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Abstract.

Objective: Pre-movement decoding plays an important role in detecting the
onsets of actions using low-frequency electroencephalography (EEG)signals before the
movement of an upper limb. In this work, a binary classification method. is proposed
between two different states.

Approach: The proposed method, referred to as filter bank standard task-related
component analysis (FBTRCA), is to incorporate filter bank selegtion intorthe standard
task-related component analysis (STRCA) method. In FBTRCA, the,EEG signals
are first divided into multiple sub-bands which start at specifie\fixed frequencies and
end frequencies that follow in an arithmetic sequence. The STRCAsmethod is then
applied to the EEG signals in these bands to extract canonical correlation patterns.
The minimum redundancy maximum relevance feature, selection/method is used to
select essential features from these correlation patterns in all sub-bands. Finally, the
selected features are classified using the binary support vector machine classifier. A
convolutional neural network (CNN) is an alternativerapproach to select canonical
correlation patterns.

Results: Three methods were evaluatéd using EEG  signals in the time window
from two seconds before the movementionset to one second after the movement
onset. In the binary classification between & movement state and the resting state,
the FBTRCA achieved an average accuragy of 0.8968+0.0847 while the accuracies of
STRCA and CNN were 0.822840.1149 and 0:88284+0.0917, respectively. In the binary
classification between two actions, the accuracies of STRCA, CNN, and FBTRCA
were 0.66114+0.1432, 0.699340.1271, 0.7178+0.1274, respectively. Feature selection
using filter banks, as in FBTRCA, produces comparable results to STRCA.

Significance: The propesed method provides a way to select filter banks in pre-
movement decoding, and thus itdimproves the classification performance. The improved
pre-movement decoding of single upper limb movements is expected to provide people
with severe motor disabilities with a more natural, non-invasive control of their external
devices.

A S

Keywords: Brain Computer Interface, Movement Detection, Pre-movement Decoding,
Standard Task-Related Component Analysis, Filter Bank Selection

1. Introduction

Movements( of ‘the “human limbs lead to potential changes on the human
scalp, which canbe observed with non-invasive brain-computer interface-based
electroéncephalography (EEG) signals [1,2]. In previous studies on movement detection
withaEBEG, signals, motor imagery (MI) is one of the most frequently used brain
activities in the motor cortex [3-5]. When the limbs begin moving, the power of
EEGsignals in alpha rhythm (frequency range: 8~12 Hz) and beta rhythm (frequency
range: 13~30 Hz) shows an upward or downward trend, which is called event-related
desynehronization/synchronization [6]. When humans imagine a movement of the left
or right limb, the power changes in the left /right half of the scalp. However, these power
changes in MI occur after the limb moves, which implies that in MI analysis movement
can only be detected after the onset of the imagined movement [6]. Looking at the
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brain activity through the movement-related cortical potential (MRCP), the mgvement
of human limbs or the resting state before the movement onset can be evaluated. Hence,
MRCP is expected to help enhance the restoration of useful motor functions and reduce
the time delay of movement detection [7,8].

MRCP is a type of low-frequency EEG signal (frequency range:. 0.5~10" Hz)
acquired in the motor cortex [9-11]. MRCP analysis is applied to EEG signals located
around the movement onset. The readiness potential (RP) section is thé stage that
starts from 2 seconds before the onset and ends on the onset |12, "while the movement
monitoring potential (MMP) section is the stage that starts on thie omset and ends 1
second after that |12]. The pre-movement patterns decodéd,from the RP section in
MRCP signals cannot be observed directly. Grand average MRCP.is a way to visualize
the pre-movement patterns (Figure . In grand average MRCP, EEG signals acquired
from the motor cortex are averaged across trials. The grand average MRCP of the
upper limb movement shows an increase followed by a rapid décrease around the onset
compared to the relatively steady grand averagefMRCProf the resting state. The pre-
movement patterns are the features extracted fromdthe RP section based on the grand
average MRCP [13[|14].

EEG Signals from Channel Cz Grand Average MRCP
Trial 1 MWMW&
Trial 2w oMb i o .
Trial 3 I N @
OB Stgnals
L. from All
o Trials
W“ I L ‘I
Limb Trajectouf T g 2 ) RP Section MMP
= Movement Onset Section

Figure 1. The concept of grand average MRCP. Multiple trials are obtained for MRCP
analysis.in the.EEG paradigm by repeating the same limb movement. Therefore, EEG
signals have three dimensions (channel, time and trial). Since the grand average MRCP
isfobtained by javeraging all the trials, it has two dimensions (channel and time). In
this figure, channel C, is used as an example. The movement onset is the onset of the
action whenythe limb begins to move. The grand average MRCP of the action shows
an increase followed by a decrease around the movement onset.

By analyzing the grand average MRCP, some previous works focused on the binary
classifieation between a movement state and the resting state or the binary classification
between two actions. For instance, Jeong et al. proposed the subject-dependent and
section-wige spectral filtering method (SSSF) to extract the amplitude features in MRCP
and successfully solved the two-class problem between movement and resting states |15].
This method uses the mean amplitude of MRCP signals in both RP and MMP sections
as the features. To optimize the selected features, Jeong et al. adopted a cross-validation
and testing method to select the best frequency range for each subject. Ofner et
al. proposed the discriminative spatial pattern method (DSP) [16], which calculates
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a linear discriminant analysis classifier for every time step. It was shown that the
accuracy increases as the time point approaches the onset of the action in both the RP
and MMP sections. Mammone et al. proposed the deep convolutional neural network
(DCNN) [14], which decodes pre-movement patterns from time-frequency,maps.of EEG
signals at the source level. Duan et al. proposed a pre-movement pattern deecoding
method, the standard task-related component analysis (STRCA) [L3J'€onsisting of the
task-related component analysis (TRCA) spatial filter and the canonical correlation
pattern (CCPs) features. All the methods mentioned above, exeeptyfor the subject-
dependent and section-wise spectral filtering method, are also a solittion to the binary
classification between two actions. In Table |1} the binary classification results of each
method are given.

Table 1. Binary Classification Results in Pre-movement Decoding

Method ‘ Movement vs Resting | Movement vs Movement
STRCA [13] 0.8287+0.1101 0:59701+0.1424
DCNN [14] 0.9030+0.0560 0.62474+0.0070

SSSF |15] 0.7300£0.0783 -
DSP [16] 0.8500£0.0500 0.4400+£0.0700

Although STRCA has a very concisestructure, it faces the frequency range selection
problem when decoding pre-movement patterns in MRCP analysis. In both the SSSF
and DCNN methods, the frequeney ¢haracteristics of the EEG signals is considered when
optimizing the two classification methods. The frequency characteristics are optimized
by either using filter bank selection with cross-validation and testing or by constructing
a time-frequency map [14;/15). Censidering this, it can be seen that STRCA could be
further improved with/the filter bank technique.

Filter bank selection aims to solve the feature selection problem among various
sub-bands in the frequency domain. It is widely used to analyze brain activity such as
in MI and in stéady-state visually evoked potential (SSVEP). In SSVEP analysis, the
canonical corrélation analysis method is a classical method used for detecting stimulus
frequencies [17]4 Canonical correlation analysis can measure the similarity between
EEG signals ‘and the reference signals, and many methods in SSVEP analysis have
been developedsbased on this technique [18-20]. Filter bank canonical correlation
analysis was proposed to incorporate harmonic and fundamental frequency components,
which improved the detection of standard canonical correlation analysis in SSVEP [21].
Without the filter bank technique, the canonical correlation analysis faces the problem
of selecting frequency components. In MI analysis, the common spatial pattern method
is thesmost classical one [22]. The method extracts the logarithm-variance features
from the EEG signals filtered by the spatial filter, and it shows a varying accuracy
among the sub-bands in alpha (8~12 Hz) and beta (13~30 Hz) rhythms [3,23]. Filter
bank common spatial pattern is an advanced MI analysis method that was developed
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by combining the common spatial pattern method and the filter bank technigue {24].
The method is able to avoid sub-band selection, thus achieving better and more stable
accuracies than the common spatial pattern method.

In both MI and SSVEP analysis, the filter bank technique uses a featureselection
method to optimize the extracted common spatial pattern features ér the canonical
correlation features in each sub-band. The optimal frequency rangerof the filter bank
varies among the subjects due to individual differences. The feature selection method
overcomes the frequency range selection problem and enables the€lassification to achieve
a stable and accurate result. When applying the filter bank techniquet\o STRCA, there
are three problems to tackle:

(1) The frequency range setting is unknown, so it is unclear hew the starting and
stopping frequencies of the sub-bands in the filter bank technique can be selected;

(2) The feature selection method for STRCA is undetermined:;

(3) The feature arrangement is unclear when applying the feature selection method on
STRCA features extracted from all sub-bands.

This study aims to analyze how to incorporate the filter bank technique into
STRCA. Two steps are adopted for thetimprovement/ of the STRCA method in this
work: firstly, three feature range settings are,compared to decide how to select the
frequency range of each sub-band in pre-mevement decoding; secondly, a new filter
bank TRCA (FBTRCA) method i§ propesed to decode the pre-movement patterns for
the binary classification between a movement state and the resting state or between two
actions.

FBTRCA consists of four_steps: frequency bank division, spatial filtering, feature
selection and classification. {In the first step, the EEG signals are bandpassed into
multiple sub-bands in the"lowsfrequency domain. In the second step, canonical
correlations are extracted from each of these sub-bands by the STRCA method. In
the third stage, a feature selection algorithm is used to select the essential features from
the features of all bandsrautomatically. In the fourth step, a classifier is used to classify
the selected features. This paper presents a selection of feature selection methods and
classifiers for useiin FBTRCA, and recommends suitable feature selection and classifiers
for MRCP-based brain-computer interface.

In Section [2, the EEG dataset and the data pre-processing mechanism used are
introducedgand the proposed FBTRCA method is described. In Section[3], the proposed
method is analysed in terms of the frequency range settings, the feature selection and
when_compared to other methods. In Section [4, the FBTRCA design and workings in
pre-movement decoding is discussed. Finally, Section [5| contains the conclusions for this
study.

To facilitate the understanding of the contents in this work, the abbreviations are
givenyin Table [2|
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Table 2. Descriptions of Abbreviations

Abbreviation ‘ Full Name Description
EEG Electroencephalograph Multi-channel signals acquired from the surface of brain.sé€alp.
MRCP Movement-Related Cortical Potential A kind of brain activity related t0 pre-movement.

MI Motor Imagery A kind of brain activity related to. movement.

SSVEP Steady State Visual-Evoked Potential A kind of brain activity evoked by visual stimulus.

RP Readiness Potential EEG signals in the two-second window before the movement onset.
MMP Movement Monitoring Potential EEG signals in the one-second window after the movement onset.
CCA Canonical Correlation Analysis A basic classificatiod method in SSVEP [17].

FBCCA Filter Bank Canonical Correlation Analysis A method that optimizes CCA by filter/bank selection [21].

CspP Common Spatial Pattern A basic classification method in MI |22].

FBCSP Filter Bank Common Spatial Pattern A method that optimizessCSP, by filter bank selection |24].
SSSF Subject-dependent and section-wise spectral filtering A binary classification method for movement and resting states |15].
~
STRCA Standard Task-Related Component Analysis A binary classification method for movement and resting states |13].
FBTRCA Filter Bank Tasked-Related Component Analysis The method that optimizes STRCA by filter bank selection.
TRCA Task-Related Component Analysis The spatial filter used in STRCA [13].
CcCP Canonical Correlation Pattern The extracted features in STRCA |13].
CNN Convolutional Neural Network A feature Selection method consists of convolutional layers.
MIQ Mutual Information Quotient A feature selection method based on mutual information |25].
MAXREL Maximum Relevance A feature-selectionimethod based on mutual information [26].
MINRED Minimum Redundancy A feature seléction méthod based on mutual information |26].
MRMR Minimum Redundancy Maximum Relevance A feature selection method based on mutual information |26].
QPFS Quadratic Programming Feature Selection A feature selection method based on mutual information |27].
CIFE Conditional Infomax Feature Extraction A feature selection method based on mutual information |23].
CMIM Conditional Mutual Information Minimization A _feature selection method based on mutual information |29].
MRMTR Maximum Relevance Minimum Total Redundancy A feature selection method based on mutual information |30].
SVM Support Vector Machine & A binary classifier
LDA Linear Discriminant Analysis A binary classifier
NN Neural Network A binary classifier

2. Material and Method

2.1. Dataset Description

There are two public datasets used in this work, namely dataset I and dataset
IT [16,131] . Both datasets follow amroffline acquisition paradigm in which a trial lasts
five seconds. At the start of a trial, the computer screen displays a cross and emits
a beeping sound. The cofiputer seréen then shows a cue that indicates the required
movement or resting two seconds later. When the cue occurs, the subjects implement
movements or remain/at rest:
These
channels are located around the motor cortex. According to the 10/20 international

The EEG signals are acquired from 11 channels with active electrodes.

system, 5 out of the 11 electrodes are located at the centre of the motor cortex: F'C,,
Cs, C,, Cy4, @P,; while the remaining 6 electrodes are located surrounding the motor
cortex: I3, .. Fy, P3, P,,)P,. The EEG signals are filtered with an 8-order Chebyshev
bandpassfilter from 0.01 Hz to 200 Hz. The sample rate of the EEG signals is 512
Hz, and the signals are downsampled to 256 H z considering the computational load. A
notchefilter,at 50 Hz is applied to avoid the influence of power line interference.

Theredare two main differences between the two datasets.

Firstly, dataset I contains signals related to hand movement trajectories acquired

using a glove sensor. The onsets of the actions can be located with the movement

I http://bnci-horizon-2020.eu/database/data-sets,
Dataset I : 25. Upper limb movement decoding from EEG (001-2017) [16];
Dataset II: 26. Attempted arm and hand movements in persons with spinal cord injury (001-2019) [31].

Page 6 of 45
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trajectories of the limb. Dataset II, on the other hand, does not contain information
about limb movement trajectories.

Secondly, both datasets have different actions and number of subjects. DatasetI
consists of 7 states with 15 subjects. These states include the resting statewest and
6 actions: elbow flexion, elbow extension, supination, pronation, handiclose and hand
open. For each action, 60 trials were acquired during the signal acquisition. Dataset II,
on the other hand, consists of EEG signals from 9 subjects. Each subject was asked
to implement 5 actions, including supination, pronation, hand epen, palmar grasp and
lateral grasp. Each action has 72 trials. S

In dataset I, the onset can be located from the hand trajeetory when the movement
is executed. However, the onset cannot be located in dataset 1l Therefore, different
processing procedures were adopted in the two datasets.

2.1.1. Pre-processing in Dataset I The STRCA méthod has been evaluated on dataset
[ in previous studies [13]. Here, we adopt the same pre-processing procedure. In dataset
I, the hand movement trajectory is used to locate the movement onsets of the actions.
The 1-order difference of the trajectory dsstaken, and then the 1-order Savitzky-Golay
finite impulse response smoothing filter isusedito smooth the signals. The length of the
time window in the smoothing filter is set to 31."The starting value of the trajectory
is subtracted from the trajectory in eachitrial. The approximate range of the onsets of
the actions is the three-second time windew with a one-second delay after the cue.

The two motions related te.elbow movement, which are elbow flexion and elbow
extension, lead to an increase imthe:amplitude of the hand trajectory. The trajectory is
first changed into the absolute value. The hand trajectories are normalized by dividing
them by the maximal absolutesvalue. The location where the normalized trajectory
is larger than the threshold of 0.05 is regarded as the movement onset. In trials that
contain heavy noisepcontamination, the onsets of these actions cannot be located, and
therefore these are manually removed.

For the other fouristates, the approximate range of the onset shrinks to a two-
second time window with a one-second delay after the cue. The hand trajectory has
a lower amplitude and.is heavily influenced by noise. In these trials, trajectories are
first normalized/by dividing them by the maximal absolute value of each trajectory.
The function f(z) = a * exp(—(22)?) + d is used to fit the smoothed and normalized
trajectories by tuning the parameters a, b, ¢, d. The symbol 'exp’ denotes the exponential
function. Irials that fulfil a < 0.05,¢ > 100 and d > 10 are rejected. The onsets of the
actions are.determined by a threshold criterion, as the bias d is removed from the fitted
funetion f(2) and the onset is set to the location where the value of f(z) is larger than
0.1.

For the signals in the resting state, the amplitude of the hand trajectory is supposed
to be steady and have a small variance. The trials are rejected if the variances of the
trajectories are greater than the set threshold of 0.02. The trajectories in the resting
state have no movement onset. A fake onset is set to 2.5 s following the beeping sounds.



oNOYTULT D WN =

174

175

177

178

179

180

181

182

184

185

186

187

189

190

191

192

193

194

196

197

198

199

200

201

202

203

204

AUTHOR SUBMITTED MANUSCRIPT - JNE-105676.R1

Improving Pre-movement Pattern Detection with Filter Bank Selection 8

In Table [3] the number of trials after eliminating the rejected ones is given. Themumber
of trials of these motions is averaged among all trials in dataset I and is rounded to an
integer in the table.

Table 3. Average Number of Trials Across Subjects After Trial Rejection

) elbow elbow o , hand |fhand .
Motion ) ) supination | pronation resting
flexion | extension close | open
Number | 60 | 59 | 52 | 51 | 5 |#B5 | 59

The EEG signals can be divided into the RP and MMP sections with the located
onsets or fake onsets. The features extracted from the RP seéetion are the pre-movement
patterns. In dataset I, we analyze the classification in twoncases. In the first case, the
EEG signals are from the RP section, and the results-are used to analyze the performance
of the proposed method in pre-movement decoding. In. thesecond case, the EEG signals
are from the RP and MMP sections. In Figure[l] fhe greﬁ1d average MRCP shows an
increasing trend, so therefore we assumehat the EEG signals from both RP and MMP
sections may improve the performance compared to the EEG signals from only the RP
section.

2.1.2. Pre-processing in Dataset II Thewonsets of the actions in dataset II cannot be
located by movement trajectory. Here, we adopt the same processing procedure in
motor imagery as in [32]. EEGssignals are extracted from the two-second time window
after the cue. The onset is located within this time window, but the precise location is
unknown. N

Dataset II has five trial-based actions. Compared to the resting state of dataset I,
the EEG signals inthé resting state are not trial-based. Subjects were asked to have
a long-duration rest‘after acquiring the EEG signals of the actions. The resting state
for dataset II is génerated by dividing the long-duration resting-state EEG signals into
multiple trials. ¢Bach trial lasts 2 seconds, and there are 72 trials for each subject in
total.

The data obtained was denoted as X € RVXNoxNe o X' () € RNexNe ¢ =1 .. N,
where Ngisrthe EEG channel number, N, is the sample time and N; is the number of
trials. Before the binary classification tasks, EEG signals were normalized by z-score
normalization. / When evaluating STRCA and the proposed FBTRCA methods with
this dataset, 10-fold cross-validation was applied, and the classification performance
was ealculated as the mean of these 10 folds. The binary classification was implemented
between two motions, e.g. elbow flexion vs elbow extension and elbow flexion vs resting
in dataset I. Therefore, dataset I has 21 motion pairs, while dataset II has 15 motion
pairs.

Page 8 of 45
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2.2. Filter Bank Task-Related Component Analysis

2.2.1. Standard Task-Related Component Analysis STRCA is used to classify the EEG
signals between a movement state and the resting state with MRCP signals,in the RP
section [13]. The method consists of two components: (1) spatial filter TRCA and
(2) CCP features. The extracted features are classified with the linear discriminated
analysis (LDA) classifier. Figure [2|illustrates the structure of STRCA.

Spatial Filter Pattern Classiﬁc&

Original Signals Filtered Signals Result
g £ £ (TRCA) (CCP) (LDA)

O N O N
P

= -
N \
P N NP WSO Low-Pass - . Spatlal Feature Cla551ﬁcat10n —
v et A ~ ;:::Band Filtering Y/ |/ Filtering Extracfion ™ Prediction

(0.05~10Hz)

Figure 2. The structure of STRCA consists of the spatial filter TRCA and the
extracted CCP features. 4

TRCA: The spatial filter of TRCA is designed by maximizing the reproducibility
during the task . In multichannel EEG signals, the training set is supposed to
be X% (t) € RN*Nt where k refers to thételass of the EEG signals, k = 1,2. X(¢)
consists of two kinds of signals: (1) task-related signals s(t) € R and (2) task-unrelated
noise n(t) € R. The relationshipsbetween X (t), s(t) and n(t) is expressed by:

Xi]fj(t) = cz'fms(t) + ag’ivjn(t), i=1,...,N, j=1,...,N,. (1)
y(t) is the linear sum of EEC signals'X (t), and is defined as:
Ne
=D wiXE(t), j=1,.., N (2)
i=1

In TRCA, the task-related signal s(t) is recovered from y(¢). The ideal solution is
difficult to calculate but can be approached by maximizing the inter-trial covariance.

The covariance Cjkl j» between the ji-th trial and the jp-th trial can be computed using:

C = Cou(yy (1), ), (¢ Zw wk Cov(XE . (£), XE . (1)). (3)

11,82

The covariances of all the trials are summed to obtain a combination of all trials:

S CE =S Conleh (.45 1)

Ji,j2=1 Ji,j2=1

J#j2 jl#jz
Z Z whwk Cov(XE . (t), XE . (1) = w” S*w. (4)
J1,52=111,i2=1
J1#j2
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To avoid infinite solutions of w, the variance of y¥(t) is constrained to 1:

Z 011732 - Z OOU yjl y]g( ))

J1,j2=1 Ji,J2=1

Z Z whwf Cov(XE (1), XE (1) = w'Q"w: (5)
Jr.g2=1i1,52=1
The constrained spatial filter can be obtained by maximizing the'generalized eigenvalue
~
equation J, which is expressed as:
w? SFw
J = ———. (6)
wT QFw
Eigenvectors are obtained by solving the generalized, eigenvalue problem. The
eigenvectors with the largest eigenvalues are selected as theeigenvectors that are to be
used in the spatial filter. Three eigenvectors are adepted in TRCA. These eigenvectors
from two classes are then combined into the TRCA spatial filter. The TRCA spatial
filter that we obtained is W & RNex6,

CCP: Using the training set of EEG datay X®ye RNexNoxNie I — 1 2 we can obtain
the CCP templates X* = Zjvztl XEf Ny € RNexNs 'k — 1,2 for each of the two classes.
The EEG signal of the trial from whichiwe aimto extract features is X € R¥*¥s_ Given
the TRCA spatial filter W, we extract the €CP after the EEG signals are transformed
with W. Three kinds of correlation coefficients are considered in STRCA:

(1) Correlation coefficients between filtered signals:

X = X5 X=X (7)

prx = corr(XIW, XgW), k=1,2; (8)
(2) Correlation coefficients between filtered signals with a canonical correlation analysis
projection:

X, = X5 = X (9)

[Aj; Bil =cca(X]W, X[W) (10)

Pt = corr(XfWBk, X,?WB;C), k=1,2; (11)
(3) Correlation eeefficients between the distances of filtered signals:

Xp=XF - X3k X, = X — X3F (12)

[Ay, By] = cca(XITW, X[W) (13)

psr = corr(XITW A, XIWAL), k=1,2. (14)

In the above equations, canonical correlation analysis is used to optimize the correlation
hetweéen the templates X* and X. The function symbols corr and cca indicate the
calculation process of the correlation coefficient and the process of CCA analysis,
respectively. For each trial, we can obtain six features, which are referred to as CCP
features in the following section.
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2.2.2. Filter Bank TRCA This study proposes an FBTRCA method to énhance
pattern decoding in MRCP analysis. Figure [3| shows the flowcharts of thedproposed
method, which consists of three major procedures: (1) filter bank analysis, (2) CCP
feature extraction and (3) feature selection.

First, in the filter bank technique, the sub-bands are decomposed with multiple
filters that have different pass-bands. In this study, the bandpass filter used for
extracting sub-band components from the original EEG signals was an 8-order infinite
impulse Butterworth filter.

STRCA is then applied to each sub-band separately, resultingdn six CCP features.
The number of sub-bands is denoted as m, such that thé mumber 6f CCP features
extracted from all sub-bands is 6 xm=6m. The essential features are extracted from the
6m features in all sub-bands using one of the feature arrangement types. The feature
arrangement type refers to the arrangement of the 6m CCP features when the feature
selection method is applied.

Finally, the selected essential features are classified with the binary classifier. This

study compares two classifiers, including the [LDA and the support vector machine
(SVM).

Filter Bank 1 BNV
Filter Bank 2 [H{@F:N . e
Original Signals Filter Bank 3 [BE¥EOLN
IRC VORI Y v Filter Bank 4 B3 @)%

B Y i erervarivd . Class 1
m- Filter Bank 5 [SSiBt{@/S .
=)
P N NV SN Y . Class 2
e A T Y
SRS RIS RS
N

)
<)
=
=
]
13
=]
(53
[0}
=
(03
n
£
=1
S
=

FilterBankm [SEINIOE

Figure 3. The structure of FBTRCA. CCP features are extracted from EEG signals
using various filter banks, and a total of 6 x m features are obtained. Then, feature
selection methods are used to extract the essential features. A binary classifier is used
tolclassify theyselected essential features and predict the state of the EEG signals
(movement or resting).

2.2.3. Frequency Range Settings In the decomposition of sub-bands, the decomposed
EEG signals and classification accuracies vary with different frequency range settings
of the filters. In the MI analysis, the frequency range of the filter banks was equipped
withrequally spaced bandwidths in alpha and beta rhythms, e.g. 4~8 Hz, 8~12 Hz, ...,
36~40 Hz [32]. In the SSVEP analysis, the frequency range of the filter banks started
at nx8 Hz and ended at a fixed frequency, e.g. 8~88 Hz, 16~88 Hz, ..., 80~88 Hz,

w=1,2,..,10 21].
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In MRCP analysis, the frequency range setting is undetermined. Considering that
MRCP signals are a type of EEG signal with low frequencies, the maximumdhigh cut-
off frequency is set to 10 Hz. Three frequency arrangement settings are compared,
including My, My and Msj.

(1) My Figure The frequency range setting in M, is similar todthat in FBCSP
but with different low cut-off and high cut-off frequencies. The sub=bandsyin M; are
equipped with equally spaced bandwidths.

(2) M, Figure : The frequency range setting in M, corresponds \to the harmonic
frequency bands. The high cut-off frequency is twice as high as the low cut-off frequency.
(3) M3 Figure : The frequency range setting in M3 is similar to the best setting in
FBCCA. One of the two ends of the sub-bands is a fixed value. The low cut-off is fixed
because the MRCP signals are in a low-frequency band. The high cut-off frequencies
are arranged as an arithmetic sequence.

i
.

10 . 10 — o 10
Qo 9 - _g 9 - o 9 ]
S g - S 3 —ar— B g C—
ol = z 7 — =7
— = 6 - N 6 L -_— as) é 6 y
=85 = =g s -_—— = F 5 —
24 - o 4 = - L 4 —
83 o L 3 - 8 3 oo
=, =m =5 =m = —
P~ | == F 1 = - 1] ==
0 5 10 0 5 10 0 5 10
Frequency Range (Hz) Frequency Range (Hz) Frequency Range (Hz)
(a) My (b) M, (c) M3

Figure 4. Frequency range settings of sub-bands for the filter bank design. Mj: sub-
bands with equally spaced bandwidths (e.g. 0.05 ~1 Hz, 1~2 Hz, ..., 9~10 Hz).; M>:
sub-bands whose stopping frequency is twice as high as the starting frequency (e.g.
0.05~0.9 Hz,0:9~1.8 Hz, 1.8~3.6 Hz, ..., 8.1~10 Hz).; M5: sub-bands that start at
a fixed frequency (exg. 0.05~1 Hz, 0.05~2 Hz, ..., 0.05~10 Hz). Counsidering that the
MRCP.are EEG signals with low frequencies, the maximum frequency of the range is
set 10 10Hzy In this figure, the number of filter banks is 10 (m=10).

2.2.4. Feature Arrangement Types From each of the sub-bands, six CCP features are
extracteds®The total number of features is therefore 6 xm=6m. When selecting essential
features from these using feature selection methods, there are two feature arrangement
typessthathwere used (Figure [5)).

Type 1: The feature selection method is applied individually to each feature in the
CCPs The feature selection method selects K1 essential features out of m features, and
is applied six times. In the end, 6xK1 essential features are selected in total. The
maximum value of K1 is 100.

Type 2: The feature selection method is applied to all six features in CCP
simultaneously. The feature selection method is applied only once, and K2 essential
features are selected from 6 x m features. The maximum value of K2 is 6 x m =600.

Page 12 of 45
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. CCP1 ccr2 [ .
7 Type1 CCF3 ccrs T gy B o e Number
8 e cons = o I T W 4

CCP5
9 CCPé cces [ .
10 ccrs I |
11 Selected Feature Number:
12 K1
13 Selected Feature Range | |
14
15 - Selected Feature INumber:
16 CCP1 K2

CCP2

Total Feature Number:

v ez (7 - %

CCP5
19 CCP6
20
21
2 Figure 5. There are two arrangements that were used, when selecting the features
23 across these filter banks. Type 1: a feature selection method was applied to each
24 feature in CCP respectively. Type 2: a feature selecgion method was applied to all six
25 features in CCP simultaneously.
26
27
28 s 2.2.5. Feature Selection Methods Mutual-information-based approaches are a popular
;g a9 feature selection paradigm in datasmining.” \In the FBCSP method of MI analysis,
31 20 feature selection based on mutual infermation plays a significant role in optimizing the
32 21 CSP features in all sub-bands. This study compares eight mutual-information-based
gi 22 feature selection methods to findra suitable one for selecting CCP features in multiple
35 283 sub-bands. The compared feature selection methods include:
36 2 (1) Mutual Information Quotient (MIQ) [25]
¥ s (2) Maximum Relevance (MAXREL) [26]
39 26 (3) Minimum Redundancy, (MINRED) [26]
40 27 (4) Minimum Redundancy Maximum Relevance (MRMR) [26]
2; s (5) Quadratic Programming Feature Selection (QPFS) [27]

20 (6) Conditional Infomax Feature Extraction (CIFE) |28

43
44 20 (7) Conditional Mutual Information Minimization (CMIM) [29]
42 201 (8) Maximumt Relevance Minimum Total Redundancy (MRMTR) [30]
4
47
48 2w 2.2.6. MBinary Classifiers In STRCA, two binary classifiers have been compared,
;‘g 23 including the linear discriminate analysis (LDA) and the support vector machine (SVM).
51 2 Because themumber of features of STRCA is fixed, the simple LDA classifier shows the
52 205 best performance among the three classifiers explored in . In the proposed FBTRCA
gi 26 method, however, there are more than six features, and the number of features changes
55 ssmedue to the feature selection settings. As a result, the kernel-based SVM classifier may
56 20s  show better performance when dealing with hyper-dimension features. Therefore, the
;73 200 two classifiers are also compared in this work.
59
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2.8. Benchmark Method

The convolutional neural network (CNN) is used universally for feature selection.
A neural network can be adjusted to an unknown function by backpropagation. The
convolution unit in CNN can capture the local features of given inputs and thus,select
the essential features. Considering that the size of the EEG dataset is small, the CNN
method with a simple architecture is used as the benchmark method for feature selection.

In the CNN architecture, the CCP features are the input of the neural network
and are regarded as a 6-channel image. The height and width of the images are the
numbers of the low cut-off frequencies and the high cut-off frequencies, respectively. A
two-dimensional convolution layer is used to extract essential features from these CCP
features. This convolution layer has 24 filters, each of size 3 x 3. A batch norm layer
and a ReLu layer are used to normalize the output of theiconvolution layer. A 2 x 2 max
pool layer with stride 2 follows the ReLu layer. Finally, a full-connect neural network
with a hidden size of 50 is used as the binary classifiers, The output of the hidden layer
is normalized with the batch norm. The network is traimed with an Adam optimizer
with a learning rate of 0.001. The maximum training epoch is set to 200.

2.4. Performance Measurement

In binary classification, accuraey, Flsscore and cross-entropy loss are three prevalent
measurements for classification performance. In the classification task, the model will be
tested after training. There aréfour outcomes in the testing result: true positive (TP),
true negative (TN), false positive (EP) and false negative (FN) [34]. The definitions of
these four outcomes for the binary classification are given as
TP = the number of casesds correctly identified as one class;

FP = the number of cases is incortectly identified as one class;
TN = the number of gases is correctly identified as the other class;
FN = the number of cases is incorrectly identified as the other class.

The accuracy‘measures the ratio of the correctly predicted trials in the testing set,

and is calculatedsthrough the following expression:

TP+ TN
TP+ TN+ FP+ FN
In the calculation of Fl-score, two measurements are considered: precision and

(15)

Accuracy =

recall. The predcision is defined as

TP

Precision — — - 1
recision = o5 (16)
whereas the recall is defined as
TP
Recall TP FN (17)

F'l-score is given by combining both precision and recall:

Page 14 of 45
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Pl 2 X Precision X Recall

(18)

Precision + Recall

Both the two classes have an F1-score, which are therefore denoted as Fly and Fls.

The macro-average Fl-score (macroAVG) is used as a measurement whiech balanges the
F1-scores of the two classes:

macroAVG = 0.5 x (F1; + F1,). (19)

Cross-entropy loss refers to the contrast between two random va?iables. It shows
how accurate the classification model is by defining the difference between the estimated
probability and the true label. The higher the difference between the two label outputs,
the higher the loss. The cross-entropy loss is defined as

2
CrossEntropy = L(y,t) = — Ztiln(yi), (20)
k=1

L
where ¢ is the true label and y is the estimated probability. When measuring the

classification performance of FBTRCA, ‘the estimated probability is replaced with the
predicated label of FBTRCA.

For the performance evaluation, 10-fold cross-validation is used. For each of the
subjects and motion pairs, the accuracy, macroAVG and cross-entropy are averaged
across 10 folds to get the mean and the deviation. When presenting the classification
performance of the motion pairsy we average the means and the deviations of all the
subjects. The final evaluation scoresyfor each method are obtained by averaging the
means and deviations across ‘all subjects and motion pairs. We also use the two-side
t-test to measure the improvem\ent from STRCA to FBTRCA. The p-value is measured
from the results of the 10 folds, for each of the subjects and motion pairs.

3. Results

The proposed FBTRCA method is evaluated with the two datasets. EEG signals are
divided into the RP and MMP sections in the first dataset, while in the second dataset,
the signals are 4n the two=second time window after the cue. The result analysis is
carried out'in threecases: when the EEG signals are from (1) the RP section in dataset
I, (2) both the RP and MMP sections in dataset I, and (3) the two-second time window
aftersthe cue in dataset II. The performance of the classification methods is evaluated
by 10-fold &ross-validation.

This study aims to incorporate the filter bank technique into STRCA and thus
propose a new methodology, FBTRCA. Three steps are necessary to achieve this goal:
(1) decide on the frequency range settings;

(2) evaluate the parameters K1 and K2 in the two types of feature arrangements;
(3) compare results achieved through FBTRCA against the benchmark.
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In the first step, the properties of each filter bank will be determined, ineluding
the number of filter banks and their individual frequency ranges. The secondistep will
evaluate K1 and K2 for each mutual-information-based feature selection method.»Fhe
effects of LDA and SVM on FBTRCA are also compared in the second step.. In the
third step, the best performance of the FBTRCA method is compared to those achieved
by the CNN and STRCA methods in the three cases presented aboye.

3.1. Analysis of the Frequency Range Settings

~

STRCA is applied to filter banks in three different settimgs: My, M, and Ms.
Figure [6] shows the classification accuracies of each filter bank, insthe three settings.
The performance is evaluated with the binary classification between the movement and
resting states in the RP section of dataset I. The meanofithe Gi(actions) x 15 (subjects)
x 10 (folds) accuracies is taken to evaluate the classificationperformance.

In setting M;, the accuracy decreases to 0.5.as the filter bank index increases.
Similarly, the accuracy of the M, setting follows the sampe trend. The STRCA fails
to solve the binary classification of the EEG"signals in the sub-bands without low
frequencies. Therefore, the two frequeney, range séttings are not suitable for the
combination of STRCA and the filter bank technique. In the Mj setting, however,
the accuracies in the filter banks aresacceptable.

The main difference between M5 and either M or M, is that the frequency ranges
of the filter banks in M3 cover, the sub-bands at low frequencies. The sub-bands at low
frequencies maintain the information necessary for STRCA.

m Ml uM2 M3

@g"}“é“fmw R
AL

Filter Bank Index

Figure 6. Classification accuracies of STRCA in three frequency range settings. In
boethithe M, and Ms settings, the accuracies decrease as the filter bank index increases,
as the STRCA cannot tell the difference between the actions and the resting state. In
the Mj setting, the accuracy remains stable with an acceptable range. This means
that M3 is the only acceptable frequency arrangement setting among the three.

In"the sight of these results, the Mj frequency range setting is adopted with
modifications in the design of the filter banks for the proposed FBTRCA method. The
low cut-off frequency is shifted slightly from 0.5 Hz to 0.05 Hz with step 0.05 Hz, and
the high cut-off frequency remains the same as that in M3. The total adopted number
of sub-bands is 10x10.

Page 16 of 45
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Figure 7. Average classification accuracies of STRCA dn differentysub-bands. (a)
Subject 1, elbow flexion vs resting state; (b) Subject 1, elbow ertension vs resting;
(c) Subject 2, elbow flexion vs resting; (d) Subject 2/elbow extension vs resting. For
different subjects or actions, the sub-band that has the besticlassification performance
differs. Indeed, this is the reason why it is necessary to incorporate the filter bank
technique in STRCA and develop the proposed EFBTRCA miethod.

In Figure [7], the classification accuracies of SFRCA in these sub-bands are given.
The sub-bands with the highest accuracy vary/for different subjects and actions. It is
hard to decide on a suitable sub-band for STRCA, and for this reason, FBTRCA is
proposed to solve this problem.

3.2. Analysis on Feature Selection/Methods

After applying STRCA to 100 sub-bands, 6 x100 CCP features are extracted. Then,
feature selection methods select the essential features with a certain feature arrangement
type. These essential featuresrare classified with binary classifiers. In Figure [§] the
classification performances of ‘eight mutual-information-based feature selection methods
are compared on two featiire arrangément types. The essential features are classified
with the LDA classifier and the SVM classifier (linear kernel). The statistics shown in
Figure [§ are the avérage accuracies across subjects and motion pairs in the RP section
of dataset I. The motiompairs include both (1) the binary classification between two
actions and (2) the binary classification between a movement state and the resting state.

The result§iin Figure |8 are analyzed from three different perspectives: (1)
binary classifiers, (2) eemparison among the mutual-information-based feature selection
methods, and (3) parameter searching on K1 and K2.

SVMrand LDA are both basic binary classifiers used in machine learning. LDA
casts the features into two classes through a linear projection, while SVM converts the
features into hyper-space using a linear kernel and then casts the features in hyper-space
into two classes. Because of the kernel, SVM is more efficient than LDA when tackling
complicated features. In Figure [§] it can be seen that SVM has a better classification
performance than LDA. The accuracies of LDA decrease sharply in Figure and
and the best accuracy of LDA in Figure is slightly lower than the accuracy
of SVM in Figure Therefore, the SVM classifier is better in the classification of
FBTRCA.

In Figure eight feature selection methods based on mutual information are
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Figure 8. Tuning the Kl and K2 parameters with the LDA and SVM classifiers.

compared. These method§ have similar accuracies except for MINRED (yellow line)

and CIFE (green line). The aecuracies of the other six methods have a similar (1) best

accuracy and (2) changing trends In the following analysis, the MRMR method is used

as the feature selection method based on mutual information.

The ranges of K1 and K2 are 0~100 and 0~600, respectively. Despite their
difference in range, their best accuracies are the same in Figure and Figure .
There is no significant”difference between the two feature arrangement types when

selecting essential featuresyusing methods based on mutual information.
To goneludeonthe above three points, the best procedure for the FBTRCA method

has three steps.

First, EEG signals are divided into 10 x 10 low-frequency banks

according 'to_the M; frequency range setting. Second, the feature selection method

MRMR isased to select essential features. Finally, the selected essential features are

classified using the SVM classifier. The number of selected essential features is about

15.
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3.3. Comparison against Benchmarks

CNN is a universal feature selection method based on machineslearning:. The
proposed FBTRCA method is compared against the STRCA and the CNN methods.
The structure of the CNN model is given in Section The input of the CNNmethod
is 6 x 10 x 10 CCP features, which include CCP features in 10 x 10 low-frequency filter
banks. The input of the STRCA is the EEG signals in 0.05~10 H Z.

A comparison between the STRCA, CNN and FBTRCA methods can be made
using the accuracy, macroAVG and cross-entropy loss measurements, which are averaged
across all subjects and all folds. In Figure[J] the results for the tweo'cases in the dataset I
are given, where the classification methods are applied to EEG signals‘in the RP section
or to both the RP and MMP sections. The x-axis refer§ito the motion pairs, and the
abbreviations are short for the names of actions. For.example, ‘EF’ is short for "elbow
flexion’. Figure presents the classification results of dataset II. The classification
methods are applied to the EEG signals in the two-seeond time window after the cue.
Overall, it can be observed that the FBTRCA! method antperforms the STRCA and
CNN methods in both datasets. To better present the classification performance, we
list the detailed accuracies for all subjeetsrand motion pairs in the datasets I and II
(Table 4H15]). The detailed accuracies are results,averaged from accuracies of ten folds
of cross-validation. The mean and the deviation are listed in two separate tables.

In dataset I, the binary classification is evaluated on the EEG signals in the
RP section. The binary classification between actions and the resting state reflects
whether the subjects want to move their limbs or stay at rest. The meaning of
pre-movement decoding is tofdetect the movement intention before the limb moves.
FBTRCA can improve the performance of pre-movement decoding compared to the
previous STRCA method: Whe\n EEG signals in both RP and MMP sections are used,
all three classification methods show an improved performance compared to the results
for signals in only the RP section. The EEG signals are also different between the two
states in the MMP_section:

During the agquisition of EEG signals in dataset 11, the limb movement trajectories
were not recorded, and thus the onsets of actions cannot be located precisely. The two-
second time window after the cue is taken in the classification evaluation. Within this
time window,, the subjects 'begin to move their limbs. Therefore, the two-second time
window €overs part of both the RP and MMP sections. Although the onsets cannot be
located in dataset II, the FBTRCA still improves the classification performance.

We also,present the p-values of two-side t-test between the STRCA method and
the FBTRCA method (Table [L6[{18). The p-values are calculated from the accuracies
of temnfolds, for each subject and each motion pair. In the three tables, the p-values
are highlighted if the value is smaller than 0.1. In the dataset I (RP+MMP section),
thereis at least one subject that FBTRCA shows significant improvement than STRCA
(p <0.1), except for the classification between pronation and hand close or between
pronation and hand open.
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evaluated in either the RP section or both the RP and MMP sections. The accuracies
are averaged across all subjects and all folds. The x-label represents the motion pair in

Qure 9. Accuracy, macroAVG and cross-entropy loss comparison in dataset I. Three
< : ethods including STRCA, CNN and FBTRCA are compared. The classification is

v

which the binary classification is applied. The abbreviations of these states are used in
the figures to facilitate the presentation; for example, ’EF’ is short for the movement

state elbow flexion. Figure Figure and Figure each refer to one of the
three measurements respectively.

Page 20 of 45



Page 21 of 45 AUTHOR SUBMITTED MANUSCRIPT - JNE-105676.R1

Improving Pre-movement Pattern Detection with Filter Bank Selection

1
0.9

0.8

0.7

0.6 |
0.5

0.4 |

03

SUPR SU-HO SU-PG SU-LG PR-HO PRPG PRLG HOPG HOLG PGLG ; HO PG-RE LG-RE
Motion Pair

mSTRCA B CNN HFBTR
(a) Dataset II, Accuracy

1
0.9
0.8
0.7
0.6
0.5
0.4
03

SU-PR SU-HO SU-PG SU-LG PR-HO R-PG SU-RE PR-RE HO-RE PG-RE LG-RE

oNOYTULT D WN =

W NNNMNNNMNNMNNNNN=S 2 QAo aaaaaa
SCSWVWONOUPAWN=OVONOULDNWN=O
macroAVG Accuracy

B STRCA EFBTRCA

Wi

w w ww
A wWN =
(=}
(=]

A DDDNWWWWW
WN—=OVWONOWU
Cross Entropy

e S e 2 e 2 2 ¢
o = o B o
I
o I
I

44 SU-PR J-LG PR-HO PR-PG PR-LG HOPG HOLG PGLG SU-RE PR-RE  HO-RE PG-RE LG-RE
45 Motion Pair

46 = CNN =FBTRCA

2; (c) Dataset II, Cross Entropy

gg Figure 10. Accuracy, macroAVG and cross-entropy loss comparison in dataset
51 Three methods including STRCA, CNN and FBTRCA are compared. The
52 classification is evaluated in the two-second time window after the cue. The other
53 settings of this figure are the same as those presented in Figure [0}

(S N BN RO, BV, BN, |
O 00N U1 D

(o))
o



oNOYTULT D WN =

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

490

491

492

493

494

495

497

498

499

500

AUTHOR SUBMITTED MANUSCRIPT - JNE-105676.R1

Improving Pre-movement Pattern Detection with Filter Bank Selection 22

Resting
Elbow Flexion

i with : ,l'iyﬁ.ﬂ“" Elbow Extension
"‘“\'-*\,L-a"‘\ i ."f}.j".l ! """v";*"“f"u‘__"f:r~‘*lr" oty .“'.- [ ) MSupination
| ’ b %W‘f'rwfm Pronation
Hand Close
Hand Open

Figure 11. The grand average MRCPs of multiple motions.

In summary, the proposed FBTRCA method incorporates the filter bank technique
into the basic STRCA method, thus presenting a comparable classification performance
to STRCA in pre-movement decoding.

4. Discussion

- 4
In this study, we proposed a new pre-movement decoding method, FBTRCA. This

method is developed by incorporating filtersbank sele¢tion on the STRCA method. In
comparison to MI signals, MRCP signals have the.advantage that the movement patterns
can be observed before the movement onset.: \FBTRCA is designed to extract features
from the grand average MRCP, which contains information about the movement in
MRCP signals. FBTRCA consgists of threesmodules: the spatial filter TRCA, the CCPs
features and the low-frequency bands. The associations between these and the grand
average MRCP are detailed below. Towbetter explain the relationship between FBTRCA
and grand average MRCP, the grand average MRCP of multiple actions in channel C,
is presented in Figure [L1]

The spatial filter is a dinear transformation of multi-channel EEG signals. It
plays the role of channel selection and thus optimizes the spatial characteristic of EEG
signals. Our previous work pointed out that SSVEP and MRCP signals have similar
spatial distributions, and,the STRCA method was proposed by comparing the effects
of different spatial filters for MRCP signals [13]. The spatial filter TRCA showed a
better performance when compared to other spatial filters. Among the compared spatial
filters, the discriminative ¢anonical pattern matching is a spatial filter that maximizes
the interselass covariance and minimizes the intraclass covariance. However, even the
performance of this filter was worse than TRCA. Therefore, the spatial filtering does
not aaximize the intraclass covariance in this work. As given in Section [2.2.1) TRCA
searches for the projection matrix that maximizes the covariance of each trial in each
class.yThedideal spatial filter transforms the EEG signals of all trials into a single trial
so that the covariances among these trials are maximized. The grand average MRCP
is the'mean of all the trials in each class. We assume that the ideal single trial is the
grand average MRCP, although there might be some biases. The EEG signals of all the
trials in each class approach the grand average MRCP of each class during the spatial
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filtering. Because the inter-trial noises are not correlated, the noise componentsdn EEG
signals have lower eigenvalues. The noises are removed from the signals by taking the
eigenvectors of the three maximum eigenvalues in the spatial filtering.

In Figure [11] the grand average MRCPs of multiple motions are different. In the
binary classification, the class of an EEG trial is determined by the distafices between the
EEG trial and the two grand average MRCPs. The goal is to quantifythe relationship
between the EEG signals of each trial and the grand average MRCPs of two classes
after the spatial filtering. CCPs are in fact used to measure the similarity between
EEG signals and the grand average MRCPs. In the calculation of CCP\S, three types of
correlation coefficients are used to measure the similarity between EEG signals and the
grand average MRCPs; these include (1) the correlation betweentEEG signals and the
grand average MRCP, (2) the canonical correlation betweemEEG signals and the grand
average MRCP, and (3) the canonical correlation hetween two differences, including
the difference between EEG signals and the grandiaverage MRCP and the difference
between two grand average MRCPs. Because the three coefficients are measuring the
similarity between EEG signals and the grand average MRCP and there are two grand
average MRCPs, the number of total CUP. features.is six.

However, because the differences between, the two motions are reflected in their
grand average MRCP signals, the similarity between their grand average MRCP signals
limits their classification performance. “For. instance, the classification between elbow
flexion and resting has a high accuracy, but the classification between elbow flexion and
elbow extension achieves an unsatisfactory performance.

The grand average MRCPplays an important role in STRCA and FBTRCA. But
the calculation procedure is simple, which is the same as the procedure of the CCP
templates given in Section In the training set, the EEG signals of each trial are
labelled. The grand average MRGP can be established simply by averaging EEG trials
belonging to the samesclass. Caleulating the grand average MRCP with the training
set and using the grand, average MRCP as a template can be derived from [35-37].
Their grand average MRCPrwas extracted from the surrogate channel in the training
set. In our workg the template is extracted from the channels in the motor cortex. The
number of channels in, the grand average MRCP is then minimized by the task-related
component analysis.

Whengapplying/filter bank selection to STRCA, the EEG signals are divided into
several ffrequengy ranges. As shown in Figure [12(a)] the low cut-offs of these frequency
ranges are.small, while the high cut-offs are sorted in an arithmetic sequence. In MRCP
analysis, the grand average MRCP shows an increase followed by a decrease around
the movement onset. The grand average MRCP is a low-frequency signal. Figure
illustrates the power spectrum of the grand average MRCP. As the frequency
increases, the time window with high power (yellow part) becomes narrow. Therefore,
it is necessary to maintain the low-frequency components, as then the increasing high
cut-off of filter banks can introduce more subtle features. For example, in Figure ,
the 0.5~3 Hz component reflects how the grand average MRCP changes. As the high
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Figure 12. TFrequency characteristics of MRCP signals. (a) Low-frequency
components of MRCP signals in the RP section (M5). (b) Power spectrum of the
grand average MRCP in both RP and MMP sections, calculated by the short-time
Fourier transform.

cut-off increases to 10 Hz, more local trends are introduced.

The Figure can be used to explain why the frequency range setting Ms; is
better than the other two settings. Theicorrelation coefficients measure the similarity
of the unlabeled trial and the, grand average MRCPs. As mentioned above, the
classification of STRCA and EBTRCA depends on the differences between two grand
average MRCPs. The most discriminant features in the grand average MRCP are the
increase and decrease around the.movement onset (Figure. Reflected in Figure ,
the increase and decrease are Jocated in the extremely low-frequency bands (0.5~3 Hz),
which indicates thegglobal trendfof MRCP signals. When the high cut-off frequency
increases, more subtle features are introduced. In the frequency range settings, M; and
M, the global tréend of MRCP signals is removed in the filtering and only subtle or
local features are kept. It leads to the results that the increase and decrease trends are
removed, and#he differences of the increase and decrease between two motions cannot be
further analyzed‘and distinguished in STRCA and FBTRCA. Therefore, the frequency
range setting Ms isaised in the analysis of MRCP signals.

In (the frequency range setting Mz of Figure {4l the filter bank 10 (e.g., 0.05~10
Hz) covers the/ranges of the rest filter banks and thus contains the information from
other frequency bands. However, the other filter banks are still important in the signal
processing, This can be explained by the classification accuracies in multiple filter banks.
In Figure[7] the average classification accuracies of multiple filter banks are presented.
When the low cut-off of the filter bank is fixed to a small value, the accuracy of STRCA
changes as the high cut-off frequency increases in an arithmetic sequence. The best
accuracies among these bands are different among subjects and motion pairs. A possible
reason is the influence of noise in the frequencies greater than the best frequency, and
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the insufficient information in the frequencies smaller than the best frequency. The best
frequency bands cannot be determined directly by giving a certain frequeney range.
The filter bank selection across these frequency bands in the proposed FBTRCA.is
necessary when tackling this problem. Therefore, although the filter bank 10 eovers all
the other filter banks, the other filter banks are still necessary. The filter. bank 10'may
be influenced by undetected noises and is not in the best frequency range.

During the development of the FBTRCA method, the processing capabilities in
SSVEP and MI are considered. This includes the canonical correlation coefficients in
SSVEP and the feature selection on filter banks in MI. =

SSVEP also uses canonical correlations as features for €lassification, but there are
some differences. In SSVEP, there are two kinds of templates when calculating the
correlation coefficients [33]. The first template is the CCP, template averaged across
trials in each class. The second template is the sinusoidal function. Because the visual
stimulus in SSVEP has a specific frequency, the similarity between EEG signals and
the sinusoidal function with a specific frequency ean. predict the frequencies of visual
stimuli. Compared to SSVEP, MRCP has a natural drawback: the templates cannot be
measured with frequencies. As shown in‘Figure the differences between the grand
average MRCPs of a motion pair are different.»For example, the differences between the
grand average MRCPs of elbow flexion and elbow eztension is smaller compared to the
differences between elbow flexion and supination. We cannot measure how much smaller
the differences are, but they can be measured by the frequencies of visual stimuli in
SSVEP. Therefore, it is difficultito classify the MRCP signals by adopting the maximum
value of correlation coefficients.as im SSVEP. The coefficients calculated in STRCA are
used as features for further improvement by feature selection.

In Section [3] the classificationresults between EEG signals in the RP section and the
RP+MMP sections are compared.«'['he EEG signals in RP+MMP show an improvement
over those in only thesRP section. The reason is that the grand average MRCPs also
show the differences between the two actions in the MMP section. Similarly to the result
analysis of dataset'Il, ithis not necessary to locate the onset of the action and divide the
EEG signals into RP and MMP sections if one is only considering the classification of
two classes. The classification results in the RP section indicate whether this method
works in pré-movement decoding. The classification results in both the RP and MMP
sections reflect the best classification performance that this method can achieve.

The feature selection methods we used are based on mutual information instead of
similarityror sparse learning [38]. Mutual information is preferred in this case because it
hag shown to have good performances previously in FBCSP. Mutual information is also
used,in MI'analysis when selecting features from filter banks. Because of the efficiency
of mutual information in feature selection on filter banks, feature selection methods
based.on mutual information were first considered. Compared to feature selection with
CNN, the feature selection based on mutual information achieved better performance,
as shown in Figure 9] Compared to mutual information, sparse learning is suitable in
the feature selection from both multiple filter banks and time windows [32].
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Traditional EEG processing methods have three key points, spectral, spatial and
temporal. The proposed FBTRCA method is associated with one point of the traditional
method, spectral, i.e., filter banking. According to our research experience on MRCP
signals, FBTRCA and STRCA cannot well deal with the spatial optimizatien. The
spatial filtering in STRCA and FBTRCA work as unrelated-components rejection.” The
introduce of more channels will lead to a decrease of the classification’perfermance of
STRCA and FBTRCA. The temporal characteristic used in FBTRCA and STRCA is
the correlation, which measures the similarity of two time series. It can be further
improved in future work. Besides, the STRCA and FBTRCA can\only be used in
the binary classification limiting to the scheme of STRCA# Migrating the two binary
classification methods to the multi-class classification task is also'an important work. In
MRCP signals, the grand average MRCP is a special concept,in EEG processing, which
averages across all trials belonging to a class. However, averaging is a simple approach
to finding the center points of all trials and inevitably introduces unexpected influences
like outlier points. It is also possible to find a hyper-space that casts the trials to the
discriminant points. y

5. Conclusion

The proposed FBTRCA method ineorporates the filter bank technique and solves
the unstable accuracy problem. There are four steps in FBTRCA. First, EEG signals
are divided into multiple sub-bands in the low-frequency domain. Second, CCP features
are extracted from these sub-bands with the STRCA method. Then, the minimum
redundancy maximum relevance methodis used to optimize and select the CCP features.
Finally, the selected features-are classified with the SVM binary classifier. When
decoding the pre-movement pattern in the RP and MMP section, the average accuracy
increases from 0.8228£0.1149 (STRCA) to 0.8968+0.0847 (FBTRCA) in the binary
classification between the actions and the resting state; the average accuracy increases
from 0.66114+0.1432 (STRCA) to 0.7178+0.1274 (FBTRCA) in the binary classification

between two actions.

6. Code availability

The code of this work is freely available here: https://github.com/plustar/
Movement-Related-Cortical-Potential.
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