the players is to �nd (when it
exists) a pair of policies that solves, given the current state s:

(π∗(s), γ∗(s)) = arg max
π

min
γ

V π,γ(s).

Such a pair of strategies π∗ ∈ Π and γ∗ ∈ Γ is said to be an equilibrium.

RR n° 8162



6 E. Della Vecchia, S. Di Marco and A. Jean-Marie

A pair of strategies π̃ ∈ Π and γ̃ ∈ Γ is said to be an ε-equilibrium (or an almost equilibrium)
pair if it holds

inf
γ∈Γ

V π̃,γ ≧ inf
γ∈Γ

V π,γ − ε, for all π ∈ Π ,

and

sup
π∈Π

V π,γ̃ ≦ sup
π∈Π

V π,γ + ε, for all γ ∈ Γ .

De�ne the operator T : M(S) 7→ M(S) by

(Tv)(s) := sup
a∈As

inf
b∈Bs

{

r(s, a, b) + β(s, a, b)

∫

S

v(z)Q(dz|s, a, b)

}

, (6)

and, given a pair of stationary strategies f ∈ Πstat, g ∈ Γstat, T f,g : M(S) 7→ M(S)

(T f,gv)(s) := r(s, f, g) + β(s, f, g)

∫

S

v(z)Q(dz|s, f, g) .

Tidball and Altman study in [9] under which conditions a sequence of games converges to a
given game.

Consider a sequence Gn, n = 1, 2, ... of generic zero-sum games and a game G. We will note,
for a pair of policies π ∈ Π and γ ∈ Γ, Uπ,γ

n the reward produced for the pair in the game Gn

and Uπ,γ in the game G.

Let also the upper and lower values of the game Gn be de�ned as

Un = inf
π∈Π

sup
γ∈Γ

Uπ,γ
n and Un = sup

π∈Π
inf
γ∈Γ

Uπ,γ
n ,

respectively. The authors of [9] establish the following Key Theorem, which we state here for
the sake of completeness.

Theorem 1 (Key Theorem, [9, Theorem 2.1., p. 4]). Let us suppose that the original game G
has a value, and that for the sequence of games {Gn} and the game G it is veri�ed that

lim supn→∞ Uπ,γ
n − Uπ,γ ≦ 0, uniformly in π ∈ Π for each γ ∈ Γ,

lim infn→∞ Uπ,γ
n − Uπ,γ ≧ 0, uniformly in γ ∈ Γ for each π ∈ Π.

Then

1. limn→∞ Un = limn→∞ Un = U∗.

2. Suppose that there exists N such that for n ≧ N , π∗
n and γ∗

n form an ε-equilibrium for the
n-th game. Then, for any ε′ > ε, π∗

n and γ∗
n form an ε-equilibrium limit game.

3. Let π∗ and γ∗ be an ε-equilibrium for the limit game. Then for all ε′ > ε, there exist N(ε′)
such that π∗ and γ∗ form an ε′-equilibrium for all n ≧ N(ε′).

In what follows we are interested in approximating the in�nite horizon game de�ned in (1)
through suitably de�ned games, which satisfy the assumptions of the Key Theorem above.

Inria
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3 Approximations for in�nite-horizon games

3.1 Approximations on general state space games

In the context of stochastic games, players have to take simultaneous decisions, based on the
knowledge of the current state, but without the certainty of the dynamics of the system, which
will be governed by distributions of probabilities on the space of states, known a priori for both
of them.

Instead, in many situations, players may not have the exact information on these probability
distributions (on the system transitions or on the holding times) because it is known only through
some statistical method, for example. This lack of information could stem from imprecision on the
measure of quantities involved, and it could be improved by some investment of e�ort or money.
Assessing whether this spending is necessary or excessive is an interesting practical issue. In
these cases then, there arises the necessity of having bounds to the errors involved when players
choose their actions (and then their policies) considering the inexact probability distributions.
It is also interesting to study the errors produced by uncertainties on other parameters of the
model.

In [4, Section 2.4] the author provides bounds for errors when dealing with approximate tran-
sition probabilities and approximate reward functions, on in�nite horizon discrete-time MDPs,
by de�ning a non-stationary Value Iteration algorithm. In this work we propose a di�erent ap-
proach making a sensitivity analysis on these elements (as well as others typical of SMDPs), by
using the Key Theorem stated in the previous section.

Observe that from [3, Theorem 3.1 (c)], under Assumptions 1 and 2, the in�nite horizon
SMG has a value V ∗, and the existence hypothesis for the value function of the original game
in the Key Theorem is satis�ed.

Through this section, we shall work with approximating games of the form

Gn := (S,A,B, {As : s ∈ S}, {Bs : s ∈ S}, Qn, Fn, ℓn, αn) , (7)

all di�ering in the transition and holding time probabilities, the reward functions and the discount
factors.

In order to quantify the approximations, we shall need adequate norms. On spaces of tran-
sition probabilities, we shall use the total variation norm (see for example [4, 8]).

De�nition 3.1. The total variation norm between two probability distributions P and Q on S is
de�ned by:

‖P − Q‖tv := sup
A⊂S:Ameasurable

|P(A) − Q(A)| .

It is known that (see e.g. [8, Proposition D.1., p. 349 and the remarks below, p. 350]):

Proposition 1. If P and Q are two probabilities distributions on S, then

‖P − Q‖tv =
1

2
sup

v,||v||∞≦1

∣

∣

∣

∣

∫

S

v dP −

∫

S

v dQ

∣

∣

∣

∣

.

For the approximate discount factors and holding time distributions, we de�ne the quantities
βn(s, a, b) in a similar way to (2):

βn(s, a, b) :=

∫ ∞

0

e−αntFn(dt|s, a, b) ,

RR n° 8162



8 E. Della Vecchia, S. Di Marco and A. Jean-Marie

and ϑn(s, a, b) similar to (3)

ϑn(s, a, b) :=
1 − βn(s, a, b)

αn
.

Finally, de�ne
rn(s, a, b) = ϑn(s, a, b) ℓn(s, a, b)

and put ρn := sup(s,a,b)∈K βn(s, a, b).

We can now make precise the sense in which Gn approximates G.

Assumption 3.

(a) The sequence of transition probabilities Qn satis�es ||Q(·|s, a, b)−Qn(·|s, a, b)||tv → 0 uni-
formly for (s, a, b) ∈ K;

(b) The sequence of probability distributions Fn satis�es ||F (·|s, a, b) − Fn(·|s, a, b)||tv → 0
uniformly for (s, a, b) ∈ K;

(c) The sequence of discount factors αn satis�es αn → α;

(d) ρn < 1 for all n;

(e) The sequence of reward functions ℓn satis�es ℓn → ℓ uniformly on K;

(f) The functions rn are bounded: there exist Mn > 0 such that, for all (s, a, b) ∈ K, |rn(s, a, b)| ≦

Mn.

For the games de�ned by (7) we de�ne, given a pair f ∈ Πstat and g ∈ Γstat, the corresponding
dynamic programming operators

(T f,g
n v)(s) = rn(s, f, g) + βn(s, f, g)

∫

S

v(z)Qn(dz|s, f, g) ,

and we will denote with Uf,g
n (s) the solution of the equation

T f,g
n v = v . (8)

Lemma 1. Under Assumption 3 (b)-(c), βn converges to β uniformly on K. In consequence
ϑn also converges uniformly to ϑ on K and ρn converges to ρ. With the additional Assumption
3 (e), the sequence rn converges to r = ϑℓ, uniformly on K. With the additional Assumption
3 (f), the bounds Mn and M can be chosen satisfying Mn → M .

Proof. First observe that, if αn → α, then e−αnt → e−αt uniformly on t ∈ [0,∞). To see that,
consider the functions hn(t) = e−αt − e−αnt. For each n ∈ N,

dhn

dt
= −αe−αt + αne−αnt ,

which vanishes at t∗n = 1
α−αn

log α
αn

≥ 0. At those points

hn(t∗n) =

(

α

αn

)

−α
α−αn

−

(

α

αn

)

−αn
α−αn

→
1

e
−

1

e
= 0 ,

as n → ∞, since αn → α, and then hn → 0 uniformly on [0,∞) because |hn(t)| ≤ hn(t∗n) for all
n and t.

Inria



Structural approximations in discounted semi-Markov games 9

Also observe that, for each n ∈ N, by Proposition 1, we have

∣

∣

∣

∣

∫ ∞

0

e−αntF (dt|s, a, b) − e−αntFn(dt|s, a, b)

∣

∣

∣

∣

≦ sup
v,||v||∞≦1

∣

∣

∣

∣

∫ ∞

0

v(t) F (dt|s, a, b) − v(t) Fn(dt|s, a, b)

∣

∣

∣

∣

≦ 2 ||F (·|s, a, b) − Fn(·|s, a, b)||tv .

With the previous observations, given ε > 0, let us consider N = N(ε), such that, for n ≧ N ,
supt≥0 |e

−αt − e−αnt| ≦ ε
2 and ||F (·|s, a, b) − Fn(·|s, a, b)||tv ≦ ε

4 . Then

|β(s, a, b) − βn(s, a, b)| =

∣

∣

∣

∣

∫ ∞

0

e−αtF (dt|s, a, b) −

∫ ∞

0

e−αntFn(dt|s, a, b)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

(

e−αt − e−αnt
)

F (dt|s, a, b) +

∫ ∞

0

e−αntF (dt|s, a, b) − e−αntFn(dt|s, a, b)

∣

∣

∣

∣

≦

∫ ∞

0

|e−αt − e−αnt|F (dt|s, a, b) +

∣

∣

∣

∣

∫ ∞

0

e−αntF (dt|s, a, b) − e−αntFn(dt|s, a, b)

∣

∣

∣

∣

≦ sup
[0,∞]

|e−αt − e−αnt| + 2 ||F (·|s, a, b) − Fn(·|s, a, b)||tv ≦ ε

which shows the stated convergence for βn. The remaining statements follow easily.

The following result is easily veri�ed.

Lemma 2. Under Assumption 1 (c), for any of stationary strategies f ∈ Πstat and g ∈ Γstat,
the reward for game G, Uf,g, de�ned by (4), and for game Gn, Uf,g

n , de�ned by (8), satisfy:

||Uf,g||∞ ≦
M

1 − ρ
, ||Uf,g

n ||∞ ≦
Mn

1 − ρn
.

Theorem 2. Consider the games Gn de�ned in (7) and G like in (1). Assume that Assump-
tions 1 and 2 hold. Let us de�ne, for any pair of stationary strategies f ∈ Πstat and g ∈ Γstat,
the reward for the limit game G, Uf,g, by (4), and for the approximating game Gn, Uf,g

n , by (8).
Then, for any pair f ∈ Πstat and g ∈ Γstat:

||Uf,g−Uf,g
n ||∞ ≦ ε :=

||r − rn||∞
1 − ρ

+
2Mρ

(1 − ρ)2
sup
s∈S

||Q(·|s, f, g)−Qn(·|s, f, g)||tv+
Mn||β − βn||∞
(1 − ρ)(1 − ρn)

and then
||V ∗ − Un||∞ ≦ ε and ||V ∗ − Un||∞ ≦ ε .

If Assumption 3 holds in addition, then Uf,g
n converges uniformly to Uf,g as n → ∞, and

the hypotheses of the Key Theorem hold.

Proof. For a given pair of policies f ∈ Πstat and g ∈ Γstat, and for s ∈ S we estimate the
di�erence between Uf,g(s) and Uf,g

n (s) as follows:

|Uf,g(s) − Uf,g
n (s)| =

∣

∣

∣

∣

r(s, f, g) + β(s, f, g)

∫

S

Uf,g(z)Q(dz|s, f, g)

− rn(s, f, g) − βn(s, f, g)

∫

S

Uf,g
n (z)Qn(dz|s, f, g)

∣

∣

∣

∣

≦ |r(s, f, g) − rn(s, f, g)| + ∆n
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10 E. Della Vecchia, S. Di Marco and A. Jean-Marie

where

∆n =

∣

∣

∣

∣

β(s, f, g)

∫

S

Uf,g(z)Q(dz|s, f, g) − βn(s, f, g)

∫

S

Uf,g
n (z)Qn(dz|s, f, g)

∣

∣

∣

∣

. (9)

Introducing intermediate terms in the di�erence in (9), we have:

∆n ≦

∣

∣

∣

∣

β(s, f, g)

∫

S

Uf,g(z)Q(dz|s, f, g) − β(s, f, g)

∫

S

Uf,g(z)Qn(dz|s, f, g)

∣

∣

∣

∣

+

∣

∣

∣

∣

β(s, f, g)

∫

S

Uf,g(z)Qn(dz|s, f, g) − β(s, f, g)

∫

S

Uf,g
n (z)Qn(dz|s, f, g)

∣

∣

∣

∣

+

∣

∣

∣

∣

β(s, f, g)

∫

S

Uf,g
n (z)Qn(dz|s, f, g) − βn(s, f, g)

∫

S

Uf,g
n (z)Qn(dz|s, f, g)

∣

∣

∣

∣

≦ ρ

∣

∣

∣

∣

∫

S

Uf,g(z)Q(dz|s, f, g) −

∫

S

Uf,g(z)Qn(dz|s, f, g)

∣

∣

∣

∣

+ρ

∣

∣

∣

∣

∫

S

(Uf,g(z) − Uf,g
n (z))Qn(dz|s, f, g)

∣

∣

∣

∣

+|β(s, f, g) − βn(s, f, g)|

∣

∣

∣

∣

∫

S

Uf,g
n (z)Qn(dz|s, f, g)

∣

∣

∣

∣

.

Using ||Uf,g||∞ ≦ M/(1 − ρ) (Lemma 2), the �rst term can be bounded using Proposition 1:

∣

∣

∣

∣

∫

S

Uf,g(z)Q(dz|s, f, g) −

∫

S

Uf,g(z)Qn(dz|s, f, g)

∣

∣

∣

∣

=
M

1 − ρ

∣

∣

∣

∣

∫

S

(

1 − ρ

M
Uf,g(z)

)

Q(dz|s, f, g) −

∫

S

(

1 − ρ

M
Uf,g(z)

)

Qn(dz|s, f, g)

∣

∣

∣

∣

≦
M

1 − ρ
sup

v,||v||∞≦1

∣

∣

∣

∣

∫

S

v(z) Q(dz|s, f, g) −

∫

S

v(z) Qn(dz|s, f, g)

∣

∣

∣

∣

≦
2M

1 − ρ
||Q(·|s, f, g) − Qn(·|s, f, g)||tv .

With the bound on Uf,g
n in the second term of ∆n, we further obtain:

∆n ≦
2Mρ

1 − ρ
||Q(·|s, f, g) − Qn(·|s, f, g)||tv

+ ρ||Uf,g − Uf,g
n ||∞ + |β(s, f, g) − βn(s, f, g)|

Mn

1 − ρn
.

Finally, for all s ∈ S,

|Uf,g(s) − Uf,g
n (s)| ≦ |r(s, f, g) − rn(s, f, g)| +

2Mρ

1 − ρ
||Q(·|s, f, g) − Qn(·|s, f, g)||tv

+ ρ||Uf,g − Uf,g
n ||∞ + |β(s, f, g) − βn(s, f, g)|

Mn

1 − ρn
.

This implies

||Uf,g − Uf,g
n ||∞ ≦ ||r − rn||∞ +

2Mρ

1 − ρ
sup
s∈S

||Q(·|s, f, g) − Qn(·|s, f, g)||tv

+ρ||Uf,g − Uf,g
n ||∞ +

Mn||β − βn||∞
1 − ρn

,
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Structural approximations in discounted semi-Markov games 11

which implies in turn the claim:

||Uf,g −Uf,g
n ||∞ ≦

||r − rn||∞
1 − ρ

+
2Mρ

(1 − ρ)2
sup
s∈S

||Q(·|s, f, g)−Qn(·|s, f, g)||tv +
Mn||β − βn||∞
(1 − ρ)(1 − ρn)

.

The proposed bounds on the lower and the upper values of the approximate games are justi�ed
by [3, Lemma A.2.].

The uniform convergence follows from Assumption 3 and Lemma 1.

Remark 1. Clearly, if the approximated games Gn have a value U∗
n, then

||U∗
n − V ∗||∞ ≦

||r − rn||∞
1 − ρ

+
2Mρ

(1 − ρ)2
sup
s∈S

||Q(·|s, f, g) − Qn(·|s, f, g)||tv +
Mn||β − βn||∞
(1 − ρ)(1 − ρn)

.

3.2 Approximations on denumerable state space games

In this subsection, Assumption 1(a) is replaced by

(a') The state space S is denumerable,

and consequently, Assumption 1(f) takes the particular form

(f ') For each s ∈ S and each bounded function v on S, the function (a, b) 7→
∑

z∈S v(z)Q(z|s, a, b)
is continuous on As × Bs.

In this context other kind of approximations can be done by reducing the space of states
conveniently and computing the values of the new games.

A review of the history and the motivation of the theory of state truncation in control prob-
lems is done in the introduction of [1, Chapter 16, p. 205], devoted to this kind of approximation
on constrained MDPs.

The approximations we consider on in�nite-horizon games are based on some increasing
sequence Sn ⊂ Sn+1 ⊂ S of subsets of the state space, with S0 6= ∅. Typically (but not
necessarily for the results we state) this sequence converges to the original state space, i.e.,
⋃

n∈N
Sn = S.

Depending on the convenience of the case we can assume one of the following assumptions:

Assumption 4. For all integers ν,

ε(ν, n) = sup
s∈Sν ,a∈As,b∈Bs







∑

z/∈Sn

Q(z|s, a, b)







→ 0

as n → ∞.

Assumption 5. From any state k ∈ S, only a �nite set of states S(k) can be reached:

∀k ∈ S, #{z ∈ S,∃a ∈ Ak,∃b ∈ Bk, Q(z|k, a, b) > 0} < ∞ .

Suppose now that we have chosen one way construct the sequence of state spaces {Sn},
subsets of the original space S. Associated to each set Sn, we can construct a new game

Gn := (Sn,An,Bn, {As : s ∈ Sn}, {Bs : s ∈ Sn}, Qn, F, r, α) (10)
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12 E. Della Vecchia, S. Di Marco and A. Jean-Marie

with An =
⋃

s∈Sn
As, Bn =

⋃

s∈Sn
Bs as the corresponding action sets for players 1 and 2.

At this point we must de�ne the transition laws for these new games. That is, given s, z ∈ Sn,
a ∈ As and b ∈ Bs, assign a new value Qn(z|s, a, b). We consider two di�erent schemes.

In the �rst one, we eliminate transitions outside the sets Sn and redirect them to a speci�c,
constant state s∗ ∈ S0. Formally, for s ∈ Sn, a ∈ As and b ∈ Bs,

Qn(z|s, a, b) =







Q(z|s, a, b) +
∑

w/∈Sn
Q(w|s, a, b) z = s∗

Q(z|s, a, b) z ∈ Sn \ {s∗}
0 z /∈ Sn ,

(11)

while Qn(z|s, a, b) = Q(z|s, a, b) for s 6∈ Sn, a ∈ As and b ∈ Bs.

It is argued in [1, Section 16.3, p. 211] that the way probabilities are de�ned in (11) may not
be convenient. This motivates the introduction of the following more general scheme.

In this second way of rede�ning the transition probabilities we put

Qn(z|s, a, b) =

{

Q(z|s, a, b) + qn(z|s, a, b) z ∈ Sn

0 z /∈ Sn
(12)

where qn(.|s, a, b) is any family of positive numbers which satisfy
∑

z∈Sn
Q(z|s, a, b)+qn(z|s, a, b) =

1. Hence,

∑

z∈Sn

qn(z|s, a, b) =
∑

z/∈Sn

Q(z|s, a, b). (13)

As before, Qn(z|s, a, b) = Q(z|s, a, b) for s 6∈ Sn, a ∈ As and b ∈ Bs.

Once the Qn have been de�ned, we obtain the corresponding dynamic programming operators,
for each f and g:

(T f,g
n v)(s) =

{

r(s, f, g) + β(s, f, g)
∑

z∈Sn
v(z)Qn(z|s, f, g) if s ∈ Sn

0 if s /∈ Sn

and we denote with Uf,g
n (s) the solution of the equation

T f,g
n v = v. (14)

The following observation will be repeatedly used: under Assumption 2, for any n and any
s ∈ Sn,

|Uf,g(s) − Uf,g
n (s)| =

∣

∣

∣

∣

∣

r(s, f, g) + β(s, f, g)
∑

z∈S

Uf,g(z)Q(z|s, f, g)

− r(s, f, g) − β(s, f, g)
∑

z∈S

Uf,g
n (z)Qn(z|s, f, g)

∣

∣

∣

∣

∣

= β(s, f, g)
∑

z∈S

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)|

≦ ρ
∑

z∈S

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)| . (15)

We can prove the following theorem of approximation:

Inria



Structural approximations in discounted semi-Markov games 13

Theorem 3. Consider the games Gn de�ned in (10) and G like in (1), with the transition
probabilities Qn de�ned as in (12). Under Assumptions 1, 2, and 4, all the hypotheses of the
Key Theorem hold where for a given pair of stationary policies f ∈ Πstat and g ∈ Γstat, the
reward Uf,g is de�ned by (4) for the limit game, and Uf,g

n by (14) for the approximating game
Gn.

Proof. In the proof of this result, we follow the ideas presented in [2] and [1] for MDP models
and in [9] for the MG case. Particularly, we adopt most the notation from the last one.

Let us for ε > 0 note g0(ε, ν) = ν and for k = 1, 2, ..., gk(ε, ν) = g(ε, gk−1(ε, ν)) where

g(ε, ν) = min{m : ε(ν, m) ≦ ε}

and the value ε(ν, m) taken from Assumption 4. The fact that all terms in this sequence are
�nite is precisely a consequence of this assumption.

Note that, for any ν ≧ 0,

∑

z/∈S
gl+1(ε,ν)

Q(z|s, f, g) ≦ ε, for all s ∈ Sgl(ε,ν), l ≧ 0, f ∈ Πstat, g ∈ Γstat (16)

and that gl(ε, ν) need not be increasing in l.

For any subset J ⊂ S, denote τ(J ) = min{m : J ⊂ Sm}. In the remainder of the proof, we
shall consider a �xed set J such that τ(J ) < ∞. Finally, de�ne

mk(ε, τ(J )) = max{τ(J ), g(ε, τ(J )), ..., gk(ε, τ(J ))}, k = 0, 1, 2, ... (17)

To simplify the notation, since from now on, ε and J will be supposed �xed, we shall write
gl instead of gl(ε, τ(J )) and mk instead of mk(ε, τ(J )).

Starting from (15), for any pair of stationary strategies f ∈ Πstat and g ∈ Γstat, any n and
s ∈ Sn, we have

|Uf,g(s) − Uf,g
n (s)| ≦ ρ

∑

z∈S

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)|

= ρ
∑

z∈S
g1

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)|

+ ρ
∑

z∈S\S
g1

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)| .

We now consider successively the two terms in this last expression. Observe that for n ≧ g1,
z ∈ Sg1 , implies Qn(z|s, a, b) = Q(z|s, a, b) + qn(z|s, a, b) according to (12). It follows that, for
all n ≧ g1 and s ∈ S0, using (12) together with the identity (13), property (16) and the bound
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14 E. Della Vecchia, S. Di Marco and A. Jean-Marie

on Uf,g
n provided by Lemma 2,

∑

z∈S
g1

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)|

=
∑

z∈S
g1

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Q(z|s, f, g) − Uf,g

n (z)qn(z|s, f, g)|

≦
∑

z∈S
g1

|Uf,g(z) − Uf,g
n (z)|Q(z|s, f, g) +

∑

z∈S
g1

|Uf,g
n (z)|qn(z|s, f, g)

≦ sup
z∈S

g1

|Uf,g(z) − Uf,g
n (z)| +

M

1 − ρ

∑

z∈S
g1

qn(z|s, f, g)

= sup
z∈S

g1

|Uf,g(z) − Uf,g
n (z)| +

M

1 − ρ

∑

z∈S\S
g1

Q(z|s, f, g)

≦ sup
z∈S

g1

|Uf,g(z) − Uf,g
n (z)| +

εM

1 − ρ
.

For the second term, if z /∈ Sg1 , by (12), Qn(z|s, f, g) is either 0 (if z 6∈ Sn) or Q(z|s, f, g) +
qn(z|s, f, g) (if z ∈ Sn \Sg1). In both cases Qn(z|s, f, g) ≦ Q(z|s, f, g)+qn(z|s, f, g), which gives,
still for n ≧ g1 and s ∈ Sg0 :

∑

z∈S\S
g1

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)|

≦
∑

z∈S\S
g1

|Uf,g(z)|Q(z|s, f, g) +
∑

z∈S\S
g1

|Uf,g
n (z)|Qn(z|s, f, g)

≦
∑

z∈S\S
g1

|Uf,g(z)|Q(z|s, f, g) +
∑

z∈S\S
g1

|Uf,g
n (z)|(Q(z|s, f, g) + qn(z|s, f, g))

=
∑

z∈S\S
g1

|Uf,g(z)|Q(z|s, f, g) +
∑

z∈S\S
g1

|Uf,g
n (z)|Q(z|s, f, g) +

∑

z∈S\S
g1

|Uf,g
n (z)|qn(z|s, f, g)

≦
M

1 − ρ

∑

z∈S\S
g1

Q(z|s, f, g) +
M

1 − ρ

∑

z∈S\S
g1

Q(z|s, f, g) +
M

1 − ρ

∑

z∈S\S
g1

qn(z|s, f, g)

≦
2εM

1 − ρ
+

M

1 − ρ

∑

z∈S\S
g1

qn(z|s, f, g) ,

using again the bounds of Lemma 2, and the fact that
∑

z∈S\S
g1

Q(z|s, f, g) ≦ ε, from (16). At

this point observe also that

∑

z∈S\S
g1

qn(z|s, f, g) =
∑

z∈Sn\S
g1

qn(z|s, f, g)

≦
∑

z∈Sn

qn(z|s, f, g) =
∑

z∈S\Sn

Q(z|s, f, g)

≦
∑

z∈S\S
g1

Q(z|s, f, g) ≦ ε ,

Inria



Structural approximations in discounted semi-Markov games 15

and in consequence

∑

z∈S\S
g1

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)| ≦

3εM

1 − ρ
. (18)

Summarizing, for any n ≥ g1 and any s ∈ Sg0 ,

|Uf,g(s) − Uf,g
n (s)| ≦ ρ sup

z∈S
g1

|Uf,g(z) − Uf,g
n (z)| +

4εMρ

1 − ρ
. (19)

Using the same reasoning, we readily obtain that for n ≧ g2 and z ∈ Sg1 ,

|Uf,g(z) − Uf,g
n (z)| ≦ ρ sup

w∈S
g2

|Uf,g(w) − Uf,g
n (w)| +

4εMρ

1 − ρ
, (20)

and more generally, for any k ∈ N, n ≧ gk+1 and z ∈ Sgk ,

|Uf,g(z) − Uf,g
n (z)| ≦ ρ sup

w∈S
gk+1

|Uf,g(w) − Uf,g
n (w)| +

4εMρ

1 − ρ
.

Then, combining (19) and (20), for any n ≧ m2 = max(g0, g1, g2) and s ∈ Sg0 ,

|Uf,g(s) − Uf,g
n (s)| ≦ ρ2 sup

w∈S
g2

|Uf,g(w) − Uf,g
n (w)| +

4εMρ2

1 − ρ
+

4εMρ

1 − ρ
.

In general, for any k ∈ N, n ≧ mk and s ∈ Sg0 we obtain

|Uf,g(s) − Uf,g
n (s)| ≦ ρk sup

w∈S
gk

|Uf,g(w) − Uf,g
n (w)| +

4εMρ

1 − ρ

k−1
∑

ν=0

ρν

≤ ρk 2M

1 − ρ
+

4εMρ

1 − ρ

1 − ρk

1 − ρ
.

This bound is independent of f and g and can be made as small as needed. This proves the
uniform convergence needed in the Key Theorem.

Remark 2. If in Theorem 3 we assume the rede�nition of transition probabilities given by (11),
we have, for z /∈ Sg1 , Qn(z|s, f, g) ≦ Q(z|s, f, g), and (18) can be put in the tighter form

∑

z∈S\S
g1

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)| ≦

2εM

1 − ρ
.

Consequently in this case, adapting the proof of the theorem, for any k ∈ N, n ≧ mk and
s ∈ Sg0 ,

|Uf,g(s) − Uf,g
n (s)| ≦ ρk 2M

1 − ρ
+

3εMρ

1 − ρ

1 − ρk

1 − ρ
.
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16 E. Della Vecchia, S. Di Marco and A. Jean-Marie

With the aim to compute an uniform bound on the approximation error on a given set of
states S0 = J , let us de�ne the sequence {Sn} by

S0 = J , Sn+1 =
⋃

s∈Sn

Y(s)
⋃

Sn , (21)

where Y(s) = {z : Q(z|s, f, g) > 0 for some f , g}. The set Sn is exactly the set of states that
can be reached with positive probability from one state of J after exactly n transitions, under
any stationary policy. Under Assumptions 5, this is a sequence of �nite sets, provided that J
be �nite.

In the last scheme, we modify the transition probabilities eliminating transitions outside the
sets Sn, but without changing any other probability in that set:

Qn(z|s, a, b) =

{

Q(z|s, a, b) z ∈ Sn

0 z /∈ Sn ,
(22)

and again Qn(z|s, a, b) = Q(z|s, a, b) for s 6∈ Sn, a ∈ As and b ∈ Bs. This results in possibly
defective transition probabilities. Because of this, we do not obtain, strictly speaking, a SMG.
See the arguments of by [4, Section 2.4, pp. 32�33], related to �nite-state approximations on
discounted MDP models.

On the other hand, looking at the proof of [3, Theorem 3.1], on value functions and optimal
policies of semi-Markov games, the fact that Q(·|s, a, b) be a probability measure is not necessary.
It is used only the inequality Q(S|s, a, b) ≦ 1. It follows that results such as the Key Theorem
can be applied to �games� with possibly defective transition probabilities.

Under this scheme with the construction of the subsets given by (21), we prove the following
result.

Theorem 4. Under Assumptions 1, 2 and 5, all statements of the Key Theorem hold for
the approximation considered with the construction of the truncated space of states given by (21),
where for a given pair of stationary policies f ∈ Πstat and g ∈ Γstat, the reward Uf,g = V f,g is
de�ned in (4) for the limit game, and for the approximating game Gn, Uf,g

n is de�ned by (14),
where the transition probabilities are rede�ned by (22). Moreover, for n ∈ N,

||V ∗ − Un||∞ ≦
2Mρn

1 − ρ
and ||V ∗ − Un||∞ ≦

2Mρn

1 − ρ
.

Proof. Let us �x any state s ∈ J , and consider a pair of stationary policies f ∈ Πstat and
g ∈ Γstat. Then, since from s only the states of Y(s) are reachable (either with Q or Qn), (15)
gives:

|Uf,g(s) − Uf,g
n (s)| ≦ ρ

∑

z∈Y(s)

|Uf,g(z)Q(z|s, f, g) − Uf,g
n (z)Qn(z|s, f, g)|

≦ ρ
∑

z∈Y(s)

|Uf,g(z) − Uf,g
n (z)|Q(z|s, f, g) ≦ ρ sup

z∈S1

|Uf,g(z) − Uf,g
n (z)|

≦ ρ2 sup
z∈S1

∑

w∈Y(z)

|Uf,g(w) − Uf,g
n (w)|Q(w|z, f, g)

≦ ρ2 sup
w∈S2

|Uf,g(w) − Uf,g
n (w)| .

Recursively, we obtain for all n ∈ N and s ∈ J ,

|Uf,g(s) − Uf,g
n (s)| ≦ ρn||Uf,g − Uf,g

n ||∞ ≦
2Mρn

1 − ρ
.
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The bounds for the lower and the upper bounds follow from [3, Lemma A.2].

4 Approximations on �nite horizon games and approximated

rolling horizon procedure

So far in this work, we have approximated in several ways the value function and the equilibria
of in�nite-horizon zero-sum semi-Markov games. In the present section we are interested in the
application of such approximations to �nite-horizon games of this type.

Consider a semi-Markov game with all the parameters de�ned in (1) but with �nite stage-
horizon N . In Section 2, for a given pair of policies π ∈ Π and γ ∈ Γ, the discounted reward
criterion V π,γ

n was de�ned by Equation (5).

It is known (see, for instance [5], [7]) that underAssumptions 1 and 2 the value function V ∗
N

of the N -stage game exists and can be obtained by successive application of the corresponding dy-
namic programming operator de�ned by Equation (6), in the recursion V ∗

0 = 0 and V ∗
k = TV ∗

k−1,
k = 1, 2, ..., N , and that any pair of policies {f∗

0 , f∗
1 , ..., f∗

N−1}, {g∗0 , g∗1 , ..., g∗N−1} constructed
with the successive maximinimizing actions forms an equilibrium pair for this �nite-stage hori-
zon game.

In order to apply the results from the previous sections to �nite-horizon games, we make the
following observation. The �nite horizon model is equivalent to the following in�nite horizon
model with enlarged state space, similar to the construction made in [9, Section 5, p. 16-17] for

MG models. De�ne the game Ĝ := (Ŝ, Â, B̂, {Âŝ : ŝ ∈ Ŝ}, {B̂ŝ : ŝ ∈ Ŝ}, Q̂, F̂ , ℓ̂, α) as

� Ŝ = S × {0, 1, ..., N}

� Â(s,k) = As, B̂(s,k) = Bs, for all (s, k) ∈ Ŝ

� r̂((s, k), a, b) = r(s, a, b), for all (s, k) ∈ Ŝ, a ∈ As, b ∈ Bs

� Q̂((z, l)|(s, k), a, b) =

{

Q(z|s, a, b) k + 1 = l ≦ N
0 otherwise

� F̂ (·|(s, k), a, b) = F (·|s, a, b) for all (s, k) ∈ Ŝ, a ∈ As, b ∈ Bs.

Observe that from the de�nition of the elements of this new game, it follows that β̂((s, k), a, b) =

β(s, a, b), ϑ̂((s, k), a, b) = ϑ(s, a, b), and r̂((s, k), a, b) = r(s, a, b) for all (s, k) ∈ Ŝ, a ∈ As, b ∈ Bs.
Observe also that, by construction, the transition probabilities are defective from states of

the form (s, N), causing the game to e�ectively terminate after a �nite number of stages.

The construction of the di�erent sets of strategies for each player is similar to the one made
in Section 2. Noting with Π̂ and Γ̂ the set of Markov policies for both players in this new game,
for a pair of policies π̂ ∈ Π̂ and γ̂ ∈ Γ̂, for ŝ ∈ Ŝ, the reward for the N -stage horizon game is
de�ned by

V̂ π̂,γ̂
N (s) := E

π̂,γ̂
ŝ

N−1
∑

k=0

e−αTkr(Ŝk, Âk, B̂k) , (23)

where {Ŝk}, {Âk} and {B̂k} and {T̂k} are the stochastic processes on Ŝ, Â, B̂ and [0,∞)
respectively, from application of policies π̂ and γ̂.
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Let us note that there is a one to one correspondence between stationary policies in the new
in�nite horizon game and Markov policies in the original one. If π̂ and γ̂ are stationary in the
new game, then we can obtain Markov policies in the original one given by

πt(.|s) = π̂(.|(s, t)), γt(.|s) = γ̂(.|(s, t)) (24)

for t = 0, 1, ..., N , and vice versa, and the same holds for stationary strategies f̂ and ĝ for the
augmented game.

Applying the construction given by (21) to the enlarged spaces we obtain the sequence, for
an initial subset Ĵ ⊂ Ŝ,

Ŝ0 = Ĵ , Ŝn+1 =
⋃

(s,k)∈Ŝn

Y((s, k))
⋃

Ŝn , (25)

where Y(s) = {(z, l) : Q̂((z, l)|(s, k), f̂ , ĝ) > 0 for some f̂ , ĝ}. Actually, if J ⊂ S ×{0} as in the
preceding construction, then Ŝn = Sn × {n}.

In this case, for Ûn, the functions which satis�es, for all (s, k) ∈ Ŝn

Ûn((s, k)) = sup
f̂

inf
ĝ







r((s, k), f̂ , ĝ) + β((s, k), f̂ , ĝ)
∑

(z,l)∈Ŝn

Ûn((z, l))Q̂n((z, l)|(s, k), f̂ , ĝ)







,

and Ûn((s, k)) = 0 if (s, k) /∈ Ŝn, according to Theorem 4, for any (s, k) ∈ Ĵ ,

|Ûn((s, k)) − V̂ ∗
N (s)| ≦

2Mρn

1 − ρ
.

As an application of the previous construction let us consider the Approximate Rolling Hori-
zon (ARH) procedure, used to obtain approximated optimal policies in many optimization
problems. In particular, in our games, it formulates as follows.

ARH1 Choose some function V a priori near V ∗
N where V ∗

N is the N -stage value function.

ARH2 At iteration t, and for the current state st, solve

max
a∈Ast

min
b∈Bst

{

r(st, a, b) + β(st, a, b)

∫

S

V (z)Q(dz|st, a, b)

}

.

A pair of actions f̃N (st), g̃N (st) are obtained.

ARH3 Apply at = f̃N (st), bt = g̃N (st).

ARH4 Observe the achieved state at time t + 1: st+1.

ARH5 Set t := t + 1 and st := st+1 and go to step 2.

In [3, Corollary 4.4], under Assumptions 1 and 2, we give bounds to the error produced
by utilization of the ARH strategies in the in�nite horizon games, as a function of the error
between V and V ∗

N .

Also from the ARH framework, given an approximate value function V of V ∗
N , the maximizer

can take his decision on the supposition that minimizer actually plays in his worst-case scenario.
In that case, we have studied the errors in [3, Corollary 4.5] under the same assumptions.

As it was stated in ARH1, approximations of the value of a �nite-stage horizon game, with
the corresponding error bound, are necessary in order to utilize this procedure and be able to
compute the �nal bounds of the error incurred.
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5 Concluding remarks

Through this work we have dealt with zero-sum semi-Markov games models with discounted
payo� and bounded rewards.

In Section 3 we studied approximations of the value function of the in�nite-horizon game
and their equilibria, by considering it as a limit of a sequence of approximating games. Several
ways of constructing this approximating games were considered, each of them perturbing some
parameter of the game. Speci�cally, in Subsection 3.1 we have considered the original game as
the limit of a sequence of games with approximate transition and holding time probabilities,
reward functions and discount factors converging to the original ones. In Subsection 3.2, for the
case of denumerable space of states, we study the approximations by convenient truncation of it.

In Section 4 we applied all the approximations made on the previous ones to the �nite-
stage horizon game, by application of the corresponding in�nite-horizon theorems on a suitable
enlarged space of states.

Finally, we applied the results obtained Section 4 to obtain approximate values functions to
�nite-stage horizon games needed to initialize the Approximate Rolling Horizon method stated
in [3], to obtain new approximations for the in�nite-horizon game.
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