
J. Group Theory 25 (2022), 601–678
DOI 10.1515/ jgth-2021-0072 © de Gruyter 2022

Zeta functions of the 3-dimensional
almost-Bieberbach groups

Diego Sulca*

Communicated by Evgenii I. Khukhro

Abstract. The subgroup zeta function and the normal zeta function of a finitely generated
virtually nilpotent group can be expressed as finite sums of Dirichlet series admitting Euler
product factorization. We compute these series except for a finite number of local factors
when the group is virtually nilpotent of Hirsch length 3. We deduce that they can be mero-
morphically continued to the whole complex plane and that they satisfy local functional
equations. The complete computation (with no exception of local factors) is presented for
those groups that are also torsion-free, that is, for the 3-dimensional almost-Bieberbach
groups.

1 Introduction

The subgroup zeta function and the normal zeta function of a finitely generated
group G are, respectively, the Dirichlet series

�6
G.s/ D

1X
nD1

a6
n .G/

ns
and �C

G.s/ D

1X
nD1

aC
n .G/

ns
;

where a6
n .G/ denotes the number of subgroups and aC

n .G/ the number of normal
subgroups of index n. They were introduced by Grunewald, Segal and Smith in [8]
as a means to study groups of polynomial subgroup growth (PSG). Indeed, these
are precisely the groups for which these series are not only formal gadgets but also
define analytic functions on some complex right-half plane. A natural problem
is to understand how structural information of a group of PSG is encoded into
arithmetical and analytic properties of its zeta functions and vice versa.

Lubotzky, Mann and Segal characterized the finitely generated residually finite
groups of PSG: these are precisely the virtually solvable groups of finite rank [11].
On the other hand, since they were introduced, zeta functions of groups have been
extensively studied only when the group is a finitely generated torsion-free nil-
potent group: a T -group. The theory for these groups is rich and continues to grow.
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We summarize some general results and refer the reader to the survey [26] and the
references therein for more information and variations of the topic. Let N be a
T -group, let � 2 ¹6;Cº and let ˛�N denote the abscissa of convergence of ��N .s/.
Then the following holds.

(N1) ˛�N 6 h.N / (= the Hirsch length of N ) [8, Proposition 1].

(N2) ˛�N 2 Q and there is ı > 0 such that ��N .s/ admits a meromorphic continu-
ation to the region ¹s 2 C W Re.s/ > ˛�N � ıº (see [5, Theorem 1.1]).

(N3) ��N .s/ has an Euler product factorization

��N .s/ D
Y

p prime

��N;p.s/;

where ��N;p.s/ D
P1
kD0 a

�
pk .N /p

�ks . In addition, each local factor ��N;p.s/
is a rational function in p�s with coefficients in Q (see [8, Proposition 1.3
and Theorem 1]).

(N4) For almost all prime p, �6
N;p.s/ satisfies the functional equation

�6
N;p.s/jp!p�1 D .�1/
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�hs�6
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where h D h.N / (see [25, Corollary 1.1]). If in addition N is a T2-group (a
T -group of nilpotency class 2), then for almost all prime p, �C

N;p.s/ satisfies
the functional equation

�C
N;p.s/jp!p�1 D .�1/

hp

�
h
2

�
�.dCh/s�C

N;p.s/;

where d is the rank of N=Z.N/ (see [25, Theorem C]).

Remark 1.1. Properties (N1)–(N4) are, in fact, corollaries of the analogous prop-
erties established for the subring zeta function and the ideal zeta function of nil-
potent Lie rings additively isomorphic to some Zh. The translation is done via
the Mal’cev correspondence. The question of whether the ideal zeta function of
a nilpotent Lie ring of nilpotency class greater than 2 satisfies local functional
equations led to the introduction and investigation of the submodule zeta function;
see, e.g., [10,17,27]. On the other hand, it has long been known that, for instance,
the ideal zeta function of the filiform nilpotent Lie ring Fil4 fails to satisfy local
functional equations; see [7, Theorem 2.39].

Regarding the computation of zeta functions, the following are classical exam-
ples.
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(1) For the free abelian group Zh, �6
Zh
.s/ D �.s/�.s � 1/ � � � �.s � hC 1/, where

�.s/ is the Riemann zeta function. In [12, Chapter 15], there are five different
proofs of this elementary fact.

(2) Let H.Z/ denote the integral points of the Heisenberg unipotent group scheme
H. Then

�6
H.Z/.s/ D

�.s/�.s � 1/�.2s � 2/�.2s � 3/

�.3s � 3/
;

�C
H.Z/.s/ D �.s/�.s � 1/�.3s � 2/

[8, Section 8]. More generally, a calculation of �C
H.OK/.s/, for K a number

field and OK its ring of integers, is presented in [20, 21].

Finding explicit formulae for the zeta functions of a T -group is in general a dif-
ficult task. A substantial list of examples is recorded in [7], and new ones have
emerged more recently; see, e.g., [1, 20, 21, 28]. In [16, 19], Rossmann developed
a method for computing certain zeta functions associated with T -groups and other
algebraic structures. This algorithm was implemented in [18].

This work studies and presents formulae for the zeta functions of the virtually
nilpotent groups of Hirsch length 3 (see the next paragraph for a detailed descrip-
tion of the content). This is not the first attempt in dealing with zeta functions of
groups that are not nilpotent. In [4], du Sautoy investigated zeta functions of com-
pact p-adic analytic groups (= virtually uniform pro-p-groups) and proved that
they are rational functions in p�s . Then, in [6], the authors studied zeta functions
of virtually abelian groups, proving for example, that they can be meromorphi-
cally continued to the whole complex plane (this property is not shared by zeta
functions of T -groups in general, as discussed in [7, Chapter 7]). The paper [24]
contains general properties of zeta functions of virtually nilpotent groups that we
now recall. Let G be a finitely generated virtually nilpotent group, and let N C G

be a finite-index normal subgroup that is a T -group. It is easy to check that

�6
G.s/ D

X
N6H6G

ŒG W H��s�H;6G .s/;

�C
G.s/ D

X
N6HCG

ŒG W H��s�H;CG .s/;

where
�H;6G .s/ WD

X
A6GWANDH

ŒH W A��s;

�H;CG .s/ WD
X

ACGWANDH

ŒH W A��s:
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The series �H;6G .s/ and �H;CG .s/ will be referred to as partial zeta functions of
�6
G.s/ and �C

G.s/ (with respect to N ). Each of them is an Euler product of cone
integrals [24, Theorem 1], and hence it satisfies properties (N2) and (N3) above
by the general theory of cone integrals developed in [5]. Property (N1) also holds
with the bound h.N / D h.G/ replaced by h.G/C 1 (see [24, Proposition 2.12]).
The partial zeta functions were computed explicitly, except for a finite number
of local factors, when the group N is abelian; see [6, Section 2]. Computing the
exceptional factors is, in general, more involved. The complete computation was
done for the plane crystallographic groups. This is the main result in [13], and it is
also summarized in [6, Section 4]. To the author’s knowledge, these are the only
existing examples of computations of zeta functions of infinite groups that are not
nilpotent.

The article is organized as follows. In Section 2, we obtain formulae for the
local factors of �G;6G .s/ and �N;CG .s/ when p − ŒG W N� for every virtually nil-
potent group of Hirsch length 3 (see Table 1 and Table 2). This suffices to con-
clude that the subgroup and normal zeta functions of each of these groups extend
to meromorphic functions on the whole plane (Corollary 2.8 and Corollary 2.19).
We also deduce local functional equations, similar to but different from those pre-
sented in (N4) (Corollary 2.7 and Corollary 2.18). The arguments in this section
are of a group-theoretical nature, akin to [6, Section 2]. In Section 3, we review
a method for expressing local zeta functions of groups in terms of p-adic integrals.
This method is used later to compute local factors at primes p j ŒG W N� (those not
considered in Section 2). Section 4 presents the formulae for the zeta functions
of the torsion-free virtually nilpotent groups of Hirsch length 3. A group like this
is either a 3-dimensional Bieberbach group or a 3-dimensional almost-Bieberbach
group (the fundamental group of a 3-dimensional infra-nilmanifold). Section 5
contains proofs of the formulae for the 3-dimensional Bieberbach groups. It also
contains formulae for the zeta functions of a large family of Bieberbach groups
with holonomy C2, to illustrate how involved the method for computing local fac-
tors at bad primes is, even in the case of virtually abelian groups. Finally, Section 6
contains proofs of the formulae for the 3-dimensional almost Bieberbach groups.

Notation and conventions. jS j denotes the cardinality of a set S . For a groupG,
Z.G/ denotes its center; A 6 G means that A is a subgroup; A C G means that
A is a normal subgroup; ŒG W A� denotes the index of A in G; NG.A/ denotes the
normalizer ofA inG. In sums involving ŒG W A�, only subgroups of finite index are
considered. For a subset S � G, hSi denotes the subgroup generated by S . When
G is profinite, hSi denotes the closed subgroup generated by S . For x; y 2 G, we
denote xy D xyx�1 and Œx; y� D xyx�1y�1 (D xy � y�1). For S; T � G, we
denote ŒS; T � D hŒs; t � j s 2 S; t 2 T i. We use without mentioning the fact that if
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G is a finitely generated profinite group, then every finite-index subgroup is open,
and if H and K are closed subgroups, then ŒH;K� is also closed; see [15].

The letter p will be reserved for prime numbers. By vpWQp ! Z [ ¹1º, we
denote the usual p-adic valuation, and by j � jp D p�vp. � / the p-adic norm. More-
over, �p.s/ denotes 1

1�p�s
, the local factor of the Riemann zeta function �.s/ at p.

2 Local factors at good primes and meromorphic continuation

Let G be a finitely generated virtually nilpotent group, and let N C G be a finite-
index normal subgroup that is a T -group. For a prime p, let Gp be the comple-
tion ofG with respect to the family ¹B C G W B � N; ŒN W B� a power of pº. For
X 6 G, we denote by Xp the closure of X in Gp. For a subquotient X=Y of G,
we denote .X=Y /p D Xp=Yp. Note that Np is the pro-p completion of N , and
that the inclusion G ,! Gp induces an isomorphism G=N Š Gp=Np. Note also
that Gp is not the pro-p completion of G unless ŒG W N� is a power of p.

As noted in the introduction, to study �6
G.s/, it is enough to focus on the partial

zeta functions �H;6G .s/ D �H;6H .s/ forN 6 H 6 G. There is no loss of generality
if we only consider �G;6G .s/. Similarly, to study �C

G.s/, it is enough to consider
�H;CG .s/ for N 6 H C G. The advantage is that we have

�G;6G .s/ D
Y

p prime

�Gp;6Gp
.s/ and �H;CG .s/ D

Y
p prime

�Hp;CGp
.s/;

where �Gp;6Gp
.s/ and �Hp;CGp

.s/ are computed with respect to Np (see [24, Proposi-
tion 2.2]).

Throughout the section, unless otherwise specified, we assume that N is a T2-
group, that is, a T -group of nilpotency class 2. We also fix the following notation:

Z D Z.N/; T D N=Z; P D G=N; ƒ D ZŒP � and ƒp D ZpŒP �:

We will first obtain general expressions for �Gp;6Gp
.s/ and �Hp;CGp

.s/ when p − jP j.
Then we shall specialize to the case of Hirsch length 3, giving explicit formulae
in terms of well-known series. The case N Š Z3 (and more generally N Š Zh

for any h) was settled in [6].
The action by conjugation of G on N (.g; n/ 7! gn D gng�1) induces struc-

tures of left ƒ-modules on the abelian groups T and Z (and hence Tp and Zp
become ƒp-modules). For this reason, we use additive notation when working
with them. The commutator operation Œx; y� D xyx�1y�1 induces a bilinear map
Œ � ; � �WT � T ! Z (and hence also a Zp-bilinear map Œ � ; � �WTp � Tp ! Zp) that
is compatible with the action of P , that is, Œ˛ � x; ˛ � y� D ˛ � Œx; y� for all ˛ 2 P
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and x; y 2 T . If U1 and U2 are Zp-submodules of Tp, then ŒU1; U2� denotes the
Zp-submodule (=subgroup) of Zp generated by Œx1; x2� with xi 2 Ui .

For a ring R and a left R-module M , we use the notation X 6R M to indicate
thatX is a left R-submodule ofM . For r 2 R, rM WM !M denotes the left mul-
tiplication by r . If R D ƒ or ƒp, we denote by Der.P;M/ the set of derivations
from P to M . For a subset S � P , we denote

CM .S/ D ¹x 2M W ˛ � x D x for all ˛ 2 Sº:

We will use the fact that if p − jP j and M is a finitely generated ƒp-module that
is torsion-free as a Zp-module, then M is a projective ƒp-module, and all finite-
indexƒp-submodules ofM are isomorphic. This follows from the fact that, when
p − jP j, ƒp is a maximal order of QpŒP �.

2.1 Counting subgroups

Proposition 2.2 below presents a general expression for the local factors of �G;6G .s/

at “good” primes. We will need the following lemma.

Lemma 2.1. Let R be a ring, let M be a left R-module, and fix X 6R M . If
there is a complement of X in M (i.e., there is Y 6R M such that X C Y DM
and X \ Y D 0), then the set of complements of X in M is in a bijection with
HomR.M=X;X/. If R D ZpŒP � with p − jP j, and if M=X is finitely generated
and torsion-free as a Zp-module, then the set of (P -invariant) complements of X
is in a bijection with HomZpŒP �.M=X;X/.

Proof. Assume that there is a complement of X , say Y . Given any other comple-
ment K 6R M , we define 'K WY ! X as follows. If y 2 Y , then we can write
y D k C x uniquely with k 2 K and x 2 X . We set 'K.y/ D x. It is clear that
'K 2 HomR.Y;X/. Conversely, given ' 2 HomR.Y;X/, we define

K' D ¹y � '.y/ W y 2 Y º:

It is easy to check thatK' is a complement ofX , and that 'K' D ' andK'K D K.
Therefore, the set of complements of X is in a bijection with HomR.Y;X/, which
in turn is in a bijection with HomR.M=X;X/ since M=X and Y are isomorphic.
This proves the first part of the lemma

We now show the second part, so we assume now thatR D ZpŒP �with p − jP j
and that M=X is finitely generated and torsion-free as a Zp-module. Then M=X
is a free Zp-module of finite rank, and hence it is a projective ZpŒP �-module (here
we use the fact that p − jP j). This implies that there is at least one complement
ofX ; therefore, the set of complements is in a bijection with HomZpŒP �.M=X;X/,
as shown in the first part of the lemma. This completes the proof.
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Proposition 2.2. If p − jP j, then

�Gp;6Gp
.s/ D

X
U6ƒpTp; V6ƒpZp

ŒU;U ��V

ŒTp W U �
�sŒTp W CTp .P /C U �

� ŒZp W V �
�sŒZp W CZp .P /C V �

� jHomƒp .Tp; Zp=V /j:

Proof. For a subgroup U 6 Tp, we denote by QU its pre-image in Np. We set

A WD ¹A 6 Gp W ANp D Gp; ŒGp W A� <1º;

U WD ¹.U 6ƒp Tp; V 6ƒp Zp/ W ŒTp W U � <1; ŒZp W V � <1; ŒU; U � � V º;

V WD ¹.U; V; C / W .U; V / 2 U; C 2 A; C \Np D QU º

and define maps ˆWA! V , ‰WV ! U by

ˆ.A/ D ...A \Np/Zp/=Zp; A \Zp; ZpA/ and ‰.U; V; C / D .U; V /:

It is straightforward to check that ˆ is well-defined. Note that

ŒGp W A� D ŒNp W A \Np� D ŒNp W QU �ŒZp W V �

D ŒTp W U �ŒZp W V � for A 2 .‰ˆ/�1.U; V /I

therefore,

�Gp;6Gp
.s/ D

X
A2A

ŒGp W A�
�s
D

X
.U;V /2U

ŒTp W U �
�sŒZp W V �

�s
j.‰ˆ/�1.U; V /j:

We now fix .U; V / 2 U and show that j‰�1.U; V /j D jDer.P; Tp=U /j. Note
first that‰�1.U; V / is in bijection with the set of complements ofNp= QU inGp= QU .
SinceNp= QU is a normal Hall subgroup ofGp= QU , there is at least one complement
by the Schur–Zassenhaus theorem, and therefore the number of complements is
jDer.P;Np= QU/j D jDer.P; Tp=U /j (cf. [22, Proposition 1, Chapter 3]).

We now fix .U; V; C / 2 V and show that

jˆ�1.U; V; C /j D jHomƒp .U;Zp=V /jjDer.P;Zp=V /j:

The subgroups QU and V are normal closed subgroups of Gp, and the condition
ŒU; U � � V implies that the quotient QU=V is abelian. Thus, QU=V is a finitely gen-
erated Zp-module and Zp=V is clearly the torsion submodule. We use C to give
QU=V a structure of ZpŒP �-module. Firstly, the action by conjugation of C on QU

induces a structure of C= QU -module on QU=V . Secondly, the inclusion C ! Gp in-
duces an isomorphism C= QU Š Gp=Np D P . Therefore, QU=V becomes a ZpŒP �-
module. Note that Zp=V has two structures of ZpŒP �-module: one as a subobject
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of QU=V and one as a quotient of Zp. It is easy to check that these two structures
coincide. Similarly, the structure of ZpŒP �-module on QU=Zp D U as a quotient
of QU=V and the one as a subobject of Tp are the same.

GivenA 6 ˆ�1.U; V; C /, observe that .A \Np/=V is a complement ofZp=V
in QU=V . We claim that this complement is P -invariant. Indeed, A \Np is normal
in A and in .A \Np/Zp, so it is normal in AZp D C . Therefore, .A \Np/=V
is C= QU -invariant and hence P -invariant. Now, according to Lemma 2.1, the num-
ber of P -invariant complements of Zp=V in QU=V is jHomƒp .U;Zp=V /j. Fix
one such complement, say B=V . Note that B is normal in C (this follows from
the condition of B=V being P -invariant) and the set of those A 2 ˆ�1.U; V; C /
such that A \Np D B is in a bijection with the set of complements of QU=B in
C=B . Since QU=B is a normal Hall subgroup of C=B , there is at least one such
complement by the Schur–Zassenhaus theorem, and then the number of comple-
ments is jDer.C= QU ; QU=B/j D jDer.P; QU=B/j D jDer.P;Zp=V /j. We conclude
that jˆ�1.U; V; C /j D jHomƒp .U;Zp=V /jjDer.P;Zp=V /j.

To end the proof, we only need to show that

jDer.P; Tp=U /j D ŒTp W U C CTp .P /�;

jDer.P;Zp=V /j D ŒZp W V C CZp .P /�;

jHomƒp .U;Zp=V /j D jHomƒp .T;Zp=V /j:

Here we use again the fact that p − jP j. The first two equalities follow from [6,
Lemma 2.4], and for the last one, we use the fact that U and T are isomorphic as
ƒp-modules.

The following lemma will be used to calculate jHomƒp .Tp; Zp=V /j in some
particular cases.

Lemma 2.3. Let M be a ƒp-module, and assume that p − jP j. If there is ˛ 2 P
such that CM .˛/ DM and CZp .˛/ D 0, then

Homƒp .M;Zp=V / D ¹0º for all V 6ƒp Zp:

Similarly, if CM .˛/ D 0 and CZp .˛/ D Zp, then also Homƒp .M;Zp=V / D ¹0º.

Proof. Since p − jP j and since Zp is finitely generated and torsion-free as a Zp-
module, Zp is a projective ƒp-module. Thus, the lemma in both cases follows
from the equality Homƒp .M;Zp/ D 0, whose verification is straightforward.

We now specialize to the case when N has Hirsch length 3. Recall that, given
a finite subgroup F � GL2.Z/, either F is included in SL2.Z/, in which case
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F is isomorphic to one of the cyclic groups C1; C2; C3; C4; C6, or else there is
ˇ 2 F of order 2 with determinant�1, in which case F is isomorphic to one of the
dihedral groups D1 (Š C2), D2 (Š C2 � C2), D3, D4, D6; cf. [14, Chapter IX].

Recall that the action ofG onN by conjugation induces an action of P D G=N
on T D N=Z, so there is a natural homomorphism P ! GL.T /.

Lemma 2.4. Assume that N is a T2-group of Hirsch length 3 (so that T Š Z2

and Z Š Z). Set F WD Im.P ! GL.T // and � WD rankZ.CT .P //. Then

(1) CZ.P / D Z if and only if F � SL.T /.

(2) We have

� D

8̂<̂
:
2 if F is trivial;
1 if F 6� SL.T / and F Š D1;
0 otherwise:

(3) If p − jP j, then for any V 6P Zp of finite index, we have

jHomƒp .Tp; Zp=V /j D ŒZp W V �
�:

Proof. Fix an ordered basis ¹x; yº for T . Note that Œx; y� 2 Z is non-zero. Given
˛ 2 P , let

�
a b
c d

�
be the matrix of its image ˛T 2 GL.T / with respect to ¹x; yº.

We have
˛ � Œx; y� D Œax C cy; bx C dy� D .ad � bc/Œx; y�:

It follows that CZ.P / D Z if and only if F � SL.T /. It also follows that Z is
naturally an F -module.

We now show (2) and (3). Fix a prime p − jP j and a subgroup V 6ƒp Zp
of finite index. Note that (2) and (3) hold clearly for F D C1. Assume next that
F Š D1 and F 6� SL.T /. Then the generator of F has eigenvalues 1 and �1,
whence the ƒ-submodules TC WD CT .P / and T� WD ¹x 2 T W ˇ � x D �xº have
additive rank 1. It follows that � D 1. Next, since p ¤ 2, the decomposition

x D
x C ˛ � x

2
C
x � ˛ � x

2

holds in Tp and yields a decomposition Tp D .TC/p ˚ .T�/p. Since CZ.F / D 0
by (1), Lemma 2.3 implies that jHomƒp ..TC/p; Zp=V /j D 1. Thus,

jHomƒp .Tp; Zp=V /j D jHomƒp ..T�/p; Zp=V /j D ŒZp W V � D ŒZp W V �
�:

Assume now that C1 ¤ F D h˛T i � SL.T /. We have CT .˛/ D 0 since oth-
erwise 1 would be an eigenvalue of ˛T , which in turn implies that ˛T is the
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identity since ˛T 2 SL.T /. This is a contradiction as F ¤ C1. It follows that
� D 0. On the other hand, CZ.˛/ D Z by (1), and then Lemma 2.3 implies that
jHomƒp .Tp; Zp=V /j D 1 D jHomƒp .Tp; Zp=V /j

�.
Assume finally that F Š Dd with d 2 ¹2; 3; 4º. The intersection F \ SL.T /

is not the trivial group. Indeed, the product of any two elements of F is in SL.T /
and F has more than two elements. It follows from the previous case that � D 0
and jHomƒp .Tp; Zp=V /j D 1 D jHomP .Tp; Zp=V /j�. We have covered all the
cases, so the proof is complete.

Lemma 2.5. Assume thatN is a T2-group of Hirsch length 3. If U 6 Tp has finite
index, then ŒZp W ŒU; U �� D jŒZ W ŒN;N ��j�1p ŒTp W U �

Proof. Let ¹x; yº be a basis for the Zp-module Tp, and let U 6 Tp be a Zp-
submodule of finite index, say generated by ax C by and cx C dy. Note that
ŒTp; Tp� D ZpŒx; y� and ŒU; U � D ZpŒax C by; cx C dy� D Zp.ad � bc/Œx; y�.
Thus,

ŒZp W ŒU; U �� D ŒZp W ŒTp; Tp��jad � bcj
�1
p :

On the other hand, clearly ŒTp W U � D jad � bcj�1p . Thus,

ŒZp W ŒU; U �� D ŒZp W ŒTp; Tp��ŒTp W U �:

Finally, it is clear that ŒZp W ŒTp; Tp�� D jŒZ W ŒT; T ��j�1p D jŒZ; ŒN;N ��j
�1
p .

Theorem 2.6. Assume that N is a T2-group of Hirsch length 3. Let

F WD Im.P ! GL.T //

and E D T Ì F , which is a plane crystallographic group. If p − jP j, then

�Gp;6Gp
.s/ D �p.s � � � �/

�
�Ep;6Ep

.s/ � p�sC�C�jŒZ W ŒN;N ��js����p

� �Ep;6Ep
.2s � � � �/

�
;

where � WD rankZ.CT .F //, � is 0 or 1 according to whether F is included in
SL.T / or not, and �Ep;6Ep

.s/ is computed with respect to Tp C Ep.

Proof. Fix p − jP j. Any finite-index subgroup V 6 Zp is P -invariant, and

ŒZp W CZp .P /C V � is 1 or ŒZp W V �

according to whether CZ.P / is Z or 0, which in turn, by Lemma 2.4 (1), is trans-
lated into whether F � SL.T / or not. Thus, ŒZp W CZp .P /C V � D ŒZp W V �

�,
where � is as in the theorem. Next, by Lemma 2.4 (3),

jHomƒp .Tp; Zp=V /j D ŒZp W V �
�:
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Therefore, by Proposition 2.2,

�Gp;6Gp
.s/ D

X
U6ƒpTp; V6Zp

ŒU;U ��V

ŒTp W U �
�sŒTp W CTp .P /C U �ŒZp W V �

�sC�C�

D

X
U6ƒpTp

ŒTp W U �
�sŒTp W CTp .P /C U �

�

� X
V6Zp

ŒZp W V �
�sC�C�

�

X
V6pŒU;U �

ŒZp W V �
�sC�C�

�
D

X
U6ƒpTp

ŒTp W U �
�sŒTp W CTp .P /C U �

�
�
�p.s � � � �/ � ŒZp W pŒU;U ��

�sC�C��p.s � � � �/
�

D �p.s � � � �/
� X
U6ƒpTp

ŒTp W U �
�sŒTp W CTp .P /C U �

�
�
1 � p�sC�C�jŒZ W ŒN;N ��js����p

� ŒTp W U �
�sC�C�

��
;

where, in the last equality, we used Lemma 2.5. To complete the proof, we have
to show that

P
U6ƒpTp

ŒTp W U �
�sŒTp W CTp .F /C U � D �

Ep;6
Ep

.s/. However, this
follows from [6, Proposition 2.3 and Lemma 2.4].

Corollary 2.7. If p − jP j, then �GpGp .s/ is given in Table 1, where k D ŒZ W ŒN;N ��,
and for d 2 ¹3; 4; 6º, �d WN ! C is the extended residue class character,

�d .n/ D

8̂<̂
:

1 if n � 1 mod d
�1 if n � �1 mod d
0 otherwise;

;

and Lp.s; �d / D .1 � �d .p/p�s/�1 is the local factor at p of the Dirichlet L-
function of �d , L.s; �d / D

P1
nD1 �d .n/n

�s .
Therefore, if p − jP jŒZ W ŒN;N ��, then �Gp;6Gp

.s/ satisfies the functional equa-
tion

�Gp;6Gp
.s/jp!p�1 D

8̂̂<̂
:̂
.�1/3p�3sC3�Gp;6Gp

.s/ if F Š C1; C2;D2;

.�1/3p�3sC2�d .p/�
Gp;6
Gp

.s/ if F Š Cd ; d 2 ¹3; 4; 6º;

p�3sC3�Gp;6Gp
.s/ if F Š Dd ; d 2 ¹3; 4; 6º:

Proof. The formula for �Gp;6Gp
.s/ in each case follows from Theorem 2.6 and uses

the formula for �E;6E .s/ obtained in [13, Chapter 5] as a step in the computation
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of the subgroup zeta functions of the plane crystallographic group E (see also
[6, Section 4.1]). The computation of � was done in Lemma 2.4 (2). If in addi-
tion p − jP jŒZ W ŒN;N ��, then jŒZ W ŒN;N ��jp D 1 and the simplification of the
formula is straightforward. The functional equation follows by inspection of the
formula.

Corollary 2.8. �G;6G .s/ has abscissa of convergence in the set ¹3
2
; 2; 3º and admits

a meromorphic continuation to the whole plane. The same holds for �6
G.s/.

Proof. According to Table 1, there is a Dirichlet series Z.s/ D
Q
p Zp.s/ such

that

(a) it has abscissa of convergence in the set ¹3
2
; 2; 3º,

(b) it admits a meromorphic continuation to the whole plane,

(c) for any finite set of primes, say S , Z.s/ and
Q
p…S Zp.s/ have the same ab-

scissa of convergence,

(d) Z.s/ coincides with �G;6G .s/ except for a finite number of local factors.

Since an exceptional local factor �Gp;6Gp
.s/ is a rational function of p�s with ratio-

nal coefficients [4], it follows from (b) and (d) that �G;sG .s/ also has a meromophic
continuation to the whole plane. Moreover, �G;6G .s/ and Z.s/ have the same ab-
scissa of convergence. Indeed, by (c) and (d), it is enough to show that the abscissa
of convergence of each local factor of �G;6G .s/ is strictly less than the abscissa of
convergence of �G;6G .s/. Now, this follows from the fact that �G;6G .s/ is an Euler
product of cone integrals [24, Theorem 1]. This important property of cone inte-
grals was established in [5, Section 4], and it was a key point in obtaining analytic
properties of global zeta functions.

To prove the last assertion of the corollary, we apply the first part to each of the
partial zeta functions of �6

G.s/.

Remark 2.9. If F D C1 in Table 1, we recover [8, Proposition 8.1]. See also [9]
for a generalization.

2.2 Counting normal subgroups

We begin with some preliminaries from elementary group theory. LetG be, for the
moment, any group, and let N C G be a normal subgroup. We inductively define
a series of normal subgroups 1.G;N / � 2.G;N / � � � � by setting

1.G;N / WD N and i .G;N / WD Œi�1.G;N /;G� for i � 2:
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Lemma 2.10. Assume that G is finite and that N is a normal Hall subgroup. If
cC1.G;N / D 1 for some c, thenN has a unique complement, say C . In addition,
G D N � C and cC1.G/ \N D ¹1º.

Proof. By the Schur–Zassenhaus theorem, there is at least one complement of N
inG, and they are all conjugate. We prove that there is only one by induction on c.

Assume that c D 1, and let C be a complement of N in G. Since

ŒN; C � � ŒN;G� D 2.G;N / D 1;

it follows thatC is normal inNC D G, and therefore,C is the unique complement
of N .

Assume now that c > 1. By the inductive hypothesis, there is a unique com-
plement, say C 0=c.G;N /, of N=c.G;N / in G=c.G;N /. Given a complement
C of N in G, clearly .Cc.G;N //=c.G;N / is a complement of N=c.G;N /
in G=c.G;N /; thus Cc.G;N / D C 0. This implies that C is a complement of
c.G;N / inC 0. However, Œc.G;N /;C 0�� cC1.G;N /D 1, so by the case cD 1,
there is only one possibility for C . This completes the induction.

The final part of the lemma is clear.

Lemma 2.11. Assume that N is nilpotent, say of class c, and let A C G such that
AN D G. Then cC1.G/ � A; in particular, cC1.G;N / � A \N .

Proof. Note that B WD A \N is also normal in G, and there is an identification
G=B D N=B � A=B . It follows that

cC1.G=B/ D cC1.N=B/ � cC1.A=B/ D 1 � cC1.A=B/ � A=B:

Since cC1.G=B/ D .cC1.G/B/=B , we deduce that cC1.G/ � A. In particu-
lar, cC1.G;N / � cC1.G/ \N � A \N .

We return to the setting introduced at the beginning of the section except that we
do not yet assume that the nilpotency class is 2. We fix an intermediate normal sub-
group N 6 H C G and consider the series �Hp;CGp

.s/. Note that i .H;N / is nor-
mal in G for all i and that .i .H;N //p D i .Hp; Np/ and .i .H//p D i .Hp/
(cf. [15, Theorem 1.4]).

Proposition 2.12. Let c be the nilpotency class of N . Set G0 WD G=cC1.H;N /
and N 0 WD N=cC1.H;N /. If p − jH=N j, then

�Hp;CGp
.s/ D �

N 0p;C

G0p
.s/:
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In particular, if N 0p Š Zp=kZp for some k 2 Z, then

�Hp;CGp
.s/ D

1 � p�sjkjsp

1 � p�s
:

Proof. Let H 0 D H=cC1.H;N /. By Lemma 2.11, we have

�Hp;CGp
.s/ D �

H 0p;C

G0p
.s/;

where the series on the right is computed with respect to N 0p C G0p (this holds
for all p). Assume now that p − jH=N j. Given A0 6 H 0p of finite index and nor-
mal in G0p such that A0N 0p D H

0
p, the intersection B 0 WD N 0p \ A

0 is normal in G0p
and ŒN 0p W B

0� D ŒH 0p W A
0�. Conversely, given B 0 6 N 0p of finite index and nor-

mal in G0p, we have cC1.H 0p=B
0; N 0p=B

0/ D .cC1.H
0
p; N

0
p/B

0/=B 0 D 1 since
cC1.H

0
p; N

0
p/ D 1. Therefore, we can apply Lemma 2.10 to N 0p=B

0 C H 0p=B
0. It

follows that there is a unique A0 6 H 0p such that A0Np D H 0p and A0 \N 0p D B
0.

By the uniqueness, A0=B 0 is normal in G0p=B
0, and hence A0 is normal in G0p. We

deduce that
�
H 0p;C

G0p
.s/ D �

N 0p;C

G0p
.s/:

This proves the first part of the proposition.
If in addition N 0p Š Zp=kZp, then every finite-index subgroup of N 0p is char-

acteristic; therefore,
�
N 0p;C

G0p
.s/ D �6

Zp=kZp
.s/;

which is clearly equal to
1 � p�sjkjsp

1 � p�s
:

Corollary 2.13. �C
G.s/ and �N;CG .s/ have the same abscissa of convergence.

Proof. We have to show that, for each intermediate normal subgroupN 6H CG,
the abscissa of convergence of �H;CG .s/ is bounded by that of �N;CG .s/. We set

G0 WD G=
p
cC1.H;N / and N 0 WD N=

p
cC1.H;N /;

where p
cC1.H;N / WD ¹x 2 N W x

n
2 cC1.H;N / for some n 2 Nº:

By Proposition 2.12, �H;CG .s/ and �N
0;C

G0 .s/ have the same but a finite number of
local factors. By [24, Theorem 1], both series are Euler products of cone integrals.
As explained in the proof of Corollary 2.8, this suffices to ensure that �H;CG .s/

and �N
0;C

G0 .s/ have the same abscissa of convergence. Finally, it is clear that the
abscissa of convergence of �N

0;C
G0 .s/ is bounded by that of �N;CG .s/.
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Remark 2.14. We claim that if p − jH=N j, then

cC1.Hp; Np/ D Np \ cC1.Hp/I

in particular, ifHp=Np is nilpotent of class 6 c, then cC1.Hp; Np/ D cC1.Hp/.
Indeed, let B C Gp be a finite-index normal subgroup such that

cC1.Hp; Np/ � B � Np:

Since Np=B is a normal Hall subgroup of Hp=B and since

cC1.Hp=B;Np=B/ D .cC1.Hp; Np/B/=B D 1;

we obtain by Lemma 2.10 that cC1.Hp=B/ \Np=B D 1. It follows that

.cC1.Hp/B/ \Np � B;

and hence cC1.Hp/ \Np � B . Since Np=cC1.Hp; Np/ is residually finite, the
obvious inclusion cC1.Hp; Np/ � cC1.Hp/ \Np must be an equality.

We now return to the case when N is a T2-group. Recall the notation intro-
duced at the beginning of the section. Given V 6 Zp of finite index, we denote
by X.V / 6 Tp the largest subgroup such that ŒTp; X.V /� � V . It has finite index
in Tp, and if V is in addition P -invariant, then X.V / is also P -invariant. Proposi-
tion 2.12 allows us to focus only on the first partial zeta function

�N;CG .s/ D
X

BCGWB�N

ŒN W B��s;

the other ones being of the form �G
0;C

N 0 .s/ except for a finite number of local fac-
tors, where G0 is a quotient of G.

Proposition 2.15. Fix a prime p. Assume that all finite-index ƒp-submodules of
Tp are isomorphic. Assume also that, for every V 6ƒp Zp andU 6ƒp Tp of finite
index such that U � X.V /, there exists B C Gp of finite index such that B � Np,
.BZp/=Zp D U and B \Zp D V . Then

�Np;CGp
.s/ D � Tp;CEp

.s/
� X
V6ƒpZp

ŒTp W X.V /�
�sŒZp W V �

�s
jHomƒp .Tp; Zp=V /j

�
:

The above assumptions hold if p − jP j.
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Proof. The proof is similar to that of [8, Lemma 6.1], so we omit it. We just point
out that, given U 6ƒp Tp and V 6ƒp Zp of finite index with U � X.V /, the
number of normal subgroupsB CGp such that .BZp/=Zp DU andB \Zp D V
is equal to Homƒp .U;Zp=V /. This uses the second assumption and Lemma 2.1.
In addition, by the first assumption, Homƒp .U;Zp=V / D Homƒp .Tp; Zp=V /.

The first assumption is satisfied when p − jP j since in this caseƒp is a maximal
order of QpŒP ], and the second assumption is satisfied by Lemma 2.1.

We now specialize to the case of Hirsch length 3.

Lemma 2.16. Assume that N is a T2-group of Hirsch length 3. Given V 6 Zp of
finite index, the following holds:

(1) If ŒTp; Tp� � V , then ŒTp W X.V /� D 1.

(2) If V � ŒTp; Tp�, then ŒTp W X.V /� D jŒZ W ŒN;N ��j2pŒZp W V �
2.

Proof. The first assertion is trivial since in this case X.V / D Tp. Assume now
that V � ŒTp; Tp�. Let ¹x; yº be a basis for Tp. Given a Zp-submodule X 6 Tp of
finite index, say generated by ax C by and cx C dy, we have

ŒX; Tp� D haŒx; y�; bŒx; y�; cŒx; y�; d Œx; y�i:

Thus, ŒX; Tp� � V if and only if aŒx; y�; bŒx; y�; cŒx; y�; d Œx; y� 2 V . Since Œx; y�
generates ŒTp; Tp�, the previous condition holds if and only if

a; b; c; d 2
ŒZp W V �

ŒZp W ŒTp; Tp��
Zp;

which in turn is equivalent to saying that

X �
ŒZp W V �

ŒZp W ŒTp; Tp��
Tp:

Thus,

X.V / D
ŒZp W V �

ŒZp W ŒTp; Tp��
Tp:

The index of this subgroup is

ŒZp W V �
2
jŒZp W ŒTp; Tp��j

2
p D ŒZp W V �

2
jŒZ W ŒN;N ��j2p:
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Theorem 2.17. Assume that N is a T2-group of Hirsch length 3. Set

F WD Im.P ! GL.T // and E WD T Ì F;

which is a plane crystallographic group. If p − jP j, then

�Np;CGp
.s/ D � Tp;CEp

.s/

�
1 � jŒZ W ŒN;N ��j

s��
p

1 � p�sC�
C jŒZ W ŒN;N ��js��p �p.3s � �/

�
;

where � WD rankZ.CT .P //. In particular, if p − jP jŒZ W ŒN;N ��, then

�Np;CGp
.s/ D � Tp;CEp

.s/�p.3s � �/:

Proof. By Lemma 2.4, jHomƒp .Tp; Zp=V /j D ŒZp W V �
� for any V 6ƒp Zp,

where � D rankZ.CT .P //. It follows from Proposition 2.15 and Lemma 2.16 that

�Np;CGp
.s/ D � Tp;CEp

.s/
� X
ŒTp;Tp�¤V6Zp

ŒZp W V �
�sC�

C

X
V6ŒTp;Tp�

jŒZ W ŒN;N ��j�2sp ŒZp W V �
�3sC�

�

D � Tp;CEp
.s/

 vp.ŒTp;Tp�/�1X
kD0

p.�sC�/k

C

X
V6ŒTp;Tp�

jŒZ W ŒN;N ��j�2sp

� ŒZp W ŒTp; Tp��
�3sC�

� ŒŒTp; Tp� W V �
�3sC�

!
D � Tp;CEp

.s/

�
1 � jŒZ W ŒN;N ��j

s��
p

1 � p�sC�
C jŒZ W ŒN;N ��js��p �p.3s � �/

�
:

If in addition p − ŒZ W ŒN;N ��, then jŒZ W ŒN;N ��jp D 1, and the proof follows.

Corollary 2.18. If p − jP j, then the series �Np;CGp
.s/ is given as in Table 2, where

k WD ŒZ W ŒN;N ��. Therefore, if p − jP jŒZ W ŒN;N ��, then �Np;CGp
.s/ satisfies the

functional equation

�Np;CGp
.s/jp!p�1 D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.�1/3p�5sC3�Np;CGp
.s/ if F D C1;

.�1/3p�5sC1�Np;CGp
.s/ if F Š C2 D D1;

.�1/3�d .p/p
�5s�Np;CGp

.s/ if F Š Cd ; d 2 ¹3; 4; 6º;

.�1/3p�5s�Np;CGp
.s/ if F Š D2;

p�5s�Np;CGp
.s/ if F Š Dd ; d 2 ¹3; 4; 6º:
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Proof. This follows from Theorem 2.15 and uses the formula for �T ;CE .s/ obtained
in [13, Chapter 6] as a step in the computation of the normal zeta function of the
plane crystallographic group E (see also [6, Section 4.2]). The calculation of �
was done in Lemma 2.4. The local functional equation follows by inspection of
the formula.

Corollary 2.19. �N;CG .s/ has abscissa of convergence in the set ¹1
2
; 1; 2º and ad-

mits a meromorphic continuation to the whole plane. The same holds for �C
G.s/.

Proof. The assertion about �N;CG .s/ follows by inspection of Table 2 and the same
argument used in the proof of Corollary 2.8. Next, by Corollary 2.13, �C

G.s/ has the
same abscissa of convergence as �N;CG .s/. To complete the proof, it is enough to
show that, for each intermediate normal subgroup N 6 H C G different from N ,
the series �H;CG .s/ admits a meromorphic continuation to the whole plane. We
use the notation from the proof of Corollary 2.13 with c D 2. Since the local fac-
tor of �H;CG .s/ at a prime p is a rational function in p�s by [4], it is enough
to show that �N

0;C
G0 .s/ admits a meromorphic continuation to the whole plane. If

N 0 D N , then we are in the same situation as in the case of �NG .s/, so we are done.
If N 0 ¤ N , then either N 0 Š Z2, in which case the result follows from the for-
mulae of the normal zeta functions of the plane crystallographic groups given in
[13, Chapter 6], or else N 0 Š Z or N 0 D 0, in which case the result is trivial.

2.3 Remark on the local functional equations

A natural problem is to decide whether local functional equations hold for �G;6G .s/

and �N;CG .s/ when the Hirsch length of N is higher than 3. When G D N (in
which case the series are just �6

N .s/ and �C
N .s/), this is discussed in [25]. When

G ¤ N and N is abelian, the existence of local functional equations follows from
the explicit formulae obtained in [6, Section 2]. In contrast to the situation of
zeta functions of nilpotent groups, here the functional equations are not uniform
in p. They depend on how p ramifies in certain number fields that arise in the
decomposition of QŒG=N � into simple algebras. Propositions 2.2 and 2.15 enable
us to linearize the problem when the nilpotency class is 2 (indeed, the linearization
for �N;CG .s/ holds more generally by the Mal’cev correspondence). We will not go
into details. Briefly, the problem can be stated as follows. LetL be a not necessarily
associative ring additively isomorphic to Zh, and let P be a finite group acting on
L by ring automorphisms. We consider the Dirichlet series

�6
PÕL.s/ D

X
ŒL W B��sjDer.P;L=B/j and �C

PÕL.s/ D
X

ŒL W B��s;

where the first sum runs over the P -invariant finite-index subrings, and the sec-
ond one only over the P -invariant finite-index ideals. When L is an abelian Lie



Zeta functions of the 3-dimensional almost-Bieberbach groups 621

ring, �C
PÕL.s/ is a Solomon zeta function [23]. In general, the series �C

PÕL.s/ are
special cases of submodule zeta functions, as introduced by Rossmann in [19, Sec-
tion 2.2]. Corollaries 2.7 and 2.18 imply that, when L is a 2-step nilpotent Lie ring
of additive rank 3, �6

PÕL.s/ and �C
PÕL.s/ satisfy local functional equations. In

analogy with the results of [25], we might ask the following questions.

Question 1. Do �6
PÕL.s/ and �C

PÕL.s/ satisfy local functional equations when
L is a 2-step nilpotent Lie ring of rank greater than 3? Does �6

PÕL.s/ satisfy
local functional equations for arbitrary rings (not necessarily nilpotent) that are
additively isomorphic to some Zh?

We return to the case whenL is a 2-step nilpotent Lie ring additively isomorphic
to Z3. It is not difficult to check, say by inspection of Table 1 and the results of
[6, Section 2], that if we forget the structure of Lie ring on L (obtaining Z3)
and consider the Solomon zeta function �6

PÕZ3.s/, then �6
PÕL.s/ and �6

PÕZ3.s/

satisfy the same local functional equations. By this, and again in analogy with the
results of [25], we can also ask the following question.

Question 2. Let L be a ring additively isomorphic to Zh. Let P be a finite group
acting on L. If �6

PÕL.s/ satisfies local functional equations, are these equations
the same as those satisfied by �6

PÕZh.s/?

In a forthcoming paper, we show that Question 1 and Question 2 have positive
answer for various nilpotent Lie rings of rank 4.

3 Local zeta functions as p-adic integrals

Let Np be a torsion-free finitely generated nilpotent pro-p group, and let Gp be
a profinite group that includes Np as an open normal subgroup. Fix also an in-
termediate normal subgroup Np 6 Hp C Gp. We review a method, developed in
[8, Section 2] for T -groups and extended to virtually nilpotent groups in [24], to
express �Hp;6Hp

.s/ and �Hp;CGp
.s/ as p-adic integrals. This method is used in the next

sections to calculate local factors at “bad” primes in some cases.

3.1 Expressing �6

Np
.s/ and �C

Np
.s/ as p-adic integrals

An additional reference for this part is [12, Chapter 15], where the notation is more
adapted to ours. Fix a Mal’cev basis x D .x1; : : : ; xh/ for Np. By definition, the
series of subgroups

Np D hx1; : : : ; xhi � hx2; : : : ; xhi � � � � � hxhi
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is central, and each x 2 Np determines a unique vector a D .a1; : : : ; ah/ 2 Zhp
such that x D xa WD x

a1
1 � � � x

ah
h

.
Let Th.Zp/ denote the set of h� h-upper-triangular matrices with entries in Zp,

and let TC
h
.Zp/ � Th.Zp/ denote the subset of those matrices with non-zero de-

terminant. For t 2 Th.Zp/, we set Bt WD hxt1 ; : : : ; xthi 6 Np, where ti denotes
the i -th row of t. The subgroup Bt is open if and only if t 2 TC

h
.Zp/.

Given an open subgroup B 6 Np, we say that t 2 TC
h
.Zp/ represents a good

basis for B (with respect to x) if

B D Bt and B D ¹.xt1/�1 : : : .xth/�h W �1; : : : ; �h 2 Zpº:

In this case, .xt1 ; : : : ; xth/ is a Mal’cev basis forB (also called a good basis forB).
We set

M.B/ WD ¹t 2 Th.Zp/ W t represents a good basis for Bº

Note that, given t D .tij / 2M.B/, the value jti i jp depends only on B (and on the
fixed Mal’cev basis x). Indeed, we have jti i j�1p D Œhxi ; : : : ; xhi WB \ hxi ; : : : ; xhi�.
We also see from this that

ŒNp W B�
�1
D

hY
iD1

jti i jp: (3.1)

We collect results from [8, Section 2] in the next lemma. The topological group
Th.Zp/ Š Zh.hC1/=2p has a normalized Haar measure, which we denote by �.

Lemma 3.1. M.B/ is an open subset of Th.Zp/, and for any t D .tij / 2M.B/,

�.M.B// D .1 � p�1/h
hY
iD1

jti i j
i
p: (3.2)

Therefore, for a complex variable s,

ŒNp W B�
�s
D

1

.1 � p�1/h

Z
M.B/

hY
iD1

jti i j
s�i
p d�: (3.3)

Proof. The first part of the lemma is proved in [8, Lemma 2.5]; see also [12,
Lemma 15.1.1]. We recall here the proof of (3.3). We start from the right-hand
side and use (3.1) and (3.2):

1

.1 � p�1/h

Z
M.B/

hY
iD1

jti i j
s�i
p d� D

1

.1 � p�1/h

 
hY
iD1

jti i j
s�i
p

!
�.M.B//

D

hY
iD1

jti i j
s�i
p

hY
iD1

jti i j
i
p D ŒNp W B�

�s:
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We now set M6
N
WD
S
B6N M.B/, MC

N
WD
S
BCN M.B/, where the unions

run only over open subgroups. These are open subsets of TC
h
.Zp/, by Lemma 3.1.

They both coincide with TC
h
.Zp/ ifN is abelian. In the general case, the following

descriptions were given in [8, Lemmas 2.3 and 2.4]:

M6
Np
D ¹t 2 TC

h
.Zp/ W Œxti ; xtj � 2 hxtjC1 ; : : : ; xthi; 1 6 i < j 6 hº; (3.4)

MC
Np
D ¹t 2 TC

h
.Zp/ W Œxi ; xtj � 2 hxtjC1 ; : : : ; xthi; 1 6 i; j 6 hº:

As an immediate consequence of formula (3.3), we obtain the following corollary.

Corollary 3.2 ([8, Proposition 2.7]). For � 2 ¹6;Cº,

��Np .s/ D
1

.1 � p�1/h

Z
M�Np

hY
iD1

jti i j
s�i
p d�:

3.2 Expressing �Hp ;6
Hp

.s/ and �Hp ;C
Gp

.s/ as p-adic integrals

We begin with the following particular case, which is an immediate consequence
of (3.3).

Corollary 3.3. Let ˛1; : : : ; ˛r 2 Gp be such that their classes moduloNp generate
Gp=Np. Then

�Np;CGp
.s/ D

1

.1 � p�1/h

Z
t2MC

Np

j̨ .xti /2hxt1 ;:::;xth i;
iD1;:::;h; jD1;:::;r

hY
iD1

jti i j
s�i
p d�:

It remains to consider the case Hp ¤ Np. We set F WD Hp=Np and denote by
e its identity element. The following is fixed in the rest of this section.
� A presentation

hf1; : : : ; fr j R�.f1; : : : ; fr/ D e; � 2 J i

for the group F (fj ¤ e for all j ).
� Group words wf .X1; : : : ; Xr/, f 2 F , such that f D wf .f1; : : : ; fr/. In the

case f D fj (j D 1; : : : ; r), we just set wfj D Xj , and in the case f D e, we
set we D e, the empty word.

� A transversal ¹ f̌ W f 2 F º to the cosets of Np in Hp such that f̌Np D f for
all f 2 F and ˇe D 1 (the identity ofNp). We denote ˇi WD f̌i (this is why we
denoted the identity of F by e and not by 1).

� Elements ˛1; : : : ; ˛s 2 Gp whose classes modulo Np generate Gp=Np. Assume
that the first t of them (t 6 s), ˛1; : : : ; ˛t , generate Gp modulo Hp.
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Given A6Hp of finite index such that ANp DHp, the intersection A\Np �Np
is open and A can be written as

A D .A \Np/
[� [

f 2F n¹eº

f̌ nf .A \Np/
�

for some nf 2 Np:

Now, given an open subgroup B 6 Np and nf 2 Np for f 2 F n ¹eº, Lemma 3.4
below establishes necessary and sufficient conditions on the elements nf for the
set

A.B; .nf /f 2F n¹eº/ WD B
[� [

f 2F n¹eº

f̌ nf B
�

to be a subgroup of Gp. In this case, necessarily, A.B; .nf /f 2F n¹eº/Np D Hp.

Lemma 3.4. Fix an open subgroup B 6 Np and nf 2 Np for each f 2 F n ¹eº.
Let nj WD nfj . Then the set A WD A.B; .nf /f 2F n¹eº/ is a subgroup of Gp if and
only if the following three conditions are satisfied.

(1) ǰnjB � B for 1 6 j 6 r .

(2) R�.ˇ1n1; : : : ; ˇrnr/ 2 B for all � 2 J .

(3) f̌ nf 2 wf .ˇ1n1; : : : ; ˇrnr/B for all f 2 F n ¹e; f1; : : : ; frº.

Moreover, A is a normal subgroup of Gp if and only if (2), (3) and the following
four conditions are satisfied.

(4) B is normal in Np.

(5) ˛kB � B for 1 6 k 6 s.

(6) Œ ǰnj ; xi � 2 B for 1 6 j 6 r and 1 6 i 6 h.

(7) Œ˛k; ǰnj � 2 wŒ N̨k ;fj �.ˇ1n1; : : : ; ˇrnr/B for 1 6 k 6 t and 1 6 j 6 r , where
N̨k denotes the class of ˛k at Gp=Np.

Proof. Assume first that A is a subgroup of Gp. Then clearly B D A \Np, so B
is normal in A; in particular, (1) holds. Note that

R�.ˇ1n1; : : : ; ˇrnr/Np D R�.f1; : : : ; fr/ D e .2 F /;

and hence R�.ˇ1n1; : : : ; ˇrnr/ 2 A \Np D B; thus (2) holds. Similarly, f̌ nf
and wf .ˇ1n1; : : : ; ˇrnr/ have the same image at F , and hence (3) also holds.

Conversely, assume that conditions (1), (2) and (3) are satisfied for the collec-
tion .nf /f 2F n¹eº. Condition (1) implies that ǰnj 2 NHp .B/, the normalizer of
B in Hp, and then (3) implies that f̌ nf 2 NHp .B/ for all f 2 F n ¹eº. It fol-
lows that A � NHp .B/. Let A0=B denote the subgroup of NHp .B/=B generated
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by A=B . By (3), A0=B is generated by the classes of ˇ1n1; : : : ; ˇrnr , and by (2),
these generators satisfy the relations defining the presentation of F . It follows
that jA0=Bj 6 jF j. On the other hand, jA=Bj has exactly jF j elements. Thus,
A=B D A0=B , whence A D A0. We conclude that A is a subgroup of Gp. This
completes the proof of the first part of the lemma.

Assume now thatA is a normal subgroup ofGp. According to the first part of the
lemma, (2) and (3) are satisfied. Note that (4) and (5) also hold since B D A \Np
is also normal in Gp. Now, the normality of A implies that Œ ǰnj ; xi � 2 A, and the
normality of Np that Œ ǰnj ; xi � 2 Np; thus Œ ǰnj ; xi � 2 B D A \Np, whence (6)
is also satisfied. Finally, .wŒ N̨k ;fj �.ˇ1n1; : : : ; ˇrnr//

�1Œ˛k; ǰnj � is in A since A
is normal, and it is in Np since its image at Gp=Np is the identity. This shows that
(7) also holds.

Conversely, assume that (2) to (7) are satisfied. Note that (4) and (5) imply (1);
hence, according to the first part of the lemma, A is a subgroup. They also imply
that B is normal in Gp. We saw in the second paragraph of the proof that A=B
is generated by the classes of the elements ǰnj ; thus, by (6), Np=B is included
in NGp=B.A=B/. It follows that A=B is normal in Hp=B . Finally, by (7), A=B is
normal in Gp=B , and hence A is normal in Gp. This completes the proof of the
lemma.

We set more notation for the next proposition. We denote by Mk�h.Zp/ the set
of k � h-matrices with entries in Zp. Given v D .vij / 2 Mk�h.Zp/, its i -th row
vector .vi1; : : : ; vih/ 2 Zhp is denoted by vi . The normalized Haar measure of

Th.Zp/ �Mk�h.Zp/ Š ZkhCh.hC1/=2p

is denoted by �. Elements of Th.Zp/ �Mk�h.Zp/ are denoted .t; v/.

Proposition 3.5. It holds

�Hp;6Hp
.s/ D

1

.1 � p�1/h

Z
T Hp;6Hp

hY
iD1

jti i j
s�i�r
p d�;

�Hp;CGp
.s/ D

1

.1 � p�1/h

Z
T Hp;CGp

hY
iD1

jti i j
s�i�r
p d�;

where T Hp;6
Hp

� Th.Zp/ �Mr;h.Zp/ is the set of pairs .t; v/ such that t 2M6
Np

and

ǰ Œxvj ; xti �Œ ǰ ; xti �; R�.ˇ1xv1 ; : : : ; ˇrxvr / 2 hxt1 ; : : : ; xthi;

1 6 i 6 h; 1 6 j 6 r; � 2 J; (3.5)
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and T Hp;C
Gp

� Th.Zp/ �Mr;h.Zp/ is the set of pairs .t; v/ such that t 2MC
Np

and
˛k .xti /; R�.ˇ1xv1 ; : : : ; ˇrxvr /; ǰ Œxvj ; xi �Œ ǰ ; xi �;

.wŒ N̨l ;fj �.ˇ1xv1 ; : : : ; ˇrxvr //�1Œ˛l ; ǰ xvj � 2 hxt1 ; : : : ; xthi

1 6 k 6 s; 1 6 i 6 h; � 2 J; 1 6 j 6 r; 1 6 l 6 t: (3.6)

Proof. Throughout the proof, we shall refer repeatedly to conditions (1)–(7) of
Lemma 3.4. We will also use the same notation. The first part of this lemma es-
tablishes a bijection between the family FHp;6

Hp
of open subgroups A 6 Gp such

that ANp D Hp and the family of sequences .nf B/f 2F , where B is an open sub-
group of Np and the nf ’s are elements of N with ne D 1 such that (1), (2) and (3)
are fulfilled. As (3) simply expresses nf B in terms of n1B; : : : ; nrB (recall that
nj denotes nfj ), it follows that FHp;6

Hp
is in a bijection with the set, say T , of

sequences .B; n1B; : : : ; nrB/ for which conditions (1) and (2) are satisfied. Thus,

�Hp;6Hp
.s/ WD

X
A2FHp;6

Hp

ŒHp W A�
�s
D

X
.B;n1B;:::;nrB/2T

ŒNp W B�
�s: (3.7)

We now fix .B; n1B; : : : ; nrB/ 2 T and set

S.B; n1B; : : : ; nrB/ WD ¹v 2 Mr�h.Zp/ W .B; xv1B; : : : ; xvrB/

D .B; n1B; : : : ; nrB/º:

This is an open subset of Mr�h.Zp/ of Haar measure ŒNp W B��r . In fact, the
mapping Zhp ! Np given by a 7! xa is a homeomorphism that preserves the (nor-
malized) Haar measure (cf. [24, Lemma 2.4]), and the measure of each coset njB
is ŒNp W B��1. Combining this with Lemma 3.1 and formula (3.1), we deduce that
M.B/ � S.B; n1B; : : : ; nrB/ is an open subset of Th.Zp/ �Mr�h.Zp/ and that,
for any t D .tij / 2M.B/,

�
�
M.B/ � S.B; nf1B; : : : ; nfrB/

�
D .1 � p�1/h

hY
iD1

jti i j
i
p

hY
iD1

jti i j
r
p

D .1 � p�1/h
hY
iD1

jti i j
rCi
p :

It follows (again, using formula (3.1)) that

ŒNp W B�
�s
D

hY
iD1

jti i j
s
p

D .1 � p�1/�h
hY
iD1

jti i j
s�r�i
p �

�
M.B/ � S.B; nf1B; : : : ; nfrB/

�
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D
1

.1 � p�1/h

Z
M.B/�S.B;nf1B;:::;nfrB/

hY
iD1

jti i j
s�r�i
p d�:

This and (3.7) imply that

�Hp;6Hp
.s/ D

1

.1 � p�1/h

Z
T Hp;6Hp

hY
iD1

jti i j
s�r�i
p d�;

where

T Hp;6
Hp

WD

[
.B;n1B;:::;nrB/2T

M.B/ � S.B; n1B; : : : ; nrB/:

Note that this is the set of pairs .t; v/ 2 Th.Zp/ �Mr�h.Zp/ such that

(a) t 2M6
Np

and

(b) the elements nj WD xvj for j D 1; : : : ; r satisfy conditions (1) and (2) with
B D hxt1 ; : : : ; xthi.

These are precisely the conditions listed in (3.5) since

ǰ Œxvj ; xti �Œ ǰ ; xti � D Œ ǰ xvj ; xti �:

This proves the integral expression for �Hp;6Hp
.s/.

The expression for �Hp;CGp
.s/ is obtained similarly. This time we have to consider

sequences .nf B/f 2F such that conditions (2) to (7) are satisfied. Working as in
the previous case, we arrive at the expression

�Hp;CGp
.s/ D

1

.1 � p�1/h

Z
T Hp;CGp

hY
iD1

jti i j
s�r�i
p d�;

where T Hp;C
Gp

D
S

M.B/ � S.B; n1B; : : : ; nrB/, and the union runs over those
.B; n1B; : : : ; nrB/ with B open and normal in Np and the nj ’s satisfying (2), (5),
(6), (7). Therefore, T Hp;C

Gp
consists of the pairs .t; v/ such that

(a) t 2MC
Np

,

(b) ˛k .xti / 2 hxt1 ; : : : ; xthi for i D 1; : : : ; h and k D 1; : : : ; s and

(c) the elements nj WD xvj (j D 1; : : : ; r) satisfy conditions (2), (6) and (7).

Clearly (b) and (c) are equivalent to (3.6) since ǰ Œxvj ; xi �Œ ǰ ; xi � D Œ ǰ xvj ; xi �.
This completes the proof of the proposition.
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3.3 A method to simplify cone integrals

We end this section with an elementary observation that we will use frequently to
simplify the calculation of cone integrals.

Given m; n 2 N, we consider subsets of Zmp � Znp obtained as follows.

(i) Fix a measurable subset D0 � Zmp and rational functions

gi .T/ 2 Qp.T/ D Qp.T1; : : : ; Tm/; i D 1; : : : ; n;

such that gi .t/ 2 Zp whenever t 2 D0.

(ii) Given an integer i such that 1 6 i 6 n, assume that we have defined a mea-
surable subset Di�1 � Zmp � Zi�1p . Let

ki .T; V1; : : : ; Vi�1/; �i .T; V1; : : : ; Vi�1/ 2 Qp.T; V1; : : : ; Vi�1/

be rational functions such that

ki .t; v1; : : : ; vi�1/ 2 Zp and �i .t; v1; : : : ; vi�1/ 2 Z�p

whenever .t; v1; : : : ; vi�1/ 2 Di�1. We defineDi in one of the following two
ways:

I: Di D
®
.t; v1; : : : ; vi / 2 Zmp � Zip W .t; v1; : : : ; vi�1/ 2 Di�1;

gi .t/ j ki .t; v1; : : : ; vi�1/
C �i .t; v1; : : : ; vi�1/vi

¯
;

II: Di D
®
.t; v1; : : : ; vi / 2 Zmp � Zip W .t; v1; : : : ; vi�1/ 2 Di�1;

jgi .t/jp D jki .t; v1; : : : ; vi�1/
C �i .t; v1; : : : ; vi�1/vi jp

¯
:

(iii) We finally set D D Dn � Zmp � Znp .

We say that .D0; g1.T/; : : : ; gn.T// is the initial datum of definition ofD and call
.v1; : : : ; vn/ the sequence of pivots. A pivot vi is said to be of type I or type II
according to the way we choose to define Di .

Proposition 3.6. Let f0; g0 2 QpŒT� D QpŒT1; : : : ; Tm� be non-zero polynomials,
and consider the integralZ

D�Zmp �Znp

jf0.t/jspjg0.t/jp d�.t/; s 2 C; (3.8)

where D � Zmp � Znp is a measurable subset defined from a datum

.D0; g1.T/; : : : ; gn.T//
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and pivots .v1; : : : ; vn/. If the number of pivots of type II is r , thenZ
D

jf0.t/jspjg0.t/jp d�.t/ D .1 � p
�1/r

Z
D0

jf0.t/jsp
nY
iD0

jgi .t/jp d�.t/:

Proof. The integral (3.8) can be performed as follows. We start integrating with
respect to the variable vn. Note that

gn.t/ j kn.t; v1; : : : ; vn�1/C �n.v1; : : : ; vn�1/vn

if and only if vn 2 gn.t/Zp �
kn.t; v1; : : : ; vn�1/
�n.t; v1; : : : ; vn�1/

;

and the Haar measure of this set is jgn.t/jp. Similarly,

jgi .t/jp D jkn.t; v1; : : : ; vn�1/C �n.t; v1; : : : ; vn�1/vnjp

if and only if vn 2 gn.t/Z�p �
kn.t; v1; : : : ; vn�1/
�n.t; v1; : : : ; vn�1/

;

and the Haar measure of the this set is .1 � p�1/jgn.t/jp. To sum up, after integrat-
ing with respect to vn, the integrand is multiplied by jgn.t/jp or .1 � p�1/jgn.t/jp
according to whether vn is a pivot of type I or II, and the new domain of integration
is clearly Dn�1. We next integrate with respect to vn�1 and so on. After n steps,
we arrive at the desired form of the integral.

4 The formulae

We now present the complete formulae for the subgroup and normal zeta functions
of the 3-dimensional almost-Bieberbach groups, whose definition we recall below.
Proofs of these formulae will be left for the next two and last sections. For details
of the next discussion, we refer to [2].

Let N be a connected and simply connected nilpotent Lie group, and Aut.N /

the topological group of the Lie group automorphisms of N . The semi-direct prod-
uct N Ì Aut.N / acts on N in a canonical way by

.n;˛/x D n˛.x/ for all x; n 2 N and all ˛ 2 Aut.N /:

All maximal compact subgroups of Aut.N / are conjugate. We fix one of them, say
C � Aut.N /. A torsion-free uniform discrete subgroup G of N Ì C is called an
almost-Bieberbach group (abbreviated as AB-group). Note that the quotient space
GnN is a compact manifold of the same dimension as N , whose fundamental
group is identified with G. The dimension of G is defined as the dimension of N .
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When N D Rn and C D O.Rn/, the orthogonal group, we recover the definition
of Bieberbach group. The quotient space GnRn, with the metric induced from the
Euclidean space Rn, is a compact flat manifold.

The AB-groups were characterized algebraically as the finitely generated tor-
sion-free virtually nilpotent groups (cf. [2, Theorem 3.1.3]). If G is an AB-group,
then its Fitting subgroup Fitt.G/ (the maximal normal nilpotent subgroup of G) is
indeed maximal nilpotent. It follows that any intermediate subgroup

Fitt.G/ 6 H 6 G

is also an AB-group with Fitt.H/ D N . An AB-group G is a Bieberbach group if
and only if Fitt.G/ is abelian.

4.1 The 3-dimensional Bieberbach groups and their zeta functions

There are only ten 3-dimensional Bieberbach groups up to isomorphism (cf. [29,
Chapter 3]). They are listed below with their corresponding zeta functions ex-
pressed in terms of the partial zeta functions with respect to the Fitting subgroup
(which is always hx1; x2; x3i). The first six are the fundamental groups of the ori-
entable compact flat manifolds, and the last four are the fundamental groups of the
non-orientable ones. We have arranged the presentation so that �G6

G .s/ appears as
the first term in the formula of �6

G.s/ and ŒG W N��s�6
N .s/ as the last one. The

same holds for �C
G.s/.

The group

G1 D hx1; x2; x3 W Œx1; x2� D Œx1; x3� D Œx2; x3� D 1i

has zeta functions

�6
G1
.s/ D �C

G1
.s/ D �.s/�.s � 1/�.s � 2/:

The group

G2 D h˛; x1; x3; x3 W Œxi ; xj � D 1 for all i; j; ˛2 D x3; ˛x1 D x�11 ; ˛x2 D x
�1
2 i

has zeta functions

�6
G2
.s/ D �.s/�.s � 1/�.s � 2/.1 � 2�s/C 2�s�.s/�.s � 1/�.s � 2/

D �.s/�.s � 1/�.s � 2/;

�C
G2
.s/ D .1C 6 � 2�s C 4 � 4�s/.1 � 2�s/�.s/

C 2�s�.s/2�.s � 1/.1C 3 � 2�s/:
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The group

G3 D h˛;x1; x2; x3 W Œxi ; xj �D 1 for all i; j; ˛3 D x1; ˛x2 D x3; ˛x3 D x�12 x�13 i

has zeta functions

�6
G3
.s/ D .1 � 3�s/�.s/�.s � 1/L.s � 1; �3/C 3

�s�.s/�.s � 1/�.s � 2/;

�C
G3
.s/ D .1C 3 � 3�s/.1 � 3�s/�.s/C 3�s�.s/2L.s; �3/.1C 2 � 3

�s/:

The group

G4 D h˛; x1; x2; x3 W Œxi ; xj � D 1 for all i; j; ˛4 D x1; ˛x2 D x3; ˛x3 D x�12 i

has zeta functions

�6
G4
.s/ D �.s/�.s � 1/L.s � 1; �4/.1 � 2

�s/

C 2�s�.s/�.s � 1/�.s � 2/.1 � 2�s/

C 4�s�.s/�.s � 1/�.s � 2/;

�C
G4
.s/ D .1C 2 � 2�s/.1 � 2�s/�.s/

C 2�s.1C 2 � 2�s C 2 � 4�s/.1 � 2�s/�.s/

C 4�s�.s/2L.s; �4/.1C 2
�s/:

The group

G5 D h˛; x1; x2; x3 W Œxi ; xj � D 1 for all i; j; ˛6 D x1; ˛x2 D x3; ˛x3 D x�12 x3i

has zeta functions

�6
G5
.s/ D �.s/�.s � 1/L.s � 1; �3/.1 � 2

�s/.1 � 3�s/

C 2�s�.s/�.s � 1/L.s � 1; �3/.1 � 3
�s/

C 3�s�.s/�.s � 1/�.s � 2/.1 � 2�s/C 6�s�.s/�.s � 1/�.s � 2/;

�C
G5
.s/ D .1 � 2�s/.1 � 3�s/�.s/C 2�s.1C 3�s/.1 � 3�s/�.s/

C 3�s.1C 4�s/.1 � 2�s/�.s/C 6�s�.s/2L.s; �3/:

The group

G6 D h˛; ˇ; x1; x2; x3 W Œxi ; xj � D 1 for all i; j;

˛2 D x1;
˛x2 D x

�1
2 ; ˛x3 D x

�1
3 ;

ˇ2 D x2;
ˇx1 D x

�1
1 ; ˇx3 D x

�1
3 ; .˛ˇ/2 D x3i
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has zeta functions

�6
G6
.s/ D �.s � 1/3.1 � 2 � 2�s/3

C 3 � 2�s�.s/�.s � 1/�.s � 2/.1 � 2�s/

C 4�s�.s/�.s � 1/�.s � 2/;

�C
G6
.s/ D 1C 3 � 2�s.1C 2 � 2�s/.1 � 2�s/�.s/

C 4�s�.s/3.1C 4 � 2�s C 4�s/:

The group

B1 D h"; x1; x2; x3 W Œxi ; xj � D 1 for all i; j;

"2 D x1;
"x2 D x2;

"x3 D x
�1
3 i

has zeta functions

�6
B1
.s/ D �.s/�.s � 1/2.1 � 2�s/.1C 2�.s�1//

C 2�s�.s/�.s � 1/�.s � 2/;

�C
B1
.s/ D .1 � 2�s/.1C 2�.s�2//�.s/�.s � 1/

C 2�s.1C 3 � 2�s/�.s/2�.s � 1/:

The group

B2 D h"; x1; x2; x3 W Œxi ; xj � D 1 for all i; j;

"2 D x1;
"x2 D x2;

"x3 D x1x2x
�1
3 i

has zeta functions

�6
B2
.s/ D �.s/�.s � 1/2.1 � 2�s/.1 � 2 � 2�s C 8 � 4�s/

C 2�s�.s/�.s � 1/�.s � 2/;

�C
B2
.s/ D �.s/�.s � 1/.1 � 2�s/C 2�s�.s/2�.s � 1/.1 � 2�s C 4 � 4�s/:

The group

B3 D h˛; "; x1; x2; x3 W Œxi ; xj � D 1 for all i; j;

˛2 D x1;
˛x2 D x

�1
2 ; ˛x3 D x

�1
3 ;

"2 D x2;
"x1 D x1;

"x3 D x
�1
3 ; Œ"; ˛� D x2i
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has zeta functions

�6
B3
.s/ D �.s/�.s � 1/2.1 � 2�s/.1 � 4 � 4�s/

C 2 � 2�s�.s/�.s � 1/2.1 � 2�s/.1C 2 � 2�s/

C 2�s�.s/�.s � 2/�.s � 3/.1 � 2�s/

C 4�s�.s/�.s � 1/�.s � 2/;

�C
B3
.s/ D �.s/.1 � 2�s/.1C 3 � 2�s/

C 2�s�.s/2.1 � 2�s/.1C 2�s C 2 � 4�s/

C 2�s�.s/.1 � 2�s/.1C 2 � 2�s/

C 2�s�.s/2.1 � 2�s/.1C 5 � 2�s C 2 � 4�s/

C 4�s�.s/3.1C 4 � 2�s C 4�s/:

The group

B4 D h˛; "; x1; x2; x3 W Œxi ; xj � D 1 for all i; j;

˛2 D x1;
˛x2 D x

�1
2 ; ˛x3 D x

�1
3 ;

"2 D x2;
"x1 D x1;

"x3 D x
�1
3 ; Œ"; ˛� D x2x3i

has zeta functions

�6
B4
.s/ D �.s/�.s � 1/2.1 � 2�s/.1 � 2�.s�1//2

C 2�s�.s/�.s � 1/�.s � 2/.1 � 2�s/

C 2 � 2�s�.s/�.s � 1/2.1 � 2�s/.1C 2�.s�1//

C 4�s�.s/�.s � 1/�.s � 2/;

�C
B4
.s/ D 4�s�.s/3.1C 4 � 2�s C 4�s/C 2�s�.s/.1 � 2�s/.1C 2 � 2�s/

C 2�s�.s/2.1 � 2�s/.1C 2�s C 2 � 4�s/

C 2�s�.s/2.1 � 2�s/2.1C 2 � 2�s/C �.s/.1 � 2�s/:

4.2 The 3-dimensional almost-Bieberbach groups and their zeta functions

The 3-dimensional AB-groups with non-abelian Fitting subgroup were classified
in [3]; see also [2, Chapter 7]. They are arranged into seven families accord-
ing to the isomorphism type of G=Z.N/ (G is the AB-group and N the Fit-
ting subgroup), which is one of the plane crystallographic groups p1, p2, pg,
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p3, p4, p6, p2gg. They are listed below with their zeta functions expressed in
terms of the partial zeta functions with respect to the Fitting subgroup, which
is always hx1; x2; x3i. This time, the normal zeta function has been arranged so
that ŒG W N��s�N;CG .s/ appears as the first term in the formula and �G;CG .s/ as the
last one.

The group

Nk D hx1; x2; x3 W Œx2; x1� D x
k
3 ; Œx1; x3� D Œx2; x3� D 1i; k 2 N;

has zeta functions

�6
Nk
.s/ D

Y
p−k

�p.s/�p.s � 1/�p.2s � 2/�p.2s � 3/

�p.3s � 3/

�

Y
pjk

�
�p.s � 2/

�
�p.s/�p.s � 1/

� p�sC2jkjs�2p �p.2s � 2/�p.2s � 3/
��
;

�C
Nk
.s/ D

Y
p−k

�p.s/�p.s � 1/�p.3s � 2/

�

Y
pjk

�p.s/�p.s � 1/

�
1 � jkjs�2p

1 � p�sC2
C jkjs�2p �p.3s � �/

�
:

The group

Gp2;2k D h˛; x1; x2; x3 W Œx2; x1� D x
2k
3 ; Œx1; x3� D Œx2; x3� D 1;

˛2 D x3;
˛x1 D x

�1
1 ; ˛x2 D x

�1
2 i; k 2 N;

has zeta functions

�6
Gp2;2k

.s/ D
Y
p−2k

�p.s � 1/�p.s � 2/�p.2s � 1/�p.2s � 2/

�p.3s � 3/

�

Y
pjk;p¤2

�p.s/
�
�p.s � 1/�p.s � 2/

� p�sjkjsp�p.2s � 1/�p.2s � 2/
�

� �2.s/�2.s � 1/C 2
�s�6

N2k
.s/;

�C
Gp2;2k

.s/ D 2�s
Y
p−2k

�p.s/�p.s � 1/�p.3s/

�

Y
pjk;p¤2

�p.s/�p.s � 1/

�
1 � jkjsp

1 � p�s
C jkjsp�p.3s/

�
� �2.s/�2.s � 1/

�
1C

22�s.1 � jkjs2/

1 � 2�s
C �2.3s/2

2�s
jkjs2

�
C

Y
pjk;p¤2

�
1 � p�sjkjsp

1 � p�s

�
� .1C 6 � 2�s C 4 � 4�s/:
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The group

Gpg;2k D hˇ; x1; x2; x3 W Œx2; x1� D x
2k
3 ; Œx1; x3� D Œx2; x3� D 1;

ˇ2 D x2;
ˇx1 D x

�1
1 x�k3 ; ˇx3 D x

�1
3 i; k 2 N;

has zeta functions

�6
Gpg;2k

.s/ D
Y
p−2k

�p.s/�p.s � 1/�p.2s � 2/�p.2s � 3/

�p.3s � 3/

�

Y
pjk;p¤2

�p.s � 2/
�
�p.s/�p.s � 1/

� p�sC2jkjs�2p �p.2s � 2/�p.2s � 3/
�

� �2.s � 1/
�
�2.s � 2/.1 � jkj

s�2
2 /C �2.2s � 3/jkj

s�2
2

�
C 2�s�6

N2k
.s/;

�C
Gpg;2k

.s/ D 2�s
Y
p−2k

�p.s/
2�p.3s � 1/

�

Y
pjk;p¤2

�p.s/
2

�
1 � jkjs�1p

1 � p�sC1
C jkjs�1p �p.3s � 1/

�
� �2.s/

2
�
�2.s � 1/.1C 3 � 2

�s/.1 � jkjs�12 /

C �2.3s � 1/.1C 2
�s
C 6 � 4�s

� 2 � 8�s � 2 � 16�s/jkjs�12

�
C .1C .4C .�1/k2/ � 2�s C 4 � 4�s/.1 � 2�s/�.s/:

The group

Gp3;k;� D h; x1; x2; x3 W Œx2; x1� D x
k
3 ; Œx1; x3� D Œx2; x3� D 1;

3 D x�3;
x1 D x2;

x2 D x
�1
1 x�12 i;

with k 2 N and � 2 ¹1;�1º verifying k.k C �/ � 0 mod 3, has zeta functions

�6
Gp3;k;�

.s/ D
Y
p−3k

�p.s � 1/Lp.s � 1; �3/�p.2s � 1/Lp.2s � 1; �3/

Lp.3s � 2; �3/

�

Y
pjk;p¤3

�p.s/
�
Lp.s � 1; �3/�p.s � 1/

� p�sjkjspLp.2s � 1; �3/�p.2s � 1/
�

� �3.s � 1/C 3
�s�6

Nk
.s/;
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�C
Gp3;k;�

.s/ D 3�s
Y
p−3k

�p.s/�p.3s/Lp.s; �3/

�

Y
pjk;p¤3

�p.s/Lp.s; �3/

�
1 � jkjsp

1 � p�s
C jkjsp�p.3s/

�
�
�
�3.s/C 3�3.s/

�
3�s�3.s/.1 � jkj

s
3/

C 3�3s�3.3s/jkj
s
3

��
C

Y
pjk;p¤3

1 � p�sjkjsp

1 � p�s
� .1C 3 � 3�s/:

The group

Gp4;2k;� D h; x1; x2; x3 W Œx2; x1� D x
2k
3 ; Œx1; x3� D Œx2; x3� D 1;

4 D x�3;
x1 D x2;

x2 D x
�1
1 i;

with k 2 N and � 2 ¹1;�1º, has zeta functions

�6
Gp4;2k;�

.s/ D
Y
p−2k

�p.s � 1/Lp.s � 1; �4/�p.2s � 1/Lp.2s � 1; �4/

Lp.3s � 2; �4/

�

Y
pjk;p¤2

�p.s/
�
Lp.s � 1; �d /�p.s � 1/

� p�sjkjspLp.2s � 1; �d /�p.2s � 1/
�

� �2.s � 1/C 2
�s�6

Gp2;2k
.s/;

�C
Gp4;2k;�

.s/ D 4�s
Y
p−2k

�p.s/�p.3s/Lp.s; �4/

�

Y
pjk;p¤2

�p.s/Lp.s; �d /

�
1 � jkjsp

1 � p�s
C jkjsp�p.3s/

�
�
�
�2.s/C 2�2.s/

�
2�s�2.s/.1 � j2kj

s
2/

C 2�3s�2.3s/j2kj
s
2

��
C 2�s

Y
pjk;p¤2

1 � jkjspp
�s

1 � p�s
� .1C 2 � 2�s C 2 � 4�s/

C

Y
pjk;p¤2

1 � jkjspp
�s

1 � p�s
� .1C 2 � 2�s/:

The group

Gp6;2k;� D h; x1; x2; x3 W Œx2; x1� D x
2k
3 ; Œx1; x3� D Œx2; x3� D 1;

6 D x�3;
x1 D x2;

x2 D x
�1
1 x2i;
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k 2 N and � 2 ¹1;�1º verifying k.� C k/ � 0 mod 3, has zeta functions

�6
Gp6;2k;�

.s/ D
Y
p−6k

�p.s � 1/�p.2s � 1/Lp.s � 1; �3/Lp.2s � 1; �3/

Lp.3s � 2; �3/

�

Y
pjk;p−6

�p.s/
�
Lp.s � 1; �6/�p.s � 1/

� p�sjkjspLp.2s � 1; �6/�p.2s � 1/
�

� �3.s � 1/�2.2s � 2/

C 2�s�
Gp3;2k;�;6
Gp3;2k;�

.s/C 3�s�
Gp2;2k ;6
Gp2;2k

.s/C 6�s�6
N2k

.s/;

�C
Gp6;2k;�

.s/ D 6�s
Y
p−6k

�p.s/�p.3s/Lp.s; �3/

�

Y
pj2k;p¤3

�p.s/Lp.s; �3/

�
1 � j2kjsp

1 � p�s
C j2kjsp�p.3s/

�
�
�
�3.s/C �3.s/

�
3�s�3.s/.1 � jkj

s
3/

C 3�3s�3.3s/jkj
s
3

��
C 3�s

Y
pjk;p¤2

1 � p�sjkjsp

1 � p�s
� .1C 4�s/

C 2�s
Y

pjk;p¤3

1 � p�sj2kjsp

1 � p�s
� .1C 3�s/

C

Y
pjk;p−6

1 � p�sjkjsp

1 � p�s
:

The group

Gp2gg;4k D h˛; ˇ; x1; x2; x3 W Œx2; x1� D x
4k
3 ; Œx1; x3� D Œx2; x3� D 1;

˛2 D x3;
˛x1 D x

�1
1 x2k3 ;

˛x2 D x
�1
2 x�2k3 ;

ˇ2 D x1;
ˇx2 D x

�1
2 x2k3 ;

ˇx3 D x
�1
3 ;

.ˇ˛/2 D x2i; k 2 N;

has zeta functions

�6
Gp2gg;4k

.s/ D
Y
p−2k

�p.s � 1/
2�p.2s � 2/

2

�p.3s � 3/

�

Y
pjk;p¤2

�p.s � 1/
�
.�p.s � 1//

2

� p�sC1jkjs�1p .�p.2s � 2//
2
�

C 2 � 2�s�
Gpg;4k ;6
Gpg;4k

.s/C 2�s�
Gp2;4k ;6
Gp2;4k

.s/C 4�s�6
N4k

.s/;
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�C
Gp2gg;4k

.s/ D 4�s
Y
p−2k

�p.s/
2�p.3s/

�

Y
pjk;p¤2

�p.s/
2

�
1 � jkjsp

1 � p�s
C jkjsp�p.3s/

�
� �2.s/

2
�
�2.s/.1C 4 � 2

�s
C 4�s/.1 � jkjs2/

C �2.3s/.1C 5 � 2
�s
C 2 � 4�s

C 8�s � 16�s � 2 � 32�s/jkjs2
�

C 2�s
Y

pjk;p¤2

1 � p�sjkjsp

1 � p�s
� .1C 2 � 2�s/

C 2 � 2�s.1C 2 � 2�s/.1 � 2�s/�.s/C 1:

5 Computing the zeta functions of the 3-dimensional
Bieberbach groups

We prove the formulae presented in Section 4.1. Throughout this section, we de-
note by G the Bieberbach group under consideration and by N the Fitting sub-
group. We keep the notation introduced at the beginning of Section 2 except that
here N is not a T2-group but rather an abelian group (and it is in fact a ZŒP �-
module, where P D G=N ). Instead, we denote

Z D CN .P /; E D G=Z; T D N=Z:

The formula for the zeta functions of G1 are already known (see the introduc-
tion), so we focus here on the other groups. We mentioned that an intermediate
subgroup N 6 H 6 G is again a Bieberbach group with Fitting subgroup N .
Therefore, to prove the formula for �6

G.s/, it is enough to prove the one for �G;6G .s/.
The isomorphism classes of the intermediate subgroups N ¤ H ¤ G (if there are
any) will be identified when computing the partial zeta functions �H;CG .s/. The
following will be useful. If p − jG=N j, then

�Gp;6Gp
.s/ D �Ep;6Ep

.s/�6
Zp
.s/ D � Tp;CEp

.s � 1/�6
Zp
.s/; (5.1)

�Np;CGp
.s/ D � Tp;CEp

.s/�6
Zp
.s/;

�Hp;CGp
.s/ D �

Hp=Zp;C
Ep

.s/�6
Zp
.s/:

These follow immediately from the analysis in [6, Section 2]. When the rank of
Z is 1, then E is a plane crystallographic group, and we will be able to apply the
results of [13] (summarized in [6, Section 4]).
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When computing local factors at primes p j ŒG W N�, we will sometimes use the
method of p-adic integration with respect to the Mal’cev basis ¹x1; x2; x3º; specif-
ically, Corollary 3.3 and Proposition 3.5. In this case, M6

p DMC
p D TC3 .Zp/. The

following lemma, whose verification is straightforward, will be used to translate
the conditions defining the domains of integration into cone conditions.

Lemma 5.1. An element xv 2 Np is in hxt1 ; xt2 ; xt3i if and only if all of the follow-
ing hold.

(1) t11 j v1,

(2) t22 j � v1t11 t12 C v2,

(3) t33 j �
�.v1=t11/t12Cv2

t22
t23 �

v1
t11
t13 C v3.

5.1 Computing zeta functions of a family of groups including G2 and B1

Given positive integers a; b, we shall compute the zeta functions of

G D h˛; x1; : : : ; xa; xaC1; : : : ; xaCb W Œxi ; xj � D 1 for all i; j; ˛2 D xaCb;
˛xi D x

�1
i for i D 1; : : : ; a;

˛xi D xi for i D aC 1; : : : ; aC bi:

This, of course, includes the cases G D G2, G D B1. Here N D hx1; : : : ; xaCbi,
P Š C2 is generated by the class of ˛, and Z D CN .P / D hxaC1; : : : ; xaCbi.
Note that if U 6 Z 6 V 6 N , then U and V are P -submodules. We first prove
a series of lemmas. When working inside T or Z, we shall use additive notation.

Lemma 5.2. For V 6 Z of finite index, HomP .T;Z=V / D Hom.C a2 ; Z=V /, and
this set has ŒZ W 2Z C V � elements.

Proof. A group homomorphism 'WT ! Z=V is of P -modules if and only if
'.�x/ D '.x/ for all x 2 T , that is, '.2x/ D 0 for all x 2 T , or '.2T / D 0. This
implies the first equality. Next, note that

Hom.C a2 ; Z=V / D Hom
�
C a2 ;

��1
2
V
�
\Z/=V

�
;

whose size is Œ.1
2
V / \Z W V �a. Thus, the second equality follows from the fol-

lowing calculation:h�1
2
V
�
\Z W V

i
D ŒV \ 2Z W 2V �

D
ŒV W 2V �

ŒV W V \ 2Z�
D

ŒZ W 2Z�

Œ.V C 2Z/ W 2Z�
(5.2)

D ŒZ W V C 2Z�:
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Lemma 5.3. Let A 6 G be of finite index such that AN D G. Then the subgroup
B WD A \N is normal of finite index in G and xaCb 2 .B \Z/C 2Z. If in ad-
dition A is normal, then also x21 ; : : : ; x

2
a 2 B .

Conversely, given B 6 N of finite index and normal in G such that

xaCb 2 .B \Z/C 2Z;

the set ¹A 6 G W AN D G; A \N D Bº has ŒN W BZ�ŒZ W 2Z C .B \Z/� ele-
ments. If in addition x21 ; : : : ; x

2
a 2 B , then every A in the latter set is normal in G.

Proof. A subgroup A 6 G such that AN D G must contain ˛n for some n 2 N .
Then .˛n/2 2 A. It is easy to check that .˛n/2 D xaCb C 2z for some z 2 Z;
thus xaCb C 2z 2 B \Z, where B D A \N , or xaCb 2 .B \Z/C 2Z. Note
that B is clearly normal, and if A is also normal, then ŒN;G� D hx21 ; : : : ; x

2
ai is

included in B by Lemma 2.11. This proves the first part of the lemma.
We now fix B 6 N of finite index and normal in G and assume that

xaCb C 2z 2 B \Z for some z 2 Z;

which will be fixed. Let ¹w1; : : : ; wsº � hx1; : : : ; xai and ¹z1; : : : ; ztº � Z be
transversals to the cosets ofBZ inN and to the cosets ofB \Z inZ, respectively.
Then

¹wizj W 1 6 i 6 s; 1 6 j 6 tº

is a transversal to the cosets of B in N . A subgroup A 6 G such that AN D G
and A \N D B is of the form A D B [ ˛wizjB for uniquely determined wi
and zj . Now A D B [ ˛wizjB is a subgroup if and only if .˛wizj /2 2 B , that is,
xaCbz

2
j 2 B , or xaCb C 2zj 2 B \Z in additive notation. In turn, this is equiv-

alent to 2zj � 2z 2 B \Z, that is, zj � z 2 .12.B \Z// \Z. Therefore, only
Œ.1
2
.B \Z// \Z W B \Z� of the zj ’s are allowed. Since there is no restriction on

thewi ’s, the number of possibilities forA is ŒN W BZ�Œ.1
2
.B \Z// \Z W B \Z�,

which is equal to
ŒN W BZ�ŒZ W 2Z C .B \Z/�

by (5.2). If in addition ŒN;G� D hx21 ; : : : ; x
2
ai is included in B , then G=B is abel-

ian and hence A is normal. This completes the proof of the lemma.

Lemma 5.4. Fix U 6 T and V 6 Z of finite index. Then

j¹B C G W .BZ/=Z D U; B \Z D V ºj D ŒZ W V C 2Z�a:

If in addition 2T � U , then

j¹B C G W .BZ/=Z D U; B \Z D V; x21 ; : : : ; x
2
a 2 Bºj D ŒZ W V C 2Z�

d ;

where d D dimF2.U=2T /.
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Proof. Let QU be the pre-image of U in N . We are interested in the number of
P -invariant complements of Z=V in QU=V . One of them is clearly .U 0 C V /=V ,
where U 0 is the projection of QU onto hx1; : : : ; xai, and hence, by Lemma 2.1, the
number of them is

jHomP . QU=Z;Z=V /j D jHomP .U;Z=V /j D jHomP .T;Z=V /j:

This, in turn, is equal to ŒZ W V C 2Z�a by Lemma 5.2. This proves the first part
of the lemma.

To show the second part, we use additive notation in QU=V . There is no loss of
generality if we assume that U=2T is generated by the classes of x1; : : : ; xd . Let
Nxi denote the class of xi modulo V , i D 1; : : : ; a. We are interested in the number
of P -invariant complements of Z=V in QU=V that contain 2 Nx1; : : : ; 2 Nxa. One of
them is B0=V , where B0 D h Nx1; : : : ; Nxd ; 2 NxdC1; : : : ; 2 Nxai. To count how many
there are, we follow the proof of Lemma 2.1. A P -invariant complement is of the
form

B'=V D ¹x � '.x/ W x 2 B0=V º D h Nx1 � '. Nx1/; : : : ; Nxd � '. Nxd /;

2 NxdC1 � '.2 NxdC1/; : : : ; 2 Nxa � '.2 Nxa/i

for a uniquely determined

' 2 HomP .B0=V;Z=V / D Hom
�
B0=.2B0 C V /;Z=V

�
:

The last equality uses Lemma 5.2, which is possible since clearly B0=V Š T as
P -modules. Given ' as above, we have

2 Nxi D 2 Nxi � 2'. Nxi / 2 B'=V for i D 1; : : : ; d:

If it is also required that 2 NxdC1; : : : ; 2 Nxa 2 B'=V , we need '.2 Nxi / D 0 for all
i D d C 1; : : : ; a. Thus, the set of P -invariant complements ofZ=V in QU=V that
contain 2 Nx1; : : : ; 2 Nxa is in a bijection with

Hom
�
B0=.2B0 C h2xdC1; : : : ; 2xai C V /;Z=V

�
;

that is, with

Hom
�
hx1; : : : ; xd i

2hx1; : : : ; xd i
; Z=V

�
:

By Lemma 5.2, this set has ŒZ W V C 2Z�d elements. This completes the proof of
the lemma.
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We now show a combinatorial lemma. Let M be a finite-dimensional vector
space over F2. For a flag of subspaces ˇ W 0 D F0 ¤ F1 ¤ � � � ¤ Fl DM , the
length l is denoted by l.ˇ/. The set of all flags is denoted by F .M/.

Lemma 5.5. Let M be a non-zero finite-dimensional vector space over F2. ThenX
W6M

X
ˇ2F .M=W /

.�1/l.ˇ/ D 0: (5.3)

Let k � 0, and let M be a k-dimensional vector space over F2. ThenX
ˇ2F .M/

.�1/l.ˇ/ D .�1/k2

�
k
2

�
: (5.4)

Proof. If M has positive dimension, then any flag of M of length l produces
a flag of length l � 1 in M=W for some 0 ¤ W 6 M , and conversely, any flag
of M=W of length l � 1 extends to a flag of M of length l . This implies thatP
ˇ2F .M/.�1/

l.ˇ/ D �
P
0¤W6M

P
ˇ2F .M=W /.�1/

l.ˇ/, which yields (5.3).
We now prove (5.4) by induction on k. The case k D 0 is obvious, so we as-

sume that k > 0. Let Ak be the left-hand side and Bk the right-hand side. Note
that (5.3) implies that

Pk
iD0Ai

�
k
i

�
2
D 0. Here

�
k
i

�
2

denotes the 2-binomial coef-
ficient, which expresses the number of i -dimensional subspaces in a k-dimensional
vector space over F2. On the other hand, if we replace t by �1 in the 2-binomial
theorem

.1C t /.1C 2t/ � � � .1C 2k�1t / D

kX
iD0

2

�
i
2

��
k

i

�
2

t i (5.5)

we obtain that

0 D

kX
iD0

.�1/i2

�
i
2

��
k

i

�
2

D

kX
iD0

Bk

�
k

i

�
2

:

Since Ai D Bi for i < k by the inductive hypothesis, and since
�
k
k

�
2
D 1, it fol-

lows that Ak D Bk . This completes the induction.

Lemma 5.6. Let Z1 be a free abelian group of rank b, and let Z0 6 Z1 be a sub-
group such that 2Z1 � Z0. Then

X
V6Z1

VCZ0DZ1

ŒZ1 W V �
�s
D

 
bY
iD1

�.s � i C 1/

! 
d�1Y
kD0

.1 � 2k�s/

!
;

where d D dimF2 Z1=Z0: (5.6)
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Proof. By (5.3), the left-hand side of (5.6) becomesX
V6Z1

ŒZ1 W V �
�s
� X
Z0CV6W6Z1

X
ˇ2F .Z1=W /

.�1/l.ˇ/
�

D

X
Z06W6Z1

X
V6W

ŒZ W W ��sŒW W V ��s
� X
ˇ2F .Z1=W /

.�1/l.ˇ/
�
:

By (5.4), the latter becomes
bY
iD1

�.s � i C 1/
� X
Z06W6Z1

ŒZ W W ��s.�1/dimZ1=W 2

�
dimZ1=W

2

��

D

bY
iD1

�.s � i C 1/

 
dX
jD0

2�js
�
d

j

�
2

.�1/j 2

�
j
2

�!
:

Finally, by using (5.5) with k D d and t D �2�s , the last expression becomes the
right-hand side of (5.6).

Proposition 5.7. The partial zeta functions of G with respect to N are as follows:

�G;6G .s/ D

aY
iD1

�.s � i/ �

bY
jD1

�.s � j C 1/

�

 
bX
kD1

2.b�k/.aC1�s/
�
b � 1

k � 1

�
2

.1 � 2�s/ � � � .1 � 2k�1�s/

!
;

�G;CG .s/ D

aY
iD1

�.s � i C 1/ �

bY
jD1

�.s � j C 1/

�

 
bX
kD0

2.b�k/.s�a/
�
b

k

�
2

.1 � 2�s/ � � � .1 � 2k�1�s/

!
;

�N;CG .s/ D

bY
jD1

�.s � j C 1/

�

 
aX
iD0

2.a�i/.1�s/
�
a

i

�
2

 
bX
kD1

2.b�k/.iC1�s/
�
b � 1

k � 1

�
2

� .1 � 2�s/ � � � .1 � 2k�1�s/

!!
:

Proof. The first equality below uses Lemma 5.3, the second one Lemma 5.4, and
the last one Lemma 5.6:

�G;6G .s/ D
X

BCGWB�N
xaCb2.B\Z/C2Z

ŒN W B��sŒN W BZ�ŒZ W .B \Z/C 2Z�
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D

X
U6T;V6ZW
xaCb2VC2Z

ŒT W U ��sŒZ W V ��sŒZ W V C 2Z�aŒT W U �ŒZ W V C 2Z�

D �6
T .s � 1/

� X
2ZChxaCbi6Z16Z

ŒZ W Z1�
aC1�s

X
V6Z1

VC2ZDZ1

ŒZ1 W V �
�s
�

D

aY
iD1

�.s � i/

bX
kD1

� X
2ZChxaCbi6Z16Z

ŒZWZ1�D2
b�k

2.b�k/.aC1�s/

�

X
V6Z1

VC2ZDZ1

ŒZ1 W V �
�s
�

D

aY
iD1

�.s � i/ �

bY
jD1

�.s � j C 1/

�

 
bX
kD1

2.b�1�k/.aC1�s/
�
b � 1

k � 1

�
2

.1 � 2�s/ � � � .1 � 2k�1�s/

!
:

The proofs of the expressions for �N;CG .s/ and �G;CG .s/ are similar. In the first case,
we do not have to add the condition xaCb 2 V C 2Z or ŒT W U �ŒZ W V C 2Z� in
the second line. In the second case, we have to add the condition 2T 6 U and
replace ŒZ W V C 2Z�a by ŒZ W V C 2Z�dimF2 .U=T / in the second line.

5.2 Computing the zeta functions of G3, G4 and G5

Let G be any of the groups G3, G4 or G5. We set d D jG=N j. Note that Z D hx1i
and that E is the plane crystallographic group pd.

5.2.1 Local factors of �G;6
G

.s/

If p − d , then by (5.1), we have

�Gp;6Gp
.s/ D �Ep;6Ep

.s/�6
Zp
.s/;

and according to [13, Sections 5.10, 5.13, 5.16], the latter is equal to´
�p.s � 1/Lp.s � 1; �d /�p.s/ if d 2 ¹3; 4º;
�p.s � 1/Lp.s � 1; �3/�p.s/ if d D 6:

Assume now that p j d . We claim that ifA 6 Gp is open and satisfiesANp D Gp,
then Zp � A. Indeed, A contains ˛xv for some v 2 Z3p. Then

.˛xv/d D x
dv1C1
1 2 A;

and hence x1 2 A since dv1 C 1 2 Z�p . This proves the claim. It follows now that
�Gp;6Gp

.s/ D �Ep;6Ep
.s/. According to [13, Sections 5.10, 5.13, 5.16], this series is

equal to �p.s � 1/Lp.s � 1; �q/, where q D d if d 2 ¹3; 4º and q D 3 if d D 6.
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5.2.2 Local factors of �N;C
G

.s/

If p − d , then by (5.1), we have �Np;CGp
.s/ D �p.s/�

Tp;C
Ep

.s/, and according to [13,
Sections 6.10, 6.13, 6.16], the latter is equal to �p.s/Lp.s; �d /�p.s/ if d 2 ¹3; 4º
and to �p.s/Lp.s; �3/�p.s/ if d D 6.

Assume now that p j d . By Corollary 3.3, we have

�Np;CGp
.s/ D

1

.1 � p�1/3

Z
T

jt11j
s�1
p jt22j

s�2
p jt33j

s�3
p d�;

where T � TC3 .Zp/ is defined by the following equivalent conditions:

˛.xt1/x�t1 ; ˛.xt2/; ˛.xt3/ 2 hxt1 ; xt2 ; xt3i

” x
�t13�t12
2 x

t12�.rC1/t13
3 ; x

�t23
2 x

t22�rt23
3 2 hxt1 ; xt2 ; xt3i;

where r D 1 if d D 3, r D 0 if d D 4, and r D �1 if d D 6. Therefore, by Lem-
ma 5.1, the conditions defining T are

(1) t22 j �t12 � t13,

(2) t33 j t12Ct13t22
t23 C t12 � .r C 1/t13,

(3) t22 j t23,

(4) t33 j t23t22 t23 C t22 � rt23,

(5) t22 j �t33,

(6) t33 j t33t22 t23.

Note that (3) implies (6), and (4) can be written as

t33

t22
j

�
t23

t22

�2
� r

t23

t22
C 1:

Assume first that d 2 ¹3; 4º. One easily checks that T 2 � rT C 1 � 0 mod p,
in Zp, has �1 as a unique solution modulo p, and there are no solutions in Zp
for T 2 � rT C 1 � 0 mod p2. Therefore, (4) splits the domain of integration T

as a disjoint union T a [ T b according to the cases

(4a) jt22jp D jt33jp and

(4b) jpt22jp D jt33jp and p j t23
t22
C 1.

If we assume (4a), then (1) and (3) reduce (2) to t33 j t12 � .r C 1/t13, and
then (1) reduces (2) again to t33 j .r C 2/t13. Note that r C 2 D p. The conditions



646 D. Sulca

defining T a are, therefore, t22 j �t12 � t13, t22 j pt13, t22 j t23 and jt22jp D jt33jp,
and the integral over T a becomes

1

.1 � p�1/3

Z
T a
jt11j

s�1
p jt22j

2s�5
p d�

D
�p.s/

1 � p�1

Z
t22jpt13

jt22j
2s�2
p d� D �p.s/

�
1C p1�2s�p.2s/

�
;

where in the first equality we integrated with respect to t11 and applied Proposi-
tion 3.6 with the pivots t12; t23; t33.

If we now assume (4b), then (3) and (5) are redundant, and since r C 2 D p,
we see that (2) can be written as

t33 j

�
t23

t22
C 1

�
t12 C

�
t23

t22
C 1 � p

�
t13:

Using (1) and the assumption that jt33jp D jpt22jp and p j t23
t22
C 1, we can reduce

(2) to t33 j pt13, which is equivalent to t22 j t13. Thus, T b is defined by the con-
ditions t22 j �t12 � t13, t22 j t13, pt22 j t23 C t22 and jpt22jp D jt33jp, and the
integral over T b becomes

1

.1 � p�1/3

Z
T b
jt11j

s�1
p jt22j

2s�5
p p3�s d�

D
1

.1 � p�1/2

Z
jt11j

s�1
p jt22j

2s�1
p p1�s d� D p1�s�p.s/�p.2s/;

where in the first equality we used Proposition 3.6 with the pivots t12; t13; t23; t33.
We conclude that

�Np;CGp
.s/ D �p.s/

�
1C p1�2s�p.2s/C p

1�s�p.2s/
�

D �2p.s/
�
1C .p � 1/p�s

�
for d 2 ¹3; 4º and p j d:

Assume now that d D 6 (and hence r D �1). If p D 3, then the analysis is
the same as above except that the condition t22 j 3t13 in the description of T a

must be replaced by t22 j t13 since this time r C 2 D 1, and condition (4b) is now
j3t22j3 D jt33j3 and 3 j t23

t33
� 1 since 1 2 Z3 is the unique solution modulo 3 of

T 2C T C 1� 0 mod 3. Thus, T a is defined by t22 j �t12 � t13, t22 j t13, t22 j t23
and jt22j3 D jt33j3, and the integral over T a becomes

1

.1 � 3�1/3

Z
T a
jt11j

s�1
3 jt22j

2s�5
3 d�

D
1

.1 � 3�1/2

Z
jt11j

s�1
3 jt22j

2s�1
3 d� D �3.s/�3.2s/;

where in the first equality we used Proposition 3.6 with the pivots t12; t13; t23; t33.
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If we assume (4b), then (3) and (6) are redundant, and (2) can be written as

t33 j

�
t23

t22
C 1

�
t12 C

t23

t22
t13:

Since t23
t22

is a unit, we can use the previous condition and t22 j t33 to reduce (1) to
t22 j t12. Thus, the conditions defining T b are t22 j t12, 3t22 j . t23t22 C 1/t12C

t23
t22
t13,

3t33 j t23 � t33 and j3t22j3 D jt33j3, and the integral over T b becomes

1

.1 � 3�1/3

Z
T b
jt11j

s�1
3 jt22j

2s�5
3 33�s d�

D
1

.1 � 3�1/2

Z
jt11j

s�1
3 jt22j

2s�1
3 3�s d� D 31�s�3.s/�3.2s/;

where in the first equality we used Proposition 3.6 with the pivots t12; t23; t13; t33.
We conclude that

�
N3;C
G3

.s/ D �3.s/�3.2s/C 3
�s�3.s/�3.2s/ D �3.s/

2:

Assume finally that p D 2. Since there are no solutions in Z2 for

T 2 C T C 1 � 0 mod 2;

(4) is equivalent to jt33j2 D jt22j2 and (2) is reduced to t22 j t12. Thus, the con-
ditions defining T are t22 j �t12 � t13, t22 j t12, t22 j t23 and jt22j2 D jt33j2, and
the integral becomes

�N2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�1
2 jt22j

2s�5
2 d�

D
1

.1 � 2�1/2

Z
jt11j

s�1
2 jt22j

2s�1
2 d� D �2.s/�2.2s/;

where in the first equality we used Proposition 3.6 with the pivots t13; t12; t23; t33.

5.2.3 Local factors of �G;C
G

.s/

If p − d , then

ŒNp; Gp� D hx
�1
2 x3; x

�1
2 x�r�13 i D hx�12 x3; x

�r�2
3 i D hx2; x3i;

where the last equality holds since r C 2 2 Z�p . As Np=hx2; x3i Š Zp, we have
�Gp;CGp

.s/ D �p.s/ by Proposition 2.12.
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Assume now that p j d . Arguing as in the computation of �Gp;6Gp
.s/ (with p j d ),

we find that

�Gp;CGp
.s/ D �Ep;CEp

.s/;

and according to the results of [13, Sections 6.10, 6.13 and 6.16], this is equal to
1C p � p�s if d D 3 or 4, and to 1 if d D 6.

5.2.4 Local factors of �H;C
G

.s/ for d D 4 andH D h˛2; x1; x2; x3i

Note that H D G2. If p ¤ 2, then

ŒNp;Hp� D hx
2
2 ; x

2
2i D hx2; x2i;

and hence Np=hx2; x2i Š Zp. Therefore, by Proposition 2.12, �Hp;CGp
.s/ D �p.s/.

Assume that p D 2. An open subgroup A C G2 such that AN2 D H2 must
include Z2. Indeed, A contains ˛2xv for some v 2 Z32, and hence

.˛2xv/2 D x2v1C11 2 A;

or x1 2 A since 2t1 C 1 2 Z�2 . It follows that �H2;CG2
.s/ D �H2=Z2;CE2

.s/, and this
is equal to 1C 2 � 2�s C 2 � 4�s according to the results of [13, Section 6.10].

5.2.5 Local factors of �H;C
G

.s/ for d D 6 andH D h˛3; x1; x2; x3i

Note thatH D G2. Arguing as in Section 5.2.4, we get �Hp;CGp
.s/D �p.s/ if p ¤ 2,

and �H2;CG2
.s/ D �H2=Z2;CE2

.s/, which is equal to 1C4�s according to the results
of [13, Section 6.16].

5.2.6 Local factors of �K;C
G

.s/ for d D 6 and K D h˛2; x1; x2; x3i

Note that K D G3. Arguing as in the case d D 3 and K D G, we obtain that
�Kp;CGp

.s/ D �p.s/ if p ¤ 3, and that �K3;CG3
.s/ D �K3=Z3;CE3

.s/, which is equal to
1C 3�s according to the results of [13, Section 6.16].

5.3 Computing the zeta functions of G D G6

Note that Z D 0 and that N D hx1i ˚ hx2i ˚ hx3i is a decomposition of N into
a direct sum of irreducible ZŒP �-modules that are pairwise non-isomorphic.
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5.3.1 Local factors of �G;6
G

.s/

If p ¤ 2, then by using the above decomposition of N and the results of [6, Sec-
tion 2], we obtain that

�Gp;6Gp
.s/ D �p.s � 1/�p.s � 1/�p.s � 1/:

We now compute �G2;6G2
.s/. An open subgroup A 6 G2 such that AN2 D G2

must contain ˛xu, ˇxv and ˛ˇxw for some u; v;w 2 Z32, whence A contains the
squares of these elements, which are x2u1C11 , x2v2C12 and x2w3C13 . Since

2u1 C 1; 2v2 C 1; 2w3 C 1 2 Z�2;

it follows that A includes x1; x2; x3 and hence alsoN2. This implies that A D G2.
We conclude that �G2;6G2

.s/ D 1.

5.3.2 Local factors of �N;6
G

.s/

If p¤ 2, arguing as in the calculation of �Gp;6Gp
.s/, we find that �Np;CGp

.s/D �p.s/
3.

Assume now that p D 2. By Corollary 3.3, we have

�N2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�;

where T � TC3 .Z2/ is defined by the following equivalent conditions:

˛.xt1/x�t1 ; ˛.xt2/; ˛.xt3/; ˇ .xt1/xt1 ; ˇ .xt2/x�t2 ; ˇ .xt3/ 2 hxt1 ; xt2 ; xt3i

” x�2t122 x�2t133 ; x�t2 ; x�t3 ; x2t122 ; x�2t233 ; x�t3 2 hxt1 ; xt2 ; xt3i

” x�2t133 ; x2t122 ; x�2t233 2 hxt1 ; xt2 ; xt3i:

According to Lemma 5.1, these conditions are equivalent to

(1) t22 j 2t12,

(2) t33 j �2t12t22 t23,

(3) t33 j 2t13,

(4) t33 j 2t23.

We express T as a disjoint union T a [ T b according to the cases

(4a) t33 j t23 and

(4b) jt33j2 D j2t23j2.
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In the first case, (2) is redundant, and hence T a is defined by the conditions
t22 j 2t12, t33 j 2t13, t33 j t23. Thus,

1

.1 � 2�1/3

Z
T a
jt11j

s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�

D
�2.s/

.1 � 2�1/2

Z
t22j2t12
t33j2t13

jt22j
s�2
jt33j

s�2
2 d� D �2.s/.1C 2

1�s�2.s//
2:

Assume now (4b). Note that (2) becomes equivalent to t22 j t12, whence (1) is
redundant. Note also that (3) is equivalent to t23 j t13. Therefore, the conditions
defining T b are t22 j t12, t23 j t13 and jt33j2 D j2t23j2, and the integral over T b

becomes

1

.1 � 2�1/3

Z
T b
jt11j

s�1
2 jt22j

s�2
2 23�sjt23j

s�3
2 d�

D
�2.s/2

1�s

.1 � 2�1/2

Z
jt22j

s�1
2 jt23j

s�1
2 d� D 21�s�2.s/

3;

where in the second equality we used Proposition 3.6 with the pivots t12; t13; t33.
We conclude that

�N2;CG2
.s/ D �2.s/

�
.1C 21�s�2.s//

2
C 21�s�2.s/

2
�

D .1C 4 � 2�s C 4�s/�2.s/
3:

5.3.3 Local factors of �G;C
G

.s/

If p ¤ 2, then
ŒNp; Gp� D hx

2
1 ; x

2
2 ; x

2
3i D hx1; x2; x3i;

whence �Gp;CGp
.s/ D 1 by Proposition 2.12. If p D 2, then �G2;CG2

.s/ D 1 since
�G2;6G2

.s/ D 1, as shown in Section 5.3.1.

5.3.4 Local factors of �H;C
G

.s/ forH D h˛; x1; x2; x3i

Note that H Š G2. Arguing as in Section 5.2.4, we find that

�Hp;CGp
.s/ D �p.s/ and �H2;CG2

.s/ D �
H2=hx1i;C

G2=hx1i
.s/:

One easily checks that G=hx1i Š p2gg; therefore, the latter series is equal to
1C 2 � 2�s according to the results of [13, Section 6.7].
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5.3.5 Calculation of �K;C
G

.s/ and �L;C
G

.s/ for K D hˇ; x1; x2; x3i

and L D h˛ˇ; x1; x2; x3i

It is easy to check that .˛; ˇ; x1; x2; x3/ 7! .ˇ; ˛ˇ; x2; x3; x
�1
1 / defines an auto-

morphism of G that sends H onto K, and K onto L. Thus,

�K;CG .s/ D �L;CG .s/ D �H;CG .s/:

This series was computed in in Section 5.3.4.

5.4 Computing the zeta functions of G D B2

We call y1 D x3, y2 D x1 and y3 D x1x2 so that now the relations are "2 D y2,
"y3 D y3 and "y1 D y�11 y3. We will use this presentation. Note thatZDhy2;y3i,
and hence T Š Z.

5.4.1 Local factors of �G;6
G

.s/

If p ¤ 2, then by (5.1), we have �Gp;6Gp
.s/ D �6

Zp
.s/�p.s � 1/ D �p.s/�p.s � 1/

2.
Assume now that p D 2. By Proposition 3.5 with H D G, we have

�G2;6G2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�2
2 jt22j

s�3
2 jt33j

s�4
2 d�;

where T � TC3 .Z2/ � Z32 is the set of pairs .t; v/ satisfying the following equiva-
lent conditions:

".yt1/yt1 ; ".yt2/; ".yt3/; ."yv/2 2 hyt1 ; yt2 ; yt3i

” y2t122 y
t11C2t13
3 ; y2v2C12 y2v3Cv13 2 hyt1 ; yt2 ; yt3i:

According to Lemma 5.1, these conditions are equivalent to

(1) t22 j 2t12,

(2) t33 j �2t12t22 t23 C t11 C 2t13,

(3) t22 j 2v2 C 1,

(4) t33 j �2v1C1t22
t23 C 2v3 C v1.

Note that (3) is equivalent to t22 2 Z�2 , whence (1) is redundant. We now express
T as a disjoint union T a [ T b according to the cases

(a) t33 2 Z�2 and

(b) t33 2 2Z2.



652 D. Sulca

Note that T a is defined by t22; t33 2 Z�p , and hence

1

.1 � 2�1/3

Z
T a
jt11j

s�2
2 jt22j

s�3
2 jt33j

s�4
2 d� D �2.s � 1/:

In case (b), (2) can be written as t33
2
j �

t12
t22
t23 C

t11
2
C t13, and it implies that

t11 2 2Z2. By using Proposition 3.6 with the pivots t13; v1, the integral over T b

becomes

1

.1 � 2�1/3

Z
T b
jt11j

s�2
2 jt33j

s�4
2 d�

D
1

.1 � 2�1/2

Z
t11;t3322Z2

jt11j
s�2
2 2jt33j

s�2
2 d� D 23�2s�2.s � 1/

2:

We conclude that

�G2;6G2
.s/ D �2.s � 1/.1C 2

3�2s�2.s � 1//

D �2.s � 1/
2.1 � 2�s C 8 � 4�s/:

5.4.2 Local factors of �N;C
G

.s/

If p ¤ 2, then by (5.1), we have �Np;CGp
.s/ D �6

Zp
.s/�p.s/ D �p.s/

2�p.s � 1/.
Assume now that p D 2. By Corollary 3.3, we have

�N2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�;

where

T D ¹t 2 TC3 .Z2/ W
".yt1/yt1 ; ".yt2/; ".yt3/ 2 hyt1 ; yt2 ; yt3iº

D ¹t 2 TC3 .Z2/ W y
2t12
2 y

t11C2t13
3 2 hyt1 ; yt2 ; yt3iº:

By Lemma 5.1, the conditions defining T are equivalent to

(1) t22 j 2t12,

(2) t33 j �2t12t22 t23 C t11 C 2t13.

We can express T as a disjoint union T D T a [ T b according to the cases

(1a) jt22j2 D j2t12j2 and

(1b) t22 j t12.
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In the first case, the coefficient of t23 in (2) is a unit, so the integral over T a

becomes

22�s

.1 � 2�1/3

Z
T a
jt11j

s�1
2 jt12j

s�2
2 jt33j

s�3
2 d�

D
22�s

.1 � 2�1/2

Z
jt11j

s�1
2 2�2jt12j

s�1
2 jt33j

s�2
2 d�

D 2�s�2.s/
2�2.s � 1/;

where in the first equality we used Proposition 3.6 with the pivots t22; t23.
Assume now (1b). We express T b as a disjoint union T b D T b;i [ T b;i i ac-

cording to the sub-cases (i) t33 2 Z�2 and (ii) t33 2 2Z2. Note that T b;i is just
defined by t22 j t12 and t33 2 Z�2 , so the integral over T b;i becomes

1

.1 � 2�1/3

Z
T b;i
jt11j

s�1
2 jt22j

s�2
2 d�

D
1

.1 � 2�1/2

Z
jt11j

s�1
2 jt22j

s�1
2 d� D �2.s/

2:

In sub-case (ii), condition (2) implies that t11 2 2Z2, whence T b;i i is defined by
the conditions

2 j t11; 2 j t33; t22 j t12 and
t33

2
j �
t12

t22
t23 C

t11

2
C t13:

By using Proposition 3.6 with the pivot t13, the integral over T b;i i becomes

1

.1 � 2�1/3

Z
T b;ii
jt11j

s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�

D
1

.1 � 2�1/3

Z
t11;t3322Z2

jt11j
s�1
2 jt22j

s�1
2 2jt33j

s�2
2 d�

D 22�2s�2.s/
2�2.s � 1/:

We conclude that

�N2;CG2
.s/ D �2.s/

2
�
2�s�2.s � 1/C 1C 2

2�2s�2.s � 1/
�

D �2.s/
2�2.s � 1/.1 � 2

�s
C 4 � 4�s/:

5.4.3 Calculation of �G;C
G

.s/

Note that ŒN;G� D y�21 y3 and G=ŒN;G� Š Z2. By Proposition 2.12, we have

�G;CG .s/ D �
G=ŒN;G�;C
G=ŒN;G�

.s/ .with respect to N=ŒN;G�/:
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Applying Lemma 5.6 with Z1 D G=ŒN;G� and Z0 D N=ŒN;G�, we obtain that
�G;CG .s/ D �.s/�.s � 1/.1 � 2�s/.

5.5 Computing the zeta functions of G D B3

Note that Z D hx1i. One can easily check that E D G=Z is the plane crystallo-
graphic group p2mg.

5.5.1 Local factors of �G;6
G

.s/

If p ¤ 2, then by (5.1), we have

�Gp;6Gp
.s/ D �p.s/�

E2;6
E2

.s/;

which is equal to �p.s/�p.s � 1/2 according to the results of [13, Section 5.6].
We now compute �G2;6G2

.s/. An open subgroup A C G2 such that AN2 D G2
must contain ˛xv for some v 2 Z32, and hence it contains .˛xv/2 D x2v1C11 . Since
2v1 C 1 2 Z�2 , we deduce thatZ2 � A. Therefore, �G2;6G2

.s/ D �E2;6E2
.s/, which is

equal to .1C 21�s/�2.s � 1/ according to [13, Section 5.6].

5.5.2 Local factors of �N;C
G

.s/

If p ¤ 2, then by (5.1), we have

�Np;CGp
.s/ D �p.s/�

T2;C
E2

.s/;

which is equal to �p.s/3 according to [13, Section 6.6].
Assume now that p D 2. By Corollary 3.3,

�N2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�;

where T � T3.Z2/ is defined by the following equivalent conditions:

˛.xt1/x�t1 ; ˛.xt2/; ˛.xt3/; ".xt1/x�t1 ; ".xt2/x�t2 ; ".xt3/ 2 hxt1 ; xt2 ; xt3i

” x2t122 x2t133 ; x�t2 ; x�t3 ; x2t133 ; x2t233 ; x�t3 2 hxt1 ; xt2 ; xt3i

” x2t122 ; x2t133 ; x2t233 2 hxt1 ; xt2 ; xt3i:

This is the same integral that showed up in Section 5.3.2 when p D 2, so the result
is .1C 4 � 2�s C 4�s/�2.s/3.



Zeta functions of the 3-dimensional almost-Bieberbach groups 655

5.5.3 Local factors of �G;C
G

.s/

If p ¤ 2, then
ŒNp; Gp� D hx

2
2 ; x

2
3i D hx2; x3i;

whence Np=ŒNp; Gp� Š Zp. Thus, by Proposition 2.12, �Gp;CGp
.s/ D �p.s/.

Assume now that p D 2. By the same argument used in the calculation of
�G2;6G2

.s/ in Section 5.5.1, we have

�G2;CG2
.s/ D �E2;CE2

.s/;

which is equal to 1C 4 � 2�s according to [13, Section 6.6].

5.5.4 Local factors of �H;C
G

.s/ forH D h˛; x1; x2; x3i

Note that H D G2. Arguing as in Section 5.2.4, we find that �Hp;CGp
.s/ if p ¤ 2,

and that �H2;CG2
.s/ D �H2=Z2;CE2

.s/. The latter series is equal to 1C 21�s according
to [13, Section 6.6].

5.5.5 Local factors of �K;C
G

.s/ for K D h"; x1; x2; x3i

Note that K D B2. If p ¤ 2, then by (5.1), we have

�Kp;CGp
.s/ D �6

Zp
.s/�Kp=Zp;CEp

.s/;

which is equal to �p.s/�p.s/ according to [13, Section 6.6].
Assume that p D 2. We claim that if A C G2 is open and satisfies AN2 D K2,

then it must include hx2i. Indeed, A includes ŒK2; K2� D hx23i by Lemma 2.11. It
also contains "xv for some v 2 Z32, whence it contains Œ˛; "xv� D x2v2C12 x2v33 . It
follows that x2v2C12 2 A and hence x2 2 A. Therefore,

�K2;CG2
.s/ D �

K2=hx2i;C

G2=hx2i
.s/:

We claim that this series is equal to

�
K2=hx2i;C

K2=hx2i
.s/:

Indeed, ˛ and " commute in G2=hx2i and their actions on N2=hx2i are the same;
thus a normal subgroup ofK2=hx2i is already normal inG2=hx2i. Finally, observe
that K=hx2i is isomorphic to the plane crystallographic group pm. According to
the results of [13, Section 6.3], we obtain that

�K2;CG2
.s/ D .1C 5 � 2�s C 2 � 4�s/�2.s/:
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5.5.6 Local factors of �L;C
G

.s/ for L D h"˛; x1; x2; x3i

Note that L D B2. If p ¤ 2, then by (5.1), we have

�Lp;CGp
.s/ D �p.s/�

Lp=Zp;C
Ep

.s/:

This is equal to �p.s/�p.s/ according to the results of [13, Section 6.6].
Assume now that p D 2. By Proposition 3.5 (with H D L), we have

�L2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�2
2 jt22j

s�3
2 jt33j

s�4
2 d�;

where T � TC3 .Z2/ � Z32 is the set of pairs .t; v/ satisfying the following equiva-
lent conditions:
˛.xt1/x�t1 ; ˛.xt2/; ˛.xt3/; ".xt1/x�t1 ; ".xt2/x�t2 ; ".xt3/

."˛xv/2; Œ"˛; x1�; Œ"˛; x2�; Œ"˛; x3�; Œ˛; "˛xv� 2 hxt1 ; xt2 ; xt3i;

” x�2t122 x�2t133 ; x�t2 ; x�t3 ; x�2t133 ; x�2t233 ; x�t3 ;

x2v1C11 x2v33 ; x22 ; x
2v2C1
2 x

�2v3
3 2 hxt1 ; xt2 ; xt3i;

” x2t133 ; x2t233 ; x2v1C11 x2v33 ; x22 ; x2x
�2v3
3 2 hxt1 ; xt2 ; xt3i:

By Lemma 5.1, these conditions are equivalent to

(1) t33 j 2t13,

(2) t33 j 2t23,

(3) t11 j 2v1 C 1,

(4) t22 j �2v1C1t11
t12,

(5) t33 j 2v1C1t11t22
t12t23 �

2v1C1
t11

t13 C 2v3,

(6) t22 j 2,

(7) t33 j 2t22 t23,

(8) t22 j 1,

(9) t33 j � 1
t22
t23 � 2v3.

Note that (3) and (8) are equivalent to t11; t22 2 Z�2 , and hence (4) and (6) are
redundant. Notice also that (2) implies (7). To sum up, T is defined by (1), (2),
(5), (9) and t11; t22 2 Z�2 . We express T as a disjoint union T a [ T b according to
the cases

(2a) t33 j t23 and

(2b) jt33j2 D j2t23j2.



Zeta functions of the 3-dimensional almost-Bieberbach groups 657

If we assume (2a), then (9) can be replaced by t33 j 2v3, and then (5) can be
replaced by t33 j t13, which makes (1) redundant. Thus, the conditions defining
T a are t11; t22 2 Z�2 , t33 j t13, t33 j t23 and t33 j 2v3, and the integral over T a

becomes

1

.1 � 2�1/3

Z
T a
jt33j

s�4
2 d� D

1

1 � 2�1

Z
t33j2v3

jt33j
s�2
2 d� D 1C 21�s�2.s/:

If we assume (2b), then (9) implies 2 j t23. Note also that (1) and (9) can be
replaced by

(10) t23 j t13 and

(90) t23 j � t23
2t22
� v3,

and the latter implies that t23 j 2v3. This enables us to replace (5) by

(50) 2 j 2v1C1
t11t22

t12 �
2v1C1
t11

t13
t23
�
2v3
t23

.

The conditions defining T b are, therefore, t11; t22 2 Z�2 , 2 j t23, jt33j2 D j2t23j2,
(10), (50) and (90), and the integral over T b becomes

1

.1 � 2�1/3

Z
T b
j2t23j

s�4
2 d� D

1

1 � 2�1

Z
2jt23

24�sjt23j
s�1
2 2�3 d�

D 21�2s�2.s/;

where in the first equality we first applied Proposition 3.6 with the pivots t11, t22,
t13, t12, t33, v3.

Therefore,

�L2;CG2
.s/ D 1C 21�s�2.s/C 2

1�2s�2.s/ D �2.s/.1C 2
�s
C 2 � 4�s/:

5.6 Computing the zeta functions of G D B4

Note that Z D hx1i. One can easily check that E D G=Z is the plane crystallo-
graphic group p2gg.

5.6.1 Local factors of �G;6
G

.s/

If p ¤ 2, then by (5.1), we have �Gp;6Gp
.s/ D �p.s/�

Ep;6
Ep

.s/, and according to the
results of [13, Section 5.7], the latter is equal to �p.s/�p.s � 1/2.

Assume that p D 2. An open subgroup A 6 G2 such that AN2 D G2 contains
˛xv for some v 2 Z32, whence .˛xv/2 D x2v1C11 2 A. Since 2v1 C 1 2 Z�2 , we
conclude that Z2 � A. It follows that �G2;6G2

.s/ D �E2;6E2
.s/, which is 1 according

to [13, Section 5.7].
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5.6.2 Calculus of �N;C
G

.s/

Note that N , as ZŒP �-module, is isomorphic to the analogue module in the case
G D B3. Therefore, �N;CG .s/ D �.s/3.1C 4 � 2�s C 4�s/ according to the result
of Section 5.5.2.

5.6.3 Local factors of �G;C
G

.s/

If p ¤ 2, then
ŒNp; Gp� D hx

2
2 ; x

2
3i D hx2; x3i;

whence Np=ŒNp; Gp� Š Zp. Thus, by Proposition 2.12, �Gp;CGp
.s/ D �p.s/.

Assume now that p D 2. If A C G2 is open and satisfies AN2 D G2, then A
contains ˛xv and "xw for some v;w 2 Z32, whence it contains both

.˛xv/2 D x2v1C11 and .ˇxw/2 D x
2w1
1 x

2w2C1
2 :

Since 2v2 C 1; 2w2 C 1 2 Z�2 , we conclude that x1; x2 2 A. In addition, we have
ŒG2;G2��A by Lemma 2.11; in particular x2x3 2A. It follows that x1;x2;x3 2A
and hence A D G2. Thus, �G2;CG2

.s/ D 1.

5.6.4 The local factors of �H;C
G

.s/ forH D h˛; x1; x2; x3i

Note that H Š G2. Arguing as in Section 5.2.4, we find that

�Hp;CGp
.s/ D �p.s/ and �H2;CG2

.s/ D �H2=Z2;CE2
.s/:

The latter series is equal to 1C 2 � 2�s according to the results of [13, Section 6.7].

5.6.5 Local factors of �K;C
G

.s/ for K D h"; x1; x2; x3i

Note that K D B2. If p ¤ 2, then by (5.1), we have

�Kp;CGp
.s/ D �p.s/�

Kp=Zp;C
Ep

.s/;

which is equal to �p.s/�p.s/ according to the results of [13, Section 6.7].
Assume now that p D 2. By Proposition 3.5 with H D K, we have

�K2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�2
2 jt22j

s�3
2 jt33j

s�4
2 d�;
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where T � TC3 .Z2/ � Z32 is the set of pairs .t; v/ satisfying the following equiva-
lent conditions:

˛.xt1/x�t1 ; ˛.xt2/; ˛.xt3/; ".xt1/x�t1 ; ".xt2/x�t2 ; ".xt3/

."xv/2; Œ"; x1�; Œ"; x2�; Œ"; x3�; Œ˛; "xv� 2 hxt1 ; xt2 ; xt3i

” x�2t122 x�2t133 ; x�t2 ; x�t3 ; x�2t133 ; x�2t233 ; x�t3 ;

x2v11 x2v2C12 ; x23 ; x
�1�2v2
2 x

�1C2v3
3 2 hxt1 ; xt2 ; xt3i

” x2t122 ; x2v11 x�13 ; x23 ; x
�1�2v2
2 x�13 2 hxt1 ; xt2 ; xt3i:

By Lemma 5.1, these conditions are equivalent to

(1) t22 j 2t12,

(2) t33 j 2t12t22 t23,

(3) t11 j 2v1,

(4) t22 j �2v1t11 t12,

(5) t33 j 2v1t11 .
t12
t22
t23 � t13/ � 1,

(6) t33 j 2,

(7) t22 j �1 � 2v2,

(8) t33 j 1C2v2t22
t23 � 1.

Note that (7) is equivalent to t22 2 Z�2 , whence (1) and (4) are redundant and (6)
implies (2). We express T as a disjoint union T a [ T b according to the cases

(3a) t11 j v1 and

(3b) jt11j2 D j2v1j2.

In case (3a), (6) reduces (5) to the condition t33 j �1, that is, t33 2 Z�2; hence
T a is defined by t11 j v1, t22; t33 2 Z�2 . The integral over T a becomes

1

.1 � 2�1/3

Z
T a
jt11j

s�2
2 d� D

1

1 � 2�1

Z
jt11j

s�1
2 d� D �2.s/:

We now assume (3b). Note that T b is defined by jt11j2 D j2v1j2, t22 2 Z�2 , (5),
(6) and (8), and the integral over T b becomes

1

.1 � 2�1/3

Z
T b
j2v1j

s�2
2 jt33j

s�4
2 d�

D
1

.1 � 2�1/2

Z
t33j2

22�sjvjs�22 2�2jt33j
s�2
2 d�

D .1C 2 � 2�s/2�s�2.s/;
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where in the second equality we applied Proposition 3.6 with the pivots t11, t22,
t13, t23.

We conclude that

�K2;CG2
.s/ D �2.s/C .1C 2

�.s�1//2�s�2.s/ D .1C 2
�s
C 2 � 4�s/�2.s/:

5.6.6 Local factors of �L;C
G

.s/ for L D h"˛; x1; x2; x3i

Note that L Š B2. If p ¤ 2, then by (5.1), we have

�Lp;CGp
.s/ D �p.s/�

Lp=Zp;C
Ep

.s/;

which is equal to �p.s/�p.s/ according to the results of [13, Section 6.7].
Assume now that p D 2. We claim that any A C G2 that is open and satisfies

AN2 D L2 must include hx1x2; x2x3; x22i. Indeed, A includes ŒG2; N2� D hx22i
by Lemma 2.11. It also contains "˛xv for some v 2 Z32, whence it contains

."˛xv/2 D x2v1C11 x2v3C13 and Œ˛; "˛xv� D x2v2�12 x
�2v3�1
3 :

We deduce that x2v1C11 x2v2�12 2 A, and using the fact that x22 2 A, we obtain that
.x1x2/

2v1C1 2 A. It follows that x1x2 2 A since 2v1 C 1 is a unit. With a similar
argument, we find that x2x3 2 A. This proves the claim. Since Œ"; ˛� D x2x3, the
quotient group

G0 WD G2=hx1x2; x2x3; x
2
2i

is abelian, and therefore, �L2;CG2
.s/ D �L

0;6
L0 .s/, where L0 is the image of L2 at G0,

and the partial zeta function on the right is computed with respect toN 0, the image
of N2 at G0. Note that L0 Š C2 � C2 and N 0 has index 2. Thus,

�L
0;6

L0 .s/ D 1C 2 � 2�s:

6 Computing the zeta functions of the 3-dimensional AB-groups

In this final section, we prove the formulae presented in Section 4.2. We always
denote by G the AB-group under consideration and by N the Fitting subgroup
(which is generated by x1; x2; x3). We keep the notation introduced at the begin-
ning of Section 2. In particular,

Z D Z.N/; T D N=Z; E D G=Z; P D G=N:

The formulae for the zeta functions of

G D N D hx1; x2; x3 W Œx2; x1� D x
k
3 ; Œx1; x3� D Œx2; x3� D 1i;
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where k > 0, are already computed; see Tables 1 and 2 with F D C1. We fo-
cus here on the cases G ¤ N . If N 6 H 6 G is an intermediate subgroup, then
H is also a 3-dimensional AB-group with Fitting subgroup N . Therefore, in or-
der to compute �6

G.s/, it will be enough to calculate �G;6G .s/ since the other partial
zeta functions will have been computed in previous calculations. The isomorphism
classes of the intermediate subgroups N ¤ H ¤ G (if there are any) will be iden-
tified when computing the partial zeta functions �H;CG .s/.

When dealing with local factors at primes p j ŒG W N�, we will sometimes use
the method of p-adic integration described in Section 3; specifically Corollary 3.3
and Proposition 3.5. The following lemma collects some information about the
T -group N .

Lemma 6.1. Let N D hx1; x2; x3 W Œx2; x1� D xk3 ; Œx1; x3� D Œx2; x3� D 1i, with
k D ŒZ W ŒN;N �� > 0.

(1) For a;b 2 Z3p and r 2 Zp,

xa
� xb
D x

a1Cb1
1 x

a2Cb2
2 x

a3Cb3Ckb1a2
3 ;

.xa/r D x
ra1
1 x

ra2
2 x

ra3C
�
r
2

�
ka1a2

3 ;

Œxa; xb� D x
k.b1a2�a1b2/
3 :

(2) For t 2 TC3 .Zp/, the following holds.

(a) t 2M6
Np

if and only if t33 j kt11t22.

(b) t 2MC
Np

if and only if t33 j kt11, t33 j kt12 and t33 j kt22.

(3) Fix t 2M6
Np

. Given a D .a1; a2; a3/ 2 Z3p, xa 2 hxt1 ; xt2 ; xt3i if and only if
all of the following hold.

(a) t11 j a1.

(b) t22 j � a1t11 t12 C a2.

(c) t33 j �
�.a1=t11/t12Ca2

t22
t23 �

a1
t11
t13 �

1
2
k a1
t11
. a1
t11
� 1/t11t12 C a3.

In the case that t 2 N C
Np

, (c) can be replaced by

t33 j �
�
a1
t11
t12 C a2

t22
t23 �

a1

t11
t13 C a3:

Proof. The verification of (1) is straightforward, and (2) is a special case of (3.4).
As for (3), given that ¹xt1 ; xt2 ; xt3º is a good basis for hxt1 ; xt2 ; xt3i, the rela-
tion xa 2 hxt1 ; xt2 ; xt3i holds if and only if xa D .xt1/�1.xt2/�2.xt3/�3 for some
�1; �2; �3 2 Zp. Using (1), we find that

.xt1/�1.xt2/�2.xt3/�3 D x
t11�1
1 x

t12�1Ct22�2
2 x

t13�1Ct23�2Ck
�
�1
2

�
t11t12Ct33�3

3 :
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The first part of (3) is now clear. In the case that t 2MC
Np

(and hence hxt1 ; xt2 ; xt3i

is normal), (2) implies that t33 j kt11. Therefore, the term

1

2
k
a1

t11

�
a1

t11
� 1

�
t11t12 D

� a1
t11

2

�
kt11t12

can be deleted from (c). This completes the proof.

Finally, Table 3 collects the results of some p-adic integrals that will appear in
our calculations. The verification of these formulae is straightforward. The nota-
tion is as follows: k denotes an integer; the letters s, t and u are complex variables;
integration takes place over Znp (n D 2, 3 or 4), where � denotes the Haar additive
measure normalized so that �.Znp/ D 1; and �p denotes 1

1�p�1
.

6.1 Computing the zeta functions of G D Gp2;2k, k 2 N

6.1.1 Local factors of �G;6
G

.s/

If p ¤ 2, then �Gp;6Gp
.s/ was given in Table 1 (the case F D C2 and F � SL.T /).

Assume that p D 2. IfA 6 G2 is open and satisfiesAN2 D G2, thenA contains
˛xv for some v 2 Z2, whence .˛xv/2 D x2v3C13 2 A. Since 2v3 C 1 2 Z�2 , we
obtain that Zp � A. This implies that �G2;6G2

.s/ D �E2;6E2
.s/, which in turn is equal

to �2.s � 1/�2.s � 2/ according to the results of [13, Section 5.2].

6.1.2 Local factors of �N;C
G

.s/

If p ¤ 2, then �Np;6Gp
.s/ was given in Table 2 (the case F D C2 and F � SL.T /).

Assume now that p D 2. We show that the assumptions of Proposition 2.15 are
satisfied. Firstly, since the class of ˛ at P D G2=N2 acts on T2 as �idT2 , any
finite-index subgroup of T2 is a Z2ŒP �-submodule, and they are all isomorphic.
Fix U 6 T2 and V 6 Z2 of finite index such that ŒU; T2� � V . Let QU be the pre-
image of U in N2. Note that QU has a good basis of the form ¹xt111 xt122 ; xt222 ; x3º,
and that V D hxt333 i for some non-zero t33. It is easy to check that the condition
ŒU; T2� � V is translated into t33 j 2kt11, t33 j 2kt12, t33 j 2kt22. Therefore, by
Lemma 6.1 (2), ¹xt111 xt122 ; xt222 ; xt333 º represents a good basis for a normal sub-
group B C N2. Clearly, .BZ2/=Z D U and B \Z2 D V . We now show that B
is normal in G2. Indeed,

˛.xt111 xt122 / D x
�t11
1 x

�t12
2 D .xt111 xt122 /�1x

�2kt11t12
3 2 B;

˛.xt222 / D x
�t22
2 2 B:
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We are now in position to apply Proposition 2.15. For computing ŒT2 W X.V /�,
we use Lemma 2.16, which tells us that

ŒT2 W X.V /� D

´
1 if ŒZ2 W V � < 2v2.2k/;

j2kj22ŒZ2 W V �
2 if V 6 hx2k3 i:

For the computation of jHomZ2ŒP �.T2; Z2=V /j, we use Lemma 5.2, which tells us
that jHomZ2ŒP �.T2; Z2=V /j D 1 if V D Z2 and is 22 otherwise. Thus, by Propo-
sition 2.15 and the results of [13, Section 6.2],

�N2;CG2
.s/ D �

T2;C
E2

.s/

�
1C

v2.2k/�1X
iD1

2�is22

C

X
V62kZ2

j2kj�2s2 ŒZ2 W V �
�2sŒZ2 W V �

�s22
�

D �2.s/�2.s � 1/
�
1C 22�s

1 � jkjs

1 � 2�s
C j2kjs22�2.2s/

�
:

6.1.3 Local factors of �G;C
G

.s/

If p ¤ 2, then

3.Gp; Np/ D hx
4
1 ; x

4
2 ; x

4k
3 i D hx1; x2; x

k
3 i;

whence Np=3.Gp; Np/ Š Zp=kZp. Thus, by Proposition 2.12,

�GpGp .s/ D
1 � p�sjkjsp

1 � p�s
:

Assume now that p D 2. As shown in the calculation of �G2;6G2
.s/, any A C G2

that is open and satisfies AN2 D G2 must include Z2. Thus,

�G2;CG2
.s/ D �E2;CE2

.s/;

which is equal to 1C 6 � 2�s C 4 � 4�s according to [13, Section 6.2].

6.2 Computing the zeta functions of G D Gpg;2k

6.2.1 Local factors of �G;6
G

.s/

If p ¤ 2, then �Gp;6Gp
.s/ was given in Table 1 (the case F D D1 and F 6� SL.T /).

Assume now that p D 2. By Proposition 3.5 and Lemma 6.1 (2), we have

�G2;6G2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�2
2 jt22j

s�3
2 jt33j

s�4
2 d�;
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where T � TC3 .Z2/ � Z32 is the set of pairs .t; v/ satisfying t33 j 2kt11t22 and the
following equivalent conditions:

xt1 � ˇxv
.xt1/; Œˇxv; xt2 �; ˇxv

.xt3/; .ˇxv/2 2 hxt1 ; xt2 ; xt3i

” x2t122 x
�kt11.1C2v2/C2kv1t12�2kt11t12
3 ;

x
�2.t23Ckt22v1/
3 ; x2v2C12 x

kv1.2v2C1/
3 2 hxt1 ; xt2 ; xt3i:

By Lemma 6.1 (3), the conditions defining T are equivalent to

(1) t33 j 2kt11t22,

(2) t22 j 2t12,

(3) t33 j 2t12t22 .�t23 C kv1t22/ � kt11.1C 2v2/ � 2kt11t12,

(4) t33 j 2.�t23 C kt22v1/,

(5) t22 j 2v2 C 1,

(6) t33 j 2v1C1t22
.�t23 C kv1t22/.

Note that (5) is equivalent to t22 2 Z�2 , so (2) is redundant. Next, (6) implies (4),
and (6) and (1) reduce (3) to the simpler condition t33 j kt11. This makes (1) re-
dundant. To sum up, the conditions defining T are

t22 2 Z�2; t33 j kt11; t33 j �t23 C kv1t22:

Thus,

�G2;6G2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�2
2 jt33j

s�4
2 d�

D
1

.1 � 2�1/2

Z
t33jkt11

jt11j
s�2
2 jt33j

s�3
2 d� D A2;k.s � 2; s � 1/;

where we used Proposition 3.6 with the pivots t22; t23.

6.2.2 Local factors of �N;C
G

.s/

If p ¤ 2, then �Np;CGp
.s/ was given in Table 2 (the case F D D1 and F 6� SL.T /).

Assume now that p D 2. By Corollary 3.3 and Lemma 6.1 (2),

�N2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�;
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where T � TC3 .Z2/ is defined by t33 j 2kt11, t33 j 2kt12, t33 j 2kt22 and the fol-
lowing equivalent conditions:

xt1 � ˇ .xt1/; Œˇ; xt2 �; xt3 � ˇ .xt3/ 2 hxt1 ; xt2 ; xt3i

” x2t122 x�kt11�2kt11t123 ; x2t233 2 hxt1 ; xt2 ; xt3i:

Therefore, by Lemma 6.1 (3), the conditions defining T are equivalent to

(1) t33 j 2kt11,

(2) t33 j 2kt12,

(3) t33 j 2kt22,

(4) t22 j 2t12,

(5) t33 j 2t12t22 t23 C kt11,

(6) t33 j 2t23.

We express T as a disjoint union T a;a [ T a;b [ T b according to the following
three cases:

(1a, 4a) t33 j kt11 and t22 j t12,

(1a, 4b) t33 j kt11 and jt22j2 D j2t12j2,

(1b) jt33j2 D j2kt11j2.

In the first case, conditions (2) and (5) are redundant, and hence the conditions
defining T a;a are t33 j kt11, t33 j 2kt22, t22 j t12 and t33 j 2t23, and the integral
over T a;a becomes

1

.1 � 2�1/3

Z
T a;a
jt11j

s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�

D
1

.1 � 2�1/3

Z
t33jkt11
t33j2kt22
t33j2t23

jt11j
s�1
2 jt22j

s�1
2 jt33j

s�3
2 d� D E2;k.s; s; s � 2/:

In case (1a, 4b), condition (5) can be replaced by t33 j t23, and hence the con-
ditions defining T a;b are t33 j kt11, t33 j 2kt12, jt22j2 D j2t12j2, t33 j t23. The
integral over T a;b becomes

1

.1 � 2�1/3

Z
T a;b
jt11j

s�1
2 j2t12j

s�2
2 jt33j

s�3
2 d�

D
2�s

.1 � 2�1/3

Z
t33jkt11
t33j2kt12

jt11j
s�1
2 jt12j

s�1
2 jt33j

s�2
2 d�

D 2�sD2;k.s; s; s � 1/;

where in the second equality we used Proposition 3.6 with the pivots t23; t22.
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We now assume (1b). Since in this case t33 − kt11, conditions (5) and (6) im-
ply that jt22j2 D j2t12j2. This, (1b) and (5) imply that jt23j2 D jkt11j2. It is now
easy to see that T b is defined by the conditions jt33j2 D j2kt11j2, jt22j2 D j2t12j,
t33 j 2kt12, jt23j2 D jkt11j2, or equivalently, jt33j2 D j2kt11j2, jt22j2 D j2t12j,
t11 j t12, jt23j2 D jkt11j2. Thus, the integral over T b becomes

1

.1 � 2�1/3

Z
T b
jt11j

s�1
2 j2t12j

s�2
2 j2kt11j

s�3
2 d�

D
21�2sjkjs�12

.1 � 2�1/2

Z
t11jt12

jt11j
s
2jt12j

s�1
2 jt11j

s�1
2 d�

D 21�2sjkjs�12 A2;1.2s � 1; s/;

where in the first equality we applied Proposition 3.6 with the pivots t22; t23; t33.
It follows from Table 3 that

�N2;CG2
.s/ D �2.s/

2
�
�2.s� 1/.1C 3 � 2

�s/.1� jkjs�12 /

C �2.3s� 1/.1C 2
�s
C 3 � 21�2s � 21�3s � 21�4s/jkjs�12

�
:

6.2.3 Local factors of �G;C
G

.s/

If p ¤ 2, then 3.Gp;Np/D hx41 ; x
4
3i D hx1; x3i, whenceNp=3.Gp;Np/Š Zp.

Thus, by Proposition 2.12,
�Gp;CGp

.s/ D �p.s/:

For the computation of �G2;CG2
.s/, we consider the cases k even or odd separately.

Assume that k is even. We claim that ifACG2 is open and satisfiesAN2DG2,
then A includes hx21 ; x2; x

2
3i. In fact, any such A contains ˇxv for some v 2 Z32,

whence A contains

Œˇxv; x3� D Œˇ; x3� D x
�2
3 ;

Œˇxv; x1� D
ˇ Œxv; x1�Œˇ; x1� D x

�2
1 x�2kv23 x�k3 ;

.ˇxv/2 D x2v2C12 x.2v2C1/vlk3 :

From the first two contentions, we deduce that x�21 2 A since k is even. From
the first and third contentions and the fact that k is even, we also deduce that
x2v2C12 2 A, and hence x2 2 A since 2v2 C 1 2 Z�2 . This proves the claim. It fol-
lows that �G2;CG2

.s/ D �G
0;C

G0 .s/, where G0 is the quotient of G2 by hx21 ; x2; x
2
3i,

and �G
0;C

G0 .s/ is computed with respect to N 0, the image of N2 at G0. Note that
G0 WD .Z=2Z/3, the classes of ˇ, x1 and x3 being identified with .1; 0; 0/, .0; 1; 0/
and .0; 0; 1/, respectively. The series �G

0

G0 .s/ enumerates the subgroups of G0 that
are not included inN 0. An easy calculation gives �G

0;C
G0 .s/D 1C 6 � 2�s C 4 � 4�s .
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Assume now that k is odd. With a similar analysis to that in the previous case,
we find that if A C G2 is open and satisfies AN2 D G2, then A includes

hx21x3; x
2
2 ; x

2
3i:

It follows that �G2;CG2
D �G

0;C
G0 .s/, whereG0 is the quotient ofG2 by hx21x3; x

2
2 ; x

2
3i,

and �G
0;C

G0 .s/ is computed with respect to N 0, the image of N at G0. Note that
G0 Š Z=4Z � Z=4Z, where the classes of ˇ and x1 are identified with .1; 0/
and .0; 1/, respectively. Thus, the series �G

0;C
G0 .s/ enumerates the subgroups of

Z=4Z � Z=4Z that are not included in 2Z=4Z � Z=4Z. A simple inspection
shows that the only such subgroups are G0, h.1; 0/; .0; 2/i, h.1; 1/; .0; 2/i, h.1; 0/i,
h.1; 2/i, h.1; 3/i and h.1; 4/i; thus �G

0;C
G0 .s/ D 1C 2 � 2�s C 4 � 4�s .

6.3 Computing the zeta functions of Gp3;k;�;Gp4;2k;�;Gp6;2k;�

The general form of these groups is

Gq;ık;� D h; x1; x2; x3 W Œx2; x1� D x
ık
3 ; Œx1; x3� D Œx2; x3� D 1;

q D x�3;
x1 D x2;

x2 D x
�1
1 x�r2 i;

where k 2 N, .d; ı; r/ 2 ¹.3; 1; 1/; .4; 2; 0/; .6; 2;�1/º and

� D

8̂<̂
:

1 or �1 if k � 0 mod q
ı
;

�1 if k � 1 mod q
ı
;

1 otherwise:

We let G be one of these groups.

6.3.1 Local factors of �G;6
G

.s/

If p − d , then �Gp;6Gp
.s/ was given in Table 1 (the case F D Cd ; note that if p − 6,

then �6.p/ D �3.p/).
Assume now p j d . We claim that if A 6 Gp is open and satisfies ANp D Gp,

then Zp � Ap. Indeed, A contains xv for some v 2 Z3p, whence

.xv/d D xdv3C��.r
2�rC1/ı2k

.v1Cv2/.v1Cv2Cr/

2
3 2 A:

The claim will follow from the assertion that

dv3 C � � .r
2
� r C 1/ı2k

.v1 C v2/.v1 C v2 C r/

2
2 Z�p:
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If d D 4, then p D 2 and ı D 2, and the assertion is clear. The same argument
works for d D 6 and p D 2. Assume that d D 6 and p D 3. Since r D �1, we
have r2 � r C 1 D 3; hence the assertion is true in this case too. We finally assume
that d D 3 and p D 3. In this case, r D 1, whence r2 � r C 1 D 1. Therefore,
the assertion is that � � k .v1Cv2/.v1Cv2C1/

2
2 Z�3 . If one of the elements v1 C v2,

v1 C v2 C 1 is divisible by 3, the assertion is clear. Otherwise, necessarily,

.v1 C v2/.v1 C v2 C 1/

2
� 1 mod 3;

so the assertion in this case is equivalent to � � k 2 Z�3 , and this follows from the
definition of � in terms of k. This completes the proof of the claim. It follows that
�Gp;6Gp

.s/ D �Ep;6Ep
.s/. According to [13, Sections 5.10, 5.13, 5.16], the latter series

is equal to �p.s � 1/Lp.s � 1; �d / if d 2 ¹3; 4º and to �p.s � 1/Lp.s � 1; �3/ if
d D 6.

6.3.2 Local factors of �N;C
G

.s/

If p − d , then �Np;CGp
.s/ was given in Table 2 (the case F D Cd ).

Assume now that p j d . By Corollary 3.3 and Lemma 6.1 (2), we have

�Np;CGp
.s/ D

1

.1 � p�1/3

Z
T

jt11j
s�1
p jt22j

s�2
p jt33j

s�3
p d�;

where T � TC3 .Zp/ is defined by t33 j ıkt11, t33 j ıkt12, t33 j ıkt22 and the fol-
lowing equivalent conditions:

 .xt1/;  .xt2/;  .xt3/ 2 hxt1 ; xt2 ; xt3i

” x�t121 xt11�rt122 x�kıt11t12C
�
t12
2

�
ıkrCt13

3 ;

x�t221 x�rt222 x

�
t22
2

�
ıkrCt23

3 2 hxt1 ; xt2 ; xt3i:

By Lemma 6.1 (3), the conditions defining T are equivalent to

(1) t33 j ıkt11, t33 j ıkt12, t33 j ıkt22,

(2) t11 j t12,

(3) t22 j
t212
t11
C t11 � rt12,

(4) t33 j t12t11 t13 �
.t212=t11/Ct11�rt12

t22
t23 C

�
t12
2

�
ıkr C t13,

(5) t11 j �t22,

(6) t22 j t22t12t11
� rt22,

(7) t33 j t22t11 t13 � .
t12
t11
� r/t23 C

�
t22
2

�
ıkr C t23.
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Condition (3) can be written as t22
t11
j . t12
t11
/2 � r t12

t11
C 1. Condition (6) is implied

by (2), and the second and third conditions in (1) are implied by the first one, (2)
and (5). Note that (4) and (7) have the form

(4) t33 j P1t13 CQ1t23 C
�
t12
2

�
ıkr ,

(7) t33 j P2t13 CQ2t23 C
�
t22
2

�
ıkr ,

where P1, P2, Q1 and Q2 are rational functions that do not involve t13 or t23 and
take values in Zp when restricted to T . Note also that

det

 
P1 Q1

P2 Q2

!
D �

t12 C t11

t11

�
t12

t11
� r � 1

�
C
t22

t11

t212
t11
C t11 � rt12

t22

D �

�
t12

t11

�2
�
t12

t11
C r

t12

t11
C r C

t12

t11

C 1C

�
t12

t11

�2
C 1 � r

t12

t11
D 2C r: (6.1)

We first assume that .d; p/ 2 ¹.3; 3/; .4; 2/; .6; 3/º. The terms
�
t12
2

�
ıkr and�

t22
2

�
ıkr in conditions (4) and (7) can be deleted. In fact, they are already zero

when d D 4 since in this case r D 0, and if d 2 ¹3; 6º and p D 3, then (1) im-
plies that these two terms are divisible by t33. Now, one easily checks that the
equation T 2 � rT C 1 � 0 mod p has 1 � r � r2 as unique solution modulo p
in Zp, and that the equation T 2 � rT C 1 � 0 mod p2 has no solutions in Zp.
Therefore, by (3), we can express T as a disjoint union T a [ T b according to the
cases

(3a) jt11jp D jt22jp and

(3b) jpt11jp D jt22jp and pt11 j t12 � .1 � r � r2/t11.

We describe T a. By (3a), the coefficient P2 in (7) is a unit; therefore, by (6.1),
we can replace (4) by t33 j .2C r/t23. We conclude that T a is defined by the
conditions t33 j ıkt22, jt11jp0 D jt22jp0 , t22 j t12, t33 j .2C r/t23 and (7), and the
integral over T a becomes

1

.1 � p�1/3

Z
T a
jt22j

2s�3
p jt33j

s�3
p d�

D
1

.1 � p�1/2

Z
t33jıkt22
t33j.2Cr/t23

jt22j
2s�1
p jt33j

s�2
p d�

D �p.2s/C
1

.1 � p�1/2

Z
pjt33
t33jıkt22
t33
.2Cr/

jt23

jt22j
2s�1
p jt33j

s�2
p d�
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D �p.2s/C
pvp.rC2/

.1 � p�1/2

Z
pjt33jıkt22

jt22j
2s�1
p jt33j

s�1
p d�;

where in the first equality we used Proposition 3.6 with the pivots t12; t11; t13, and
in the third one we used this proposition with the pivot t23.

We now describe T b . Condition (3b) implies that jt11jp D jt12jp. This makes
condition (2) redundant. Next, note that

Q1 D �
. t12
t11
/2 C 1 � r t12

t11
t22
t11

is a unit of Zp since we are assuming that p j t22
t11

and since T 2 � rT C 1 � 0

mod p2 has no solutions in Zp. Therefore, by (6.1), condition (7) can be replaced
by the condition t33 j .2C r/t13. We conclude that the conditions defining T b are
t33 j ıkt11, jpt11jp D jt22jp, pt11 j t12 � .1� r � r2/t11, t33 j .2C r/t13 and (4).
The integral over T b becomes

1

.1 � p�1/3

Z
T b
jt11j

s�1
p jpt11j

s�2
jt33j

s�3
p d�

D
1

.1 � p�1/2
p�s

Z
t33jıkt11;
t33j.2Cr/t13

jt11j
2s�1
p jt33j

s�2
p d�;

where in the first equality we used Proposition 3.6 with the pivots t22; t12; t23.
We conclude that

�Np;CGp
.s/ D

1C p�s

.1 � p�1/2

Z
t33jıkt11;
t33j.2Cr/t13

jt11j
2s�1
p jt33j

s�2
p d�

D �p.s/C
1C p�s

.1 � p�1/2

Z
pjt33
t33jıkt22
t33
.2Cr/

jt23

jt22j
2s�1
p jt33j

s�2
p d�

D �p.s/C j2C r j
�1
p

1C p�s

.1 � p�1/2

Z
pjt33jıkt22

jt22j
2s�1
p jt33j

s�1
p d�

D �p.s/C j2C r j
�1
p .1C p�s/Bp;ık.s; 2s/:

We now assume that .d; p/ D .6; 2/. The equation T 2 � rT C 1 � 0 mod 2
has no solutions in Z2, and hence (3) and (5) can be replaced by jt11j2 D jt22j2.
It follows that the coefficient P2 in condition (7) is a unit. Since the value of the
determinant (6.1) is 2C r D �1, condition (4) can be replaced by one of the form
t33 j t23 CR1, where R1 is a rational function that does not involve t13 or t23 and
takes values in Z2 when restricted to T . The conditions defining T are therefore
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t33 j 2kt11, t11 j t12, jt11j2 D jt22j2, t33 j t23 CR1 and (7). The integral over T

becomes

�N2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
2s�3
2 jt33j

s�3
2 d�

D
1

.1 � 2�1/2

Z
t33j2kt11

jt11j
2s�1
2 jt33j

s�1
2 d� D A2;2k.s; 2s/;

where in the first equality we used Proposition 3.6 with the pivots t12; t22; t23; t13.

6.3.3 Local factors of �G;C
G

.s/

If p − d , then

3.Gp; Np/ D hx
rC2
1 ; xrC22 ; xık3 i D hx1; x2; x

k
3 i;

where the last equality holds since r C 2 2Z�p . Thus,Np=3.Gp;Np/ŠZp=kZp,
and by Proposition 2.12, we have

�Gp;CGp
.s/ D

1 � p�sjkjsp

1 � p�s
:

Assume now that p j d . Arguing as in the calculation of �Gp;6Gp
.s/, we obtain

that �Gp;CGp
.s/ D �Ep;CEp

.s/. According to the results of [13, Sections 6.10, 6.13,
6.16], this series is equal to 1C p � p�s if d D 3 or 4, and is 1 if d D 6.

6.3.4 Local factors of �H;C
G

.s/ for d D 4 andH D h2; x1; x2; x3i

Note that H D Gp2;2k . If p ¤ 2, then

3.Hp; Np/ D hx
4
1 ; x

4
2 ; x

4k
3 i D hx1; x2; x

k
3 i;

and hence Np=3.Hp; Np/ Š Zp=kZp. By Proposition 2.12, we obtain

�Hp;CGp
.s/ D

1 � p�sjkjsp

1 � p�s
:

Assume now that p D 2. Arguing as in the calculation of �Gp2;2k ;C
Gp2;2k

.s/ in Sec-
tion 6.1.3, we obtain that

�H2;CG2
.s/ D �H2=Z2;CE2

.s/;

which is equal to 1C 2 � 2�s C 2 � 4�s according to [13, Section 6.10].
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6.3.5 Local factors of �H;C
G

.s/ for d D 6 andH WD h3; x1; x2; x3i

Note that H D Gp2;2k . Arguing as in the previous paragraph, we obtain that

�Hp;CGp
.s/ D

1 � p�sjkjsp

1 � p�s

if p ¤ 2, and that �H2;CG2
.s/ D �H2=Z2;CE2

.s/. The latter is equal to 1C 4�s accord-
ing to the results of [13, Section 6.16].

6.3.6 Local factors of �K;C
G

.s/ for d D 6 and K D h2; x1; x2; x3i

Note thatK D Gp3;2k;�, where � D � if 3 j k, and � D �� if 3 − k. If p ¤ 3, then
arguing as in Section 6.3.3 with G D Gp3;2k;�, we find that

�Kp;CGp
.s/ D

1 � p�sj2kjsp

1 � p�s
and �K3;CG3

.s/ D �K3=Z3;CE3
.s/;

which is equal to 1C 3�s according to the results of [13, Section 6.16].

6.4 Computing the zeta functions of G D Gp2gg;4k

6.4.1 Local factors of �G;6
G

.s/

If p ¤ 2, then �Gp;6Gp
.s/ was given in Table 1 (the case F D D2).

Assume now that p D 2. Note that h˛; x1; x2; x3i D Gp2;4k . Arguing as in Sec-
tion 6.1.1 for G D Gp2;4k , we find that

�G2;6G2
.s/ D �E2;6E2

.s/:

The latter is equal to 1 according to the results of [13, Section 5.7].

6.4.2 Local factors of �N;C
G

.s/

If p ¤ 2, then �Np;CGp
.s/ was computed in Table 2 (the case F D D2).

Assume now that p D 2. By Corollary 3.3 and Lemma 6.1 (2), we have

�N2;CG2
.s/ D

1

.1 � 2�1/3

Z
T

jt11j
s�1
p jt22j

s�2
p jt33j

s�3
p d�;

where T � TC3 .Z2/ is defined by t33 j 4kt11, t33 j 4kt12, t33 j 4kt22 and the fol-
lowing equivalent conditions:

˛.xti / � xti ; Œxti ; ˇ� 2 hxt1 ; xt2 ; xt3i; i D 1; 2; 3

” x2t13C2k.t11�t12/�4kt11t123 ; x2t23�4kt223 ;

x�2t122 x�2t13C2kt123 ; x2kt223 2 hxt1 ; xt2 ; xt3i:
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Therefore, by Lemma 6.1 (3), the conditions defining T are equivalent to

(1) t33 j 4kt11,

(2) t33 j 4kt12,

(3) t33 j 2t13 C 2k.t11 � t12/,

(4) t33 j 2t23,

(5) t22 j 2t12,

(6) t33 j 2t12t22 t23 � 2t13 C 2kt12,

(7) t33 j 2kt22.

Note that (2) follows from (5) and (7). Next, we express T as a disjoint union
T a [ T b according to the following cases:

(a) t33 2 Z�2 and

(b) 2 j t33.

In case (a), all the conditions but (5) are redundant, so

1

.1 � 2�1/3

Z
T a
jt11j

s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�

D
�2.s/

1 � 2�1

Z
t22j2t12

jt22j
s�2
2 d� D �2.s/.1C 2

1�s�2.s//:

In case (b), we split T b as a union T b;a [ T b;b according to the following
cases:

(5a) t22 j t12 and

(5b) jt22j2 D j2t12j2.

Assume (5a). We sum the right-hand sides of (3) and (6) and obtain

t33 j
2t12

t22
t23 C 2kt11:

This and (4) imply that t33 j 2kt11. Thus, (1) can be replaced by t33 j 2kt11, and
then (3) and (4) imply (6) clearly. To sum up, T b;a is defined by the conditions
2 j t33, t33

2
j kt11, t33

2
j kt22, t22 j t12, t33

2
j t13 � kt12, t33

2
j t23. Therefore,

1

.1 � 2�1/3

Z
T b;a
jt11j

s�1
2 jt22j

s�2
2 jt33j

s�3
2 d�

D
22�s

.1 � 2�1/3

Z
ujkt11
ujkt22

jt11j
s�1
2 jt22j

s�1
2 juj

s�1
2 d� D 22�sC2;k.s; s; s/;



Zeta functions of the 3-dimensional almost-Bieberbach groups 675

where in the first equality we used Proposition 3.6 with the pivots t12; t13; t23 and
performed the change of variables t33 D 2u. Assume now (5b). Observe that (2)
and (7) are equivalent. Note also that (6) implies that

t33 j 2

�
2t12

t22

�
t23 � 4t13 C 4kt12;

and then that (1), (2) and (3) imply that t33 j 4t13. It follows that (1), (2), (3)
and (6) imply (4). Summarizing, the conditions defining T b;b are 2 j t33, (1),
(2), t33

2
j t13 C 2k.t11 � t12/, jt22j2 D j2t12j2 and (6). Therefore, the integral over

T b;b becomes

1

.1 � 2�1/3

Z
T b;b
jt11j

s�1
2 j2t12j

s�2
2 jt33j

s�3
2 d�

D
21�2s

.1 � 2�1/3

Z
uj2kt11
uj2kt12

jt11j
s�1
2 jt12j

s�1
2 juj

s�1
2 d�

D 21�2s
�
�2.s/

2
C

2�s

.1 � 2�1/3

Z
vjkt11
vjkt12

jt11j
s�1
2 jt12j

s�1
2 jvj

s�1
2 d�

�
D 21�2s

�
�2.s/

2
C 2�sC2;2k.s; s; s/

�
:

In the first equality, we used Proposition 3.6 with the pivots t22; t13; t23 and applied
the change of variables t33 D 2u.

We conclude that

�N2;CG2
.s/ D �2.s/.1C 2

1�s�2.s//C 2
1�2s�2.s/

2

C .22�s C 21�3s/C2;k.s; s; s/:

6.4.3 Local factors of �G;C
G

.s/

If p ¤ 2, then one can easily check that 3.Gp; Np/ D hx1; x2; x3i, and hence
�Gp;CGp

.s/ D 1. If p D 2, then �G2;CG2
.s/ D 1 since already �G2;6G2

.s/ D 1.

6.4.4 Local factors of �H;C
G

.s/ forH D h˛; x1; x2; x3i

Note thatH D Gp2;4k . Arguing as in Section 6.1.3 withG D Gp2;4k , we find that

�Hp;CGp
.s/ D

1 � p�sjkjsp

1 � p�s
for p ¤ 2;

and that �H2;CG2
.s/ D �H2=Z2;CE2

.s/. The latter is equal to 1C 2 � 2�s according to
the results of [13, Section 6.7].
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6.4.5 Local factors of �K;C
G

.s/ for K D hˇ; x1; x2; x3i

Note that K D Gpg;4k . If p ¤ 2, then 3.Hp; Np/ D hx41 ; x
4
3i D hx1; x3i, and

hence Np=3.Gp; Np/ Š Zp. Thus, by Proposition 2.12, we have

�Kp;CGp
.s/ D �p.s/:

Assume now that p D 2. Arguing as in Section 6.2.3 withG D Gpg;4k , we find
that

�K2;CG2
.s/ D �K

0;C
G0 .s/;

where G0 is the quotient of G2 by hx1; x22 ; x
2
3i, K

0 is the image of K, and the
new partial zeta function is computed with respect to N 0, the image of N . Note
that K 0 Š .Z=2Z/3, the classes of ˇ, x2 and x3 being identified with .1; 0; 0/,
.0; 1; 0/ and .0; 0; 1/, respectively. The action of the class of ˛ on K 0 is given by
.a; b; c/ 7! .a; aC b; aC c/. The series �K

0;C
G0 .s/ enumerates the subgroups ofG0

that are not included in N 0 and are invariant under .a; b; c/ 7! .a; aC b; aC c/.
It is easy to check that �K

0;C
G0 .s/ D 1C 2 � 2�s .

6.4.6 Local factors of �L;C
G

.s/ for L D h˛ˇ; x1; x2; x3i

One can easily check that the assignment ˛ 7! ˛�1, ˇ 7! ˇ˛, x1 7! x2, x2 7! x1,
x3 7! x�13 extends to an automorphism of G mapping K onto L. Therefore,

�L;CG .s/ D �K;CG .s/:
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