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Zeta functions of the 3-dimensional
almost-Bieberbach groups

Diego Sulca*

Communicated by Evgenii I. Khukhro

Abstract. The subgroup zeta function and the normal zeta function of a finitely generated
virtually nilpotent group can be expressed as finite sums of Dirichlet series admitting Euler
product factorization. We compute these series except for a finite number of local factors
when the group is virtually nilpotent of Hirsch length 3. We deduce that they can be mero-
morphically continued to the whole complex plane and that they satisfy local functional
equations. The complete computation (with no exception of local factors) is presented for
those groups that are also torsion-free, that is, for the 3-dimensional almost-Bieberbach
groups.

1 Introduction

The subgroup zeta function and the normal zeta function of a finitely generated
group G are, respectively, the Dirichlet series

o0 o0

<(G <SG
cé<s)=2% and (g =Y D),

nS
n=1 n=1

where a;; (G) denotes the number of subgroups and a;;'(G) the number of normal
subgroups of index n. They were introduced by Grunewald, Segal and Smith in [§]
as a means to study groups of polynomial subgroup growth (PSG). Indeed, these
are precisely the groups for which these series are not only formal gadgets but also
define analytic functions on some complex right-half plane. A natural problem
is to understand how structural information of a group of PSG is encoded into
arithmetical and analytic properties of its zeta functions and vice versa.

Lubotzky, Mann and Segal characterized the finitely generated residually finite
groups of PSG: these are precisely the virtually solvable groups of finite rank [11].
On the other hand, since they were introduced, zeta functions of groups have been
extensively studied only when the group is a finitely generated torsion-free nil-
potent group: a T -group. The theory for these groups is rich and continues to grow.
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We summarize some general results and refer the reader to the survey [26] and the
references therein for more information and variations of the topic. Let N be a
T-group, let * € {<, <1} and let oy, denote the abscissa of convergence of {y; (s).
Then the following holds.

(ND) oz}"v < h(N) (= the Hirsch length of N) [8, Proposition 1].

(N2) aj € Q and there is § > 0 such that ¢, (s) admits a meromorphic continu-
ation to the region {s € C : Re(s) > ay; — 8} (see [5, Theorem 1.1]).

(N3) ¢y (s) has an Euler product factorization

v =[] thp®:

p prime

where {y; »(8) = Y reo apk (N) p~*s_In addition, each local factor Cn »(9)
is a rational function in p~* with coefficients in Q (see [8, Proposition 1.3
and Theorem 1]).

(N4) For almost all prime p, {, p(s) satisfies the functional equation

Gy O lpspr = (DB Hses (),

where i = h(N) (see [25, Corollary 1.1]). If in addition N is a T-group (a
T -group of nilpotency class 2), then for almost all prime p, {y » (s) satisfies
the functional equation

Ei oy = (1) p ()M ()

where d is the rank of N/Z(N) (see [25, Theorem C]).

Remark 1.1. Properties (N1)—(N4) are, in fact, corollaries of the analogous prop-
erties established for the subring zeta function and the ideal zeta function of nil-
potent Lie rings additively isomorphic to some Z”. The translation is done via
the Mal’cev correspondence. The question of whether the ideal zeta function of
a nilpotent Lie ring of nilpotency class greater than 2 satisfies local functional
equations led to the introduction and investigation of the submodule zeta function;
see, e.g., [10,17,27]. On the other hand, it has long been known that, for instance,
the ideal zeta function of the filiform nilpotent Lie ring Fily fails to satisfy local
functional equations; see [7, Theorem 2.39].

Regarding the computation of zeta functions, the following are classical exam-
ples.
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(1) For the free abelian group z", {2,7 (s) =¢C¢(s)¢(s—1)---¢(s —h + 1), where
£(s) is the Riemann zeta function. In [12, Chapter 15], there are five different
proofs of this elementary fact.

(2) Let H(Z) denote the integral points of the Heisenberg unipotent group scheme
H. Then
C(s)C(s — 1)E(2s —2)¢ (25 — 3)
£(3s —3) ’
Sz ) = E()E(s — DEBs —2)

[8, Section 8]. More generally, a calculation of {g g, )(s), for K a number
field and O its ring of integers, is presented in [20,21].

é';(Z) (s) =

Finding explicit formulae for the zeta functions of a T-group is in general a dif-
ficult task. A substantial list of examples is recorded in [7], and new ones have
emerged more recently; see, e.g., [1,20,21,28]. In [16, 19], Rossmann developed
a method for computing certain zeta functions associated with T -groups and other
algebraic structures. This algorithm was implemented in [18].

This work studies and presents formulae for the zeta functions of the virtually
nilpotent groups of Hirsch length 3 (see the next paragraph for a detailed descrip-
tion of the content). This is not the first attempt in dealing with zeta functions of
groups that are not nilpotent. In [4], du Sautoy investigated zeta functions of com-
pact p-adic analytic groups (= virtually uniform pro-p-groups) and proved that
they are rational functions in p~5. Then, in [6], the authors studied zeta functions
of virtually abelian groups, proving for example, that they can be meromorphi-
cally continued to the whole complex plane (this property is not shared by zeta
functions of T-groups in general, as discussed in [7, Chapter 7]). The paper [24]
contains general properties of zeta functions of virtually nilpotent groups that we
now recall. Let G be a finitely generated virtually nilpotent group, and let N <1 G
be a finite-index normal subgroup that is a T -group. It is easy to check that

(e =Y [G:HIStf=).

N<H<G

G =Y [G:HF (),

N<H<G

where

Hes)= Y [H:A

A<G:AN=H

()= Y [HA

A<G:AN=H
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The series g '<(s) and ¢ g »<(s) will be referred to as partial zeta functions of
G (s) and {5 (s) (with respect to N). Each of them is an Euler product of cone
integrals [24, Theorem 1], and hence it satisfies properties (N2) and (N3) above
by the general theory of cone integrals developed in [5]. Property (N1) also holds
with the bound 2(N) = h(G) replaced by h(G) + 1 (see [24, Proposition 2.12]).
The partial zeta functions were computed explicitly, except for a finite number
of local factors, when the group N is abelian; see [6, Section 2]. Computing the
exceptional factors is, in general, more involved. The complete computation was
done for the plane crystallographic groups. This is the main result in [13], and it is
also summarized in [6, Section 4]. To the author’s knowledge, these are the only
existing examples of computations of zeta functions of infinite groups that are not
nilpotent.

The article is organized as follows. In Section 2, we obtain formulae for the
local factors of {Z'<(s) and ¢ ]GV <(s) when p ¢} [G : N] for every virtually nil-
potent group of Hirsch length 3 (see Table 1 and Table 2). This suffices to con-
clude that the subgroup and normal zeta functions of each of these groups extend
to meromorphic functions on the whole plane (Corollary 2.8 and Corollary 2.19).
We also deduce local functional equations, similar to but different from those pre-
sented in (N4) (Corollary 2.7 and Corollary 2.18). The arguments in this section
are of a group-theoretical nature, akin to [6, Section 2]. In Section 3, we review
a method for expressing local zeta functions of groups in terms of p-adic integrals.
This method is used later to compute local factors at primes p | [G : N] (those not
considered in Section 2). Section 4 presents the formulae for the zeta functions
of the torsion-free virtually nilpotent groups of Hirsch length 3. A group like this
is either a 3-dimensional Bieberbach group or a 3-dimensional almost-Bieberbach
group (the fundamental group of a 3-dimensional infra-nilmanifold). Section 5
contains proofs of the formulae for the 3-dimensional Bieberbach groups. It also
contains formulae for the zeta functions of a large family of Bieberbach groups
with holonomy C3, to illustrate how involved the method for computing local fac-
tors at bad primes is, even in the case of virtually abelian groups. Finally, Section 6
contains proofs of the formulae for the 3-dimensional almost Bieberbach groups.

Notation and conventions. |S| denotes the cardinality of a set S. For a group G,
Z(G) denotes its center; A < G means that A is a subgroup; A <1 G means that
A is a normal subgroup; [G : A] denotes the index of A in G; Ng(A) denotes the
normalizer of 4 in G. In sums involving [G : A], only subgroups of finite index are
considered. For a subset S C G, (S) denotes the subgroup generated by S. When
G is profinite, (S) denotes the closed subgroup generated by S. For x, y € G, we
denote ¥y = xyx~! and [x,y] = xyx~ 'y~ (=*y-y~!). For S,T C G, we
denote [S,T] = ([s.t] | s € S, t € T). We use without mentioning the fact that if
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G is a finitely generated profinite group, then every finite-index subgroup is open,
and if H and K are closed subgroups, then [H, K] is also closed; see [15].

The letter p will be reserved for prime numbers. By v,: Q, — Z U {co}, we
denote the usual p-adic valuation, and by |- [, = p_vf’(') the p-adic norm. More-
over, {,(s) denotes 1_—;,“ the local factor of the Riemann zeta function £ (s) at p.

2 Local factors at good primes and meromorphic continuation

Let G be a finitely generated virtually nilpotent group, and let N <1 G be a finite-
index normal subgroup that is a T-group. For a prime p, let G, be the comple-
tion of G with respect to the family {B << G : B € N, [N : B] a power of p}. For
X < G, we denote by X, the closure of X in G,. For a subquotient X/Y of G,
we denote (X/Y), = X,/Y,. Note that N, is the pro-p completion of N, and
that the inclusion G < G, induces an isomorphism G/N = G,/N,. Note also
that G, is not the pro-p completion of G unless [G : N] is a power of p.

As noted in the introduction, to study ¢ é (s), it is enough to focus on the partial
zeta functions (g *<(s) = {z°=(s) for N < H < G. There is no loss of generality
if we only consider {3°=(s). Similarly, to study {g5(s), it is enough to consider
4 g *J(s) for N < H <1 G. The advantage is that we have

(&)= [] t&r=( and =)= T] o=,

p prime p prime

where ¢ gg’s(s) and ¢ g;< (s) are computed with respect to N, (see [24, Proposi-
tion 2.2]).

Throughout the section, unless otherwise specified, we assume that N is a T5-
group, that is, a T-group of nilpotency class 2. We also fix the following notation:

Z=Z(N), T=N/Z, P=G/N. A=Z[P] and A, =Z,[P].

We will first obtain general expressions for ¢ gllj”s(s) and ¢ g;“(s) when p }t |P|.
Then we shall specialize to the case of Hirsch length 3, giving explicit formulae
in terms of well-known series. The case N = Z3 (and more generally N = zh
for any &) was settled in [6].

The action by conjugation of G on N ((g,n) — &én = gng™!) induces struc-
tures of left A-modules on the abelian groups 7" and Z (and hence T, and Z),
become Ap-modules). For this reason, we use additive notation when working
with them. The commutator operation [x, y] = xyx~!y~! induces a bilinear map
[.-]: T xT — Z (and hence also a Zp-bilinear map [-,-]: T, x T, — Z,) that
is compatible with the action of P, thatis, [@ - x,o-y] =« - [x,y] forall« € P
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and x,y € T.If Uy and U, are Zp,-submodules of Tj, then [Uy, U] denotes the
Zp-submodule (=subgroup) of Z,, generated by [x1, x2] with x; € U;.

For aring R and a left R-module M, we use the notation X <g M to indicate
that X is aleft R-submodule of M. Forr € R, raps: M — M denotes the left mul-
tiplication by r. If R = A or A, we denote by Der(P, M) the set of derivations
from P to M. For a subset S C P, we denote

CuyS)={xeM: :a-x=xforalla € S}.

We will use the fact that if p 4 |P| and M is a finitely generated A ,-module that
is torsion-free as a Z,-module, then M is a projective A ,-module, and all finite-
index A p-submodules of M are isomorphic. This follows from the fact that, when
p 1 |P|, Ap is a maximal order of Q,[P].

2.1 Counting subgroups

Proposition 2.2 below presents a general expression for the local factors of ¢ g =(s)
at “good” primes. We will need the following lemma.

Lemma 2.1. Let R be a ring, let M be a left R-module, and fix X <g M. If
there is a complement of X in M (i.e., there is Y <p M such that X +Y =M
and X NY =0), then the set of complements of X in M is in a bijection with
Homgr(M/X, X). If R = Zp[P] with p t |P|, and if M/ X is finitely generated
and torsion-free as a 7 ,-module, then the set of (P -invariant) complements of X
is in a bijection with Homgz, [ p)(M/ X, X).

Proof. Assume that there is a complement of X, say Y. Given any other comple-
ment K <gp M, we define pg:Y — X as follows. If y € Y, then we can write
y = k + x uniquely with k € K and x € X. We set pg(y) = x. It is clear that
¢k € Hompg (Y, X). Conversely, given ¢ € Hompg(Y, X), we define

Ko ={y—9():yeYt}

Itis easy to check that K, is a complement of X, and that g, = ¢ and Ky = K.
Therefore, the set of complements of X is in a bijection with Homg (Y, X'), which
in turn is in a bijection with Homg(M/X, X) since M/X and Y are isomorphic.
This proves the first part of the lemma

We now show the second part, so we assume now that R = Z,[P] with p } |P|
and that M/ X is finitely generated and torsion-free as a Z,-module. Then M/X
is a free Z-module of finite rank, and hence it is a projective Z [ P]-module (here
we use the fact that p 4 | P|). This implies that there is at least one complement
of X; therefore, the set of complements is in a bijection with Homgz, , pj(M/ X, X),
as shown in the first part of the lemma. This completes the proof. |
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Proposition 2.2. If p } | P|, then

t&r=(s) = > [Ty : UI™*[Tp : C1,(P) + U]
VSt e er x(Zp VI 1Zp : Cz,(P) + V]
x |Homyp ,(Tp, Zp/ V)|.
Proof. For a subgroup U < T), we denote by U its pre-image in N,. We set
A:={A < Gp: AN, = Gp, [Gp : A] < o0},
U:={U <p, Tp, V <a, Zp) : [Tp: Ul <00, [Zp: V] <00, [U U] SV},
V:i={(UV,C):(UV)eU Ceh CNN,=U}
and define maps ®: A — V, V: 'V — U by
®(A)=(((ANNpZy)/Zy, ANZy, ZpA) and W(U,V,C) = (U, V).
It is straightforward to check that @ is well-defined. Note that
[Gp: Al =[Ny : AN Np] = [N, : U][Z, : V]
= [T, :U|[Z,: V] forAde (¥®) (U, V);
therefore,
(=)= Y Gy A" = Y (T :UI*1Z, : VI |(w) L (U, V).
AeA U, v)eu

We now fix (U, V) € U and show that |[¥~1(U, V)| = |Der(P, T,/ U)|. Note
first that W1 (U, V) is in bijection with the set of complements of N,/ U in Gp/ U.
Since N,/ U is a normal Hall subgroup of G,/ U, there is at least one complement
by the Schur—Zassenhaus theorem, and therefore the number of complements is
|Der(P, NI,/U)| = |Der(P, T,/ U)| (ct. [22, Proposition 1, Chapter 3]).

We now fix (U, V,C) € 'V and show that

|©~1(U, V,C)| = [Homa,, (U, Z,/ V)|[Der(P, Z,/ V).

The subgroups U and V are normal closed subgroups of G, and the condition
[U, U] C V implies that the quotient U / V is abelian. Thus, U/ V is a finitely gen-
erated Zp,-module and Z,/V is clearly the torsion submodule. We use C to give
U/V a structure of Zp[P]-module. Firstly, the action by conjugation of C on U
induces a structure of C /U-module on U / V. Secondly, the inclusion C — Gp in-
duces an isomorphism C /U = Gp/Np = P.Therefore, U/V becomes a Zp[P]-
module. Note that Z,/ V' has two structures of Z,[P]-module: one as a subobject



608 D. Sulca

of U /V and one as a quotient of Z,,. It is easy to check that these two structures
coincide. Similarly, the structure of Z,[P]-module on U/z » = U as a quotient
of U/ V and the one as a subobject of T, are the same.

Given A < ®~1(U, V, C), observe that (A N Np)/V is acomplementof Z,/V
in U/ V. We claim that this complement is P-invariant. Indeed, 4 N N is normal
in A and in (AN Np)Z,, so it is normal in AZ, = C. Therefore, (AN Np)/V
isC/ U -invariant and hence P-invariant. Now, according to Lemma 2.1, the num-
ber of P-invariant complements of Z,/V in U/V is [Homy , (U, Zp/V)|. Fix
one such complement, say B/ V. Note that B is normal in C (this follows from
the condition of B/ V being P-invariant) and the set of those 4 € ®_I(U, V,C)
such that A N N, = B is in a bijection with the set of complements of U/B in
C/B. Since U /B is a normal Hall subgroup of C/B, there is at least one such
complement by the Schur—Zassenhaus theorem, and then the number of comple-
ments is [Der(C/U,U/B)| = |Der(P,U/B)| = |Der(P, Zy/V)|. We conclude
that |®~ (U, V,C)| = |[Homp , (U, Zp/ V)||Der(P, Zp/ V).

To end the proof, we only need to show that

IDer(P, T,/ U)| = [Ty : U + Cr, (P)],
IDer(P, Z,/ V)| = [Zp : V + Cz,(P)],
|[Homy , (U, Zp/ V)| = [Homa (T, Zp/ V).

Here we use again the fact that p t |P|. The first two equalities follow from [6,
Lemma 2.4], and for the last one, we use the fact that U and T are isomorphic as
Ap-modules. i

The following lemma will be used to calculate [Homp ,(Tp, Z,/ V)| in some
particular cases.

Lemma 2.3. Let M be a Ap-module, and assume that p t |P|. If there is « € P
such that Cpr () = M and Cz,(a) = 0, then

Homp ,(M,Zy/V) =1{0} forallV <, Zp.
Similarly, if Cpy (@) = 0 and Cz,(a) = Zp, then also Homp , (M, Z,/ V') = {0}.

Proof. Since p t |P| and since Z), is finitely generated and torsion-free as a Z,-
module, Z, is a projective Ap,-module. Thus, the lemma in both cases follows
from the equality Homp ,(M, Z,) = 0, whose verification is straightforward. o

We now specialize to the case when N has Hirsch length 3. Recall that, given
a finite subgroup F C GL,(Z), either F is included in SL,(Z), in which case
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F is isomorphic to one of the cyclic groups Cy, Cs, C3, C4, Cs, or else there is
B € F of order 2 with determinant —1, in which case F is isomorphic to one of the
dihedral groups D (= C3), D3 (= C; x C3), D3, D4, Dg; cf. [14, Chapter IX].

Recall that the action of G on N by conjugation induces an action of P = G/N
onT = N/Z, so there is a natural homomorphism P — GL(T).

Lemma 2.4. Assume that N is a To-group of Hirsch length 3 (so that T == 7,
and Z = 7.). Set F := Im(P — GL(T)) and n := rankz (Ct(P)). Then

(1) Cz(P) = Z ifand only if F C SL(T).
(2) We have
2 if F is trivial,
n=41 if F ¢ SL(T)and F = Dy,

0 otherwise.
() If p + |P|, then for any V <p Z, of finite index, we have

[Homa , (Tp. Zp/ V)| = [Zp : V]".

Proof. Fix an ordered basis {x, y} for T'. Note that [x, y] € Z is non-zero. Given
o€ P,let (g Z) be the matrix of its image a7 € GL(T') with respect to {x, y}.
We have

a-[x,y] =lax +cy,bx +dy] = (ad — bc)[x, y].

It follows that Cz(P) = Z if and only if F C SL(T). It also follows that Z is
naturally an F-module.

We now show (2) and (3). Fix a prime p { |P| and a subgroup V <, Z,
of finite index. Note that (2) and (3) hold clearly for ' = C;. Assume next that
F =~ D; and F ¢ SL(T). Then the generator of F has eigenvalues 1 and —1,
whence the A-submodules 74 := Cy(P)and T— :={x € T : B - x = —x} have
additive rank 1. It follows that n = 1. Next, since p # 2, the decomposition

_x+oz-x+x—oc-x
B 2 2

holds in 7}, and yields a decomposition 7, = (T4+), @ (1-)p. Since Cz(F) =0
by (1), Lemma 2.3 implies that [Homy , ((7+)p, Zp/ V)| = 1. Thus,

[Homy (T, Zp/ V)| = [Homp, (T-)p, Zp/ V)| = [Zp : V] = [Z, : V]".

Assume now that C; # F = (ar) C SL(T). We have Cr(«) = 0 since oth-
erwise 1 would be an eigenvalue of o7, which in turn implies that a7 is the



610 D. Sulca

identity since a7 € SL(T'). This is a contradiction as F # Cp. It follows that
n = 0. On the other hand, Cz(«) = Z by (1), and then Lemma 2.3 implies that
|[Homy ,(Tp, Zp/ V)| = 1 = [Homy (T, Zp/V)I|".

Assume finally that F = D; with d € {2,3,4}. The intersection F N SL(T)
is not the trivial group. Indeed, the product of any two elements of F is in SL(7")
and F has more than two elements. It follows from the previous case that n = 0
and [Homy ,(Tp, Zp/ V)| = 1 = [Homp(Tp, Z,/V)|". We have covered all the
cases, so the proof is complete. o

Lemma 2.5. Assume that N is a To-group of Hirsch length 3. If U < T}, has finite
index, then [Z, : [U,U]] = |[Z : [N. N[, *[T, : U]

Proof. Let {x,y} be a basis for the Zp-module T, and let U < T), be a Z-
submodule of finite index, say generated by ax + by and cx + dy. Note that
(Tp.Tp) = Zp[x,y] and [U,U] = Zplax + by,cx + dy] = Zy(ad — be)[x, y].
Thus,

[Zp : [U.UN = [Zp : [Tp. Tylllad — bel,".

On the other hand, clearly [T, : U] = |ad — bc|;1. Thus,
(2 [U.U)) = [Zp : [T T[T, - U).
Finally, it is clear that [Z,, : [T,. Tpll = |[Z : [T. T1II," = |[Z.[N. N]]|, "
Theorem 2.6. Assume that N is a Ty-group of Hirsch length 3. Let
F :=Im(P — GL(T))
and E = T x F, which is a plane crystallographic group. If p t | P|, then
E8r=(s) = Gp(s = — ) (CFr=(s) = pHTHe|[Z L [N, NI "€

X (Er=(2s —n—e)),

where 1 = rankz (C7(F)), € is 0 or 1 according to whether F is included in
SL(T) or not, and é'glf’s(s) is computed with respect to Tp, <1 E.

Proof. Fix p t | P|. Any finite-index subgroup V' < Z, is P-invariant, and
[Zp:Cz,(P)+ V] is lor[Zy:V]

according to whether Cz(P) is Z or 0, which in turn, by Lemma 2.4 (1), is trans-
lated into whether F C SL(T') or not. Thus, [Z, : Cz,(P) + V] =[Z, : V],
where € is as in the theorem. Next, by Lemma 2.4 (3),

[Homy (T, Zp/ V)| = [Z, : V]".
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Therefore, by Proposition 2.2,

é'g,’,)’$(s) = Z [T, : U1, : Cr,(P)+ UllZ,: V]—s+e+n
Usp,Tp,V<Z,
[u.ulev

> [Ty : UI*[T, : Cr,(P) + U]

U<p, Ty _ _
P x ( Z [Zp . V] st+e+n Z [Zp . V] s+e+71)
V<Z, V<plU,U]

> Ty : UI*[T, : Cr,(P) + U]
USATr s (Gpls —e —m) = [Zp : pIU.UNFH5, (s — e — 1)
Gs—e=n( Y [Ty : UI'IT, : Cp,(P) + U]
UsapTp (1— p=stetm|[Z . [N, N
% [Tp . U]—s+€+77))’

where, in the last equality, we used Lemma 2.5. To complete the proof, we have
to show that ZUsAp T,,[Tp U [Ty : Cr(F) + U] = §§£’<(s). However, this
follows from [6, Proposition 2.3 and Lemma 2.4]. O

Corollary 2.7. If p t | P|, then é'g,’)’ (s) is given in Table 1, where k = [Z : [N, N]],
and ford € {3,4,6}, xq: N — C is the extended residue class character,

1 ifn=1modd
Yan) =49—-1 ifn=—-1modd,
0 otherwise,

and Lp(s, xa) = (1 — xa(p)p~*)~1 is the local factor at p of the Dirichlet L-

S

function of y g, L(s, xa) = Y pey xa(n)n™>.
Therefore, if p t |P|[Z : [N, N]], then é‘g,f’$(s) satisfies the functional equa-
tion

(=) p=H3Er=(s) if F = C1,Cy, Dy,
&0 =()pospt = (D2 p3 2 g ()G =(s) if F = Cq, d € {3,4,6},
PGS (s) if F =Dy, de{3,4,6).

Proof. The formula for ¢ g"’s(s) in each case follows from Theorem 2.6 and uses
the formula for {z=(s) obtained in [13, Chapter 5] as a step in the computation
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612

([N Nzl =ty pue ((L)T1D < WL =: ) || + d 1% (5).. 29 Jo s10108] [200T *[ S[QBL

(9 —59)99
Adl1d & — 1) B3 — 56)93(z — 523
|d|+d (0 =)D, Ul 45 d — @ —5DD)1— )9 9'p'c=pPq
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of the subgroup zeta functions of the plane crystallographic group E (see also
[6, Section 4.1]). The computation of n was done in Lemma 2.4 (2). If in addi-
tion p t |P|[Z : [N, N]], then [[Z : [N, N]]|, = 1 and the simplification of the
formula is straightforward. The functional equation follows by inspection of the
formula. |

Corollary 2.8. {°=(s) has abscissa of convergence in the set {%, 2, 3} and admits
a meromorphic continuation to the whole plane. The same holds for (g (s).

Proof. According to Table 1, there is a Dirichlet series Z(s) = ]—[P Zp(s) such
that

(a) it has abscissa of convergence in the set {%, 2,3},
(b) it admits a meromorphic continuation to the whole plane,

(c) for any finite set of primes, say S, Z(s) and ]_[p¢ s Zp(s) have the same ab-
scissa of convergence,

(d) Z(s) coincides with ¢ g *<(s) except for a finite number of local factors.

Since an exceptional local factor ¢ G"’\(S) isa ratlonal function of p~% with ratio-
nal coefficients [4], it follows from (b) and (d) that § G ¥(s) also has a meromophic
continuation to the whole plane. Moreover, {Z°=(s) and Z(s) have the same ab-
scissa of convergence. Indeed, by (c) and (d), it is enough to show that the abscissa
of convergence of each local factor of ¢ G’\(s) is strictly less than the abscissa of
convergence of G’\(s) Now, this follows from the fact that ¢ G’\(s) is an Euler
product of cone integrals [24, Theorem 1]. This important property of cone inte-
grals was established in [5, Section 4], and it was a key point in obtaining analytic
properties of global zeta functions.

To prove the last assertion of the corollary, we apply the first part to each of the
partial zeta functions of {5 (s). ]

Remark 2.9. If FF = C; in Table 1, we recover [8, Proposition 8.1]. See also [9]
for a generalization.

2.2 Counting normal subgroups

We begin with some preliminaries from elementary group theory. Let G be, for the
moment, any group, and let N <1 G be a normal subgroup. We inductively define
a series of normal subgroups y1(G, N) 2 y2(G, N) D --- by setting

yi(G.N):=N and yi(G.N):=[yi-1(G,N).G] fori =2.
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Lemma 2.10. Assume that G is finite and that N is a normal Hall subgroup. If
Yet+1(G, N) = 1 for some c, then N has a unique complement, say C. In addition,
G=NxCandy.4+1(G)NN = {1}.

Proof. By the Schur—Zassenhaus theorem, there is at least one complement of N
in G, and they are all conjugate. We prove that there is only one by induction on c.
Assume that ¢ = 1, and let C be a complement of N in G. Since

[N.C] < [N.G] = y2(G.N) = 1,

it follows that C is normal in NC = G, and therefore, C is the unique complement
of N.

Assume now that ¢ > 1. By the inductive hypothesis, there is a unique com-
plement, say C'/y.(G, N), of N/y.(G, N) in G/y.(G, N). Given a complement
C of N in G, clearly (Cy.(G,N))/y.(G,N) is a complement of N/y.(G,N)
in G/y:(G, N); thus Cy.(G, N) = C’. This implies that C is a complement of
Ye(G, N)in C’. However, [y.(G,N),C’] € y¢+1(G,N) = 1,s0 by the case c = 1,
there is only one possibility for C. This completes the induction.

The final part of the lemma is clear. O

Lemma 2.11. Assume that N is nilpotent, say of class ¢, and let A <\ G such that
AN = G. Then y.+1(G) C A; in particular, Yo+1(G,N) €T ANN.

Proof. Note that B := AN N is also normal in G, and there is an identification
G/B = N/B x A/B. 1t follows that

Ye+1(G/B) = ye41(N/B) x ye+1(A/B) = 1 x ye+1(A/B) € A/B.

Since y.4+1(G/B) = (Ye+1(G)B)/B, we deduce that y.+1(G) C A. In particu-
lar,yc-i-l(G,N)g)’c-i-l(G)nNgAmN ]

We return to the setting introduced at the beginning of the section except that we
do not yet assume that the nilpotency class is 2. We fix an intermediate normal sub-
group N < H <1 G and consider the series { gﬁ’<(s). Note that y; (H, N) is nor-
mal in G for all i and that (y;(H,N)), = i (UHP, Np) and (y; (H))p = yi(Hp)
(cf. [15, Theorem 1.4]).

Proposition 2.12. Let ¢ be the nilpotency class of N. Set G' := G/yc4+1(H, N)
and N' :== N/yc41(H,N).If p } |H/N|, then

(=) = ¢ o).
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In particular, if N}, = Z,/kZ, for some k € Z, then
1—p~ilkly

Hy,,< _
Sgr=(s) = 1 p

Proof. Let H = H/yc4+1(H,N). By Lemma 2.11, we have

(lrais) = g5/ o),
where the series on the right is computed with respect to NI; < Gl’, (this holds
for all p). Assume now that p } |H/N|. Given A’ < H 1/? of finite index and nor-
mal in GI’, such that A/NI; = HI’], the intersection B’ := NI; N A’ is normal in GI’,
and [N, : B'| = [H,, : A']. Conversely, given B’ < N, of finite index and nor-
mal in G, we have yc+1(H,/B',N,/B’) = (yc+1(Hy,, N,)B')/B" = 1 since
Ye+1(Hy, Nj) = 1. Therefore, we can apply Lemma 2.10 to N, /B’ <1 H,/B'. 1t
follows that there is a unique A" < H, such that A’N,, = Hj and AN N, = B'.
By the uniqueness, A’/ B’ is normal in G, /B’, and hence A’ is normal in G,,. We
deduce that H < N

(or ) = 050 s),
This proves the first part of the proposition.

If in addition NIQ =~ Zp/kZp, then every finite-index subgroup of NI; is char-

acteristic; therefore,
N/,

< <
CGZ (s) = é-Zp/kZp(S),
which is clearly equal to
1—p~5|k|$
2nd Ip. :
1—p—s

Corollary 2.13. {5 (s) and § g J(s) have the same abscissa of convergence.

Proof. We have to show that, for each intermediate normal subgroup N < H < G,
the abscissa of convergence of ¢ g »<(s) is bounded by that of ¢ g *J(s). We set

G :=G/\/ye+1(H,N) and N':= N/\/ye+1(H,N),

where

VYe+r1(H,N) :={x € N : x" € yc4+1(H, N) for some n € N}.

By Proposition 2.12, §g=<](s) and g‘JGV,/N(s) have the same but a finite number of
local factors. By [24, Theorem 1], both series are Euler products of cone integrals.
As explained in the proof of Corollary 2.8, this suffices to ensure that ¢ g S(s)
and ¢ ]GV//“(S) have the same abscissa of convergence. Finally, it is clear that the
abscissa of convergence of ¢ g,/’<(s) is bounded by that of ¢ g (s). ]
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Remark 2.14. We claim that if p + |H/N|, then

)/c—i—l(Hpa Np) = Np N Vc—f—l(Hp);

in particular, if H, /N, is nilpotent of class < ¢, then yc1(Hp, Np) = Yet1(Hp).
Indeed, let B <1 G, be a finite-index normal subgroup such that

Ye+1(Hp, Np) € B C Np.
Since Nj /B is a normal Hall subgroup of Hj,/B and since
Ye+1(Hp/B, Np/B) = (Ye+1(Hp, Np)B)/B = 1,
we obtain by Lemma 2.10 that y.41(H,/B) N Np/B = 1. It follows that
(Ye+1(Hp)B) N Np < B,

and hence yc4+1(Hp) N Np € B. Since Np/ye+1(Hp, Np) is residually finite, the
obvious inclusion y¢1(Hp, Np) € ye+1(Hp) N Np must be an equality.

We now return to the case when N is a T-group. Recall the notation intro-
duced at the beginning of the section. Given V < Z,, of finite index, we denote
by X(V) < T, the largest subgroup such that [T}, X (V)] € V. It has finite index
in Ty, and if V' is in addition P-invariant, then X (V') is also P-invariant. Proposi-
tion 2.12 allows us to focus only on the first partial zeta function

o= Y IN:BI”

B<G:BCN

the other ones being of the form {g;’q(s) except for a finite number of local fac-
tors, where G is a quotient of G.

Proposition 2.15. Fix a prime p. Assume that all finite-index A p-submodules of
T} are isomorphic. Assume also that, for every V- <a, Zp and U <y, Tp of finite
index such that U C X (V'), there exists B <t Gp, of finite index such that B C Np,
(BZp)/Zp, =Uand BN Z, = V. Then

() = ¢ (Y [Ty XU [Zp 2 VI~ Homa, (T, Zy/ V)]).

V<sapZp

The above assumptions hold if p t | P|.
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Proof. The proof is similar to that of [8, Lemma 6.1], so we omit it. We just point
out that, given U <p, Tp and V <4, Z) of finite index with U C X (V), the
number of normal subgroups B <1 Gp suchthat (BZ,)/Z, =Uand BN Z, =V
is equal to Homp , (U, Zp/ V). This uses the second assumption and Lemma 2.1.
In addition, by the first assumption, Homp , (U, Z,/ V) = Homy ,(Tp, Zp/ V).
The first assumption is satisfied when p { | P| since in this case A, is a maximal
order of Q,[P], and the second assumption is satisfied by Lemma 2.1. o

We now specialize to the case of Hirsch length 3.
Lemma 2.16. Assume that N is a T>-group of Hirsch length 3. Given V. < Z, of
finite index, the following holds:
(D) If [Ty, Tp) SV, then [T, : X(V)] = 1.

(2) If V C [Ty, Tp), then [T, : X(V)] = |[Z : [N, N]||3[Z, : V]?.

2
>

Proof. The first assertion is trivial since in this case X(V) = T,. Assume now
that V' C [T}, Tp]. Let {x, y} be a basis for 7). Given a Z,-submodule X < T}, of
finite index, say generated by ax + by and cx + dy, we have

(X, Tp] = (alx. y]. blx, y]. c[x, yl. d[x, y]).

Thus, [X, Tp] € V ifand only if a[x, y]. b[x, y].c[x, y].d[x, y] € V. Since [x, y]
generates [T, Tp], the previous condition holds if and only if
[Zp: V]

a,bc,de ——2" - 7.
[Z, : [Ty, Tp)) 7

which in turn is equivalent to saying that

[Zp : V]
T Zp [Ty Tpl] i
Thus,
Zy,:V
X(V)= #TP.

(Zp : [Tp. Tpll

The index of this subgroup is
(Zp - VIPNZp : [Ty, Tl = [Zp : VIPIIZ [N, NI =
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Theorem 2.17. Assume that N is a Tp-group of Hirsch length 3. Set
F:=Im(P - GL(T)) and E:=T xF,
which is a plane crystallographic group. If p } | P|, then

1—1|[Z :[N,N]|I5 " B
(o 7(s) = s‘E,f‘(s)( ”1 - I[,_H,,” L +[Z - [N NI "¢ (3s — n>),

where n := rankgz (Ct (P)). In particular, if p  |P|[Z : [N, N]], then

CGr = (s) = CA77(9)Ep(3s — ).
Proof. By Lemma 2.4, [Homy ,(Tp, Zp/ V)| = [Zp : V]" for any V <p, Zp,
where 1 = rankyz (Cr (P)). It follows from Proposition 2.15 and Lemma 2.16 that

ey =t Y (2 v

[T, THISV<Z),

Y IZ N NIR(Z,  VITR)
V<I[Tp, Tyl

v ([Tp,Tp])—1

= z,?;’<(s)( > pEe

k=0
+ > Z: NN
V<I[T,.T, _
[ p P] X [Zp . [Tp,Tp]] 3s+n

X [[Tp. Tp] : V]_3s+n

1—|[Z:[N,N]|5 " B
- z£;’<(s)( L _;_m” P2 N, NI (s n)).

If in addition p { [Z : [N, N]], then |[[Z : [N, N]]|, = 1, and the proof follows.
O

Corollary 2.18. If p | | P|, then the series ¢ g,f"(s) is given as in Table 2, where
k :=[Z :[N, N]]. Therefore, if p {|P|[Z :[N, N]], then é‘g,')’<(s) satisfies the
functional equation

(=D?p=3H3¢r(s) i F =Cu,
(~D?p~3*fra(s)  ifF = Cy =Dy,
=)yt = D> (P)p ™= (s) i F = Cq. d € (3.4.6),
(=D p=>5¢gr=(s) if F = Do,

PTEEr(s) if F =Dy, d €1{3,4,6}.
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Proof. This follows from Theorem 2.15 and uses the formula for ¢ £’< (s) obtained
in [13, Chapter 6] as a step in the computation of the normal zeta function of the
plane crystallographic group E (see also [6, Section 4.2]). The calculation of 7
was done in Lemma 2.4. The local functional equation follows by inspection of
the formula. |

Corollary 2.19. ¢ g () has abscissa of convergence in the set {%, 1,2} and ad-
mits a meromorphic continuation to the whole plane. The same holds for {5 (s).

Proof. The assertion about IGV »<(s) follows by inspection of Table 2 and the same
argument used in the proof of Corollary 2.8. Next, by Corollary 2.13, {5 (s) has the
same abscissa of convergence as { g (). To complete the proof, it is enough to
show that, for each intermediate normal subgroup N < H < G different from N,
the series ¢ g »<(s) admits a meromorphic continuation to the whole plane. We
use the notation from the proof of Corollary 2.13 with ¢ = 2. Since the local fac-
tor of §g <(s) at a prime p is a rational function in p~* by [4], it is enough
to show that ¢ g,/’q(s) admits a meromorphic continuation to the whole plane. If
N’ = N, then we are in the same situation as in the case of ¢ IGV (s), so we are done.
If N' # N, then either N’ = Z2, in which case the result follows from the for-
mulae of the normal zeta functions of the plane crystallographic groups given in
[13, Chapter 6], or else N’ == Z or N’ = 0, in which case the result is trivial. o

2.3 Remark on the local functional equations

A natural problem is to decide whether local functional equations hold for ¢ g =(s)
and ¢ év »<(s) when the Hirsch length of N is higher than 3. When G = N (in
which case the series are just { (s) and {y (s)), this is discussed in [25]. When
G # N and N is abelian, the existence of local functional equations follows from
the explicit formulae obtained in [6, Section 2]. In contrast to the situation of
zeta functions of nilpotent groups, here the functional equations are not uniform
in p. They depend on how p ramifies in certain number fields that arise in the
decomposition of Q[G/N] into simple algebras. Propositions 2.2 and 2.15 enable
us to linearize the problem when the nilpotency class is 2 (indeed, the linearization
for ¢ ]GV »J(s) holds more generally by the Mal’cev correspondence). We will not go
into details. Briefly, the problem can be stated as follows. Let L be a not necessarily
associative ring additively isomorphic to Z", and let P be a finite group acting on
L by ring automorphisms. We consider the Dirichlet series

Cpar(8) =Y [L:B|*|Der(P.L/B)| and {5, (s)=) [L:B]™,

where the first sum runs over the P-invariant finite-index subrings, and the sec-
ond one only over the P-invariant finite-index ideals. When L is an abelian Lie
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ring, {5 AL (s) is a Solomon zeta function [23]. In general, the series {5 AL (s) are
special cases of submodule zeta functions, as introduced by Rossmann in [19, Sec-
tion 2.2]. Corollaries 2.7 and 2.18 imply that, when L is a 2-step nilpotent Lie ring
of additive rank 3, {5 AL (s) and {p AL (s) satisfy local functional equations. In
analogy with the results of [25], we might ask the following questions.

Question 1. Do {5 AL (s) and ¢p AL (s) satisfy local functional equations when
L is a 2-step nilpotent Lie ring of rank greater than 3? Does {5 AL (s) satisfy
local functional equations for arbitrary rings (not necessarily nilpotent) that are
additively isomorphic to some "9

We return to the case when L is a 2-step nilpotent Lie ring additively isomorphic
to Z3. It is not difficult to check, say by inspection of Table 1 and the results of
[6, Section 2], that if we forget the structure of Lie ring on L (obtaining Z3)
and consider the Solomon zeta function {p ~z3(8), then {p ~r(s)and ¢ f,ng ()
satisfy the same local functional equations. By this, and again in analogy with the
results of [25], we can also ask the following question.

Question 2. Let L be a ring additively isomorphic to Z". Let P be a finite group
acting on L. If {3 AL (s) satisfies local functional equations, are these equations
the same as those satisfied by {5 AT (s)?

In a forthcoming paper, we show that Question 1 and Question 2 have positive
answer for various nilpotent Lie rings of rank 4.

3 Local zeta functions as p-adic integrals

Let N, be a torsion-free finitely generated nilpotent pro-p group, and let G, be
a profinite group that includes N, as an open normal subgroup. Fix also an in-
termediate normal subgroup N, < H, <1 G,. We review a method, developed in
[8, Section 2] for ‘T -groups and extended to virtually nilpotent groups in [24], to
express ¢ g,fs (s)and ¢ g;:“ (s) as p-adic integrals. This method is used in the next
sections to calculate local factors at “bad” primes in some cases.

3.1 Expressing {5 (s) and ¢ (s) as p-adic integrals
N, N
pr P

An additional reference for this part is [12, Chapter 15], where the notation is more
adapted to ours. Fix a Mal’cev basis x = (xy,...,xy) for Nj. By definition, the
series of subgroups

Np = (x1,....xp) D {x2,....xp) D+ D (xp)



622 D. Sulca

is central, and each x € N, determines a unique vector a = (a1,...,ap) € Zé’,
such that x = x® := x{' -+ xp".

Let T, (Zp) denote the set of i x h-upper-triangular matrices with entries in Z,
and let TZ’ (Zp) C Tp(Zp) denote the subset of those matrices with non-zero de-
terminant. For t € Ty (Zp), we set By := (x'1,...,x%) < N,, where t; denotes
the i-th row of t. The subgroup By is open if and only if t € TZ‘ (Zp).

Given an open subgroup B < N, we say that t € TZ‘ (Zp) represents a good
basis for B (with respect to x) if

B=B; and B={x")". .. x")* A, ... A€,

In this case, (x!1,...,x%) is a Mal’cev basis for B (also called a good basis for B).
We set
M(B) := {t € Tj,(Z)) : trepresents a good basis for B}

Note that, given t = (¢;;) € M(B), the value |¢;;|, depends only on B (and on the
fixed Mal’cev basis x). Indeed, we have |¢;; |;1 =[{xi,...,xp) : BO{(xj,...,xp)].
We also see from this that

h
[Ny : BI™" = [ ltiilp- (3.1)

i=1
We collect results from [8, Section 2] in the next lemma. The topological group
Th(Zp) = ZI};(;’H)/ 2 has a normalized Haar measure, which we denote by .

Lemma 3.1. M(B) is an open subset of T,(Zp), and for any t = (t;;) € M(B),

h
u(MB)) = (1= p~H" Tl (3.2)

i=1

Therefore, for a complex variable s,

h
1 .
N:B_S:—/ LilSThdu. 3.3
A e N (33)

i=1
Proof. The first part of the lemma is proved in [8, Lemma 2.5]; see also [12,
Lemma 15.1.1]. We recall here the proof of (3.3). We start from the right-hand
side and use (3.1) and (3.2):

1 h » 1 h ,
— il tdp = ———— i 157 (M(B
(1—p=hh /M(B)il:[llt p T ATy (,-l:lllt r )M( )

h h
= [Tlily™ [Tl = Ny : BI. o

i=1 i=1
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We now set My := Up<y M(B), My := Upan M(B) where the unions
run only over open subgroups. These are open subsets of T (Zp), by Lemma 3.1.
They both coincide with T+ (Zp) if N is abelian. In the general case, the following
descriptions were given in [8 Lemmas 2.3 and 2.4]:

My, = fte T (Zp) 1 (X xY] € (xU+1,... xt), 1<i<j<h), (34
Mf,p ={te T;(Zp) Sl xY] e (xU+r, .. xt), 1 <id,j < h).
As an immediate consequence of formula (3.3), we obtain the following corollary.

Corollary 3.2 ([8, Proposition 2.7]). For * € {<, <1},

& (5) = _1)h /. [Thls- d

Np i=1

3.2 Expressing ¢ gl”s(s) and ¢ gP’<‘(s) as p-adic integrals
r r

We begin with the following particular case, which is an immediate consequence
of (3.3).

Corollary 3.3. Let a1, . . ., o € Gp be such that their classes modulo N, generate
Gp/Np. Then

1 h
|8
G Jes,  Twga
% (xti)e(xt,..xtn), =1
i=1,...,h, ]—1, o
It remains to consider the case H, # N,. We set F' := Hj,/N, and denote by
e its identity element. The following is fixed in the rest of this section.

(Nr=(s) =

e A presentation

(fi,.- fr I R (f1,.... f[r) =e, A eJ)
for the group F (f; # e forall j).
* Group words wr(X1,...,Xy), f € F, such that f = wy(f1,..., fr). In the

case [ = f] (j =1,...,r), we just set we = X, and in the case f =e, we
set w, = e, the empty word.

» Atransversal {7 : f € F} to the cosets of Ny in H) such that 8y N, = f for
all f € Fand B, = 1 (the identity of Np). We denote B; := B, (this is why we
denoted the identity of F' by e and not by 1).

* Elements a1, ..., a5 € G, whose classes modulo N, generate G,/ N,. Assume
that the first 7 of them (¢ < ), o1, ..., ay, generate G, modulo H),.
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Given A < H)j, of finite index such that AN, = H), the intersection A N N, C N,
is open and A can be written as

A=(AﬂNp)U( U ,Bfnf(AﬂNp)) for some ny € Np.
SeF\{e}

Now, given an open subgroup B < Ny andny € Ny, for f € F \ {e}, Lemma 3.4
below establishes necessary and sufficient conditions on the elements n ¢ for the

set
A(B,(nf) fer\{e}) := B U( U ﬁfnfB)
fEF\{e}

to be a subgroup of G . In this case, necessarily, A(B, (nr) fer\{e}) Np = Hp.

Lemma 3.4. Fix an open subgroup B < Ny and ny € Ny for each f € F \ {e}.
Let nj := ng,. Then the set A := A(B, (ny) fer\{e}) is a subgroup of Gp if and
only if the following three conditions are satisfied.

(1) Bi"miBC Bfor1<j<r.

(2) Ry(Bin1,....Brny) € BforallX € J.

(3) Brny € we(Biny.....Brny)B forall f € F\ e, f1..... fr}.

Moreover, A is a normal subgroup of Gp if and only if (2), (3) and the following
four conditions are satisfied.

(4) B is normalin Np.

(5) **B C Bforl <k <s.

6) [Bjnj.xile Bfor1 < j <randl <i <h.

(D) ok, Bjnjl € wig, £,1(B1nr, ..., Bruy)B for 1 <k <tand 1< j <r, where
ay denotes the class of ay at Gp/Np.

Proof. Assume first that A is a subgroup of G,. Then clearly B = A N Np, so B
is normal in A; in particular, (1) holds. Note that

Rk(ﬁlnlv---vﬁrnr)Np = Rk(flwnvfr) =e (G F),

and hence Ry (B1n1.....Brny) € AN Np = Bj; thus (2) holds. Similarly, Brn ¢
and wy(B1n1.. ... Brny) have the same image at F, and hence (3) also holds.
Conversely, assume that conditions (1), (2) and (3) are satisfied for the collec-
tion (ny) reF\{e}- Condition (1) implies that B;n; € Ng,(B), the normalizer of
B in Hp, and then (3) implies that Bsny € Ny, (B) for all f € F \ {e}. It fol-
lows that A € Ny, (B). Let A’/ B denote the subgroup of Ny, (B)/B generated
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by A/B. By (3), A’/ B is generated by the classes of B1n1,..., Brn,, and by (2),
these generators satisfy the relations defining the presentation of F. It follows
that |A’/B| < |F|. On the other hand, |4/B| has exactly |F| elements. Thus,
A/B = A'/B, whence A = A’. We conclude that A is a subgroup of G,. This
completes the proof of the first part of the lemma.

Assume now that A4 is a normal subgroup of G,. According to the first part of the
lemma, (2) and (3) are satisfied. Note that (4) and (5) also hold since B = A N N,
is also normal in Gp,. Now, the normality of A implies that [8;n;, x;] € A, and the
normality of N, that [B;n;,x;] € Np;thus [B;n;,x;] € B = AN Ny, whence (6)
is also satisfied. Finally, (wig,, r;1(B1n1, . .. , Brnr)) Yoy, Bjnj] is in A since A
is normal, and it is in N}, since its image at G,/ N), is the identity. This shows that
(7) also holds.

Conversely, assume that (2) to (7) are satisfied. Note that (4) and (5) imply (1);
hence, according to the first part of the lemma, A is a subgroup. They also imply
that B is normal in G,. We saw in the second paragraph of the proof that A/B
is generated by the classes of the elements B;n;; thus, by (6), Np/B is included
in Ng,/p(A/B). It follows that A/B is normal in Hj/B. Finally, by (7), A/B is
normal in G, /B, and hence A is normal in G,. This completes the proof of the
lemma. |

We set more notation for the next proposition. We denote by M, (Z)) the set
of k x h-matrices with entries in Z,. Given v = (v;;) € Mgxp(Zp), its i-th row
vector (vi1,...,Vip) € ZZ is denoted by v;. The normalized Haar measure of

Th(Zp) X Mixh(Zyp) = Zy"HHO+D/2
is denoted by j. Elements of T;,(Z,) x My xp(Zp) are denoted (t, v).

Proposition 3.5. It holds

Hpy,< —i—r
é'p (s) = — —l)h L}fﬂ 1_[|tzz dpu,

i=1
Hp,< —i—r
¢Hr(s) = _1)h /g_ - 1‘[1|z” .
i
where THHP”’s C Th(Zp) x My j(Zp) is the set of pairs (t,V) such that t € ‘MISV,)
and

B [xvf,xtf][ﬂj,xti],Rl(ﬁlxvl, LBy e (xt L xtn),
I1<i<h 1<j<r,Ael, 3.5



626 D. Sulca

and THP’< C Tp(Zp) x My p(Zp) is the set of pairs (t, V) such that t € My and
), BB BB 1l )
(w[&,,fj](ﬁlx“,...,,BrXVr))_l[al,ﬂjXV-/] € (xtt,. .. xt)

I<k<s,1<ish leld, 1<j<rlI<lI<t (3.6)
Proof. Throughout the proof, we shall refer repeatedly to conditions (1)-(7) of
Lemma 3.4. We will also use the same notation. The first part of this lemma es-
tablishes a bijection between the family .7 ; Hp.< of open subgroups A < G, such
that AN, = H) and the family of sequences (n #B)fer,where B is an open sub-
group of N and the nz’s are elements of N with n, = 1 such that (1), (2) and (3)
are fulfilled. As (3) simply expresses ny B in terms of n1 B, ..., n, B (recall that

n; denotes ny,), it follows that Ty HP’\ is in a bijection Wlth the set, say .7, of
sequences (B,n1 B, ...,n, B) for Wthh conditions (1) and (2) are satisfied. Thus,

Chrs(s) = Z [Hy: A = > [N, : BI™. (3.7
Aeﬂ‘g;s (B,nB,...n,B)eT
We now fix (B,n1B,...,n,B) € .7 and set
8(B,nmB,....n;B) :={veMyx;(Zp): (B, x"'B,...,x"B)
= (B,n1B,...,nB)}.

This is an open subset of M, x,(Zp) of Haar measure [N, : B]™". In fact, the
mapping ZZ — N, given by a — x* is a homeomorphism that preserves the (nor-
malized) Haar measure (cf. [24, Lemma 2.4]), and the measure of each coset n; B
is [Np : B]™!. Combining this with Lemma 3.1 and formula (3.1), we deduce that
M(B) x 8(B.n1B,....n,B) is an open subset of Ty (Zp,) X M, xp,(Zp) and that,
forany t = (#;;) € M(B),

u(M(B)x 8(B.ngB.....ns, B)) = *Vnmbﬂmb

i=1 i=1

_ l)h 1_[|t” r+l‘

i=1

It follows (again, using formula (3.1)) that
h
= = [l
i=1

=(1-pH "l_[|z,, ST (M(B) x 8(B,ns, B,...,nz.B))
i=1
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=
(= p " JuB)x8B.ny, B. wngB)

Hm ~dp.

This and (3.7) imply that

H,,< —r—i
¢ =(s) = *wﬁw [Tils .

i=1
where
TH";P’S = U M(B) x 8(B,n1B,...,n;B).
(B,n1B,....n- B)eT
Note that this is the set of pairs (t, v) € Tj,(Zp) X M, x4 (Zp) such that
(a) te M and

(b) the elements nj :=x% for j =1,...,r satisfy conditions (1) and (2) with
B = (xt1,..., xtn),

These are precisely the conditions listed in (3.5) since
P x(B). X1 = (B XY,

This proves the integral expression for ¢ gp’s(s).

The expression for ¢ g,f< (s) is obtained similarly. This time we have to consider
sequences (17 B)rer such that conditions (2) to (7) are satisfied. Working as in
the previous case, we arrive at the expression

H, »<J —r—i
¢Hra(s) = qﬁﬁqum m

i=1

where ’J’Iip’ = |JM(B) x 8(B,n1B,...,n,B), and the union runs over those
(B,n1B,...,n,B) with B open and normal in N, and the n;’s satisfying (2), (5),
6), (7). Therefore, TGIZP" consists of the pairs (t, v) such that

(a) te gMi,
(b) ¥ (x) e (xt1,...,xt) fori =1,...,handk = 1,...,s and
(c) theelements n; :=x% (j = 1,...,r) satisfy conditions (2), (6) and (7).

Clearly (b) and (c) are equivalent to (3.6) since #/ [x"/, x;][B i, xi] = [B;x", x;].
This completes the proof of the proposition. |
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3.3 A method to simplify cone integrals

We end this section with an elementary observation that we will use frequently to
simplify the calculation of cone integrals.
Given m,n € N, we consider subsets of ZZ’ X Z;’, obtained as follows.

(i) Fix a measurable subset Dy C Z;)” and rational functions

gi(T) € Qp(T) = Qp(Th.....Tw), i=1,....n,
such that g; (t) € Z, whenever t € Dy.

(i1) Given an integer i such that 1 < i < n, assume that we have defined a mea-
surable subset D;—1 C Z7' x Z;_l. Let

ki (T, Vi Vie) AT Vi Vi) € Qp(TL Vi, Vi)
be rational functions such that
ki(t,vi,...,vi—1) € Zp and A;i(t,vy,...,vi—1) € Z;

whenever (t,vy,...,v;—1) € D;—1. We define D; in one of the following two
ways:
I D;={(tvi.....v) € zy XZ;, S (t,vy,...,vi—1) € Di_q,

g [ ki(t,v1,...,vi-1)
+ Ai(tvr, ... vic)Ui ),

I D; ={(t.vi.....v;) € y XZ; S (t,vy,...,vi—1) € Di_q,
lgi (Olp = |ki(t,v1,...,vi-1)
+A’l(tav17"'1vl—1)vl|17}
(iii) We finally set D = Dy, C Z} x Zy,.

We say that (Do, g1(T), ..., g, (T)) is the initial datum of definition of D and call
(v1,...,vy,) the sequence of pivots. A pivot v; is said to be of type I or type II
according to the way we choose to define D;.

Proposition 3.6. Let fo, go € Qp[T] = Qp[T1, . ... Tin] be non-zero polynomials,
and consider the integral

/ OOl du®). s eC. (3.8)
DCZY XLl

where D C Z;" X ZZ is a measurable subset defined from a datum

(Do, g1(T),....gn(T))
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and pivots (v1, ..., Vy). If the number of pivots of type Il is r, then

/leo(t)lf,lgo(t)lp du(t) = (1—p_l)’/Dolfo(t)I;i]:[OIgi(t)lp dpu(t).

Proof. The integral (3.8) can be performed as follows. We start integrating with
respect to the variable v, . Note that
gn() | kn(t.v1,... . n—1) + An (V1. ..., Vp—1)Vn

kn(t7v19 ceey Un—l)
A‘fl(t'vvl:""v}'l—l)’

and the Haar measure of this set is |g, (t)|,. Similarly,

if and only if v, € g, (V)Z), —

|gl(t)|p = |kn(t7 vlv ceey vn—l) + Af’l(t’ vlv ey Un—l)vnlp
kn(t7 Ul, ceey Un—l)
A'I’l(tv vlv ceey Un—l)’

and the Haar measure of the this setis (1 — p~1)|gy(t)|,. To sum up, after integrat-
ing with respect to vy, the integrand is multiplied by |g, ()|, or (1 — p~1)|gn (V)|
according to whether vy, is a pivot of type I or I, and the new domain of integration
is clearly D,—1. We next integrate with respect to v,—; and so on. After n steps,
we arrive at the desired form of the integral. |

if and only if v, € gn()Z), —

4 The formulae

We now present the complete formulae for the subgroup and normal zeta functions
of the 3-dimensional almost-Bieberbach groups, whose definition we recall below.
Proofs of these formulae will be left for the next two and last sections. For details
of the next discussion, we refer to [2].

Let N be a connected and simply connected nilpotent Lie group, and Aut(N)
the topological group of the Lie group automorphisms of N . The semi-direct prod-
uct N x Aut(-N) acts on N in a canonical way by

.0) = na(x) forall x,n € N and all @ € Aut(N).

All maximal compact subgroups of Aut(.V') are conjugate. We fix one of them, say
€ C Aut(N). A torsion-free uniform discrete subgroup G of N x € is called an
almost-Bieberbach group (abbreviated as AB-group). Note that the quotient space
G\ is a compact manifold of the same dimension as N, whose fundamental
group is identified with G. The dimension of G is defined as the dimension of N .
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When N = R” and € = O(R"), the orthogonal group, we recover the definition
of Bieberbach group. The quotient space G \R”", with the metric induced from the
Euclidean space R”, is a compact flat manifold.

The AB-groups were characterized algebraically as the finitely generated tor-
sion-free virtually nilpotent groups (cf. [2, Theorem 3.1.3]). If G is an AB-group,
then its Fitting subgroup Fitt(G) (the maximal normal nilpotent subgroup of G) is
indeed maximal nilpotent. It follows that any intermediate subgroup

Fit(G) < H <G

is also an AB-group with Fitt(H) = N. An AB-group G is a Bieberbach group if
and only if Fitt(G) is abelian.

4.1 The 3-dimensional Bieberbach groups and their zeta functions

There are only ten 3-dimensional Bieberbach groups up to isomorphism (cf. [29,
Chapter 3]). They are listed below with their corresponding zeta functions ex-
pressed in terms of the partial zeta functions with respect to the Fitting subgroup
(which is always (x1, x2, x3)). The first six are the fundamental groups of the ori-
entable compact flat manifolds, and the last four are the fundamental groups of the
non-orientable ones. We have arranged the presentation so that {J=(s) appears as
the first term in the formula of {5 (s) and [G : N]7*(x (s) as the last one. The
same holds for {5 (s).
The group

G = (x1,%x2, X3 : [x1,x2] = [x1, %3] = [x2,x3] = 1)
has zeta functions
85, (s) = &g (s) = L()E(s — DI(s —2).
The group
Gy = (a, x1, X3, X3 : [x;,x;] = 1 foralli, j,a® = x3, *x; = x7}, %x2 = x5 1)
has zeta functions
£g, () = L()E(s — DE(s —=2)(1 —27%) + 2770 ()5 (s — E(s — 2)
= ()8 (s — (s —2),
gp(s) = (14+6-27° +4-477)(1 —27°)¢(s)
+275¢(s)%e(s — (1 +3-27%).
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The group
93 = (o, x1,x2,x3 : [x;,x;] = 1 for alli, j.oa® = x1, %xp = x3, “x3 = xz_lxs._l)
has zeta functions
Eg, () = (1 =379)(s)E(s — DL(s — L, x3) +37°(s)¢(s — D (s — 2).
E(s) = (143-37°)(1=37)5(s) +37°4(s)*L(s, x3)(1 +2-37°).
The group
Gy = (o, x1,x2,X3 : [x;,x;] = 1 for all i, j,oa* = x1, “xp = x3, “x3 = xz_l)
has zeta functions

£5,(9) = ()¢5 = DL(s — 1, xa)(1 =27%)
+2770()8(s — DE(s —2)(1 —27%)
+47°8()8(s — DE(s — 2),
g (s) = (1 +2-279)(1 = 27)¢(s)
+275(1 4227 42471 —27°)¢(s)
+4750()? L(s, xa)(1 +27°).
The group
Gs = (o, x1, X2, %3 : [x;,x;] = Lforall i, j,a® = x1, *x2 = x3, x3 = x5 'x3)

has zeta functions

$g.(s) = S()E(s = )L(s — 1, x3)(1 =27%)(1 = 37%)

+2798(s)¢(s = DL(s — 1, x3)(1 = 37%)

+378()E(s = DE(s = 2)(1 =27°) + 675 ()¢ (s — D& (s = 2),
Cn(s) = (1=27")(1 =37)¢(s) +27°(1 + 37°)(1 = 37%)¢ ()

+375(1+ 4751 = 275)¢(s) + 675¢(s)2L(s, x3).
The group

% = ((X,ﬂ,xl,X2,X3 . [xi,x;] =1 for all i,j,
a® =x1, % = x; 1, %xz = x3 L,

B? =x2. Pxi =7 Pz = x5, (@B)? = x3)
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has zeta functions

£5.() =ts =11 =2.27°)>
+3-27°0()8(s — DE(s —2)(1 —277)
+47()C(s — DE(s — 2),

b)) =1+3-27°(14+2-27)(1 = 27%)¢(s)
HATE($) (1427 47,

The group

P = (e, x1.x2,x3 : [x;,x;] = 1 foralli, j,

2 & e _ .—1
£ = X1, “x2 = X2, X3 =Xx3 )

has zeta functions

£5,(9) = L©)E(s — D)>(1 =271 + 2=(=1))
+27°(9) (s = DE(s = 2).

G0 = (1 =27) (14270t~ )
+275(143-275)8(9)%¢(s — ).

The group

By = (e,x1,x2,x3 : [x;,x;] = 1 foralli, j,

2 & & —1
£” = X1, “X3 = X3, X3 = X1X2X3 )

has zeta functions

£5,(5) = L)t — D21 —275)(1—2-27° +8-47)
+2758()E (s — DS (s = 2),
£3,(5) = EO)E6 = D= 279) + 27525 — (1 =270 +4-47°),

The group

Bz = (a,e,x1,x2,x3 : [xj,x;] = 1foralli, j,

2 -1 « —1
o =x1, "xa=x, , Yxz =x3 0,

&2 = x5, fx1 = x1, fx3 = x3_1, [e,a] = x2)
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has zeta functions

£5,() = L()5(s = DX (1 =27°)(1 — 4-47)
+2:275()E(s — D1 —27°) (1 +2-279)
+2778(8)E (s = 2)5(s = 3)(1 = 27%)
+4778(9)E (s = DE(s = 2),

$5,(8) = L()(1 —=27)(1 +3-27%)
+2750(s)?(1 —275)(1 + 275 +2-47)
+279(s)(1 =27)(1 +2-27)
+275¢0(s)2(1 —275)(1 4+ 5-275 +2-479)
F A7)+ 4275 47,

The group

Py = (a,e,x1,x2,x3 1 [x;,x;] = 1forall i, j,

o =x1, Yx = xz_l, “x3 = x3_1,
g2 = x2, fx1 = x1, *x3 = x5\, [6, 0] = x2x3)

has zeta functions

£5,(5) = L()E(s — D>(1—275)(1 —2767D)2
+279()8 (s — DE(s = 2)(1 = 27)
+2:275¢(s)E(s — D2(1 = 275)(1 4+ 2767D)
+4790(s)8 (s — DE(s —2),

£5,(9) =47°0()? (1 + 427 +475) + 2750 (s)(1 = 275)(1 + 2-27¥)
+2750(s)2(1 =271 + 275 +2-47%)
+2752()2(1 = 275)2(1 +2-275) + £(s)(1 = 27).

4.2 The 3-dimensional almost-Bieberbach groups and their zeta functions

The 3-dimensional AB-groups with non-abelian Fitting subgroup were classified
in [3]; see also [2, Chapter 7]. They are arranged into seven families accord-
ing to the isomorphism type of G/Z(N) (G is the AB-group and N the Fit-
ting subgroup), which is one of the plane crystallographic groups pl, p2, pg,
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p3, p4, p6, p2gg. They are listed below with their zeta functions expressed in
terms of the partial zeta functions with respect to the Fitting subgroup, which
is always (x1, X2, x3). This time, the normal zeta function has been arranged so
that [G : N]75¢ g »<(s) appears as the first term in the formula and ¢ g »J(s) as the
last one.

The group

Ni = (x1,x2,x3 : [x2,x1] = xlgf, [x1,x3] = [x2,x3] = 1), k€N,
has zeta functions
§Nk (s) = l—[ Ep(s)p(s — zf(gizi ;)2)§P(2S —3)
x [ 166 =2 (5 )%p(s = 1)
P TRk 2, (25 — 26, (25— 3)).
tr () = [] 6066 — DEp(3s —2)

Ptk

Dtk

x 1o ®ts 1)(% 20— )

plk
The group

Gpaok = (@, x1, X2, %3 1 [x2,x1] = x3¥, [x1,x3] = [x2, x3] = 1,
o = x3, % = xl_l, “xy = xz_l), k e N,

has zeta functions

; 1 Gl = DEps — 225 — DEp(25 —2)
é'sz 2k (s) = 1_[ é‘p(3S —3)
< J1 @6 -1 —2)

PIRPEZ _ pS k|52, (25 — 1)p (25 — 2))
X 0(8)ba(s — 1) +275¢5, (9),
§Gra ) =27 [T 6()8p(s = 15 (3s)

12k
A [T &®ps— 1)( 'p b |k|,,zp(3s>)

plk, p#2 -

X £2(s)2(s — 1)(1 +

P12k

2275 (1 = |kI3)
1—-2-s

1_ =S|k
+ J] ( pl |‘”)x(l+6-2—S+4-4—S).

plk, p#2

+ ;2(3s)22‘5|k|§)
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The group

Gpgak = (B, x1,x2,x3 1 [x2, x1] = X35, [x1,x3] = [x2,x3] = 1,

,32=X2, 'Bxl =x1_1x3_k,ﬂX3=x3_1), k eN,

has zeta functions

o =] Ep(5)¢p(s — zlz(,;(szi ;)2)zp(2s -3)
< 1 @6 =266 -1
plk,p#2 p_s+2|k|;,_2§p(2s —2)tp(25 — 3))
X &o(s — 1)(Sa(s —2)(1 — [k[37%) + G225 — 3)|k[57?)
+275¢y,, (),

§G o () =27 [ 6()?6p(3s = 1)

P12k

=
ngg.Zk
pi2k

2 1_|k|;7_1 s—1
X 1_[ Ep(s) (l_p—_sﬂ+|k|p 5p(35—1))

plk, p#2
x 5(8)(L2(s — D1 +3-275) (1 — k57

+8Bs =D +275 +6-47°
—2-8F—2-1679)[k|5")

+ (14 @+ (=DF2) 275 + 44751 = 275)¢ ().
The group

Gpake = (1o x1, %2, X3 1 [x2, x1] = x%, [x1,x3] = [x2,x3] = 1,

3 € —1.-1
Yo =x5,Yx1 =x2, "x2 = x7 x5 ),

with k € N and € € {1, —1} verifying k(k + €) = 0 mod 3, has zeta functions

< N Zp(s_l)Lp(s_lv)B)é'p(zS_I)Lp(zs_lyXZ«S)
CGpanc8) = pl;[k L,(s—2. 13)
X ]_[ Ep()(Lp(s — 1, x3)p(s — 1)
plk, p#3 — p U lklyLy(2s — 1, x3)5p(25 — 1))

X C3(s — 1) + 37565, (5),
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$Gsr @) =37 [T &5 Bs)Ly(s. 13)
p3k — |kl
< T] &)L, m)( > 4 [K[52, Gs ))
plk,p#3 -
X (83(5) +383(5) (37583 () (1 — [k [3)
+3735339)[k[5))

1_ —s
+ J] ||” x (143-379).
plk, p#3

The group

Gpak,e = (V. X1, X2, X3 1 [X2,x1] = X3k, [y, x3] = [, x3] = 1,

4 € -1
yr=x5 Y =x2, Va2 = x7),

with k € N and € € {1, —1}, has zeta functions

l_[ Cp(s = D)Lp(s — 1, x4)p(2s — 1) Lp(25 — 1, x4)

é-ap4,2k € (S =

pi2k LP(3S -2, X4)
X l_[ Cp(s)(Lp(s_led)é'p(s_l)
plk, p#2 — p U lklyLy(2s — 1, xq)p (25 — 1))

X —1)+ 2_SZC$;p2.2k (),

(5o ) =47 [T )5 B9)Lp(s. xa)

pi2k — |kl

< T &Ly xd)( _s+|k|;¢p<3s))

plk, p#2 —P

X (£2(5) + 262() (2 E2(s)(1 — [2K]3)
+2738,(35)2k13))

+27% ] # X (14227542475
plk, p#2
1— —s
I1 # (1+42-279).
l—p~
plk, p#2

The group

Gpsake = (v, X1, X2, %3 ¢ [x2,x1] = x35, [x1,x3] = [x2, x3] = 1,

6 € —1
y® = x5, Yx1 = x2, Yx2 = x7 " x2),
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k € N and € € {1, —1} verifying k(¢ + k) = 0 mod 3, has zeta functions

é‘épmk_s (s) = 1—[ Cp(s —DEp(2s — D Lp(s — 1, x3)Lp(2s — 1, x3)

o6k Ly(3s =2, x3)
X ]_[ Ep()(Lp(s — 1, x6)p(s — 1)
plk, pt6 — plklyLy(2s — 1, x6)p(25 — 1))

x £3(s — 1)2(25 —2)
+ 2GRS () 4 3T () 4 675, (9),

p3.2k .€ p2.2k
ggpe,zk,e(s) =6"° l—[ Cp($)8p(3s)Lp(s, x3)
P16k
< J] &Ly m)(
pI2k, p#3
X (£3(5) + &3(s) (37583 () (1 — [k[5)
+ 373339 [k15))

1—p~7lklp

2K
T kS (3s>)

3~s P (144
+ [ Y= x (1 4475)
plk, p#2
1— p~5|2k|
+27 ] 1= P2kl x (1 +379)
_p_s
plk, p#3
I 1—p~lkl}
1—p—
plk. pt6 P
The group
Gpogg.ak = (0. B.x1.x2,x3 ¢ [x2,x1] = x5, [x1.x3] = [x2.x3] = L.
az = X3, axl — xl lxgk’ otx2 — x;1x3—2k’

B2 =x1, Pxy = x 152K Bxs = x3 1,

(Ba)> = x2), keN,

has zeta functions

1_[ Lp(s — 1225 —2)2

ngZggAk bk {p(3s —3)
< [T @ =D(Es—1)?
plk, p#2 — kST (G (25 = 2)))

2278 (5) 4 27 () + 470, ).

p2.4k
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(G ) =47 [T 6?5 (39)
12k
2k I §p(s)z(J+|k|;g,,(3s))

plk, p#2 p—
X 02(9)?(G2()(1 + 4275 +475)(1 — |k[5)
+8(Bs)(14+5-275 +2.47F
+ 87— 1675 —2-327%)|k|3)

1_ —S
+27 ] J x(142-27%)
plk, p#2

+2.275(142-275)(1 = 275)¢(s) + L.

5 Computing the zeta functions of the 3-dimensional
Bieberbach groups

We prove the formulae presented in Section 4.1. Throughout this section, we de-
note by G the Bieberbach group under consideration and by N the Fitting sub-
group. We keep the notation introduced at the beginning of Section 2 except that
here N is not a T,-group but rather an abelian group (and it is in fact a Z[P]-
module, where P = G/N). Instead, we denote

Z=Cy(P), E=G/Z, T=N/Z.

The formula for the zeta functions of ¢; are already known (see the introduc-
tion), so we focus here on the other groups. We mentioned that an intermediate
subgroup N < H < G is again a Bieberbach group with Fitting subgroup N.
Therefore, to prove the formula for {5 (s), it is enough to prove the one for { g =(s).
The isomorphism classes of the intermediate subgroups N & H & G (if there are
any) will be identified when computing the partial zeta functions ¢ g »9(s). The
following will be useful. If p } |G/N|, then

L8r=(s) = LEr=()E5, () = (A= (s = )¢5, (9), 5.1)
Lor(s) = L ()85 (5),
(lr=(s) = L1 R()65 (9),

These follow immediately from the analysis in [6, Section 2]. When the rank of
Z is 1, then E is a plane crystallographic group, and we will be able to apply the
results of [13] (summarized in [6, Section 4]).
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When computing local factors at primes p | [G : N], we will sometimes use the
method of p-adic integration with respect to the Mal’cev basis {x1, x2, x3}; specif-
ically, Corollary 3.3 and Proposition 3.5. In this case, M; = M = T;r (Zp). The
following lemma, whose verification is straightforward, will be used to translate
the conditions defining the domains of integration into cone conditions.

Lemma 5.1. An element X' € Np, is in (x1,x2,x3) if and only if all of the follow-
ing hold.

(1) t11 | vy,
(2) 122 | —Ftt12 + va,
11
— t t
(3) 133 | =/ tv2 };Z 24,5 ot + vs.

5.1 Computing zeta functions of a family of groups including ¢, and %;
Given positive integers a, b, we shall compute the zeta functions of
G = (o, X1,...,Xq. Xg41,-.-,Xg4p - [Xi,x;] = Lforalli, j, a? = Xa+b>
®x; in_l fori =1,...,a,
“xi=xjfori =a+1,...,a+b).

This, of course, includes the cases G = %, G = %. Here N = (x1,...,Xq4p),
P =~ C; is generated by the class of «, and Z = Cy(P) = (Xg+1s---» Xa+b)-
Note that if U < Z <V < N, then U and V are P-submodules. We first prove
a series of lemmas. When working inside 7" or Z, we shall use additive notation.

Lemma 5.2. For V < Z of finite index, Homp (T, Z/ V) = Hom(C#, Z/ V'), and
this set has [Z : 2Z + V'] elements.

Proof. A group homomorphism ¢:7T — Z/V is of P-modules if and only if
¢(—x) = p(x) forall x € T, thatis, ¢(2x) = Oforall x € T, or ¢(2T) = 0. This
implies the first equality. Next, note that

Hom(C£.Z/V) = Hom(cg, ((%V) N Z)/V),

whose size is [(%V) N Z : V]%. Thus, the second equality follows from the fol-
lowing calculation:

1
[(—V)ﬂZ:V]:[VﬂZZ:ZV]
’ vV :2v] (Z :27]
T Wivn2zl [V +22):27] (5-2)

=[Z:V +2Z]. ]
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Lemma 5.3. Let A < G be of finite index such that AN = G. Then the subgroup
B := AN N is normal of finite index in G and x,4p € (BN Z) + 2Z. If in ad-
dition A is normal, then also x%, . ,xg € B.

Conversely, given B < N of finite index and normal in G such that

Xa+b S (B n Z) +2Z,

the set {A<G: AN = G, ANN = B} has [N : BZ][Z : 2Z + (B N Z)] ele-

ments. If in addition x%, . ,xg € B, then every A in the latter set is normal in G.

Proof. A subgroup A < G such that AN = G must contain ¢z for some n € N.
Then (an)? € A. It is easy to check that (an)? = x 4 + 2z for some z € Z;
thus x,4p +2z€ BN Z, where B=ANN, or x,4p € (BNZ)+2Z. Note
that B is clearly normal, and if A is also normal, then [N, G] = (x?,...,x2) is
included in B by Lemma 2.11. This proves the first part of the lemma.

We now fix B < N of finite index and normal in G and assume that
Xgyp +2z€ BNZ forsomez € Z,

which will be fixed. Let {wq,...,ws} C (x1,...,Xxq4) and {z1,...,2:} C Z be
transversals to the cosets of BZ in N and to the cosets of B N Z in Z, respectively.
Then

{wizj:1<i<s, 1<j<t)
is a transversal to the cosets of B in N. A subgroup A < G such that AN = G
and ANN = B is of the form A = B U«aw;z; B for uniquely determined w;
and z;. Now A = B Uaw;z; B is asubgroup if and only if (ocw,zj)2 € B, thatis,
xa+bz € B, or x44p + 2z; € BN Z in additive notation. In turn, this is equiv-
alent to 2z; —2z € BN Z, that is, z; —z € ( (BN Z))N Z. Therefore, only
[( (BNZ))NZ: BN Z]of the z;’s are allowed. Since there is no restriction on
the w;’s, the number of possibilities for A4 is [N : BZ][( BNZ)YNZ:BNZ],
which is equal to

[N :BZ|[Z :2Z + (BN Z)]
by (5.2). If in addition [N, G] = (x?,...,x2) is included in B, then G/B is abel-
ian and hence A is normal. This completes the proof of the lemma. |

Lemma 5.4. Fix U < T and V < Z of finite index. Then
{B<G:(BZ)/Z=U BNZ=V}=[Z:V+2Z]%
If in addition 2T C U, then
{B<G:(BZ)/Z=U BNZ=V,x? .. .x2eBY=[Z:V+27]%,
where d = dimg, (U/2T).
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Proof. Let U be the pre-image of U in N. We are interested in the number of
P-invariant complements of Z/V in U/ V. One of them is clearly (U’ + V)/V,
where U’ is the projection of U onto (x1,...,xq), and hence, by Lemma 2.1, the
number of them is

|Homp(U/Z,Z/V)| = [Homp (U, Z/V)| = |Homp(T, Z/ V).

This, in turn, is equal to [Z : V + 2Z]% by Lemma 5.2. This proves the first part
of the lemma.

To show the second part, we use additive notation in U / V. There is no loss of
generality if we assume that U /2T is generated by the classes of x1,...,x4. Let
X; denote the class of x; modulo V,i =1, ..., a. We are interested in the number
of P-invariant complements of Z/V in U /V that contain 2X1,...,2X%,. One of
them is Bo/V, where Bo = (X1,...,X4,2X441,.-.,2Xq). To count how many
there are, we follow the proof of Lemma 2.1. A P-invariant complement is of the
form

By/V ={x—@(x) :x € Bo/V} = (X1 —@(X1),....Xg —p(Xg),
2X4+1 — 9(2%g41), - -+ 2Xa — ¢(2Xa))

for a uniquely determined
@ € Homp(Bo/V.Z/V) = Hom(Bo/(2Bo + V). Z/ V).

The last equality uses Lemma 5.2, which is possible since clearly Bo/V = T as
P-modules. Given ¢ as above, we have

2X; = 2x; —2¢(X;) € By/V fori =1,....d.

If it is also required that 2X441,...,2Xq € By/V, we need ¢(2%;) = 0 for all
i =d+1,...,a.Thus, the set of P-invariant complements of Z/V in U/ V that
contain 2X1, ..., 2X, is in a bijection with

Hom(Bo/(2Bo + (2xg41.-...2xa) + V). Z/ V),

that is, with

Hom(M,Z/V).

2(x1,...,Xq)

By Lemma 5.2, this sethas [Z : V 4+ 2Z ]d elements. This completes the proof of
the lemma. |
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We now show a combinatorial lemma. Let M be a finite-dimensional vector
space over I>. For a flag of subspaces B:0=Fo G F1 & -+ & F; = M, the
length / is denoted by /(). The set of all flags is denoted by ¥ (M ).

Lemma 5.5. Let M be a non-zero finite-dimensional vector space over IF,. Then

ooy =y =o. (5.3)

W<M BeF (M/W)

Let k > 0, and let M be a k-dimensional vector space over F5. Then

Y ) = nkal), (5.4)

BeF (M)

Proof. If M has positive dimension, then any flag of M of length [/ produces
a flag of length [ — 1 in M/ W for some 0 £ W < M, and conversely, any flag
of M/W of length [ — 1 extends to a flag of M of length /. This implies that
Y peron D' = =X wem Xpesaayw) (=D P, which yields (5.3).

We now prove (5.4) by induction on k. The case k = 0 is obvious, so we as-
sume that k > 0. Let Ak be the left-hand side and By the right-hand side. Note
that (5.3) implies that Zl —0 ( ) = 0. Here ( ) denotes the 2-binomial coef-
ficient, which expresses the number of i -dimensional subspaces in a k-dimensional
vector space over [F. On the other hand, if we replace ¢ by —1 in the 2-binomial
theorem

k N
(I +0)(1+26)--- (14251 = Zz(z)(i) /! (5.5)
i=0 2

we obtain that
O_Z( 1)2 () ZBk() .

Since A; = B; for i < k by the inductive hypothesis, and since (’,E)2 =1, it fol-
lows that Ay = By. This completes the induction. O

Lemma 5.6. Let Z be a free abelian group of rank b, and let Zy < Z1 be a sub-
group such that 2Z1 C Zg. Then

b d—1
Y. ZivT= (Has—i + 1)) (1‘[(1 —2“)),
k=0

V<Z; i=1
V+Zo=2Z .
where d = dimy, Z1/Zy. (5.6)
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Proof. By (5.3), the left-hand side of (5.6) becomes

iz Y > =)'®)

V<Z; Zo+V<W<Zy BeF (Z1/W)
= > Ywzwrworr (Y “n)'®).
ZosW<Z, VW BeF (Z1/W)

By (5.4), the latter becomes

b imZ{/W
[Tes—i+n( (2 - W] (—1ydmZ1/Wo (" ))

i=1 Zos<W<Z,

b d d o
= [e—i+ 1)(2 2_,s( ) (-1)]2(2)).
i=1 j=0 J/2
Finally, by using (5.5) with k = d and t = —275, the last expression becomes the
right-hand side of (5.6). O

Proposition 5.7. The partial zeta functions of G with respect to N are as follows:

=(s) = 1‘[;<s—z)x1‘[z(s—f+1>
i=1
b
—k)a+1-—s b —S —1=s
X(Zz(b k)(a+1 )(k—l) (1 =275 (1 —2k1 )),

k=1

b
(G5 = [[ €6 =i + 1) x Hz(s—j +1)
i=1
(Z 2(b k)(s— a)( ) (1_2—5‘)'_.(1_2/(—1—5‘))’
2

=(s) = 1‘[4(s—;+1)
b

770 (S @i (@ by i+1-5) (b~ 1
20—1 —S 2 — I —S
<2 (f) (2 )

X (1 —=275) . (1 = 2K7179)

Proof. The first equality below uses Lemma 5.3, the second one Lemma 5.4, and
the last one Lemma 5.6:
(&= (s) = > [N : B[N :BZ|[Z: (BN Z)+2Z]

B<G:BCN
Xa4+p€(BNZ)+2Z
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= > [T:UI[Z:V]P[Z:V+2Z[T:U)Z:V +2Z]

U<T,V<Z:
Xa+p€EV+2Z
= 5 — 1)( 3 Z:Z Y [z V]_s)
2Z4+(xq4p)<Z1<Z V<7,
b V+2Z=27,
a
— 1_[ C(S _ l) Z( Z 2(b—k)(a+1—s)
i =1 k=1 2Z+(x, <Z\1<Z . -
i [Z(:leJr]b:)2h_}( X Z [Z] : V] s)
V<Z,
V+2Z=2Z,

a b
=[[es—-Dx[]es—ji+D

i=1 j=1

(Z H(b-1-k)(a+1 s)(ll; ) (1-27)...(1 2k—1—S))‘
=1

The proofs of the expressions for ¢ g »J(s) and ¢ g »<(s) are similar. In the first case,
we do not have to add the condition x4,y € V +2Z or [T : U][Z : V +2Z] in
the second line. In the second case, we have to add the condition 27 < U and
replace [Z : V +2Z]% by [Z : V + 2Z]%™F2(U/T) jp the second line. o

5.2 Computing the zeta functions of /3, 4 and ¥5

Let G be any of the groups ¥3, ¥4 or ¥5. We set d = |G/ N |. Note that Z = (x)
and that E is the plane crystallographic group pd.

5.2.1 Local factors of ¢ g’ﬂ(s)
If p 4 d, then by (5.1), we have
EEr=(s) = S ()83, (5),
and according to [13, Sections 5.10, 5.13, 5.16], the latter is equal to
Cp(s —1)Lp(s =1, xq)ip(s) ifd € {3,4},
Cp(s =D Lp(s — 1, x3)¢p(s) ifd =6.

Assume now that p | d. We claim that if A < G, is open and satisfies AN, = G,
then Z, C A. Indeed, A contains ax" for some v € Z3 . Then

(axv)d dv‘H €A,

and hence x; € Asince dv; +1 € Z* This proves the claim. It follows now that
{G"’\(s) = é‘Ell)”\(s) According to [13 Sections 5.10, 5.13, 5.16], this series is
equal tolp(s —1)Lp(s —1, x4), whereq =d ifd € {3,4} andq =3ifd = 6.
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5.2.2 Local factors of ¢ g’<‘(s)

If p t d, then by (5.1), we have Zg;”“(s) = é‘p(s)é‘gﬁ“(s), and according to [13,
Sections 6.10, 6.13, 6.16], the latter is equal to ,(s)Ly (s, xg)p(s) it d € {3.4}

and to {p(s)Lp(s, x3)p(s)ifd = 6.
Assume now that p | d. By Corollary 3.3, we have

ng,<() - _1)3/|111|}§ Yeoal3 2133152 d,

where T C T;’ (Zp) is defined by the following equivalent conditions:

Y(xM)xTH ¥ (x2), % (x1) e (xt, x2,x13)

—t13—t12 12— (r+ 1Dtz _—t23 _trr—rtz3
= X, X3 JXy Xy € (xtr, xt2 xt3),

wherer = 1ifd =3,r =0ifd = 4,andr = —1 if d = 6. Therefore, by Lem-
ma 5.1, the conditions defining 7 are

(1) 122 | —t12 — 113,

t t
(2) 133 | 122005 + 115 — (r + D1,

(3) 122 | 123,
4) 133 | ;23123 + taa —riz3,
(5) 122 | —t33,

(6) 133 | ,;3t23

Note that (3) implies (6), and (4) can be written as

2
1 1 r
_2|C2)__2+1
oo \Il22 122
Assume first that d € {3, 4}. One easily checks that 72 —rT 4 1 = 0 mod p,
in Zp, has —1 as a unique solution modulo p, and there are no solutions in Z,

for T2 —rT 4+ 1 = 0 mod p?. Therefore, (4) splits the domain of integration T~
as a disjoint union 7¢ U 72 according to the cases

(4a) |t22]p = |t33|p and
(4b) |ptaalp = |t33]p and p | 22 + 1.

If we assume (4a), then (1) and (3) reduce (2) to 33 | t12 — (r + 1)t13, and
then (1) reduces (2) again to t33 | (r + 2)¢13. Note that  + 2 = p. The conditions
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deﬁning T4 are, therefore, 125 | —Il12 — 113,122 | ptis, 2 | 13 and |l22|p = |l33|p,
and the integral over 7 ¢ becomes

1 _ —
T ol el
_ Ep(s)

= 2252 dpe = Gp(s) (1 + P72, (29)),

I—=p 122|pt13

where in the first equality we integrated with respect to #1; and applied Proposi-
tion 3.6 with the pivots f13, 123, 33.

If we now assume (4b), then (3) and (5) are redundant, and since r + 2 = p,

we see that (2) can be written as

t
133 | (2 + 1)t12 + (— +1-— P)t13.
1)) 1))

Using (1) and the assumption that |33], = |pf22|p and p | l;g + 1, we can reduce
(2) to t33 | pt13, which is equivalent to 55 | £13. Thus, T b'is defined by the con-
ditions 775 | —112 — 113, I22 | 113, ptan I tr3 + tp2 and |pt22|p = |l33|p, and the
integral over 7% becomes

1 _ _
(1_—_1)3/ |f11|p oo =2 p* " dp

0=, )2 1)2/ 157 a2 27 P dp = P10 ()85 (29),

where in the first equality we used Proposition 3.6 with the pivots t12, 113, 123, 133.
We conclude that

C"”’“(s) =5 (1+ p 725 (29) + p' 05 (29))
=) 1+ (p—1p~*) ford €{3.4}and p | d.

Assume now that d = 6 (and hence r = —1). If p = 3, then the analysis is
the same as above except that the condition ;5 | 3f13 in the description of 7¢
must be replaced by 25 | #13 since this time r + 2 = 1, and condition (4b) is now
|3t22]3 = |t33|3 and 3 | tzz — 1 since 1 € Z3 is the unique solution modulo 3 of
T2 4+ T +1=0mod 3. Thus, 7¢ is defined by t22 | —t12 — 113, t22 | t13, 122 | t23
and |t22]3 = |t33]3, and the integral over 74 becomes

1 _ _
m/ﬂlml% 1|122|§S Sdﬂ
1 _ _
= m/ﬁnl?, Nea 357 dp = £3(5)83(2s),

where in the first equality we used Proposition 3.6 with the pivots t15, t13, 123, 133.
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If we assume (4b), then (3) and (6) are redundant, and (2) can be written as
23

o3 | (24 1) + 2.
122 122

Since t;z is a unit, we can use the prev10us condition and fp | 133 to reduce (1) to
122 | t12. Thus, the conditions defining 7 b are 15y | t12, 3122 | (t23 + Do + t13,
3t33 | ta3 — t33 and |3122]3 = |t33]3, and the integral over 7 b becomes

1 - —_ —
g Jy, s B9

1 _ e _
= ———— [ tul§ 23137 d = 31045 (5) 83 (25).
(1—3-1)

where in the first equality we used Proposition 3.6 with the pivots t12, 123, 113, 133.
We conclude that

§N3’ () = £3(5)83(25) + 37°83(5)83(29) = &3(5)°
Assume finally that p = 2. Since there are no solutions in Z, for
T2+ T +1=0mod2,
(4) is equivalent to |#33]2 = |t22]|2 and (2) is reduced to tp5 | t12. Thus, the con-

ditions defining T are t22 | —t12 — 113, 122 | 12, t22 | t23 and [t22]2 = [t33]2, and
the integral becomes

1
No,<(qy — t1 157 4, |2575 g
é‘ (S) (1 _2_1)3 [/‘| 11|2 | 22|2 /L
1 —_ —
= a-22 /|111|§ Yo 357 dp = £a(5)82(25),

where in the first equality we used Proposition 3.6 with the pivots t13, t12, £23, 133.

5.2.3 Local factors of ¢ g’<‘(s)
If p t d, then

[Np, Gp] = (x2 X3, X, x3 ;T = (xz_lx3,x3_’_2) = (x3, x3),

where the last equality holds since r +2 € Z7. As N, /(x2.X3) = Z,, we have
QQG”’Q(S) = {»(s) by Proposition 2.12.
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Assume now that p | d. Arguing as in the computation of gz”g(s) (with p | d),
we find that

L&r(s) = CEP T (),

and according to the results of [13, Sections 6.10, 6.13 and 6.16], this is equal to
1+ p-pSifd =3or4,andto 1ifd = 6.

5.2.4 Local factors of {"(s) for d = 4and H = (a?, x1,x2,x3)

Note that H = %. If p # 2, then
[Np, Hp] = (x3.,x3) = (x2,x2),

and hence N,/ (x2.x2) = Z,. Therefore, by Proposition 2.12, {g;N(S) = {p(s).
Assume that p = 2. An open subgroup A <1 G, such that AN, = H, must
include Z,. Indeed, A contains a?x" for some v € Zg, and hence

(O{ZXV)Z — x%vl-f—l c A,

or x1 € A since 2¢; + 1 € Z3. It follows that {gzz’<‘(s) = {%/22’4(5"), and this
isequalto 1 +2-27% + 2 - 475 according to the results of [13, Section 6.10].

5.2.5 Local factors ongN(s) ford = 6and H = (a3, x1, x2,x3)

Note that H = %,. Arguing as in Section 5.2.4, we get {gﬁ’<(s) ={p(s)if p # 2,
and §g122=<‘(s) = {1{;{22/22’4@), which is equal to 1 447 according to the results
of [13, Section 6.16].

5.2.6 Local factors of Cg’<‘(s) ford = 6and K = (a2, x1,x2,x3)

Note that K = ¢3. Arguing as in the case d = 3 and K = G, we obtain that
é‘gs"(s) = {p(s) if p # 3, and that Cg;“(s) = Zf;/z3’<’(s), which is equal to
1 4+ 375 according to the results of [13, Section 6.16].

5.3 Computing the zeta functions of G = ¥4

Note that Z = 0 and that N = (x1) & (x2) & (x3) is a decomposition of N into
a direct sum of irreducible Z[ P]-modules that are pairwise non-isomorphic.
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5.3.1 Local factors of § 2=(s)

If p # 2, then by using the above decomposition of N and the results of [6, Sec-
tion 2], we obtain that

£8r=(s) = {p(s — DEps — DEp(s — 1).

We now compute ¢ Gz’\(s) An open subgroup A < G, such that AN, = G,
must contain ax", gx" and afx" for some u,v,w € Zg, whence A contains the
squares of these elements, which are x7%!1 1!, x2v2+1 and x2w3+1_ Since

2ur + 1,2v + 1, 2wz + 1 € Z;,

it follows that 4 includes xp, x3, x3 and hence also N,. This implies that A = G».
We conclude that ¢ 822,S(s) =1.

5.3.2 Local factors of ¢ g =(s)

If p # 2, arguing as in the calculation of é'G;)”\(S) we find that {NP"(S) ={p(s)3.
Assume now that p = 2. By Corollary 3.3, we have

(N2=(s) = 1)3 / a5 a2 152 el e,
where T C T+ (Z5) is defined by the following equivalent conditions:
“xTHL (), 4 (x). P (et xt P (x)x T P € (xR x6)

— x2_2t12x3_2t13, X—tz’ X_t3,x%t12, x3_2t23, x B e m
— x3_2113’ x%tlz’ x3—2t23 c m

According to Lemma 5.1, these conditions are equivalent to

(1) 122 | 2112,

(2) 133 | =% 203,

(3) 133 | 2113,

(4) 133 | 223.

We express T as a disjoint union 7% U 72 according to the cases

(4a) t33 | >3 and

(4b) [t33]2 = [2123]2.
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Tqa

In the first case, (2) is redundant, and hence 7
122 | 2t12, 133 | 2113, 33 | t23. Thus,

is defined by the conditions

1 _ _ _
m/ 1113 1|122|§ 2|l‘33|§ 3dl/~
_ Ta

= 0 ol s = 2601+ 21 600,

1332413

Assume now (4b). Note that (2) becomes equivalent to 55 | t12, whence (1) is
redundant. Note also that (3) is equivalent to #,3 | #13. Therefore, the conditions
defining 70 are 1y, | t12, t23 | t13 and |t33]2 = |2%23]2, and the integral over g
becomes

1 _ o3 _
m/ 11115 1|122|§ 223 |t23l5 3dﬂ
§2(S)21 - _
a—2717 22157 23157 dp = 21080 (s)°,

where in the second equality we used Proposition 3.6 with the pivots t12, 113, #33.
‘We conclude that

EN2(s) = L) ((1 + 2175 8(5)? + 215 8a(5)?)
= (1+4-275+4750(s)%.

5.3.3 Local factors of ¢ g’<‘(s)

If p # 2, then

[Np.Gpl = (x}.x3.x3) = (x1.x2,x3),

whence §G§’<(s) = 1 by Proposition 2.12. If p = 2, then §G2’<‘(s) = 1 since
§G2’\(s) = 1, as shown in Section 5.3.1.

5.3.4 Local factors of §g’<(s) for H = (o, x1,X2,Xx3)

Note that H =~ %,. Arguing as in Section 5.2.4, we find that

() = L) and gff(o) = ¢/ s).

One easily checks that G/(x;) = p2gg; therefore, the latter series is equal to
1 + 227 according to the results of [13, Section 6.7].
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5.3.5 Calculation of I;g’<‘(s) and I;é“(s) for K = (B,x1,x2,x3)
and L = (af, x1,x2,x3)

It is easy to check that («, 8, x1, x2, x3) — (B, a8, x2, X3, xl_l) defines an auto-
morphism of G that sends H onto K, and K onto L. Thus,

&) = 667(9) = ¢80,

This series was computed in in Section 5.3.4.

5.4 Computing the zeta functions of G = %,

We call y; = x3, y» = x1 and y3 = x1x2 so that now the relations are &2 = V2,
€y3 = yzand€y; = y!y3. We will use this presentation. Note that Z = (2, y3),
and hence T' =~ Z.

5.4.1 Local factors of ¢ g’s(s)

If p # 2, then by (5.1), we have Qggﬁs(S) = {ZD ()Cp(s — 1) = Ep(s)Ep(s — 12
Assume now that p = 2. By Proposition 3.5 with H = G, we have

Go,
{6,

< 1 _ _ _

=(s) = m /g~|t11|§ %|t20]5 3|l‘33|§ Ydp,

where T~ C T;’ (Z5) x Zg is the set of pairs (t, v) satisfying the following equiva-
lent conditions:

Py E(y). F(yR). (ey")? € (yh, yt2, yB)

2t12 L E11+2813 | 2u+1

2
= y3"y; V5 v3tvL ¢ (

e yh.ye.ys).
According to Lemma 5.1, these conditions are equivalent to

(1) 122 | 2112,

(2) 133 | =22055 + 111 + 2013,

(3) 122 | 2v2 + 1,

201 +1
4) 133 | — vtlzj 123 + 2v3 + vy.

Note that (3) is equivalent to t55 € Z%, whence (1) is redundant. We now express
T as a disjoint union 7% U T according to the cases

(a) 133 € Z3 and

(b) t33 € 2Z>.
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Note that 7¢ is defined by #22, 33 € Z;, and hence

1 — _— —
m/ﬂlluli 2|53 1335 dp = Ca(s — 1).

In case (b), (2) can be written as ”3 | —gjt + l“ + t13, and it implies that

t11 € 27Z,. By using Proposition 3.6 w1th the pivots t13, v1, the integral over T 7b
becomes

1 _ _
m/{ﬂjfug 2|t33|§ 4dﬂ
1

=T ) ImBT s e = 2R - D,
11,133 2
We conclude that
£825(s) = Lo(s — (1 + 23720 (s — 1))
=L@ —1)?(1-27" +8-479).

5.4.2 Local factors of §N »9(s)
If p # 2, then by (5.1), we have Q'NP“(S) = §§p ()p(s) = Ep(8)2p(s — 1).
Assume now that p = 2. By Corollary 3.3, we have

N>, 1 -3
{627 (s) = 1)3/|111|§ 122152133157 dpe,
where

T ={teTy (Zz):*(y"y".°(y2). °(y") € (yh.y2.¥")}
= {te T§ (Za) : y3"2y3 172103 € (yh yto yb)}.
By Lemma 5.1, the conditions defining J are equivalent to
(1) 122 | 2112,
(2) 133 | —2”2123 + 111 + 2113.
We can express 7 as a disjoint union T = 7% U 7 according to the cases
(la) |t22]2 = |212]2 and

(1b) 22 | t12.
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In the first case, the coefficient of f3 in (2) is a unit, so the integral over T¢

becomes
22 1 2 3
a2y /Ta|l11|§ t12]3 “lta3ly " dp

227 —15—2 -1 -2
= m /|f11|§ 27 t1aly tasly T dp
- 2

=270(s)"5a(s — 1),

where in the first equality we used Proposition 3.6 with the pivots #22, #23.
Assume now (1b). We express 72 as a disjoint union 72 = 787 U 75447 a¢-

cording to the sub-cases (i) #33 € Z5 and (ii) f33 € 2Z,. Note that Thi g just
defined by #5 | 112 and t33 € Z3, so the integral over 75 becomes

1 — —
T s ks
_ -
1 — —
- (1—2-1)2 /|l11|§ Neawo S dp = 0a(s)%.

In sub-case (ii), condition (2) implies that t;; € 2Z,, whence 7b:i1 ig defined by
the conditions

133 12 551
2t11, 2133, tltiz and = | ——ti3 + — +113.
2 [5%) 2

By using Proposition 3.6 with the pivot 713, the integral over Tb11 becomes

1 -1 ) -3
d—21)p /b”|f11|§ t22]5 “lt33l5 " du
_ .

1
T2 ez,
=22"20(5) (s — 1).
We conclude that
LO7(s) = L) (2750 — 1) + 1 + 227X 5p(s — 1))
=5()20(s — 1)1 —27° +4-475).

e |5 el 2033152 dp

5.4.3 Calculation of I;g’<‘(s)
Note that [N, G] = y;2y3 and G/[N, G] = Z?. By Proposition 2.12, we have

L& (s) = Cg//[[ll\\,”g]]’q(s) (with respect to N/[N, G]).
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Applying Lemma 5.6 with Z; = G/[N, G] and Zo = N/[N, G], we obtain that
£§(s) = ()t (s — (1 —277).

5.5 Computing the zeta functions of G = %3

Note that Z = (x1). One can easily check that £ = G/Z is the plane crystallo-
graphic group p2mg.

5.5.1 Local factors of ¢ g’ﬂ(s)
If p # 2, then by (5.1), we have

£8r=(s) = Lp($)TE= ().

which is equal to £, ()¢, (s — 1) according to the results of [13, Section 5.6].

We now compute g G2=\(s) An open subgroup A <1 Gz such that AN, = G,
must contain ox" for some v € ZZ, and hence it contains (ax")? = xz”l+1 Since
2v1 + 1 € Z%, we deduce that Z, C A. Therefore, §G2’<(s) = §§2’\(s) which is
equal to (1 + 217%)¢5(s — 1) according to [13, Sectlon 5.6].

5.5.2 Local factors of { g’<‘(s)
If p # 2, then by (5.1), we have

L= (s) = Lp()EE 7 (s),

which is equal to ,(s)3 according to [13, Section 6.6].
Assume now that p = 2. By Corollary 3.3,

1 _ _
§N2’<'(S) = ﬁ/ e 15 221521133152 d .

where T C T3(Z5) is defined by the following equivalent conditions:
a(xtl )X—t1 , Ot(xtz)’ o (Xt3), S(th )X—t1 , 8(Xt2)X_t2, E(Xt3) c (th , th’ Xt3>
— x%tlzxglm,x_tz, X—t3’x§tl3’ x§t23,x_t3 = (th,th, Xt3)
— x%tlz’xgtlz.’x%tzs e (th,xtz,xt3).

This is the same integral that showed up in Section 5.3.2 when p = 2, so the result
is (144-275 +475)85(s)3.
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5.5.3 Local factors of ¢ g’<‘(s)
If p # 2, then

[Np»Gp] = (xg»)%) = (x2,x3),

whence N, /[Np, Gp] = Zp. Thus, by Proposition 2.12, ZGP’<‘(S) = {p(s).
Assume now that p = 2 By the same argument used in the calculation of
Zgj’s(s) in Section 5.5.1, we have

£&2=(s) = LE27(s),

which is equal to 1 4 4 - 275 according to [13, Section 6.6].

5.5.4 Local factors of CH’<‘(S) for H = (o, x1,X2,X3)

Note that H = %,. Arguing as in Section 5.2.4, we find that {5 HP’<‘(s) if p #2,
and that §H2’<’(s) = §H2/ZZ’<‘(S) The latter series is equal to 1 Lot-s according
to [13, Sectlon 6.6].

5.5.5 Local factors of §g’<(s) for K = (e, x1,x2,x3)

Note that K = %,. If p # 2, then by (5.1), we have

L6(s) = 83, () Prs),

which is equal to £, (s){p(s) according to [13, Section 6.6].

Assume that p = 2. We claim that if A < G» is open and satisfies AN, = K>,
then it must include (x5). Indeed, A includes [K», K»] = (x2) by Lemma 2.11. It
also contains ¢x’ for some v € Z%, whence it contains [, ex"] = x%”“x%”? It
follows that x%”TH € A and hence x, € A. Therefore,

Indeed, o and & commute in G, /(x,) and their actions on N»/(x») are the same;
thus a normal subgroup of K5/ @ is already normal in G5/ @ Finally, observe
that K /(x,) is isomorphic to the plane crystallographic group pm. According to
the results of [13, Section 6.3], we obtain that

(827(s) = (145275 +2-475)05(s).
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5.5.6 Local factors of §é’<‘(s) for L = (e, x1,x2,x3)

Note that L = %,. If p # 2, then by (5.1), we have
L& (5) = Lp()Er #r2(s).

This is equal to £, (s),(s) according to the results of [13, Section 6.6].
Assume now that p = 2. By Proposition 3.5 (with H = L), we have

1 _ _ _
£627(s) = T—l)3/ 11152022153 lessl5 ™ s,

(1

where T C T+ (Zp) x Z3 is the set of pairs (t, v) satisfying the following equiva-
lent condltlons

o (th )X—tl , o (th), o (Xt3), S(th )X—tl , S(th)x—tz ; 6‘(Xt3)
(saxv)z, [ea, x1], [ea, x2], [ea, x3], [, eax’] € (xt1, xt2, x13),
—2t12x3—2l13 X—t2 , X—t3 , X3_2t13 , x3—2t23 , X_t3 ,
2U1 +1 %Ug.’ x%, x§v2+1x3—2v3 c (th xt2, Xt3>,

2 —2v3

2U1+1 v’% xz,xe3 c <Xt1,Xt2,Xt3).

= x%t”,x%m,xl
By Lemma 5.1, these conditions are equivalent to
(1) 133 | 2113,
(2) 133 | 2123,
3) i1 | 2v1 + 1,

) 122 | —2”,;?%12,

(5) 133 | 28 Lt150p5 — 2215 4 v,
(6) 122 | 2,

(1) 133 | 5123,

() t22 ] 1,

) 133 | —,22123 — 2v3.

Note that (3) and (8) are equivalent to t11,122 € Z3, and hence (4) and (6) are
redundant. Notice also that (2) 1mphes (7). To sum up, T is defined by (1), (2),
(5), (9) and 111, 122 € Z3. We express T as a disjoint union 7¢ U T Tb according to
the cases

(2a) 133 | 123 and
(2b) [t33]2 = [2t23]2.
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If we assume (2a), then (9) can be replaced by 733 | 2v3, and then (5) can be
replaced by t33 | 113, which makes (1) redundant. Thus, the conditions defining
T4 are ty1,t22 € Z3, 133 | 113, 133 | 123 and #33 | 2v3, and the integral over T¢
becomes

1 _ 1 _ _
- a - 133(2v3

If we assume (2b), then (9) implies 2 | f23. Note also that (1) and (9) can be
replaced by

(1) 123 | 13 and
9") 123 | =52 —vs,
and the latter implies that #,3 | 2v3. This enables us to replace (5) by

21}1-1—1 _2ui+1lti3 _ 2v3
(5) 2| tntzz 11 123 123"

The conditions deﬁning 7 are, therefore, 111, 12y € Z%,2 | 123, |t33]2 = |2t23]2,
(1), (5') and (9), and the integral over 72 becomes

1 / —4 1 4— —1,-3
T _[ 25115127 dpy
(1=2713 Jg» 2 1—=271 Jois 2

= 2172505 (s),

where in the first equality we first applied Proposition 3.6 with the pivots #11, f22,

113, 12, 133, V3.
Therefore,

(627 (s) = 14 2"500() +2"720(s) = L()(1 + 275 +2-479).

5.6 Computing the zeta functions of G = %,

Note that Z = (x;). One can easily check that £ = G/Z is the plane crystallo-
graphic group p2gg.

5.6.1 Local factors of § 2=(s)

If p # 2, then by (5.1), we have {gp’\(s) = QP(S)ZEP’\(S) and according to the
results of [13, Section 5.7], the latter is equal to ¢, (s){l, (s — 1)2.

Assume that p = 2. An open subgroup A < G, such that AN, = G5 contains
ax’ for some v € Zg, whence (ax")? = x%”““ € A. Since 2v1 + 1 € Z%, we
conclude that Z, € A. It follows that ¢ gzz’g(s) =¢ %’s(s), which is 1 according
to [13, Section 5.7].
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5.6.2 Calculus of ¢ g’<‘(s)

Note that N, as Z[P]-module, is isomorphic to the analogue module in the case
G = %3. Therefore, {g’<(s) = ¢(5)3(1 4+ 4-275 4 475) according to the result
of Section 5.5.2.

5.6.3 Local factors of ¢ g’q(s)

If p # 2, then

[NpaGp] <X2,X3> (x25x3>a
whence N, /[Np, Gp] = Zp. Thus, by Proposition 2.12, §GP’<‘(s) = {p(s).
Assume now that p = 2. If A < G5 is open and sat1sﬁes AN> = Gy, then A
contains ox" and ex" for some v, w € Zg, whence it contains both
(x")? = xf"'*1 and  (BxV)? = 2w1 ;wZ—H
Since 2vy + 1,2wo + 1 € Z%, we conclude that x1, xo € A. In addition, we have

[G2,G2] € Aby Lemma 2.11; in particular x,x3 € A. It follows that x1,x5,x3 € A
and hence A = G5. Thus, §G2’<‘(s) =1

5.6.4 The local factors of I;g’q(s) for H = (e, x1,x2,x3)
Note that H =~ %,. Arguing as in Section 5.2.4, we find that
CEr=(s) = ) and LE27(s) = (52 727(s).
The latter series is equal to 1 + 2 - 275 according to the results of [13, Section 6.7].
5.6.5 Local factors of Cg“‘(s) for K = (e,x1,x2,x3)
Note that K = %,. If p # 2, then by (5.1), we have

LE2 = (s) = Lp()LEr PP (s),

which is equal to £, (s){p(s) according to the results of [13, Section 6.7].
Assume now that p = 2. By Proposition 3.5 with H = K, we have

(2 (s) = 1)3/|t11| ?|ea2l5 315 dp,
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where T~ C T;’ (Z5) x Zg is the set of pairs (t, v) satisfying the following equiva-
lent conditions:

(X(th)x—tl , Ot(xtz)’ Ot(xtg.)’ S(th)x—tl , E(th)x—tz’ 8(Xt3)
(ex%)?, [e, x1]. [e, x2]. [€, x3], [, ex"] € (xt1, xt2, x13)
— x2—2112x3—2t13’ X—tz’ X_t3, x3—2113’ x3—2123’ X—ts’

= 32 xfayt X3 X U2x31 € (xt, xt2, x13).

By Lemma 5.1, these conditions are equivalent to
(1) 122 | 2112,

(2) 133 | 32123,

(3) |2vl,
4) 12 | — ,11
(5) 133 | 32 (H203 —113) — 1,
(6) 1332,

(7) 122 | =1 =202,

1+2vp
(8) t33 Try 1z — 1.

=L,

Note that (7) is equivalent to tp, € Z%, whence (1) and (4) are redundant and (6)
implies (2). We express T as a disjoint union 7¢ U 72 according to the cases
(3a) t11 | v1 and

(3b) r11]2 = [2v1]2.

In case (3a), (6) reduces (5) to the condition 33 | —1, that is, #33 € Z3; hence
¢ is defined by 11 | v1, t22, 133 € Z5. The integral over 7¢ becomes

1 _ 1 _
o = [l e = g0

We now assume (3b). Note that Tb is defined by |t11]2 = |2v1]2, 122 € Z3,(5),
(6) and (8), and the integral over 7 b becomes

1 _ _
T_1)3/Tb|2vl|§ 2|l‘33|i 4du

(1
1 _ o _
— 22 s| |i 22 2|[33|§ 2 /
(1 ) |2
133

=1+ 2-2_S)2_S§2(S),
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where in the second equality we applied Proposition 3.6 with the pivots #11, 722,

113, I23.
‘We conclude that

(527 (s) = Lals) + (1 + 276D (s) = (14275 +2-475)8a(5).

5.6.6 Local factors of Cé“(s) for L = (e, x1,x2,x3)

Note that L = %,. If p # 2, then by (5.1), we have

L6 =(s) = Lp()gn 27 =(s),

which is equal to £, (s){p(s) according to the results of [13, Section 6.7].

Assume now that p = 2. We claim that any A <1 G, that is open and satisfies
AN, = L, must include (x1x2, x2x3,x3). Indeed, A includes [G2, No] = (x3)
by Lemma 2.11. It also contains exx" for some v € Zg, whence it contains

2u1+1 2v3+1 20p—1 _—2v3—1
1 X3 X3 .

(cax")? = x and [o, cax’] = x5

We deduce that x%”‘ ‘Hx%”rl € A, and using the fact that x% € A, we obtain that
(x1x2)2V1F1 € A. It follows that x;x, € A since 2v; + 1 is a unit. With a similar
argument, we find that x,x3 € A. This proves the claim. Since [¢, o] = xx3, the
quotient group

G = Gz/(X1X2,xZX3,x§)

is abelian, and therefore, Eég"(s) = {L//’s(s), where L is the image of L, at G',
and the partial zeta function on the right is computed with respect to N, the image
of Ny at G'. Note that L’ = C, x C, and N’ has index 2. Thus,

ths@s)y=1+42-275

6 Computing the zeta functions of the 3-dimensional AB-groups

In this final section, we prove the formulae presented in Section 4.2. We always
denote by G the AB-group under consideration and by N the Fitting subgroup
(which is generated by x7, x2, x3). We keep the notation introduced at the begin-
ning of Section 2. In particular,

Z=Z(N), T=N/Z, E=G/Z, P =G/N.
The formulae for the zeta functions of

G =N = (x1,x2,x3:[x2,X1] = x§, [x1.x3] = [x2,x3] = 1),
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where k > 0, are already computed; see Tables 1 and 2 with F = C;. We fo-
cus here on the cases G # N.If N < H < G is an intermediate subgroup, then
H is also a 3-dimensional AB-group with Fitting subgroup N. Therefore, in or-
der to compute (g (s), it will be enough to calculate { g »=(s) since the other partial
zeta functions will have been computed in previous calculations. The isomorphism
classes of the intermediate subgroups N & H & G (if there are any) will be iden-
tified when computing the partial zeta functions ¢ g (s).

When dealing with local factors at primes p | [G : N], we will sometimes use
the method of p-adic integration described in Section 3; specifically Corollary 3.3
and Proposition 3.5. The following lemma collects some information about the
T-group N.

Lemma 6.1. Let N = (x1,x2, X3 : [x2,X1] = x’3‘, [x1,x3] = [x2,x3] = 1), with
k=[Z :[N,N]] > 0.

(1) Fora,b ¢ Zg andr € Zp,

2. Xb — xtlll+b1x;lz+b2x§13+b3+kb1a2’
ayr _ ray rax raz+(5)kaiaz
(x")" =x1""x, °x;5 ( ) ,

[x?, Xb] _ x’;(blaz—albz)'

(2) Forte Tg‘ (Zp), the following holds.
(a) te Mjsvp if and only if t33 | kt11t22.
(b) te M;}p if and only if t33 | kt11, t33 | kt12 and t33 | ktzs.

(3) Fixte vap. Given a = (a1,az,as3) € Z3, x* € (xt1,xt2,x13) if and only if
all of the following hold.

(@) t11 | ar.

(b) 122 | —,al—llllz + as.

(c) ¢ |—Ml‘ — 41y _lka_la_l_l)t o +a
33 I 3=t — gk (5] 1112 3.

In the case that t € N 1\7;’ (c) can be replaced by

—Lty +az ap
— 13— t—l13 + as.
11

Proof. The verification of (1) is straightforward, and (2) is a special case of (3.4).
As for (3), given that {x",x" x'} is a good basis for (x!1,x%,x!3), the rela-
tion x* € (xt1,xt2, x83) holds if and only if x* = (x'1)*! (x12)*2(x!3)43 for some
A1,A2,A3 € Zp. Using (1), we find that

(th))tl (th)lz (th)ls — xillllxglzll-l-lzzlzxglsll+lz3lz+k(}“21)t11t12+133/13.
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The first part of (3) is now clear. In the case thatt € M;’,p (and hence (x!1, xt2, xt3)
is normal), (2) implies that ¢33 | k¢11. Therefore, the term

1 al aq 4l
—k— | — =1 )tiitiz = | " ktiqt
2 (lll ) 11712 (2 11712

can be deleted from (c). This completes the proof. o

Finally, Table 3 collects the results of some p-adic integrals that will appear in
our calculations. The verification of these formulae is straightforward. The nota-
tion is as follows: k denotes an integer; the letters s, # and u are complex variables;
integration takes place over Z” (n = 2,3 or 4), where i denotes the Haar additive
measure normalized so that ,u(Z ) =1;and 0, denotes 7

6.1 Computing the zeta functions of G = Gps 21,k € N
6.1.1 Local factors of § 7*=(s)

If p # 2, then §gi’<(s) was given in Table 1 (the case ' = C, and F C SL(T)).

Assume that p = 2. If A < G5 is open and satisfies AN, = G5, then A contains
ax’ for some v € Z,, whence (ozx")2 = x§”3+1 € A. Since 2v3 + 1 € Z;, we
obtain that Z, C A. This implies that fgg’s(s) = Q%’S(s), which in turn is equal
to {2(s — 1){2(s — 2) according to the results of [13, Section 5.2].

6.1.2 Local factors of ¢ g’<‘(s)

If p # 2, then {g{‘:’s(s) was given in Table 2 (the case F = C» and F C SL(T)).

Assume now that p = 2. We show that the assumptions of Proposition 2.15 are
satisfied. Firstly, since the class of o at P = G»/N acts on T as —idr,, any
finite-index subgroup of 73 is a Z,[P]-submodule, and they are all isomorphic.
Fix U < T, and V < Z, of finite index such that [U, T>] € V. Let U be the pre-
image of U in N,. Note that U has a good basis of the form {x!11x412, x22 x3},
and that V = (x 333) for some non-zero f33. It is easy to check that the condmon
[U, T3] C V is translated into t33 | 2kt11, 133 | 2kt12, t33 | 2k t22. Therefore, by
Lemma 6.1 (2), {x{"1x%12, x222 x%33} represents a good basis for a normal sub-
group B < N,. Clearly, (BZ,)/Z = U and B N Z, = V. We now show that B
is normal in G». Indeed,

ac tin iy — Thi o —hi 11 to\—1 .. —2kt11t12
(x1''x32) = x; M, P = (Xt T € B,

*(xf2) =x,"? € B.
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We are now in position to apply Proposition 2.15. For computing [T : X(V)],
we use Lemma 2.16, which tells us that
if [Z, 1 V] < 2v2(K)
{|2k|§[z2 (V]2 AV < (x2K).
For the computation of [Homg,[p)(T2, Z2/ V)|, we use Lemma 5.2, which tells us

that [Homg,[p1(T2, Z2/V)| = 1if V = Z; and is 22 otherwise. Thus, by Propo-
sition 2.15 and the results of [13, Section 6.2],

[T2: X(V)] =

v (2k)—1

§N2’<](S) _ é.Tz, (S)(l + Z 2—iS22

i=1
+ Y 2k (2 V(2 V]_s22)
V<2kZ,

= L@t - D142

ﬁ + |2k|s22§2(25)>-

6.1.3 Local factors of Cg“(s)
If p # 2, then

)/3(GpaNp) <x17x2’xgk> (xlvx27xl3€>a
whence N, /y3(Gp, Np) = Z,/kZp. Thus, by Proposition 2.12,

1 —p~¥|kl;
é'gp( ) = Tsp

Assume now that p = 2. As shown in the calculation of ¢ GZ’\(S) any A < G»
that is open and satisfies AN, = G, must include Z5. Thus,

CE27(s) = CE2T(s),
whichisequalto 1 + 6275 + 4 - 475 according to [13, Section 6.2].

6.2 Computing the zeta functions of G = Gpg 21
6.2.1 Local factors of ¢ G’s(s)

If p # 2, then {GP’ (s) was given in Table 1 (the case F' = Dy and F ¢ SL(T)).
Assume now that p = 2. By Proposition 3.5 and Lemma 6.1 (2), we have

< 1 - _ _
£62<(s) = m/?”lﬂi 2leaal57 |33 1574 dp,
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where T C T;‘ (Z2) x Z3 is the set of pairs (t, v) satisfying 133 | 2k 111122 and the
following equivalent conditions:
P (), [Bx. x2] PY (x9), (Bx") € (xf x2 xE)
x%tlzx?’—ktl 1(142v2)+2kv t12—2k 1t t12’

x;Z(t23+kt22Ul)’X§U2+1x§vl(2v2+l) e (xtr, xt2, xt3).

By Lemma 6.1 (3), the conditions defining 7 are equivalent to
(1) 133 | 2k 111122,

(2) 122 | 2112,

(3) 133 | 22(~t23 + kvitzz) — ki1 (1 + 2v2) — 2kt11t12,
(4) 133 | 2(—t23 + ki2v1),

(5) 122 | 2v2 + 1,

(6) 133 | 21},'22“(—&3 + kvitzz).

Note that (5) is equivalent to t55 € Z3, so (2) is redundant. Next, (6) implies (4),
and (6) and (1) reduce (3) to the simpler condition #33 | k#11. This makes (1) re-
dundant. To sum up, the conditions defining 7 are

trp € L5, t33|ktin, 33| —t23 + kvitan.

Thus,
(G270) = gy [mil3 P lessly
G2 - (1 1)3 112 3312 //L
! / -2 -3
[ty "33l " dp = Ap k(s — 2,5 — 1),
(1 - 1)2 tazlkt1n 2 z
where we used Proposition 3.6 with the pivots #23, 123.

6.2.2 Local factors of ¢ g’q(s)

If p # 2, then §g£’<(s) was given in Table 2 (the case F = Dj and F ¢ SL(T)).
Assume now that p = 2. By Corollary 3.3 and Lemma 6.1 (2),

1
No,< _ s—1 s—2 s—3
$ga " (s) = —(1_2_1)3/T|111|2 1223 " |t33l3 " d e,
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where 7 C T3 (Z,) is defined by 133 | 2kt11, t33 | 2kt12, t33 | 2k t22 and the fol-
lowing equivalent conditions:

Xt . ﬂ(xtl)’ [ﬁ,xt2],xt3 . ﬂ(xts) e (xtr,xt, x3)

— xgllzx;ktu—lklullz,xgtzs e (xt1,xt2 xB3).

Therefore, by Lemma 6.1 (3), the conditions defining J are equivalent to
(1) 133 | 2kt11,
(2) 133 | 2k 112,
(3) 133 | 2k 122,
(4) 122 | 2112,
(5) 133 | 2,;—122123 + k11,
(6) 133 | 2123.

We express 7 as a disjoint union 744 U 7%? U 72 according to the following
three cases:

(la,4a) 133 | kt11 and 122 | 112,
(la,4b) 133 | kt11 and |22 = [2t12]2,
(Ib)  |t33]2 = [2kt11]2.

In the first case, conditions (2) and (5) are redundant, and hence the conditions
deﬁning T%4 are tz3 | kt11, t33 | 2ktys, tho | t12 and 133 | 2t>3, and the integral
over 7 %% becomes

1
t s—1 ¢ S_2l‘ s—3d
=213 /{;~asa| 11la t22l3 a3l dp
1 s—1 s—1 s—3
= (=2 1) el [ty |22l 133l die = Ep g (s. 5.5 — 2).
- 133|2k 22
133]2123

In case (la, 4b), condition (5) can be replaced by 733 | 23, and hence the con-
ditions deﬁning Ta’b are 133 | kt11, tas | 2kti1o, |122|2 = |2112|2, 133 | t23. The
integral over 7% becomes

1
¢ s—1 2t s—2 ¢ s—3d
a3 fw.hl 1l 12012l "33l dp
2—S

B m /t33|kt11 Ity lt2ly |ta3l3 " dp
133]2kt12

=2""Dy k(5,55 — 1),

where in the second equality we used Proposition 3.6 with the pivots 7,3, 2.
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We now assume (1b). Since in this case 733  kt11, conditions (5) and (6) im-
ply that |f22]2 = |2£12]2. This, (1b) and (5) imply that |t23]|2 = |kt11]2. It is now
easy to see that 7 is defined by the conditions |t33]> = |2kt11]2, |t22|2 = |2t12],
133 | 2kt12, |t23]2 = |kt11]2, or equivalently, |f33]2 = [2k111]2, |f22]2 = |2112],
t11 | t12, |t23]2 = |kt11]2. Thus, the integral over 7 75 becomes

1 _ _ _
m[ﬂ)“u@ H202]572 2k 1572 dpe
21—ZS|k|s—l _ B
e [ el el
111812

= 21725 k)57 A0 1 (25 — 1, 9),

where in the first equality we applied Proposition 3.6 with the pivots 33, 123, 133.
It follows from Table 3 that

(427 = L) (G2l = DA +3-27) (1= k3™
+ §2(3S - 1)(1 + 2_S =+ 3 .21_25 _21_3S _21—4S)|k|;’—1).

6.2.3 Local factors of ¢ g’q(s)

If p # 2, then y3(Gp, Np) = (x},x3) = (x1,x3), whence Np/y3(Gp, Np) = Z
Thus, by Proposition 2.12,
£5r=(s) = £p(s).
For the computation of ¢ g§’<(s), we consider the cases k even or odd separately.
Assume that k is even. We claim that if A <1 G5 is open and satisfies AN, = G,
then A includes (x?, x5, x2). In fact, any such A contains Sx" for some v € Z3,
whence A contains

[Bx", x3] = [B, x3] = x372,
[Bx",x1] = PIx", x1][B, x1] = x72x5 K2 x5k,

(ﬂXV)Z — x%vz—i-lngvz-i-l)vlk.

From the first two contentions, we deduce that xl_2 € A since k is even. From
the first and third contentions and the fact that k is even, we also deduce that
2”2+1 € A, and hence x, € A since2v, + 1 € Z This proves the claim. It fol-
lows that §G2’<](s) = Zg <(s), where G’ is the quotlent of G2 by (x?,x2,x3),
and Car G, <l(s) is computed with respect to N’, the image of N, at G’. Note that
(Z/ZZ)3 the classes of B, x1 and X3 being identified with (1, 0, 0), (0, 1, 0)

and (0,0, 1), respectively. The series & G (s) enumerates the subgroups of G that
are not included in N’. An easy calculation gives ¢ g, T(s)=146-27°4+4-475,
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Assume now that k is odd. With a similar analysis to that in the previous case,
we find that if A <1 G5 is open and satisfies AN, = G», then A includes

(xfx3, x§, x%).

It follows that {Gz’ (G »<!(s), where G’ is the quotient of G, by (x X3, x%, x%)
and {3, G'2(s) is computed with respect to N’, the image of N at G’. Note that
G' = 7. /A7 x 7./A47Z, where the classes of B and x; are identified with (1,0)
and (0, 1), respectively. Thus, the series { g,/“(s) enumerates the subgroups of
7./]47 x Z./AZ that are not included in 2Z /47 x 7Z./4Z. A simple inspection
shows that the only such subgroups are G, ((1,0), (0, 2)), ((1, 1), (0, 2)), {(1,0)),
((1,2)), ((1,3)) and ((1, 4)); thus {gf’q(s) =1+4+2-2744-475,

6.3 Computing the zeta functions of G3 i ¢, Gpa,2k,e5 Gpe,2k ¢

The general form of these groups is

Gy ke = (V. X1, X2, X3 1 [x2,X1] = xR 1, x3) = [x2,x3] = 1,

—1,.-r
yE=x5"xi =x2, Yo =x7 x5,

where k € N, (d,8,r) € {(3,1,1),(4,2,0),(6,2,—1)} and
lor—1 ifk =Om0d1

€ =4-—1 1fk_1m0d—,

1 otherwise.

We let G be one of these groups.

6.3.1 Local factors of { 2=(s)

If p } d,then( Gl”\(s) was given in Table 1 (the case F' = Cy; note thatif p } 6,
then x6(p) = 23(p)).

Assume now p | d. We claim that if A < G, is open and satisfies AN, = Gp,
then Z, C Ap. Indeed, A contains yx’ for some v € Z;, whence

(2 27 (W +v)(wy+vo+r)
(yXV)d _ xglv3+e ro=r+1)8°k——=—F—=— cA

The claim will follow from the assertion that

dvs + e — (2 — r + g2 LT ”2)(”21 Tt g
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If d =4, then p =2 and § = 2, and the assertion is clear. The same argument
works for d = 6 and p = 2. Assume that d = 6 and p = 3. Since r = —1, we
have 72 — r + 1 = 3; hence the assertion is true in this case too. We finally assume
that d = 3 and p = 3. In this case, r = 1, whence r2 —r 4+ 1 = 1. Therefore,
the assertion is that € — k (1 +v2)(g‘ tvatl) o Z3.1f one of the elements v + v2,

v1 + v + 1 is divisible by 3, the assertion is clear. Otherwise, necessarily,

(v +v2)(vy +va+ 1)

= 1 mod 3,
2

so the assertion in this case is equivalent to € — k € Z;, and this follows from the
definition of € in terms of k. This completes the proof of the claim. It follows that
é‘gg’é (s) = §§Z’< (s). According to [13, Sections 5.10, 5.13, 5.16], the latter series
is equal to {,(s — 1)Lp(s — 1, xg) if d € {3,4} and to {p(s — 1) Lp(s — 1, x3) if
d =6.

6.3.2 Local factors of ¢ g’q(s)

If p 4 d, then ijvg’<(s) was given in Table 2 (the case FF = Cy).
Assume now that p | d. By Corollary 3.3 and Lemma 6.1 (2), we have

Lor=(s) = — a5 2ol (3305 de.
( _ 1)3 )4

where T C T;_(Zp) is defined by 133 | 8]([11, 133 | 5kl12, 133 | 5kl22 and the fol-
lowing equivalent conditions:

y(xtl)’)’(xtz),y(xn) e (xt1, xt2 xt3)
— xl—l‘lzxél1—1‘1‘12)(3—1651‘112‘12-1-([122)8k7'-f-t137

) skrttyy
xl_mxz_rmxg ?) T e (xt, xt2, xt3),

By Lemma 6.1 (3), the conditions defining 7 are equivalent to
(1) t33 | Skti1,t33 | Skt12, 133 | Sktaa,
(2) 11 |112,
(3) 122 ] ,:2 + 111 —rt12,
t (t%,/t1)+t1—rti2 t
@) 133 | f2t13 — 203 + () 8kr + 13,
) ti1 | —t22,
(6) 122 | 212 —rin,

(7) t33 | ;22113 (12 — r)iaz + ("2)8kr + 123.

1
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Condition (3) can be written as % | (2—?)2 — rﬁ}—f + 1. Condition (6) is implied
by (2), and the second and third conditions in (1) are implied by the first one, (2)
and (5). Note that (4) and (7) have the form

4) t33 | Pit13 + Q1t23 + (t122)8kr,
(7) 133 | Pat1z + Qatas + ("2)8kr,

where P1, P>, Q1 and Q> are rational functions that do not involve #;3 or 23 and
take values in Z, when restricted to 7. Note also that

t2
P t ti [t try 72 + 111 —Tl12
det(l Ql):_12+11(£_r_1)+£m

P, 0> 11 1 1 2
2
t t t t
:_(2) LT T S

11 11 11 11
112 2 112

+1+(—) SRR R, 6.1)
11 11

We first assume that (d, p) € {(3.3),(4,2),(6,3)}. The terms (*}2)8kr and
(t222)8kr in conditions (4) and (7) can be deleted. In fact, they are already zero
when d = 4 since in this case r = 0, and if d € {3,6} and p = 3, then (1) im-
plies that these two terms are divisible by #33. Now, one easily checks that the
equation 72 —rT +1 =0 mod p has 1 —r — r? as unique solution modulo p
in Zp, and that the equation 72 — rT + 1 = 0 mod p? has no solutions in Z.
Therefore, by (3), we can express T~ as a disjoint union 7% U 79 according to the
cases

(3a) [t11]p = |t22]p and
(3b) |pt1ilp = |t22lp and pryy | 112 — (1 —r = r?)y1.

We describe 7¢. By (3a), the coefficient P, in (7) is a unit; therefore, by (6.1),
we can replace (4) by f33 | (2 + r)t23. We conclude that 7¢ is defined by the

conditions 733 | Skitaa, |111|p0 = |122|p0, 153 | 112,133 | (2 + r)t23 and (7), and the
integral over 7 ¢ becomes

=13 fg_a|122|§s_3|l33|f,—3 dp
1

- 2s—1 s—2
- (1 _p_1)2 /t333kt22 |t22|p |t33|p dlu
133](2+r)t23

= g'p(2s) + /pt33 |Z22|12,S_1|t33|;_2 d,LL

t3t3|5kt22
33
@t 23

1
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pvﬁ("+2) / 5 1 1
- lt22]," 33l dp,
(1=p™D% J pleaslskrnn

where in the first equality we used Proposition 3.6 with the pivots ¢12, 11,113, and
in the third one we used this proposition with the pivot ;3.

We now describe 2. Condition (3b) implies that |11 p = |ti2]p. This makes
condition (2) redundant. Next, note that

1122 _rh2
Q1=_(tll) +1 "

={p(25) + ——

2

1

is a un1t of Z, since we are assuming that p | tfz and since T2 —rT +1=0
mod p? has no solutions in Zp. Therefore, by (6.1), condition (7) can be replaced
by the condition 33 | (2 + r)t13. We conclude that the conditions defining 7 are
133 | §ktiy, |Pl11|p = |tazlp, pt11 | 12 — (L —r —r?)t11, 133 | 2+ r)t13 and (4).
The integral over 7% becomes

1 _ _
m/ aly  pt 172 sl du

1
_ —s 2s5—1 s—2
- (1 _p—l)Zp /t33|8kt11, |tll|p |t33|p d[,L,
1331(2+7)t13

where in the first equality we used Proposition 3.6 with the pivots t22, 112, 123.
We conclude that

1+p~° _ _

Np, 2s5—1 s—2

Z p<1( ) - ( _ _1)2 /;338kt]1, |t11|p |[33|p dlu“
t331(2+r)t13

1+p™° 25—1 -2
= 6) 4 s [ el d
(1-p=1)? t33|§?€t22 i P

133
[eRpl ek

+p - -
=50 P G [

= 8p(s) + 12+ 7, (1 + p™*) By sk (s, 2).

We now assume that (d, p) = (6,2). The equation T2 —rT + 1 = 0 mod 2
has no solutions in Z,, and hence (3) and (5) can be replaced by |f11]|2 = |f22]2.
It follows that the coefficient P, in condition (7) is a unit. Since the value of the
determinant (6.1) is 2 4 r = —1, condition (4) can be replaced by one of the form
t33 | t23 + Ry, where R is a rational function that does not involve 713 or #;3 and
takes values in Z, when restricted to 7. The conditions defining 7 are therefore
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133 | 2kt11, t11 | ti2, |t11l2 = |t22]2, 133 | 123 + Ry and (7). The integral over 7
becomes

< 1 - —
§N2’ (s) = m/TVM@S 3352 du

1

- m/ - |t11|§s—1|t33|§_1 dit = Az 21 (s,25),
- 133]2kt1

where in the first equality we used Proposition 3.6 with the pivots t15, 122, 123, 113.

6.3.3 Local factors of { g’q(s)
If p t d, then

2 2
y3(Gp. Np) = (x] 12, x5 %2 x3k) = (x1. 32, x5).

where the last equality holds since r + 2 € Zy. Thus, Ny /y3(Gp, Np) = Zp/ kZp,
and by Proposition 2.12, we have
—plkly
ngN( ) = Tsl’

Assume now that p | d. Arguing as in the calculation of ¢ Gl”\(s) we obtain
that {GP“(S) = {EP’<‘(S) According to the results of [13, Sections 6. 10, 6.13,
6.16], this series 1sequalto 1+ p-pSifd =3or4,andis 1ifd = 6.

6.3.4 Local factors of §g’<’(s) ford =4and H = (y?,x1,x2,x3)
Note that H = Gy ok If p # 2, then

V3(HP7NP) (xlvxzﬁxgk) = (-xla-x27x]3€>a
and hence N, /y3(Hp, Np) = Z,/kZ,. By Proposition 2.12, we obtain

—P_Slklp

CGr=(s) = —
- P

Assume now that p = 2. Arguing as in the calculation of {3 sz 2k’<‘(s) in Sec-
tion 6.1.3, we obtain that

(= (s) = (2172 s),

which isequal to 1 4+ 2-27% 4 2 - 47 according to [13, Section 6.10].
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6.3.5 Local factors 0f§g’<’(s) ford =6and H := (y3, X1,X2,X3)

Note that H = Gp; . Arguing as in the previous paragraph, we obtain that

- 1—p~ikl,
EH”’ ()—73

if p # 2, and that §g122’<‘(s) = 51{5’22/22’4(5). The latter is equal to 1 + 475 accord-
ing to the results of [13, Section 6.16].

6.3.6 Local factors 0f§g’<’(s) ford =6and K = (y2%,x1,x2,x3)

Note that K = Gp3 5k, Where n = €if 3 | k,and n = —€ if 3 | k. If p # 3, then
arguing as in Section 6.3.3 with G = Gp3 2,5, We find that

< 1_ _s| kl < <
& ()‘Tsp and  £E37() = £5/77s).

which is equal to 1 4+ 37° according to the results of [13, Section 6.16].

6.4 Computing the zeta functions of G = Gpage 4k
6.4.1 Local factors of £ G<(s)

If p # 2, then {Gp’s(s) was given in Table 1 (the case F' = D»).
Assume now that p = 2. Note that (&, x1, X2, X3) = Gp 4k . Arguing as in Sec-
tion 6.1.1 for G = Gpj 4%, we find that

LG2(5) = LEZS(s).
The latter is equal to 1 according to the results of [13, Section 5.7].

6.4.2  Local factors of {3 (s)
If p #2,then ¢ gﬁ’<(s) was computed in Table 2 (the case F = D»).
Assume now that p = 2. By Corollary 3.3 and Lemma 6.1 (2), we have

N>, — 1 2 3
(85°0) = ey [ Il el 2l
where T C T;_(Zz) is defined by 133 | 4ktyq, t33 | 4ktyo, t33 | 4kty, and the fol-
lowing equivalent conditions:
(xt).xY [x%, B] e (xt1,xt2,x83), i=1,2,3
— x§t13+2k(t11—t12)—4kt11t12’x§t23—4k122’

—2t12 .—2t13+2kt12 2kt t t t
X5 X3 L X3 € (xt, xt2 xt3),
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Therefore, by Lemma 6.1 (3), the conditions defining I are equivalent to
(1) 133 | 4kt11,

(2) 133 | 4kt12,

(3) 133 | 2113 + 2k(t11 — t12),

(4) 133 | 223,

(5) 122 | 2112,

(6) 133 | Zt;—l;ln —2t13 + 2kt12,

(7) 133 | 2kt22.

Note that (2) follows from (5) and (7). Next, we express 7 as a disjoint union
72 U T according to the following cases:

(a) 133 € Z3 and
(b) 2| 133.

In case (a), all the conditions but (5) are redundant, so

— 1 —_ — —
(1—271)3 /g—a”“'i Hezal5™lrssl5 > die
s - f—
- 1§_2(221 221572 dp = La(s)(1 4 2' 82 (s)).

t22(2t12

In case (b), we split 72 as a union 754 U 720 according to the following
cases:
(5a) t22 | t12 and
(5b) |t22]2 = [2t12]2.
Assume (5a). We sum the right-hand sides of (3) and (6) and obtain
2t
22 s + 2kt
122

This and (4) imply that #33 | 2k#11. Thus, (1) can be replaced by #33 | 2kt11, and
then (3) and (4) imply (6) clearly. To sum up, 7b:a is defined by the conditions
2| 133, 8 | ktny, B2 | kg, 122 | 112, B2 | 13 — k12, 3% | 1p3. Therefore,

1 _ _ _
m/ﬂghu@ 1|122|§ 2|t33|§ 3d,u

133 |

22—S
-1 -1 -1 2—

ulktzn
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where in the first equality we used Proposition 3.6 with the pivots 13, #13, 23 and
performed the change of variables 733 = 2u. Assume now (5b). Observe that (2)
and (7) are equivalent. Note also that (6) implies that

2t
133 | 2(—12)123 — 4113 + 4kt
122

and then that (1), (2) and (3) imply that 733 | 4¢13. It follows that (1), (2), (3)
and (6) imply (4). Summarizing, the conditions defining 72 are 2 | 133, (1),
(2), %3 | t13 + 2k(t11 — t12), [t22|2 = |2t12]2 and (6). Therefore, the integral over
70:5 becomes

1 _ _ -
m/f]‘b,b”l”; 2012057t 157> dpe
21—2S ) . 1
= m/ulzkmml';_ 12l July ™ dp

u|2ktio

_ 27 _ _ _
= 2! 2S(§2(S)2+m/vlkm|t11|§ 1|112|§ 1|U|§ ldﬂ)

vlktiz
= 21725(85(5)% 4+ 275 Co 0k (5, 5, 8)).

In the first equality, we used Proposition 3.6 with the pivots 53, f13, 23 and applied
the change of variables f33 = 2u.
We conclude that

EN23(5) = La(s)(1 + 217080 (s)) + 2172 o (s)?
+ (27 + 21_33)C2,k(s,s,s).

6.4.3 Local factors of {7 (s)

If p # 2, then one can easily check that y3(Gp, Np) = (x1,x2, x3), and hence
é'g;)”q(s) = 1.If p = 2, then {g;“(s) = 1 since already é'g;’s(s) =1

6.4.4 Local factors of Cg’q(s) for H = (e, x1,x2,x3)

Note that H = Gy 4% - Arguing as in Section 6.1.3 with G = G5 4%, we find that

1—p~ilkl,

H,,< _ 14
Egr=(s) = TT_p for p # 2,
and that é'g;’q(s) = ;‘5122/22“(5). The latter is equal to 1 + 2 - 275 according to
the results of [13, Section 6.7].
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6.4.5 Local factors of Cg’q(s) for K = (B,x1,x2,x3)

Note that K = Gpg 4k. If p # 2, then y3(Hp, Np) = (x;‘,x_;‘;) = (x1,x3), and
hence N, /y3(Gp. Np) = Zp. Thus, by Proposition 2.12, we have

EEr 7 (s) = Ep(s).

Assume now that p = 2. Arguing as in Section 6.2.3 with G = G g 4%, We find
that

t82=(5) = &),

where G’ is the quotient of G, by (x1,x3,x2), K’ is the image of K, and the
new partial zeta function is computed with respect to N’, the image of N. Note
that K’ 2 (Z/27)3, the classes of B, xo and x3 being identified with (1,0,0),
(0,1,0) and (0, 0, 1), respectively. The action of the class of & on K’ is given by
(a,b,c) — (a,a + b,a + c). The series {g,/"(s) enumerates the subgroups of G’
that are not included in N’ and are invariant under (a,b,c) — (a,a + b,a + ¢).
It is easy to check that §(I§,/’<‘(s) =142-275

6.4.6 Local factors of Cé’q(s) for L = («B,x1,x2,x3)

One can easily check that the assignment o a L, B Ba, x1 = X3, X2 > X1,
X3 > X3 1 extends to an automorphism of G mapping K onto L. Therefore,

t&=(s) = & o).
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