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Abstract. We classify Nichols algebras of irreducible Yetter–Drinfeld modules over
groups such that the underlying rack is braided and the homogeneous component of
degree three of the Nichols algebra satisfies a given inequality. This assumption turns out
to be equivalent to a factorization assumption on the Hilbert series. Besides the known
Nichols algebras we obtain a new example. Our method is based on a combinatorial
invariant of the Hurwitz orbits with respect to the action of the braid group on three
strands.

Introduction

Since its introduction in 1998 by Andruskiewitsch and Schneider, the Lifting
Method [AS98] grew to one of the most powerful and most fruitful methods
to study Hopf algebras [AS00], [BDR02], [Did05], [KR09], [ABM10], [Mom10],
[ARS10], [AS10], [MPSW], [GG], [Mas]. Although it originates from a purely
Hopf algebraic problem, the method quickly showed a strong relationship with
other areas of mathematics such as

• quantum groups [Ros98], [AS10],
• noncommutative differential geometry [Wor89], [Sch96], [Maj05], [KS97],
• knot theory [KRT97], [CJK+03], [Gra02],
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• combinatorics of root systems and Weyl groups [Hec09], [AHS10], [Ang],

• Lyndon words [Kha99], [GH07], [Ang09],

• cohomology of flag varieties [FK99], [Baz06], [KM10],

• projective representations [Ven],

• conformal field theory [Gab03], [ST].

The heart of the Lifting Method is formed by the structure theory of Nichols
algebras. Nichols algebras were studied first by Nichols [Nic78]. These are con-
nected graded braided Hopf algebras [And02] generated by primitive elements,
and all primitive elements are of degree one. If the braiding is trivial and the
base field has characteristic 0, the Nichols algebra is a polynomial ring. The situa-
tion becomes much more complicated for non-trivial braidings. A major problem,
which is open since the introduction of the Lifting Method, is the classification
of finite-dimensional Nichols algebras over groups [And02, Questions 5.53, 5.57].
Under the additional assumption that the base field has characteristic 0 and the
group is abelian, this problem was completely solved in [Hec06], [Hec09] using Lie
theoretic structures. A generalization of this theory to arbitrary groups is pos-
sible [AHS10], [HS10] and opens new research directions [HS]. Nevertheless, the
problem of classifying finite-dimensional Nichols algebras of irreducible Yetter–
Drinfeld modules over non-abelian groups cannot be attacked with this method.
One needs a fundamentally new idea. One approach in this direction is to iden-
tify finite groups admitting (almost) only infinite-dimensional Nichols algebras.
Here a remarkable progress was achieved for sporadic simple groups and for alter-
nating groups [AFGVb], [AFGV11]. Despite these developments, the structure of
important examples of Nichols algebras, for example, those associated with the
transpositions of the symmetric groups, remained unknown for more than 10 years
[FK99], [MS00], [AFGVb].

So far only a few finite-dimensional Nichols algebras of irreducible Yetter–
Drinfeld modules over non-abelian groups are known. These examples have an
interesting property in common: the Hilbert series of the Nichols algebras factor-
ize into the product of polynomials of the form 1+ tr+ t2r+ · · ·+ tnr with r, n ≥ 1.
A theoretical explanation of this fact is not known. Motivated by this observation,
in [GHV] M. Graña and the first and the last authors classified finite-dimensional
Nichols algebras over groups with many quadratic relations. This corresponds to
a factorization of the Hilbert series, where only r = 1 appears. After the pub-
lication of the paper some other examples appeared which require one to allow
r > 1. In our paper we attack the case r ≤ 2. We consider in detail the Hurwitz
orbits with respect to the action of the braid group B3 on X3, where X is the
support of the Yetter–Drinfeld module. For such orbits, we obtain an estimate on
the kernel of the shuffle map using graph theoretical structures closely related to
those in percolation theory [STBT10], [BBJW10]. Such structures are known to
be very complicated. Since we are forced to perform very sensitive calculations,
we concentrate on braided racks; see Definition 2. We obtain all known examples
of finite-dimensional Nichols algebras of irreducible Yetter–Drinfeld modules over
non-abelian groups except those over the affine racks with 5 elements (which are
not braided), and we also get two new examples. In principal, our method allows
us to consider arbitrary racks, but to do so we will need additional improvements
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of the general theory.

Our approach has the advantage that it works for all groups and it produces
quickly all known examples. Surprisingly, during our calculations we never met any
examples of Nichols algebras which satisfy our assumption but are not known to be
finite-dimensional. Although there exist many indecomposable braided racks, for
example, conjugacy classes of 3-transpositions, we do not use difficult classification
results such as the classification of 3-transposition groups [Fis71], or [AH73].

The structure of our paper is as follows. In Section 1 we recall the fundamental
notions related to racks with particular emphasis on braided racks; see Definition 2.
We recall the Hurwitz action of the braid group. The orbits of this action play
a fundamental role in our approach. In Proposition 9 we determine the Hurwitz
orbits in X3 for braided racks X . The structure of Hurwitz orbits is in general
not known. This is one of the reasons we study braided racks first. In Section 1
we also define and determine the immunity of the Hurwitz orbits. This will be a
crucial ingredient for our classification theorem.

In Section 2 we formulate our main theorem concerning Nichols algebras with
many cubic relations. With Propositions 14 and 15 we give detailed information
on the kernel of the quantum shuffle map restricted to orbits of size 1 and 8. This
information will help us to obtain a condition in Proposition 20 allowing us to
concentrate on a few braided racks. These racks are classified in Sections 4, 5 and
6. In Section 4 we also mention and use an interesting connection to 3-transposition
groups [Fis71], [Asc97]. In Section 7 we collect the information obtained in the
previous sections to prove our main theorem. We consider the remaining racks and
the corresponding Nichols algebras case by case. Our careful preparations allow
us to succeed with the proof without using any technical assumptions.

In two appendices we collect tables with information on the racks and the
Nichols algebras found and we display Hurwitz orbits graphically.

Acknowledgement. We are grateful to Gunter Malle for introducing us to 3-
transposition groups. Many thanks go to Volkmar Welker for providing us with
the references to percolation theory. Finally, we thank the referees for their careful
reading and for their suggestions leading to improvements of the paper.
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Universität Marburg for the support of his visit from December 2010 to April
2011.

1. Braid groups, racks and Hurwitz actions

1.1. Racks

We recall basic notions and facts about racks. For additional information we refer
to [AG03]. A rack is a pair (X, .), where X is a non-empty set and . : X×X → X
is a map (considered as a binary operation on X) such that

(1) the map ϕi : X → X , where x 7→ i . x, is bijective for all i ∈ X , and

(2) i . (j . k) = (i . j) . (i . k) for all i, j, k ∈ X .

For all n ∈ N and i, j ∈ X we write i .nj = ϕn
i (j).
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A rack (X, .), or simply X , is a quandle if i . i = i for all i ∈ X . A subrack of
a rack X is a non-empty subset Y ⊆ X such that (Y, .) is also a rack. The inner
group of a rack X is the group generated by the permutations ϕi of X , where
i ∈ X . We write Inn(X) for the inner group of X . A rack is said to be faithful if
the map

ϕ : X → Inn(X), i 7→ ϕi, (1)

is injective.

Remark 1. Let X be a rack. Then

ϕi.j = ϕiϕjϕ
−1
i (2)

for all i, j ∈ X .

We say that a rack X is indecomposable if the inner group Inn(X) acts transi-
tively on X . Also, X is decomposable if it is not indecomposable. Any finite rack
X is the disjoint union of indecomposable subracks [AG03, Prop. 1.17] called the
components of X .

Let (X, .) and (Y, .) be racks. A map f : X → Y is a morphism of racks if
f(i . j) = f(i) . f(j) for all i, j ∈ X .

Example 1. A group G is a rack with x . y = xyx−1 for all x, y ∈ G. If a subset
X ⊆ G is stable under conjugation by G, then it is a subrack of G. In particular,
we list the following examples.

(1) The rack given by the conjugacy class of involutions in G = Dp, the dihedral
group with 2p elements, has p elements. It is called the dihedral rack (of
order p) and will be denoted by Dp.

(2) The rack T is the rack associated to the conjugacy class of (2 3 4) in A4.
This is the rack associated with the vertices of the tetrahedron, see [AG03,
§1.3.4].

(3) The rack A is the rack associated to the conjugacy class of (1 2) in S4.
(4) The rack B is the rack associated to the conjugacy class of (1 2 3 4) in S4.
(5) The rack C is the rack associated to the conjugacy class of (1 2) in S5.

Example 2. The racks Dp (p a prime number), T , A, B, C are faithful and
indecomposable.

Example 3. Let A be an abelian group and let X = A. For any g ∈ Aut(A) we
have a rack structure on X given by

x . y = (1− g)x+ gy

for all x, y ∈ X . This rack is called the affine rack associated to the pair (A, g) and
will be denoted by Aff(A, g). In particular, let p be a prime number, q a power
of p and α ∈ Fq \ {0}. We write Aff(Fq , α), or simply Aff(q, α), for the affine
rack Aff(A, g), where A = Fq and g is the automorphism given by x 7→ αx for all
x ∈ Fq.
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Example 4. A finite affine rack (A, g) is faithful if and only if it is indecomposable;
see [AG03, §1.3.8].

Remark 2. Let X be a finite rack and assume that Inn(X) acts transitively on
X . Then for all i, j ∈ X there exist r ∈ N and k1, k2, . . . , kr ∈ X such that
ϕ±1
k1

ϕ±1
k2

· · ·ϕ±1
kr

(i) = j. Equation (2) implies that all permutations ϕi, where
i ∈ X , have the same cycle structure.

Lemma 1 ([AG03, Lemma1.14]). Let X be a rack, and let Y be a non-empty
proper finite subset of X. The following are equivalent.

(1) Y and X \ Y are subracks of X.
(2) X . Y ⊆ Y .

By [GHV, Lemma 2.18] it is possible to define the degree of a finite indecom-
posable rack.

Definition 1. The degree of a finite indecomposable rackX is the number ord(ϕx)
for some (equivalently, all) x ∈ X .

For any rack X let GX denote its enveloping group

GX =〈X〉/(xy = (x . y)x for all x, y ∈ X). (3)

For a finite indecomposable rack X of degree n, the finite enveloping group of
X is defined as GX = GX/〈xn〉, where x ∈ X . This definition does not depend on
the choice of x ∈ X ; see [GHV, Lemma 2.18].

1.2. Braided racks

Definition 2. A rack X is braided if X is a quandle and for all x, y ∈ X at least
one of the equations x . (y . x) = y, x . y = y holds.

Lemma 2. Let X be a braided rack and let x, y, z ∈ X such that x . y = z and
z 6= y. Then y . z = x and z . x = y.

Proof. This follows from Definition 2. �

Lemma 3. Let X be a braided rack and let x, y ∈ X.

(1) If y . x = x then x . y = y.
(2) If x . (y . x) = y then y . (x . y) = x.

Proof. Assume that x . (y . x) = y and y . x = x. Then y = x . (y . x) = x . x = x
and hence x . y = y, y . (x . y) = x. �

Lemma 4. Let X be a quandle. The following are equivalent.

(1) X is braided.
(2) x . (y . x) ∈ {x, y} for all x, y ∈ X.

Proof. (1)⇒(2). If x, y ∈ X with x . (y . x) 6= y then x . y = y. Hence y . x = x
by Lemma 3. Thus x . (y . x) = x . x = x.

(2)⇒(1). Let x, y ∈ X . Then x . (y . x) ∈ {x, y} and y . (x . y) ∈ {x, y}. We
have to show that x . (y . x) = y or x . y = y. Assume that x . (y . x) 6= y. Then
x . (y . x) = x and hence y . x = x since X is a quandle. If y . (x . y) = y then
x . y = y. If y . (x . y) = x then x = (y . x) . (y . y) = x . y and hence x = y.
Again it follows that x . y = y. �
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Lemma 5. Let X be an indecomposable braided rack. Then X is faithful.

Proof. Assume first that there exists x ∈ X such that z . x = x for all z ∈ X .
Since X is indecomposable, Lemma 1 with Y = {x} implies that X = {x}. Then
X is faithful.

Let now x, y ∈ X such that x . z = y . z for all z ∈ X . By the previous
paragraph we may assume that there exists z ∈ X such that z . x 6= x. Then
x = z . (x . z) = z . (y . z) ∈ {y, z} and hence x = y. Thus X is faithful. �

LetX be a finite indecomposable faithful rack and let x ∈ X . In [GHV, Sect. 2.3]
integers kn for n ∈ N≥2 were defined by

kn = #{y ∈ X |x . (y . (x . (y . · · · )))
︸ ︷︷ ︸

n elements

= y,

x . (y . (x . (y . · · · )))
︸ ︷︷ ︸

j elements

6= y for all j ∈ {1, 2, . . . , n− 1}}.

In particular,

k2 = #{y ∈ X | x . y = y, x 6= y}, k3 = #{y ∈ X | x . (y . x) = y, x . y 6= y}.

Since X is indecomposable, the integers kn do not depend on the choice of x.

Remark 3. By definition, an indecomposable rack X is braided if and only if X is
faithful and kn = 0 for all n > 3.

Example 5. The racks D3, T , A, B, C are braided; see [GHV, Table 2].

Example 6. Let A be a finite abelian group and g ∈ Aut(A). It is well known
that the affine rack Aff(A, g) is faithful if and only if 1 − g is injective. Since A
is finite, this is equivalent to x . y 6= y for all x, y ∈ X with x 6= y. Therefore
Aff(A, g) is braided if and only if 1 − g + g2 = 0. In particular, the affine racks
Aff(F5, 2) and Aff(F5, 3) are not braided, but Aff(F7, 3) and Aff(F7, 5) are braided.
If an affine rack Aff(Fq , α) is braided, then α has order 2, 3 or 6. If ord(α) = 2,
then q is a power of 3. If ord(α) = 3, then q is a power of 2.

Proposition 6. Let X be a braided indecomposable rack. Then X has degree 1,
2, 3, 4 or 6.

Proof. Let x, y ∈ X such that x . y 6= y. Assume that x .n y = y with n > 4
minimal. We will prove that n = 6. We have

(x . y) . (x .2 y) = x . (y . (x . y)) = x . x = x.

By applying ϕy we obtain that

x . (y . (x .2 y)) = (y . (x . y)) . (y . (x .2 y)) = y . x = x .n−1 y.

Then y . (x.2 y) = x.n−2 y. By applying ϕx.2y to the equation x. (x.3 y) = x.4 y
we obtain that (x .2 y) . (x .4 y) = y, since

(x .2 y) . (x . (x .3 y)) = ((x .2 y) . x) . ((x .2 y) . (x .3 y))

= (x . y) . (x .2 (y . (x . y))) = (x . y) . x = y.
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Since x .4 y 6= y, we conclude that (x .2 y) . (x .4 y) 6= x .4 y. Then

((x .2 y) . (x .4 y)) . (x .2 y) = x .4 y,

because X is braided. Therefore x .4 y = y . (x .2 y) = x .n−2 y and hence the
claim holds. �

Proposition 7. There exist infinitely many finite braided indecomposable racks of
degree 6 which are generated by two elements.

Proof. The affine racks X = Aff(Fq , α) are braided if and only if 1− α + α2 = 0.
Take any prime number p > 3. If there exists α ∈ Fp such that 1 − α + α2 = 0,
then X = Aff(Fq , α) is braided. Otherwise, take the quadratic extension of Fp by
α, where 1−α+α2 = 0. These racks are indecomposable, since α 6= 1. Moreover,
1 − α + α2 = 0 implies that α6 = 1. Since p > 3, α2 6= 1 and α3 6= 1. We claim
that these affine racks are always generated by two elements. If there exists α ∈ Fp

such that 1− α + α2 = 0, the claim follows from [AFGVa, Prop. 4.2]. Otherwise
take the quadratic extension of Fp by α. Then

(u+ αv) . (x+ αy) = (u+ v − y) + α(x+ y − u) (4)

for all u, v, x, y ∈ Fp. In particular, u .3 0 = 2u for all u ∈ Fp and hence Fp is
included in S, the subrack generated by 0 and 1. Since 0 . 1 = α and (αv) .3 0 =
α(2v) for all v ∈ Fp, we conclude similarly that αFp is also included in S. Therefore
the claim follows from equation (4) by taking (u, v) = (0, k) for k ∈ Fp and
(x, y) = (l, 0) for l ∈ Fp. �

1.3. Hurwitz actions

For any n ∈ N let

Bn = 〈σ1, . . . , σn−1〉/(σiσj = σjσi if |i− j| ≥ 2,

σiσjσi = σjσiσj if |i− j| = 1)
(5)

denote the braid group on n strands. According to [Bri88], the action of Bn on
the set Xn = X × · · · ×X (n-times), where X is a conjugacy class of a group, was
studied implicitly in [Hur91].

Let X be a rack and let n ∈ N. There is a unique action of the braid group Bn

on Xn such that

σi(x1, . . . , xn) = (x1, . . . , xi−1, xi . xi+1, xi, xi+2, . . . , xn) (6)

for all x1, . . . , xn ∈ X , i ∈ {1, 2, . . . , n− 1}. This action of Bn on Xn is called the
Hurwitz action on Xn. For any (x1, x2, . . . , xn) ∈ Xn we write O(x1, x2, . . . , xn)
for its Hurwitz orbit, the orbit under the Hurwitz action. The rack X acts on itself
via the map .. This extends to a canonical action of the enveloping group GX on
X . More generally, GX acts on Xn diagonally:

g . (x1, . . . , xn) = (g . x1, . . . , g . xn) for all g ∈ GX , x1, . . . , xn ∈ X . (7)

The diagonal action of GX and the action of Bn on Xn commute. Two Hurwitz
orbits O1,O2 ⊆ Xn are called conjugate if there exists g ∈ GX such that the
map Xn → Xn, x̄ 7→ g . x̄, induces a bijection O1 → O2. Two Hurwitz orbits
O1,O2 ⊆ Xn are called isomorphic if there exists a bijection ϕ : O1 → O2 such
that ϕ(σ(x̄)) = σ(ϕ(x̄)) for all σ ∈ Bn, x̄ ∈ O1. Clearly, conjugate Hurwitz orbits
are isomorphic.
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Remark 4. The braided action studied in [GHV] is the same as the Hurwitz action
on X2.

Remark 5. Let X be a rack, n ∈ N and x1, . . . , xn, y1, . . . , yn ∈ X . By the def-
inition of the enveloping group GX , if (y1, y2, . . . , yn) ∈ O(x1, x2, . . . , xn) then
y1y2 · · · yn = x1x2 · · ·xn in GX .

In this work we focus on orbits of the Hurwitz action of B3. For a given rack
X and for all j ∈ N let

l
(3)
j = #{O(x, y, z) | x, y, z ∈ X, #O(x, y, z) = j}.

It should always be clear from the context which rack X is.
In Proposition 9 below we determine the Hurwitz orbits O ⊆ X3 of a braided

rack X up to isomorphism. The non-trivial orbits are illustrated in Figures 8–14
in Appendix B. In these figures, circles stand for triples in O, black arrows indicate
the action of σ1 and dotted arrows indicate the action of σ2; see Figure 1.

σ2 σ1

Figure 1: The notation for Hurwitz orbits

For the proof of Proposition 9 the following theorem going back to Coxeter is
useful.

Theorem 8. Let n, p ∈ N. The group Bn/(σ
p
1) is finite if and only if (1/n) +

(1/p) > 1/2. In particular,

B3/〈σ
p
1〉 '







S3 if p = 2,

SL(2, 3) if p = 3,

SL(2, 3)o Z4 if p = 4,

SL(2, 5)× Z5 if p = 5.

Proof. See [Cox59] for the first claim. For the second claim see [MK99]. The group
Bn/(σ1) can also be identified with the help of GAP [GAP06]. �

Proposition 9. Let d ∈ N and X a braided rack of size d. Then the possible sizes
for a Hurwitz orbit O ⊆ X3 are 1, 3, 6, 8, 9, 12, 16, and 24. Two such Hurwitz
orbits are isomorphic if and only if they have the same size. If X is indecomposable,
then

l
(3)
1 = d, l

(3)
3 = dk2, l

(3)
6 =

dt

6
, l

(3)
9 =

d(k2(k2 − 1)− t)

3
,

l
(3)
8 =

dk3
2

, l
(3)
12 =

dm

12
, l

(3)
16 =

d

4
(k2k3 − k22 + k2 + t),

where

m = #{x ∈ X | 1 . x 6= x, 1 .3 x = x}, (8)

t = #{(1, x, y) | 1 . x = x, 1 . y = y, x . y = y, x 6= 1, y 6= 1, x 6= y} (9)

and 1 is a fixed element of X.
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Remark 6. Let X and m be as in the Proposition. Then 3|m since 1 ∈ X acts
on {x ∈ X | 1 . x 6= x, 1 .3 x = x} and all orbits of this action have size 3 by
assumption.

Proof. Let O ⊆ X3 be a Hurwitz orbit. We distinguish two cases and several
subcases.

Case A. Assume that a1 . (a2 . a1) = a2 for all (a1, a2, a3) ∈ O. Then

σ3
1(a1, a2, a3) = (a1, a2, a3) for all (a1, a2, a3) ∈ O.

In particular, B3/(σ
3
1) acts on O via the Hurwitz action. The group B3/(σ

3
1) is

finite by Theorem 8. Moreover, the order of B3/(σ
3
1) is 24. Thus #O divides 24.

Let (a, b, c) ∈ O. The elements of O (counted possibly several times) are

A = (a, b, c), B = (a . b, a . c, a),

C = (a . b, a, c), D = ((a . b) . c, a . (b . c), a . b),

E = (b, a . b, c), F = (a . b, c, a . c),

G = (b, (a . b) . c, a . b), H = ((a . b) . c, a . b, a . c),

I = (a . (b . c), b, a . b), J = (b, c, (a . b) . c),

K = (c, (a . b) . c, a . c), L = (a . (b . c), a . b, a),

M = (c, b . c, (a . b) . c), N = (a . (b . c), a, b),

O = (b . c, b, (a . b) . c), P = (c, a . c, b . c),

Q = (b . c, a . (b . c), b), R = (a, c, b . c),

S = (a, b . c, b), T = (b . c, (a . b) . c, a . (b . c)),

U = (a . c, a, b . c), V = (a . c, b . c, a . (b . c)),

W = ((a . b) . c, a . c, a . (b . c)), X = (a . c, a . (b . c), a);

see also Figure 14 in Appendix B.
Case A.1. There exists (a, b, c) ∈ O with a = b = c. Then O = {(a, a, a)}.

There are l
(3)
1 = d such orbits.

Case A.2. There is (a, b, c) ∈ O with #{a, b, c} = 2. By applying σ−1
1 and/or

σ−1
2 if needed, we may assume that a = b. In this case, O is the Hurwitz orbit of

size 8 depicted in Figure 10 in Appendix B, with

A = (c, a . c, a . c), B = (a, c, a . c), C = (a, a, c),

D = (a . c, a, a . c), E = (a, a . c, a),

F = (a . c, a . c, a .2 c), G = (a . c, a .2 c, a), H = (a .2 c, a, a).

Note that a .2 c neither commutes with a nor with a . c and it differs from both.
There are dk3 triples (a1, a1, a3) ∈ X3 with a1 . a3 6= a3. Since C and F are the

only triples in O of this type, we conclude that l
(3)
8 = (1/2) d k3.

Case A.3. Assume that #{a1, a2, a3} = 3 for all (a1, a2, a3) ∈ O. Then a . b /∈
{a, b, c} and b . c /∈ {a, b, c}. If the triple A = (a, b, c) differs from all other triples
in the above list, then #O = 24. Otherwise

a = (a . b) . c, b = a . c, c = a . (b . c), (10)
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in which case A = W and then the graph in Figure 14 in Appendix B collapses to
the graph in Figure 12, corresponding to an orbit of size 12. The second and third
equations in (10) imply that b . c = a . b, and hence from (10) one obtains that
c = a . (a . b) = a .3 c. In turn, it follows that (10) is equivalent to

b = a . c, c = a .3 c. (11)

The triples corresponding to the vertices in Figure 12 are

A = (a, a . c, c), B = (a, c, c . a),

C = (a . c, a, c . a), D = (a . c, c . a, c),

E = (a, c . a, a . c), F = (c, a . c, c . a), G = (a . c, c, a),

H = (c, a, a . c), I = (c, c . a, a),

J = (c . a, c, a . c), K = (c . a, a . c, a),

L = (c . a, a, c).

The number of 12-orbits is just the number of triples (a1, a1 .a3, a3) with a1 .a3 6=
a3, a1 .3 a3 = a3 (which is dm) divided by the number of occurrences of such

triples in the 12-orbit (which is 12), that is, l
(3)
12 = (1/12) dm.

Case B. There is (a, b, c) ∈ O such that two of a, b, c are different but commuting.
We are left with four subcases:

(1) Two of a, b, c are equal, the third one commutes with both.
(2) a, b, c are pairwise different and commuting.
(3) a, b, c are pairwise different; there are precisely two commuting pairs among

(a, b), (a, c), (b, c).
(4) a, b, c are pairwise different; there is precisely one commuting pair.

Case B.1. We have an orbit of size 3; see Figure 8 in Appendix B. The number

of triples of the form (a1, a1, a3) with a1 6= a3 and a1 . a3 = a3 is l
(3)
3 = d k2.

Case B.2. Here O is an orbit of size 6, see Figure 9 in Appendix B. The braid
group acts on the triples in O just as the permutation group S3 does. All 6 triples

of O are of this type and there are dt such triples. Hence l
(3)
6 = (1/6) d t.

Case B.3. By applying σ1 and/or σ2 if needed, we may assume that a . b = b,
a . c = c. Then a . (b . c) = b . c and b . c /∈ {a, b, c}. Then #O = 9; see Figure 11
in Appendix B:

A = (b, c, a), B = (b . c, b, a), C = (c, b . c, a),

D = (b, a, c), E = (b . c, a, b), F = (c, a, b . c),

G = (a, b, c), H = (a, b . c, b), I = (a, c, b . c).

The total number of triples (a1, a2, a3) ∈ X3 with

a1 . a2 = a2, a1 . a3 = a3, a1 6= a2, a1 6= a3, a2 6= a3
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is dk2(k2 − 1). From this we subtract the number of triples in which a2 and a3
commute (there are dt such triples) and divide by the number of occurrences of

such triples in the 9-orbit (which is 3). Hence l
(3)
9 = (1/3) d (k2(k2 − 1) − t).

Case B.4. As argued in Case B.3, we may assume that a . b = b. Then
a . (b . c) 6= b . c and (a . c) . (b . c) = b . c. Therefore, the orbit O has at most
size 16, with the following triples:

A = (a, c, b . c), B = (a . c, a, b . c),

C = (a . c, a . (b . c), a), D = (a, b . c, b),

E = (c, a . c, b . c), F = (a . c, b . c, a . (b . c)),

G = (b, a . c, a), H = (a, b, c),

I = (a . (b . c), b, a), J = (b, a, c),

K = (c, b . c, a . c), L = (b . c, a . c, a . (b . c)),

M = (a . (b . c), a, b), N = (b, c, a . c),

O = (b . c, b, a . c), P = (b . c, a . (b . c), b)

(see also Figure 13 in Appendix B). Further, #{a, b, c, a.c, b.c} = 5 and a.(b.c) /∈
{a, b, a . c, b . c}. Looking at the first and last components of the above triples it
follows that #O = 16. In particular, O did not appear in Cases B1–B3.

The total number of triples (a1, a2, a3) of pairwise different elements, such that
only a1 and a2 commute, can be calculated as follows: the total number of triples
(a1, a2, a3) with pairwise different a1, a2, a3, such that a1 and a2 commute, but
a1 and a3 do not commute, is dk2k3. Among these we have the d(k2(k2 − 1)− t)
triples with a2.a3 = a3 (see also Case B.3). With this, the total number of triples,
such that only a1 and a2 commute, is

d k2 k3 − d (k2 (k2 − 1) − t) = d
(
k2 k3 − k22 + k2 + t

)
.

Finally, there are four triples in O(a, b, c) of the form (a1, a2, a3) with a1 .a2 = a2:
F,H, J and L. Hence

l
(3)
16 =

1

4
d
(
k2 k3 − k22 + k2 + t

)
.

This completes the proof of the proposition. �

1.4. The immunity of a Hurwitz orbit

Let X be a rack. In the next section we will need a combinatorial invariant of a
Hurwitz orbit O ⊆ X3 which is defined as follows.

Definition 3. Let O ⊆ X3 be a Hurwitz orbit. A quarantine of O is a non-empty
subset Q ⊆ O such that if two of

(x, y, z), (x, y . z, y), (x . (y . z), x, y)

are in Q, then the third one is in Q. Graphically this means the following (see
Figures 1, 2): if two vertices along a path consisting of a dotted arrow followed by
a black arrow are in Q, then the third vertex is in Q.
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x x

x x

x x







=⇒ x x x

Figure 2: The rule defining a quarantine

A subset P ⊆ O is called a plague if the smallest quarantine of O containing P
is O. Let P be a plague of the smallest possible size. The immunity of O is the
number immO = #P/#O ∈ Q ∩ (0, 1].

Proposition 10. Let X be a braided rack and O ⊆ X3 a Hurwitz orbit.

• If #O = 1 then immO = 1.
• If #O ∈ {3, 6, 9, 12} then immO = 1/3.
• If #O = 8 then immO = 3/8.
• If #O = 16 then immO = 5/16.
• If #O = 24 then immO = 7/24.

Proof. By Proposition 9, any Hurwitz orbit O ⊆ X3 is up to isomorphism uniquely
determined by its size, which is one of 1, 3, 6, 8, 9, 12, 16 or 24. The case #O = 1
is trivial. We use a labeling of the triples of the orbit as on Figures 8–14 in the
Appendix. If #O = 3, then P = {A} is a plague. If #O = 6, then P = {A,B} is
a plague and no subset of O of cardinality 1 is a plague.

Assume that #O = 8. The set {A,D,H} is a plague of O. On the other hand,
since {A,B,D,E, F,G} and {B,C,D,E,G,H} are quarantines, for any plague P
of O we have P ∩{C,H} 6= ∅ and P ∩{A,F} 6= ∅. Since none of {A,C}, {A,H},
{C,F}, {F,H} is a plague, we obtain that immO = 3/8.

Assume that #O = 9. The set {A,B,C} is a plague of O. On the other hand,
B is an element of the quarantines {B,C,E,G,H}, {A,B,D,G, I} and {B,F},
and hence there is no plague P with B ∈ P , #P = 2. Similarly, H is an element
of the quarantines {B,C,E,G,H}, {A,C, F,H, I}, {D,H}, and hence there is no
plague P with H ∈ P , #P = 2. Finally, {B,C,E,G,H}, {A,E}, {D,E}, {E,F},
{E, I} are quarantines containing E, and hence there is no plague P with E ∈ P ,
#P = 2. By symmetry, there is no plague P of O with #P = 2. We conclude
that immO = 1/3.

The proof for the other orbits is similar but more tedious. However, the cru-
cial inequality immO ≤ . . . is easily checked: If #O = 12, then {A,B,D,E}
is a plague. If #O = 16, then {A,B,C,E,H} is a plague. If #O = 24, then
{A,B,C,D,E,K,N} is a plague. �

2. Nichols algebras over groups

For the general theory of Nichols algebras we refer to [AS02]. Details on the
relationship between racks and Nichols algebras can be found in [AG03, §6].

Let k be a field. Yetter–Drinfeld modules over a group G are kG-modules with
a left coaction δ : V → kG ⊗ V satisfying the Yetter–Drinfeld condition. Any
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Yetter–Drinfeld module V over G decomposes as V =
⊕

g∈G Vg , where Vg = {v ∈
V | δ(v) = g ⊗ v} for all g ∈ G. The set

suppV = {g ∈ G | Vg 6= 0} (12)

is called the support of V . By the Yetter–Drinfeld condition, suppV is invariant
under the adjoint action of G.

For any group G, any g ∈ G and any representation (ρ,W ) of the centralizer
CG(g) of g the kG-module

M(g, ρ) = kG⊗kCG(g) W (13)

is a Yetter–Drinfeld module, where W is regarded as a kCG(g)-module via ρ ∈
Endk(W ) and δ(h ⊗ w) = hgh−1 ⊗ (h ⊗ w) for all h ∈ G, w ∈ W . Let gG be the
conjugacy class of g in G. Then M(g, ρ) =

⊕

x∈gG M(g, ρ)x, whereM(g, ρ)hgh−1 =
kh⊗W for all h ∈ G.

The category kG
kGYD of Yetter–Drinfeld modules over a group G is a braided

monoidal category. Unless otherwise specified, all tensor products are taken over
the fixed field k. The braiding is denoted by c. If the braiding appears together
with the tensor product, we also use leg notation: for all k ∈ N, i ∈ {1, 2, . . . , k−1}
and all Yetter–Drinfeld modules V(1), . . . , V(k) let

ci,i+1 : V(1) ⊗ · · · ⊗ V(k) → V(1) ⊗ · · · ⊗ V(i−1) ⊗ V(i+1) ⊗ V(i) ⊗ V(i+2) ⊗ · · · ⊗ V(k),

ci,i+1 = idi−1 ⊗ c⊗ idk−i−1.

Nichols algebras are N0-graded braided Hopf algebras. For any Yetter–Drinfeld
module V over a group G the Nichols algebra of V is denoted by B(V ). Then

B(V ) =
⊕

n∈N0

Bn(V )

is its decomposition into the direct sum of the homogeneous components, where
B0(V ) = k, B1(V ) = V , and Bn(V ) is a Yetter–Drinfeld submodule of B(V ) for
all n ∈ N0. The Hilbert series of B(V ) is the formal power series HB(V )(t) ∈ Z[[t]]
defined by

HB(V )(t) =
∞∑

i=0

(dimBn(V ))tn. (14)

We use the notation

(n)tr =

n−1∑

i=0

tri, (∞)tr =

∞∑

i=0

tri (15)

for all r, n ∈ N≥1 in connection with the Hilbert series of Nichols algebras.
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2.1. Nichols algebras with many cubic relations

The main result of our paper is the following theorem. In (3) the map 1 + c12 +
c12c23 ∈ Endk(V

⊗3) will appear which is defined using leg notation.

Theorem 11. Let G be a non-abelian group, g ∈ G and ρ a finite-dimensional
absolutely irreducible representation of CG(g). Assume that the conjugacy class X
of g is a finite braided rack and generates the group G. Let V = M(g, ρ). The
following are equivalent.

(1) The Hilbert series HB(V )(t) of B(V ) is a product of factors from

{(n)t, (n)t2 | n ∈ N≥2 ∪ {∞}}.

(2) dimB3(V ) ≤ dimV
(
dimB2(V )− (1/3)((dimV )2 − 1)

)
.

(3) dimker(1 + c12 + c12c23) ≥ (1/3) dimV ((dim V )2 − 1).
(4) The Yetter–Drinfeld module V appears in Tables 4 and 5.

Remark 7. In the setting of Theorem 11, the rack X is indecomposable since G is
generated by X and X is a conjugacy class of G.

Definition 4. Let V be a Yetter–Drinfeld module over a group algebra. We
say that the Nichols algebra B(V ) has many cubic relations if the inequality in
Theorem 11(3) is satisfied.

The difficult part of Theorem 11 is the implication (3)⇒(4). Its proof will
occupy the remaining part of the paper. The other implications are elementary.

Proof. (1)⇒(2). Consider HB(V )(t) in Z[[t]]/(t4). Then (1) implies that HB(V )(t)
is a product of polynomials 1 + t, 1 + t + t2, 1 + t + t2 + t3 and 1 + t2. By
replacing the factors 1 + t + t2 by 1 + t + t2 + t3 we may raise the coefficient of
t3 in HB(V )(t) without changing the coefficients of 1, t, and t2. Now replace the
factors 1 + t+ t2 + t3 by (1 + t)(1 + t2). Thus there exist n, a, b ∈ N0 such that

HB(V )(t) = (1 + t)a(1 + t2)b − nt3 + terms of degree ≥ 4. (16)

Since B1(V ) = V , we conclude that a = dimV . The coefficient of t2 in HB(V )(t)
is a(a− 1)/2 + b and the coefficient of t3 is

a(a− 1)(a− 2)

6
+ ab− n = a

(
a(a− 1)

2
+ b

)

−
a(a2 − 1)

3
− n.

This implies the claim.
(2)⇒(3). Let S3 = (1 + c23)(1 + c12 + c12c23) ∈ Endk(V

⊗3) denote the third
quantum symmetrizer. By definition of B3(V ) and by (2),

dimkerS3 = (dimV )3 − dimB3(V )

≥dimV

(

dim ker(1 + c) +
1

3
((dim V )2 − 1)

)

.
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On the other hand, by linear algebra we obtain that

(dimV ) dim ker(1 + c) + dim ker(1 + c12 + c12c23)

= dimker(1 + c23) + dimker(1 + c12 + c12c23)

≥ dimker(1 + c23)(1 + c12 + c12c23)

= dimkerS3.

The combination of these two inequalities yields the claim.
(4)⇒(1) The Hilbert series of B(V ) can be found in Table 4. For the old exam-

ples, HB(V )(t) was already known. For the new examples, we calculate HB(V )(t)
in Propositions 32 and 36. �

Remark 8. The inequality

dimkerS3 ≤ (dimV ) dimker(1 + c) + dimker(1 + c12 + c12c23)

used in the proof of (2)⇒(3) is in fact an equality for arbitrary braidings of finite-
dimensional vector spaces, but we don’t need this fact here.

Let G be a group, V a Yetter–Drinfeld module over kG and X = suppV . For
any Hurwitz orbit O ⊆ X3 let

V ⊗3
O =

⊕

(x,y,z)∈O

Vx ⊗ Vy ⊗ Vz .

Since V =
⊕

g∈X Vg , we conclude that V ⊗3 =
⊕

O V ⊗3
O , where O is running over

all Hurwitz orbits. Further, each of V ⊗3
O is invariant under 1 + c12 + c12c23. Thus

dimker(1 + c12 + c12c23) =
∑

O

dimker(1 + c12 + c12c23)|V ⊗3
O

. (17)

The next proposition is one of our main tools to find a good estimate of the
dimension of ker(1 + c12 + c12x23).

Proposition 12. Let G be a group, V a non-zero finite-dimensional Yetter–Drin-
feld module over kG, X = suppV and O ⊆ X3 a Hurwitz orbit. Then

dimker(1 + c12 + c12c23)|V ⊗3
O

≤ immO dimV ⊗3
O .

Proof. Let τ ∈ ker(1 + c12 + c12c23)|V ⊗3
O

. Then for all (x, y, z) ∈ O there exist

uniquely determined elements τ(x,y,z) ∈ Vx ⊗ Vy ⊗ Vz such that τ =
∑

x̄∈O τx̄.
Since τ ∈ ker(1 + c12 + c12c23), it follows that

τ(x.(y.z),x,y) + c12τ(x,y.z,y) + c12c23(τ(x,y,z)) = 0

for all (x, y, z) ∈ O. If two summands of such an expression vanish, then so does the
third, since c12 and c23 are bijective. Now let P ⊆ O be a plague. If τ(x,y,z) = 0 for
all (x, y, z) ∈ P , then τ = 0 by the choice of P . Hence the rank of 1+c12+c12c23|V ⊗3

O

is bounded from below by dimV ⊗3
O −#P (dimVx)

3, where x ∈ X , that is,

dim ker(1 + c12 + c12c23)|V ⊗3
O

≤#P (dim Vx)
3 =

#P

#O
dimV ⊗3

O = immO dimV ⊗3
O .

This proves the claim. �
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Definition 5. Let G be a group, V a non-zero finite-dimensional Yetter–Drinfeld
module over kG, X = suppV and O ⊆ X3 a Hurwitz orbit. The pair (V,O) is
said to be optimal with respect to 1 + c12 + c12c23 ∈ Endk(V

⊗3
O ) if

dim ker(1 + c12 + c12c23)|V ⊗3
O

= immO dimV ⊗3
O .

2.2. Hurwitz orbits with one element

For the study of Nichols algebras over groups with many cubic relations, the Hur-
witz orbits of size 1 and 8 will play a distinguished role. We start with a lemma
to warm up and with the analysis of the 1-orbits.

Lemma 13. Let G be a group, V a non-zero Yetter–Drinfeld module over kG,
and X = suppV . Let q ∈ k \ {0}, x ∈ X, and O = O(x, x) ⊆ X2. Assume that
e = dimVx < ∞ and that xv = qv for all v ∈ Vx. Then dimker(1 + c) is the
following:

e(e+ 1)/2 if q = −1,

e(e− 1)/2 if q = 1, chark 6= 2,

0 otherwise.

Proof. Let v1, v2, . . . , ve be a basis of Vx. For all i, j ∈ {1, . . . , e} let Wij =
k(vi ⊗ vj). Decompose Vx ⊗ Vx as

Vx ⊗ Vx =

(
⊕

i

Wii

)

⊕
⊕

i<j

(Wij ⊕Wji).

Then
(1 + c)|Wii

= (1 + q)idWii

for all i ∈ {1, . . . , e}, and the matrix of 1+c with respect to the basis (vi⊗vj , vj⊗vi)
of Wij

⊕
Wji for i 6= j is

(
1 q
q 1

)

.

This matrix has rank 1 if q2 = 1 and rank 2 if q2 6= 1. Now the claim of the lemma
follows by counting. �

Proposition 14. Let G be a group, V a non-zero Yetter–Drinfeld module over kG,
and X = suppV . Let q ∈ k \ {0}, x ∈ X, and O = O(x, x, x) ⊆ X3. Assume that
e = dim Vx < ∞ and that xv = qv for all v ∈ Vx. Then dimker(1+c12+c12c23)|V ⊗3

O

is the following:

e(e2 + 2)/3 if chark = 3, q = 1,

e(e2 − 1)/3 if q = −1 or chark 6= 3, q = 1,

e(e+ 1)(e+ 2)/6 if chark 6= 3, 1 + q + q2 = 0,

e(e− 1)(e− 2)/6 if chark 6= 2, 3, 1− q + q2 = 0,

0 otherwise.

In particular, dimker(1 + c12 + c12c23)|V ⊗3
O

≤ e(e2 + 2)/3.
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Proof. Let v1, v2, . . . , ve be a basis of Vx. For all i, j, k ∈ {1, . . . , e} let Wijk =
k(vi ⊗ vj ⊗ vk). Decompose Vx ⊗ Vx ⊗ Vx as

Vx ⊗ Vx ⊗ Vx =

(
⊕

i

Wiii

)

⊕
⊕

i6=j

(Wiij ⊕Wiji ⊕Wjii)⊕

(
⊕

i6=j 6=k,i6=k

Wijk

)

.

Then

(1 + c12 + c12c23)(w1 ⊗ w2 ⊗ w3)

= w1 ⊗ w2 ⊗ w3 + qw2 ⊗ w1 ⊗ w3 + q2w3 ⊗ w1 ⊗ w2

for all w1 ∈ Vi, w2 ∈ Vj and w3 ∈ Vk. In particular, if 1 + q + q2 = 0, then
dimker(1 + c12 + c12c23)|⊕

i
Wiii

is e, otherwise it is zero.
Assume that e ≥ 2. Let i, j ∈ {1, . . . , e} with i 6= j and let λ1, λ2, λ3 ∈ k. Then

(1 + c12 + c12c23)(λ1vi ⊗ vi ⊗ vj + λ2vi ⊗ vj ⊗ vi + λ3vj ⊗ vi ⊗ vi)

= (λ1 + λ1q + λ2q
2)vi ⊗ vi ⊗ vj

+ (λ2 + λ3q + λ3q
2)vi ⊗ vj ⊗ vi + (λ3 + λ2q + λ1q

2)vj ⊗ vi ⊗ vi.

This expression is zero if and only if

0 = (1 + q)λ1 + q2λ2 = λ2 + (q + q2)λ3 = q2λ1 + qλ2 + λ3.

Note that

det





1 + q q2 0
0 1 q + q2

q2 q 1



 = (1 + q)2(1− q)2(1 + q + q2)

and the rank of this matrix is at least 2. Therefore if (1+ q)(1− q)(1+ q+ q2) = 0,
then the dimension of ker(1+c12+c12c23) restricted to

⊕

i6=j(Wiij

⊕
Wiji

⊕
Wjii)

is e(e− 1); otherwise it is zero.
Assume that e ≥ 3. Let i1, i2, i3 ∈ {1, . . . , e} be pairwise different elements and

for all σ ∈ S3 let λσ ∈ k. Similarly to the previous calculation,
∑

σ∈S3

λσviσ(1)
⊗ viσ(2)

⊗ viσ(3)
∈ ker(1 + c12 + c12c23)

if and only if (λσ)σ∈S3 ∈ kerA, where

A =











1 0 q q2 0 0
0 1 0 0 q q2

q q2 1 0 0 0
0 0 0 1 q2 q
q2 q 0 0 1 0
0 0 q2 q 0 1











.

We obtain the following facts:

• detA = (q + 1)4(q − 1)4(q2 + q + 1)(q2 − q + 1),
• rankA = 4 if and only if q ∈ {−1, 1},
• rankA = 5 if and only if (q2 + q + 1)(q2 − q + 1) = 0, q2 6= 1.

The claim of the proposition follows by summing up dimker(1 + c12 + c12c23) for
different values of q. �
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2.3. Hurwitz orbits with eight elements

The other important Hurwitz orbits for the proof of Theorem 11 are the orbits
with 8 elements.

Proposition 15. Let G be a group, V a non-zero Yetter–Drinfeld module over
kG, and X = suppV . Let x, y ∈ X, O = O(x, x, y) ⊆ X3, and q ∈ k \ {0}.
Assume that x . (y . x) = y, x 6= y, e = dimVx < ∞ and xv = qv for all v ∈ Vx.
Then dim V ⊗3

O = 8e3.

(1) If q = −1 then dimker(1 + c12 + c12c23)|V ⊗3
O

≤ e2(5e+ 1)/2.

(2) If q 6= −1 then dimker(1 + c12 + c12c23)|V ⊗3
O

≤ e2(5e− 1)/2.

Proof. Let z = x.y and w = x.z. Then w /∈ {x, z}, z .x = y, w.x = z, y .z = x,
z . w = x, and

O = {(x, x, y), (x, z, x), (w, x, x), (z, w, x), (z, z, w), (z, x, z), (y, z, z), (x, y, z)}.

Since x . (y . x) = y, it follows that dimVx = dimVy and dimV ⊗3
O = 8e3. Any

element τ ∈ V ⊗3
O has the form

τ = τxxy + τxzx + τwxx + τzwx + τzzw + τzxz + τyzz + τxyz,

where τijk ∈ Vi ⊗ Vj ⊗ Vk for all i, j, k ∈ X . Suppose that τ ∈ ker(1 + c12 +
c12c23)|V ⊗3

O

. Applying 1+ c12 + c12c13 to τ and considering summands of different

degrees we obtain the following equations:

τxxy + c12(τxxy) + c12c23(τxyz) = 0, τxzx + c12(τzwx) + c12c23(τzxz) = 0,

τwxx + c12(τxzx) + c12c23(τxxy) = 0, τzwx + c12(τwxx) + c12c23(τwxx) = 0,

τzzw + c12(τzzw) + c12c23(τzwx) = 0, τzxz + c12(τxyz) + c12c23(τxzx) = 0,

τyzz + c12(τzxz) + c12c23(τzzw) = 0, τxyz + c12(τyzz) + c12c23(τyzz) = 0.

This system of equations is equivalent to

τzwx = −(c12c23)
−1(1 + c12)(τzzw), (18)

τyzz = −c12(τzxz)− c12c23(τzzw), (19)

τxyz = −c12(τyzz)− c12c23(τyzz)

= c12(1 + c23)c12(τzxz) + c12(1 + c23)c12c23(τzzw), (20)

τxzx = −(c12c23)
−1(τzxz + c12(τxyz))

= −c−1
23

(
(c−1

12 + c212 + c12c23c12)(τzxz) + c12(1 + c23)c12c23(τzzw)
)
, (21)

τwxx = −c12(τxzx)− c12c23(τxxy), (22)

0 = τxxy + c12(τxxy) + c12c23(τxyz), (23)

0 = τxzx + c12(τzwx) + c12c23(τzxz), (24)

0 = τzwx + c12(τwxx) + c12c23(τwxx). (25)

Using equation (20), equation (23) is equivalent to

(1 + c12)(τxxy)− c12c23c12(1 + c23)(τyzz) = 0. (26)

Since xv = qv for all v ∈ Vx, Lemma 13 yields that dimker(1+c)|Vx⊗Vx
= e(e+1)/2

if q = −1 and dimker(1+ c)|Vx⊗Vx
≤ e(e− 1)/2 if q 6= −1. This implies the claim.

�
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Proposition 16. Let G, V,X, x, y,O, q, e be as in Proposition 15. Let vx∈Vx\{0},
vy ∈ Vy \ {0}. The following are equivalent.

(1) The pair (V,O) is optimal with respect to 1 + c12 + c12c23.
(2) e = dimVx = 1, q = −1 and (1 + c3)(vx ⊗ vy) = 0.

Proof. We use the same notation as in the proof of Proposition 15. Since immO =
3/8, (1) holds if and only if equations (23)–(25) are satisfied for all tensors τxxy ∈
Vx ⊗Vx⊗Vy , τzxz ∈ Vz ⊗Vx ⊗Vz and τzzw ∈ Vz ⊗Vz ⊗Vw, where τzwx, τyzz, τxyz,
τxzx, τwxx are as in (18)–(22). By equation (19), equation (26) holds for all τxxy,
τzxz and τzzw if and only if

(1 + c)(Vx ⊗ Vx) = 0, (27)

that is, dim Vx = 1 and q = −1.
Assume now that equation (27) holds. Then (1+ c)(Vu ⊗Vu) = 0 for all u ∈ X .

Hence (18)–(25) are equivalent to

τzwx = 0, τxyz = 0, (28)

τyzz = − c12(τzxz)− c12c23(τzzw), (29)

τxzx = − (c12c23)
−1(τzxz), (30)

τwxx = c12(c12c23)
−1(τzxz)− c12c23(τxxy), (31)

0 = − (c12c23)
−1(τzxz) + c12c23(τzxz). (32)

Clearly, equation (32) is equivalent to

τzxz = (c12c23)
2(τzxz) = c212c23c12(τzxz). (33)

Since c12(τzxz) ∈ Vy ⊗ Vz ⊗ Vz, we conclude that c23c12(τzxz) = −τzxz and hence
equation (33) is equivalent to

c−1
12 (1 + c312)τzxz = 0.

Since dimVx = 1, this implies the equivalence claimed in the Proposition. �

Proposition 17. Let G be a group, V a non-zero Yetter–Drinfeld module over
kG, and X = suppV . Let x, y ∈ X, O = O(x, x, y) ⊆ X3, vx ∈ Vx \ {0},
vy ∈ Vy \ {0} and q ∈ k \ {0,−1}. Assume that x . (y . x) = y, x 6= y, dim Vx = 1
and xv = qv for all v ∈ Vx. Then dim ker(1+ c12 + c12c23)|V ⊗3

O

≤ 2 and if equality

holds then (1 + c3)(vx ⊗ vy) = 0.

Proof. We use the same notation as in the proof of Proposition 15. Let τ ∈
ker(1 + c12 + c12c23)|V ⊗3

O

as in the proof of Proposition 15. Since dimVx = 1 and

q 6= −1, we conclude that

τxxy = c12c23c12(τyzz) = −c12c23c
2
12(τzxz)− c12c23c

2
12c23(τzzw),

where the first equation follows from (20) and (23) and the second from (19).
Hence dimker(1 + c12 + c12c23)|V ⊗3

O
≤ 2. Equation (24) implies that

0 = −c−1
23 c

−1
12 (1 + c312)(τzxz)− c−1

23 c
−1
12 (1 + c312)c23(1 + c12)(τzzw). (34)

Thus, if dim ker(1 + c12 + c12c23)|V ⊗3
O

= 2, then equation (34) holds for all τzxz
and τzzw . This implies the claim. �
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3. The inequality in the main theorem for braided racks

Let G be a group, x ∈ G, X the conjugacy class of x in G, and let d ∈ N.
Assume that X is a finite indecomposable braided rack of size d. Let V be a finite-
dimensional Yetter–Drinfeld module over G with suppV = X and let e = dim Vx.
Let q ∈ k\{0} and assume that xv = qv for all v ∈ Vx. We collect properties which
hold if B(V ) has many cubic relations. The number m was defined in equation (8).

Proposition 18. Let d1, d8 ∈ N0. Assume that dim ker(1+c12+c12c23)|V ⊗3
O

≤ d1

for all Hurwitz 1-orbits O ⊆ X3 and dimker(1 + c12 + c12c23)|V ⊗3
O

≤ d8 for all

Hurwitz 8-orbits O ⊆ X3. If B(V ) has many cubic relations, then

12k3d8 + 24d1 − k23 − 30k3 +m− 8d2(e3 − 1) + 8(e− 1) ≥ 0. (35)

Proof. Assume that B(V ) has many cubic relations. Proposition 12 implies that
∑

O|#O/∈{1,8}

immO dimV ⊗3
O +

∑

O|#O∈{1,8}

dimker(1 + c12 + c12c23)|V ⊗3
O

≥
de((de)2 − 1)

3
.

Since the only Hurwitz orbits have sizes 1, 3, 6, 8, 9, 12, 16 and 24, we further
obtain that

l
(3)
1 + 3l

(3)
3 + 6l

(3)
6 + 8l

(3)
8 + 9l

(3)
9 + 12l

(3)
12 + 16l

(3)
16 + 24l

(3)
24 = d3. (36)

Since X is braided, we also know that k2 = d − k3 − 1. Using Proposition 9 and
the numbers immO from Proposition 10, we conclude that the inequality in (35)
holds. �

Lemma 19.

(1) Let d1 = e(e2 − 1)/3 and d8 = e2(5e+ 1)/2. Then the inequality in (35) is
equivalent to ek23 − em− 6k3 ≤ 0.

(2) Let d1 = e(e2 + 2)/3 and d8 = e2(5e− 1)/2. Then the inequality in (35) is
equivalent to e2k23 − e2m+ 6ek3 − 24 ≤ 0.

Proof. This follows by direct calculation. �

Proposition 20. Assume that B(V ) has many cubic relations. Then k3 ≤ 6.
Further, if e ≥ 2 then k3 ≤ 3.

Proof. Assume first that q = −1. Then we can set

d1 =
e(e2 − 1)

3
, d8 =

e2(5e+ 1)

2
in Proposition 18 because of Propositions 14, 15. Thus, if B(V ) has many cubic
relations, then Proposition 18 implies that the inequality in Lemma 19(1) holds.
Hence

(ek3 − 6)(k3 − 1) + e(k3 −m) ≤ 6.

Since e ≥ 1, m ≤ k3 and 3|m by Remark 6, the latter inequality does not hold for
k3 ≥ 7. Similarly, it does not hold if k3 ≥ 4, e ≥ 2.

Assume now that q 6= −1. Then, as above, one obtains that the inequality in
Lemma 19(2) holds. Since m ≤ k3, it follows that e2k3(k3 − 1) + 6ek3 − 24 ≤ 0.
Since e ≥ 1, this does not happen for k3 > 3. �
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4. Braided racks of degree 2 and 3-transposition groups

4.1. 3-transposition groups

A setD of involutions in a group G is called a set of 3-transpositions if D is a union
of conjugacy classes of G, G is generated by D and for each x, y ∈ D the product
xy has order 1, 2 or 3. In this case we say that the pair (G,D) is a 3-transposition
group. For more information related to 3-transposition groups see [Asc97].

Example 7. Symmetric groups are 3-transposition groups, where the 3-transpo-
sitions are the transpositions.

Example 8. Let (G,D) be a 3-transposition group and π : G → H an epimor-
phism of groups. Then (H, π(D)) is a 3-transposition group.

All 3-transposition groups generated by at most four elements are classified in
[HS95]. Let F (k, d) be the largest 3-transposition group (G,D), where D has size
d and G can be generated by k (and not less than k) elements in D.

Let (G,D) be a 3-transposition group and let Y ⊆ D be a subset generating D
as a rack. Let G(Y ) be the graph with vertex set Y such that x, y ∈ Y are adjacent
in G(Y ) if and only if ord(xy) = 3.

Remark 9. The graph G(Y ) is the complementary graph of the commuting graph
of Y defined in [Asc97, Ch. 2].

One says that two 3-transposition groups (G1, D1) and (G2, D2) have the same
central type if G1/Z(G1) ' G2/Z(G2) as 3-transposition groups.

Theorem 21. Let (G,D) be a 3-transposition group which is generated by a subset
Y of D such that #Y ≤ 3 and G(Y ) is connected. Then G has the same central type
as one of the groups F (1, 1) ' Z2, F (2, 3) ' S3, F (3, 6) ' S4, F (3, 9) ' SU(3, 2)′.

Proof. This has been proved independently by several people; see, for example,
[HS95, Theorem 1.1]. �

4.2. Graphs and racks of degree two

Lemma 22. Let (G,D) be a 3-transposition group. Assume that D is an inde-
composable rack. Let Y ⊆ D be a minimal subset generating D as a rack. Then
G(Y ) is connected.

Proof. Assume that G(Y ) is not connected. Let Y = Y1 t Y2 be a decomposition
into non-empty disjoint subsets such that y1 . y2 = y2 for all y1∈Y1, y2∈Y2. Then
D = 〈Y 〉 = 〈Y1〉 ∪ 〈Y2〉 is a decomposition of the rack D into the union of two
subracks and by the minimality of Y we may assume that Y1∩〈Y2〉 = ∅, Y2∩〈Y1〉 =
∅. Then 〈Y1〉 ∩ 〈Y2〉 = ∅, a contradiction to the indecomposability of D and to
Lemma 1. �

4.3. Examples

Using the classification of 3-transposition groups generated by at most three ele-
ments given in Theorem 21, it is not difficult to produce examples of braided racks
of degree two.

Example 9. The 3-transposition group F (1, 1) ' Z2 gives the braided rack of
one element.
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Example 10. Figure 3 gives the 3-transposition group F (2, 3) ' S3. The conju-
gacy class of involutions of S3 gives a braided rack isomorphic to D3. In this case
k3 = 2 (see Table 1 at the end of this section) and GX ' S3.

a b

Figure 3: Diagram of type (ab)

Example 11. Figure 4 gives the 3-transposition group F (3, 6) ' S4. The conju-
gacy class of transpositions of S4 gives a braided rack isomorphic to A. In this
case k3 = 4 (see Table 1) and GX ' S4.

a b c

Figure 4: Diagram of type (abc)

Example 12. Figure 5 gives the 3-transposition group F (3, 9). A presentation
for this group is given in [HS95]. The generators are a, b and c. The defining
relations are

a2 = b2 = c2 = (abc)3 = 1,

aba = bab, aca = cac, bcb = cbc.

The group F (3, 9) has order 54 and it is isomorphic to SU(3, 2)′. The elements
a, b, c belong to the same conjugacy class X . The conjugacy class X is a braided
rack of 9 elements. As a rack,X is isomorphic to the affine rack Aff(F9, 2). Further,
k3 = 8.

a b c

Figure 5: The diagram (abca)

Example 13. Figure 6 gives the 3-transposition group F (4, 10) ' S5. The con-
jugacy class of transpositions of S5 gives a braided rack isomorphic to C. In this
case k3 = 6 (see Table 1) and GX ' S5.

a b c d

Figure 6: Diagram of type (abcd)
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Example 14. Figure 7 gives the 3-transposition group F (4, 12). Following [HS95],
the group F (4, 12) is defined by generators a, b, c, d and relations

a2 = b2 = c2 = d2,

aba = bab, ada = dad, aca = cac,

cb = bc, cd = dc, bd = db.

The group F (4, 12) has order 192. The elements a, b, c, d belong to the same con-
jugacy class X . The conjugacy class X is a braided rack of size 12 and k3 = 8.

b

c a

d

Figure 7: Diagram of type (cab, ad)

Let GC denote the category of pairs (G,D), where G is a group with trivial
center, D is a conjugacy class of G generating G, and a morphism between pairs
(G,D) and (H,E) is a group homomorphism f : G → H such that f(D) = E.

Proposition 23 ([AG03, Prop. 3.2]). There is an equivalence of categories be-
tween the category of faithful indecomposable racks with surjective morphisms and
the category GC.

Corollary 24. There is an equivalence of categories between the category of brai-
ded indecomposable racks of degree two with surjective morphisms and the category
of 3-transposition groups in GC.

Proof. Let Γ denote the equivalence in Proposition 23. Then a rack X has degree
two if and only if D consists of involutions, where Γ(X) = (G,D). Further, X is
braided if and only if ord(xy) ∈ {1, 2, 3} for all x, y ∈ D. �

Lemma 25. Let X,X ′ be finite indecomposable braided racks such that X ( X ′.
Then k3(X) < k3(X

′).

Proof. Since X ′ is indecomposable, there exist x ∈ X , y ∈ X ′ \ X such that
x . y 6= y. Then k3(X

′) = #{z ∈ X ′ | x . z 6= z} > #{z ∈ X | x . z 6= z} = k3(X).
�

Proposition 26. Let X be a finite braided indecomposable rack of degree two with
k3 ≤ 6. Then X is isomorphic to one of the racks D3, A and C.

Proof. First assume that the rack X is generated by at most three elements. By
Theorem 21 and Corollary 24 we only have to check Examples 10, 11 and 12.
In this case X ' D3 or X ' A. Assume now that X is generated by a subset
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Y ⊆ X with #Y = 4. By Lemma 22, the graph G(Y ) is connected. If G(Y )
contains a triangle, then k3(X) > 8 by Lemma 25 and Example 12. If G(Y ) is as
in Example 14 then k3(X) > 6. Hence X ' C by Example 13. Finally, if X is
generated by more than four elements, then k3(X) > 6 by Lemma 25. �

Table 1: Some braided racks of degree two

Rack Diagram Size k3 Reference
D3 (ab) 3 2 Example 10
A (abc) 6 4 Example 11

Aff(9, 2) (abca) 9 8 Example 12
C (abcd) 10 6 Example 13

5. Braided racks of degree four

Proposition 27. Let X be a finite braided indecomposable rack of degree 4 such
that k3 ≤ 6. Then X is isomorphic to B.

Proof. Let 1, 2, . . . ,#X denote the elements ofX . Since k3 is the number of moved
points of the permutation ϕ1, the type of ϕ1 is (2, 4) or (4).

Type (2, 4). Without loss of generality we may assume that

ϕ1 = (2 3)(4 5 6 7).

Lemma 2 implies that ϕ2 = (1 3)π2, where π2 is a 4-cycle that commutes with
(1 3). Similarly, ϕ3 = (1 2)π3, where π3 is a 4-cycle that commutes with (1 2). We
prove that 2 . 4 /∈ {4, 5, 6, 7, 8}, which is a contradiction.

Assume that 2 . 4 = 4. Then 1 . (2 . 5) = ϕ2ϕ1(2 . 4) = ϕ2ϕ1(4) = 2 . 5. Let
8 = 2 . 5 be this new element that commutes with 1. Then 8 = ϕ2

1(2 . 5) = 2 . 7,
which is a contradiction.

Assume that 2 . 4 = 5. Then 4 . 5 = 1 and 4 . 5 = 2 by Lemma 2, which is a
contradiction.

Assume that 2 . 4 = 6. Then 2 . 6 = ϕ2
1(2 . 4) = ϕ2

1(6) = 4, which contradicts
the type of ϕ2.

Assume that 2 . 4 = 7. Then 2 . 6 = ϕ2
1(2 . 4) = ϕ2

1(7) = 5. We obtain that
ϕ2 = (1 3)(4 7 6 5) and ϕ3 = (1 2)(5 4 7 6). Then 2 . 7 = 6 implies that 6 . 2 = 7
and 3 . 7 = 6 implies that 6 . 3 = 7, a contradiction.

Assume that 2 . 4 = 8. Then 8 = ϕ2
1(8) = ϕ2

1(2 . 4) = 2 . 6, which is a
contradiction.

Type (4). Without loss of generality we may assume that

ϕ1 = (2 3 4 5).

Then 1 . 5 = 2, 5 . 2 = 1, and hence 5 and 2 do not commute. Let x = 2 . 5.
Then Lemma 2 implies that ϕ2 = (3 1 5x), ϕ3 = (4 1 2ϕ1(x)), ϕ4 = (5 1 3ϕ2

1(x))
and ϕ5 = (2 1 4ϕ3

1(x)).
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Assume that 2 . 5 = 4. Then 3 . 2 = ϕ1(2 . 5) = ϕ1(4) = 5 and hence 2 . 5 = 3,
a contradiction. Therefore 2 . 5 = 6 and hence ϕ2 = (3 1 5 6), ϕ3 = (4 1 2 6),
ϕ4 = (5 1 3 6), ϕ5 = (2 1 4 6) and ϕ6 = (2 5 4 3). Therefore X ' B, the rack
associated to the conjugacy class of 4-cycles in S4. �

6. Braided racks of degree three or six

Proposition 28. Let X be a finite braided indecomposable rack of degree 3 such
that k3 ≤ 6. Then X is isomorphic to the rack T .

Proof. Let 1, 2, . . . ,#X denote the elements ofX . Since k3 is the number of moved
points of the permutation ϕ1, the type of ϕ1 is (3) or (3, 3).

Type (3). Without loss of generality we may assume that

ϕ1 = (2 3 4).

Lemma 2 implies that ϕ2 = (3 1 4), ϕ3 = (4 1 2) and ϕ4 = (1 3 2). Then X ' T .
Type (3, 3). Without loss of generality we may assume that

ϕ1 = (2 3 4)(5 6 7).

Lemma 2 implies that ϕ2 contains the 3-cycle (3 1 4), ϕ5 contains the 3-cycle (6 1 7)
and ϕ7 contains the 3-cycle (1 6 5).

If ϕ2 contains the 2-cycle (5 6 7) or (5 7 6) then 2.5 ∈ {6, 7}. However, 2.5 = 6
and Lemma 2 imply that 1 = 5 . 6 = 2, a contradiction. Similarly, 2 . 5 = 7 and
Lemma 2 imply that 6 = 5 . 7 = 2, a contradiction.

Without loss of generality we may assume that 2.5 = 5. Apply the permutation
ϕ2ϕ1 to 2 . 5 = 5 to obtain 1 . (2 . 6) = 2 . 6. We may assume that 8 = 2 . 6 and
that 2 . 8 ∈ {7, 9}.

Assume that 2 . 8 = 9. Applying ϕ2ϕ1 we obtain that 1 . (2 . 8) = 2 . 9, that
is, 9 = 2 . 9. This is a contradiction to 2 . 8 = 9.

We have proved that 2 . 8 = 7 and hence ϕ2 = (3 1 4)(6 8 7). Since 2 . 7 = 6,
Lemma 2 implies that 5 = 7 . 6 = 2, a contradiction. �

Proposition 29. Let X be a finite braided indecomposable rack of degree 6 such
that k3 ≤ 6. Then X is isomorphic to one of the racks Aff(7, 3), Aff(7, 5).

Proof. Let 1, 2, . . . ,#X denote the elements ofX . Since k3 is the number of moved
points of the permutation ϕ1, the type of ϕ1 is (2, 3) or (6).

Type (2, 3). Without loss of generality we may assume that

ϕ1 = (2 3)(4 5 6).

Lemma 2 implies that ϕ2 contains the transposition (1 3) and ϕ4 contains the
3-cycle (1 6 5).

First we show that 2 . 4 = 4. Indeed, the possible values for 2 . 4 are 4, 5, 6
and 7. The case 2 . 4 = 7 is excluded by the formula ϕ2

1(2 . 4) = 2 . 6. The case
2 . 4 = 5 contradicts Lemma 2 since 1 . 4 = 5. If 2 . 4 = 6, then Lemma 2 implies
that 2 = 4 . 6 = 5, a contradiction.
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Since 2 . 4 = 4, we obtain that 2 . 5 = ϕ4
1(2 . 4) = ϕ4

1(4) = 5 and 2 . 6 =
ϕ2
1(2 . 4) = ϕ2

1(4) = 6. Since the permutation ϕ2 is of type (2, 3), we may assume
that ϕ2 = (1 3)(7 8 9). Then 8 = 1 . 8 = ϕ2ϕ1(2 . 7) = ϕ2ϕ1(8) = 2 . 8, which is a
contradiction.

Type (6). Without loss of generality we may assume that

ϕ1 = (2 3 4 5 6 7).

Lemma 2 implies that ϕ2 = (3 1 7 · · · ), ϕ3 = (4 1 2 · · · ), ϕ4 = (5 1 3 · · · ), ϕ5 =
(6 1 4 · · · ), ϕ6 = (7 1 5 · · · ) and ϕ7 = (2 1 6 · · · ). Since

7 = 2 . 1 = 2 . (3 . 4) = (2 . 3) . (2 . 4) = 1 . (2 . 4),

it follows that 2 . 4 = 6. Moreover, 2 . 5 6= 5. Indeed, otherwise,

7 = 2 . 1 = 2 . (4 . 5) = (2 . 4) . (2 . 5) = 6 . 5 6= 7,

a contradiction. Therefore ϕ2 ∈ {(3 1 7 4 6 5), (3 1 7 5 4 6)}. By conjugation with ϕ1

one obtains all permutations ϕi with i ∈ {3, 4, 5, 6, 7}. Since X is indecomposable,
we conclude that #X = 7.

Assume that ϕ2 = (3 1 7 4 6 5). Then ϕ3 = (4 1 2 5 7 6), ϕ4 = (5 1 3 6 2 7), ϕ5 =
(6 1 4 7 3 2), ϕ6 = (7 1 5 2 4 3) and ϕ7 = (2 1 6 3 5 4). This rack is isomorphic to the
affine rack Aff(7, 5). On the other hand, if ϕ2 = (3 1 7 5 4 6), then ϕ3 = (4 1 2 6 5 7),
ϕ4 = (5 1 3 7 6 2), ϕ5 = (6 1 4 2 7 3), ϕ6 = (7 1 5 3 2 4) and ϕ7 = (2 1 6 4 3 5). This
rack is isomorphic to the affine rack Aff(7, 3). �

7. The proof of Theorem 11

In this section we prove Theorem 11(3)⇒(4). If #X = 1, then G is cyclic. Hence
#X > 1. Since X is indecomposable, Proposition 6 implies that the degree of X is
2, 3, 4, or 6. Further, k3 ≤ 6 by Proposition 20 and k3 ≤ 3 if the degree of ρ is at
least 2. By Propositions 26, 27, 28 and 29 we only have to take care about the racks
X = D3, T , A, B, C, Aff(7, 3) and Aff(7, 5). Each of these racks is considered in a
separate subsection. Since G is generated by X , there is an epimorphism GX → G.
Thus we may assume that G = GX . The elements of X and their image in GX will
be denoted by 1, 2, . . . ,#X and x1, x2, . . . , x#X , respectively. Since any braided
rack is faithful, the elements x1, . . . x#X are pairwise distinct.

During the proof some known and some new finite-dimensional Nichols algebras
will appear. The Hilbert series of these algebras are collected in Table 4. The
formulas for the known examples are taken from [GHV, Table 1].

7.1. The rack D3

Let X = {1, 2, 3} = D3. The size of X is d = 3. The rack structure of X is
uniquely determined by ϕ1 = (2 3).

Lemma 30 ([GHV, Lemma 5.2]). The centralizer of x1 in GX is the cyclic group
generated by x1.
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Proposition 31. Let ρ be an absolutely irreducible representation of CGX
(x1) and

let V = M(x1, ρ). Then B(V ) has many cubic relations if and only if ρ(x1) = −1
or chark = 2, ρ(x1)

2 + ρ(x1) + 1 = 0.

Remark 10. The Nichols algebra B(V ) in the case ρ(x1) = −1 appeared first in
[MS00]. Some data aboutB(V ) can be found in Table 4. The Nichols algebraB(V )
in the case chark = 2, ρ(x1)

2 + ρ(x1) + 1 = 0 is an unpublished example found by
H.-J. Schneider and the first author. More details can be found in Proposition 32.

Proof. Assume first that ρ(x1) = −1 or chark = 2, ρ(x1)
2 + ρ(x1) + 1 = 0. Then

HB(V )(t) is a product of polynomials (n)t and (n)t2 for some n ∈ N; see Table 4.
We conclude that B(V ) has many cubic relations by Theorem 11(4)⇒(3).

Assume thatB(V ) has many cubic relations and ρ(x1) 6= −1. By Lemma 30, the
group CGX

(x1) is abelian. Hence the degree of ρ is e = 1. Further, Proposition 15
implies that dimker(1 + c12 + c12c23)|V ⊗3

O

≤ 2 for all orbits O of size 8, since

ρ(x1) 6= −1. If dimker(1 + c12 + c12c23)|V ⊗3
O

≤ 1 for all orbits O of size 8, then

Proposition 18 yields a contradiction, since d = 3, m = 0, k3 = 2 and d1 ≤ 1. Since
the three Hurwitz orbits of size 8 are conjugate, we conclude that dimker(1+c12+
c12c23)|V ⊗3

O
= 2 for all orbits O of size 8. Proposition 17 implies that (1+ c312)(v⊗

x3v) = 0 for all v ∈ Vx1 . Then

0 = (1 + c312)(v ⊗ x3v) = v ⊗ x3v + x2x1x3v ⊗ x3v

= (v + x2
2x1v)⊗ x3v = 2v ⊗ x3v

since x2
1 = x2

2. Therefore chark = 2. If ρ(x1)
2 + ρ(x1) + 1 6= 0, then Proposi-

tion 14 gives that dimker(1+ c12 + c12c23)|V ⊗3
O

= 0 for all orbits O of size 1. Then

Proposition 18 yields a contradiction. �

Now we discuss one of the Nichols algebras mentioned above. Assume that
chark = 2 and that k contains an element q ∈ k with q2 + q + 1 = 0. Recall
that X = D3. Let ρ be the absolutely irreducible representation of CGX

(x1) with
ρ(x1) = q. Let V = M(x1, ρ), a ∈ Vx1 \ {0}, b = q−1x3a and c = q−1x1b. The
action of GX on V is then determined by Table 2.

Table 2: The action of GX on V , where X = D3

a b c
x1 qa qc qb
x2 qc qb qa
x3 qb qa qc

Proposition 32. The Nichols algebra B(V ) can be presented by generators a, b, c
with defining relations

ab+ q2bc+ qca = 0, (37)

ac+ q2cb+ qba = 0, (38)

a3 = b3 = c3 = 0, (39)

(a2b2)3 + b(a2b2)2a2b+ b2(a2b2)2a2 + ab2(a2b2)2a = 0. (40)
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The Hilbert series of B(V ) is

HB(V )(t) =(3)t(4)t(6)t(6)t2 .

The dimension of B(V ) is 432. The top degree of B(V ) is 20. An integral of
B(V ) is given by

a2ba2b(a2b2)3c2.

Proof. The relations in (37)–(40) “generate” a Hopf ideal of the tensor algebra
T (V ). Using the theory of Gröbner bases [CK, GAP06], it can be seen that the
quotient algebra has the stated dimensions in each degree. Using [AG03, Theorem
6.4, part (2)], it is sufficient to see that a2ba2b(a2b2)3c2 does not vanish in B(V )
in order to prove the claim. Direct calculation gives that

∂b∂b∂a∂a∂c∂c∂a∂a∂c∂c∂b∂b∂c∂b∂c∂b∂c∂b∂c∂c

applied to a2ba2b(a2b2)3c2 gives a non-zero number. This completes the proof.
�

7.2. The rack T

Let X = {1, 2, 3, 4} = T and d = 4. Using that X is braided, the rack structure of
X is uniquely determined by ϕ1 = (2 3 4). Note that x1 . x2 = x3 in contrast to
the convention x2 . x1 = x3 in [GHV, §5.2]. Hence our group GX is the opposite
of the group GX in [GHV, §5.2].

Lemma 33 ([GHV, Lemma 5.5]). The centralizer of x1 in GX is abelian and is
generated by x1 and x2x4. Further, the relation (x2x4)

2 = x4
1 holds in GX .

Lemma 34. Let x, y, x′, y′ ∈ X with x 6= y and x′ 6= y′. Then O(x, x, y) and
O(x′, x′, y′) are conjugate.

Proof. By applying ϕ1 we conclude that O(1, 1, 2) is conjugate to O(1, 1, z) for all
z ∈ X \ {1}. Since X is indecomposable, the claim follows. �

Proposition 35. Let ρ be an absolutely irreducible representation of CGX
(x1) and

let V = M(x1, ρ). Then B(V ) has many cubic relations if and only if

(1) ρ(x1) = −1 and ρ(x2x4) = 1, or
(2) ρ(x1)

2 + ρ(x1) + 1 = 0 and ρ(x2x4) = −ρ(x1)
−1.

Remark 11. The Nichols algebra B(V ) with ρ as in (1) appeared first in [AG03,
Thm. 6.15]. For arbitrary fields the example was discussed in [GHV, Prop. 5.6].
Recall that B(V ) depends essentially on chark.

The Nichols algebra B(V ) with ρ as in (2) is new. It will be discussed in Propo-
sition 36.

Proof. Assume first that (1) or (2) hold. Then HB(V )(t) is a product of polynomi-
als (n)t and (n)t2 for some n ∈ N; see Table 4. We conclude that B(V ) has many
cubic relations by Theorem 11(4)⇒(3).

Assume that B(V ) has many cubic relations. By Lemma 33, the group CGX
(x1)

is abelian. Hence the degree of ρ is e = 1. Sincem = k3 = 3, Proposition 18 implies
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that 36d8 + 24d1 ≥ 96, where d1 ∈ {0, 1} and d8 ∈ {0, 1, 2, 3} by Proposition 15.
Hence d8 = 3, d1 ∈ {0, 1} or d8 = 2, d1 = 1.

Assume first that ρ(x1) = −1. Then we can choose d1 = 0 by Proposition 14.
Since then d8 = 3, there is at least one 8-orbit with immunity 3/8. By Lemma 34,
all Hurwitz orbits of size 8 are conjugate. Hence for each 8-orbit the pair (V,O)
is optimal with respect to 1 + c12 + c12c23. Thus Proposition 16 implies that

0 = (1 + c312)(v ⊗ x3v) = v ⊗ x3v + x2x1x3v ⊗ x3v

= (v + x2x4x1v)⊗ x3v = (1 + ρ(x2x4)ρ(x1))v ⊗ x3v
(41)

for all v ∈ Vx1 . Since ρ(x1) = −1, it follows that ρ(x2x4) = 1, that is, (1) holds.
Assume now that ρ(x1) 6= −1. Then, by Proposition 16, the pair (V,O) is not

optimal with respect to 1+c12+c12c23 for any 8-orbit O. Hence d8 = 2 and d1 = 1.
Proposition 14 and d1 = 1 imply that ρ(x1)

2 + ρ(x1) + 1 = 0. By Lemma 34, all
Hurwitz orbits of size 8 are conjugate. Hence dimker(1+ c12+ c12c23)|V ⊗3

O

= 2 for

all orbits O of size 8. Proposition 17 implies that (41) holds for all v ∈ Vx1 , that
is, ρ(x2x4) = −ρ(x1)

−1. This proves the claim. �

Now we discuss the Nichols algebra corresponding to ρ in Proposition 35(2).
Assume that k contains an element q ∈ k with q2 + q+1 = 0. Recall that X = T .
Let ρ be the absolutely irreducible representation of CGX

(x1) with ρ(x1) = −1,
ρ(x4x2) = 1. Let V = M(x1, ρ), a ∈ Vx1 \ {0}, b = q−1x3a ∈ Vx2 , c = q−1x4a ∈
Vx3 , d = q−1x2a ∈ Vx4 . The action of GX on V is then determined by Table 3.

Table 3: The action of GX on V , where X = T .

a b c d
x1 qa qc qd qb
x2 qd qb −qa −qc
x3 qb −qd qc −qa
x4 qc −qa −qb qd

Proposition 36. The Nichols algebra B(V ) can be presented by generators a, b,
c, d with defining relations

a3 = b3 = c3 = d3 = 0, (42)

−q2ab− qbc+ ca = −q2ac− qcd+ da = 0, (43)

qad− q2ba+ db = qbd+ q2cb+ dc = 0, (44)

a2bcb2 + abcb2a+ bcb2a2 + cb2a2b+ b2a2bc+ ba2bcb,

+bcba2c+ cbabac+ cb2aca = 0.
(45)

The Hilbert series of B(V ) is

HB(V )(t) = (6)4t (2)
2
t2 .

The dimension of B(V ) is 5184. The top degree of B(V ) is 24. An integral of
B(V ) is given by

a2ba2ba2b2a2cb2a2cb2a2d2.
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Proof. The relations in (42)–(45) “generate” a Hopf ideal of the tensor algebra
T (V ). Using the theory of Gröbner bases [CK, GAP06], it can be seen that the
quotient algebra has the stated dimensions in each degree. Using [AG03, Theorem
6.4 part (2)], it is sufficient to see that a2ba2ba2b2a2cb2a2cb2a2d2 does not vanish
in B(V ) in order to prove the claim. Direct calculation gives that

∂c∂c∂d∂c∂c∂d∂c∂c∂d∂d∂c∂c∂b∂b∂d∂d∂b∂a∂d∂d∂a∂a∂b∂b

applied to a2ba2ba2b2a2cb2a2cb2a2d2 gives −q2. This completes the proof. �

7.3. The rack A

Let X = {1, 2, 3, 4, 5, 6}= A and d = #X = 6. Using that X is braided, the rack
structure of X is uniquely determined by ϕ1 = (2 3)(5 6), ϕ2 = (1 3)(4 5).

Lemma 37 ([GHV, Lemma 5.8]). The centralizer of x1 in GX is the abelian group
generated by x1 and x4. These generators satisfy x2

1 = x2
4.

Proposition 38. Let ρ be an absolutely irreducible representation of CGX
(x1) and

let V = M(x1, ρ). Then B(V ) has many cubic relations if and only if ρ(x1) = −1
and ρ(x4) ∈ {−1, 1}.

Remark 12. The Nichols algebras B(V ) with ρ(x4) = −1 and ρ(x4) = 1 appeared
first in [MS00, Example 6.4] and [FK99, Def. 2.1], respectively. These two Nichols
algebras are twist equivalent; see [Ven]. Their Hilbert series are given in Table 4.

Proof. If ρ(x1) = −1, then ρ(x4)
2 = ρ(x1)

2 = 1 and hence ρ(x4) ∈ {−1, 1}. Then
B(V ) has many cubic relations by Theorem 11(4)⇒(3) and Table 4.

Assume that B(V ) has many cubic relations. By Lemma 37, the group CGX
(x1)

is abelian. Hence the degree of ρ is e = 1. Since d = 6, k3 = 4 and m = 0,
Proposition 18 implies that

24d1 + 48d8 ≥ 136. (46)

If q 6= −1, then we may set d8 < 3 by Proposition 15. This is a contradiction to
(46). Hence ρ(x1) = −1 and the claim of the proposition follows. �

7.4. The rack B

Let X = {1, 2, . . . , 6} = B and d = #X = 6. Using that X is braided, the rack
structure of X is uniquely determined by ϕ1 = (2 3 4 5), ϕ2 = (1 5 6 3).

Lemma 39. [GHV, Lemma 5.10] The centralizer of x1 in GX is the abelian group
generated by x1 and x6. These generators satisfy x4

1 = x4
6.

Lemma 40. Let x, y, x′, y′ ∈ X with x . y 6= y and x′ . y′ 6= y′. Then O(x, x, y)
and O(x′, x′, y′) are conjugate.

Proof. By applying ϕ1 we conclude that O(1, 1, 2) is conjugate to O(1, 1, z) for all
z ∈ {2, 3, 4, 5} = {z′ ∈ X | 1 . z′ 6= z′}. Since X is indecomposable, the claim
follows. �

Proposition 41. Let ρ be an absolutely irreducible representation of CGX
(x1) and

let V = M(x1, ρ). Then B(V ) has many cubic relations if and only if ρ(x1) =
ρ(x6) = −1.
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Remark 13. The Nichols algebras of Prop. 41 appeared first in [AG03, Thm. 6.12]
over the complex numbers and in [GHV, Prop. 5.11] over arbitrary fields. The
Hilbert series of B(V ) is given in Table 4.

Proof. If ρ(x1) = ρ(x6) = −1, then B(V ) has many cubic relations by Theo-
rem 11(4)⇒(3) and Table 4.

Assume that B(V ) has many cubic relations. By Lemma 39, the group CGX
(x1)

is abelian. Hence the degree of ρ is e = 1. Let d1, d8 be as in Proposition 18. Since
d = 6, k3 = 4 and m = 0, Proposition 18 implies that (46) holds. If q 6= −1, then
we may assume that d8 < 3 by Proposition 15. This is a contradiction to (46).
Hence ρ(x1) = −1. Assume that ρ(x6) 6= −1. Then

(1 + c312)(v1 ⊗ v2) 6= 0

for v1 ∈ Vx1 \ {0} and v2 = x3v1 ∈ Vx2 . Indeed, we obtain that

(1 + c312)(v1 ⊗ v2) = v1 ⊗ x3v1 + x2x1x3v1 ⊗ x3v1

= (v1 + x6x
2
1v1)⊗ x3v1 = (v1 + x6v1)⊗ x3v1.

Since all Hurwitz orbits of size 8 are conjugate by Lemma 40, we again may assume
that d8 < 3 by Proposition 15. This yields a contradiction to (46). �

7.5. The rack C

In order to avoid confusion, let X = {x1, x2, . . . , x10} = C. The size of X is
d = 10. The rack X can be seen as the rack of transpositions in S5. We identify
the elements of X with transpositions as follows: x1 = (1 2), x2 = (2 3), x3 = (1 3),
x4 = (2 4), x5 = (1 4), x6 = (2 5), x7 = (1 5), x8 = (3 4), x9 = (3 5), x10 = (4 5).

Lemma 42 ([GHV, Lemma 5.8]). The centralizer of x1 in GX is the non-abelian
subgroup generated by x1, x8, x9. These generators satisfy x2

1 = x2
8 = x2

9, x2x8 =
x8x2, x2x9 = x9x2, x8x9x8 = x9x8x9.

Proposition 43. Let ρ be an absolutely irreducible representation of CGX
(x1) and

let V = M(x1, ρ). Then B(V ) has many cubic relations if and only if ρ(x1) = −1
and ρ(x8) = ρ(x9) = ±1.

Remark 14. The Nichols algebras of Proposition 43 appeared first in [FK99] for
ρ(x8) = 1 and in [Gra] for ρ(x8) = −1. These two Nichols algebras are twist
equivalent; see [Ven]. Their Hilbert series are given in Table 4 (see Appendix A).

Proof. If ρ(x1) = −1 and ρ(x8) = ρ(x9) = ±1, then B(V ) has many cubic relations
by Theorem 11(4)⇒(3) and Table 4.

Assume that B(V ) has many cubic relations. Since k3 = 6, the argument at
the beginning of Section 7 yields that e = 1. Let d1, d8 be as in Proposition 18.
Since d = 10, k3 = 6 and m = 0, Proposition 18 implies that

24d1 + 72d8 ≥ 216. (47)

If q 6= −1, then we may assume that d8 < 3 by Proposition 15. This is a contra-
diction to (47). Hence ρ(x1) = −1. Since x2

1 = x2
8 = x2

9 and x8x9x8 = x9x8x9 by
Lemma 42, we conclude that ρ(x8) = ρ(x9) = ±1. �
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7.6. The racks Aff(7, 3) and Aff(7, 5)

Let X = Aff(7, 3) or X = Aff(7, 5) with X = {1, 2, . . . , 7} and let d = #X = 7.

Proposition 44. Let ρ be an absolutely irreducible representation of CGX
(x1) and

let V = M(x1, ρ). Then B(V ) has many cubic relations if and only if ρ(x1) = −1.

Remark 15. The Nichols algebras with many cubic relations in Proposition 44
appeared first in [Gra] over C and over arbitrary fields in [GHV, Prop. 5.15]. The
Hilbert series of B(V ) is given in Table 4.

Proof. If ρ(x1) = −1 and ρ(x8) = ρ(x9) = ±1, then B(V ) has many cubic relations
by Theorem 11(4)⇒(3) and Table 4.

Assume that B(V ) has many cubic relations. By [GHV, Lemma 5.14], the
group CGX

(x1) is cyclic and it is generated by x1. Hence the degree of ρ is
e = 1. Let d1, d8 be as in Proposition 18. Since d = 7, k3 = 6 and m = 0,
Proposition 18 implies that (47) holds. If q 6= −1, then we may assume that
d8 < 3 by Proposition 15. This is a contradiction to (47). Hence ρ(x1) = −1. �
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Appendix A. Braided racks and Nichols algebras

Tables 4, 5 and 6 contain data of finite-dimensional Nichols algebras over groups
which have a non-trivial indecomposable braided rack as support.

Table 4: Finite-dimensional Nichols algebras

Rack Rank Dimension Hilbert series Remark
D3 3 12 (2)2t (3)t §7.1
D3 3 432 (3)t(4)t(6)t(6)t2 Prop. 32, chark = 2
T 4 36 (2)2t (3)

2
t §7.2, chark = 2

T 4 72 (2)2t (3)t(6)t §7.2, chark 6= 2
T 4 5184 (6)4t (2)

2
t2 Prop. 36

A 6 576 (2)2t (3)
2
t (4)

2
t §7.3

B 6 576 (2)2t (3)
2
t (4)

2
t §7.4

Aff(7, 3) 7 326592 (6)6t (7)t §7.6
Aff(7, 5) 7 326592 (6)6t (7)t §7.6

C 10 8294400 (4)4t (5)
2
t (6)

4
t §7.5

Table 5: Centralizers and characters

Rack Generators of CGX
(x1) Linear character ρ on CGX

(x1)
D3 x1 ρ(x1) = −1
D3 x1 chark = 2, ρ(x1)

2 + ρ(x1) + 1 = 0
T x1, x4x2 ρ(x1) = −1, ρ(x4x2) = 1
T x1, x4x2 ρ(x1)

2 + ρ(x1) + 1 = 0, ρ(x4x2x1) = −1
A x1, x4 ρ(x1) = −1, ρ(x4) = ±1
B x1, x6 ρ(x1) = ρ(x6) = −1

Aff(7, 3) x1 ρ(x1) = −1
Aff(7, 5) x1 ρ(x1) = −1

C x1, x8, x9 ρ(x1) = −1, ρ(x8) = ρ(x9) = ±1

Table 6: Indecomposable braided racks occuring with Nichols algebras with many cubic
relations.

Rack deg size k3 m Reference
D3 2 3 2 0 Example 10
T 3 4 3 3 Prop. 28
A 2 6 4 0 Example 11
B 4 6 4 0 Prop. 27
C 2 10 6 0 Example 13

Aff(7, 3) 6 7 6 0 Prop. 29
Aff(7, 5) 6 7 6 0 Prop. 29
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Appendix B. Hurwitz orbits of braided racks

With Figures 8–14 we present the isomorphism classes of nontrivial Hurwitz
orbits of braided racks. There are nontrivial Hurwitz orbits of size 3, 6, 8, 9, 12,
16 and 24.

A B C

Figure 8: The Hurwitz orbit of size 3

A B C D E F

Figure 9: The Hurwitz orbit of size 6

A B C

D E

F G H

Figure 10: The Hurwitz orbit of
size 8

A B C

D E F

G H I

Figure 11: The Hurwitz orbit of
size 9

A B C D

E F G

H I

J K

L

Figure 12: The Hurwitz orbit of size 12
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A B C

D E F G

H I

J K L M

N O P

Figure 13: The Hurwitz orbit of size 16

A B

C

D E F

G H

I J K

L M

N O P

Q R

S T U

V

W X

Figure 14: The Hurwitz orbit of size 24



I. HECKENBERGER, A. LOCHMANN AND L. VENDRAMIN

References

[ABM10] A. Ardizzoni, M. Beattie, C. Menini, Cocycle deformations for Hopf algebras
with a coalgebra projection, J. Algebra 324 (2010), no. 4, 673–705.

[AFGVa] N. Andruskiewitsch, F. Fantino, G. A. Garcia, L. Vendramin, On Nichols
algebras associated to simple racks, Contemp. Math. 537 (2011) 31–56.

[AFGVb] N. Andruskiewitsch, F. Fantino, M. Graña, L. Vendramin, Finite-dimensional
pointed Hopf algebras with alternating groups are trivial, Ann. Mat. Pura
Appl. (4) 190 (2011), no. 2, 225–245.

[AFGV11] N. Andruskiewitsch, F. Fantino, M. Graña, L. Vendramin, Pointed Hopf alge-
bras over the sporadic simple groups, J. Algebra 325 (2011), no. 1, 305–320.

[AG03] N. Andruskiewitsch, M. Graña, From racks to pointed Hopf algebras, Adv.
Math. 178 (2003), no. 2, 177–243.

[AH73] M. Aschbacher, M. Hall, Jr., Groups generated by a class of elements of order
3, J. Algebra 24 (1973), 591–612.

[AHS10] N. Andruskiewitsch, I. Heckenberger, H.-J. Schneider, The Nichols algebra
of a semisimple Yetter–Drinfeld module, Amer. J. Math. 132 (2010), no. 6,
1493–1547.

[And02] N. Andruskiewitsch, About finite dimensional Hopf algebras, in: Quantum
Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Con-
temp. Math., Vol. 294, Amer. Math. Soc., Providence, RI, 2002, pp. 1–57.

[Ang] I. Angiono, A presentation by generators and relations of Nichols algebras of
diagonal type and convex orders on root systems, preprint: arXiv:1008.4144.

[Ang09] I. Angiono, Nichols algebras with standard braiding, Algebra Number Theory
3 (2009), no. 1, 35–106.

[ARS10] N. Andruskiewitsch, D. Radford, H.-J. Schneider, Complete reducibility theo-
rems for modules over pointed Hopf algebras, J. Algebra 324 (2010), no. 11,
2932–2970.

[AS98] N. Andruskiewitsch, H.-J. Schneider, Lifting of quantum linear spaces and
pointed Hopf algebras of order p3, J. Algebra 209 (1998), no. 2, 658–691.

[AS00] N. Andruskiewitsch, H.-J. Schneider, Finite quantum groups and Cartan ma-
trices, Adv. Math. 154 (2000), no. 1, 1–45.

[AS02] N. Andruskiewitsch, H.-J. Schneider, Pointed Hopf algebras, in: New Direc-
tions in Hopf Algebras, Math. Sci. Res. Inst. Publ., Vol. 43, Cambridge Univ.
Press, Cambridge, 2002, pp. 1–68.

[AS10] N. Andruskiewitsch, H.-J. Schneider, On the classification of finite-dimen-
sional pointed Hopf algebras, Ann. of Math. (2) 171 (2010), no. 1, 375–417.

[Asc97] M. Aschbacher, 3-Transposition Groups, Cambridge Tracts in Mathematics,
Vol. 124, Cambridge University Press, Cambridge, 1997.

[Baz06] Y. Bazlov, Nichols–Woronowicz algebra model for Schubert calculus on Cox-
eter groups, J. Algebra 297 (2006), no. 2, 372–399.

[BBJW10] P. Balister, B. Bollobás, J. R. Johnson, M. Walters, Random majority perco-
lation, Random Structures Algorithms 36 (2010), no. 3, 315–340.
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[GG] G. A. Garćıa, A. Garćıa Iglesias, Finite dimensional pointed Hopf algebras
over S4, Israel J. Math. 183 (2011), 417–444.

[GH07] M. Graña, I. Heckenberger, On a factorization of graded Hopf algebras using
Lyndon words, J. Algebra 314 (2007), no. 1, 324–343.

[GHV] M. Graña, I. Heckenberger, L. Vendramin, Nichols algebras of group type with
many quadratic relations, Adv. Math. 227 (2011), no. 5, 1956–1989.

[Gra] M. Graña, Nichols algebras of nonabelian group type, zoo of examples, avail-
able at http://mate.dm.uba.ar/∼matiasg/zoo.html.

[Gra02] M. Graña, Quandle knot invariants are quantum knot invariants, J. Knot
Theory Ramifications 11 (2002), no. 5, 673–681.

[Hec06] I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type,
Invent. Math. 164 (2006), no. 1, 175–188.

[Hec09] I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220
(2009), no. 1, 59–124.

[HS] I. Heckenberger, H.-J. Schneider, Right coideal subalgebras of Nichols algebras
and the Duflo order on the Weyl groupoid, preprint: arXiv:0909.0293.

[HS10] I. Heckenberger, H.-J. Schneider, Root systems and Weyl groupoids for Nichols
algebras, Proc. Lond. Math. Soc. (3) 101 (2010), no. 3, 623–654.

[HS95] J. I. Hall, L. H. Soicher, Presentations of some 3-transposition groups, Comm.
Algebra 23 (1995), no. 7, 2517–2559.

[Hur91] A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunk-
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