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1 Introduction

Entanglement entropy (EE) gives an unconventional description of quantum field theory
(QFT) in terms of a statistical measure of the vacuum fluctuations in regions of space.
It is a natural objective to understand if there is a full universal description of QFT by
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means of the EE. Several connections of EE with more conventional quantities have been
understood. An important one relates to large distance entanglement.

Let us consider the mutual information between two well separated regions A, B in
vacuum. This is defined as the combination of entropies

I(A,B) = S(A) + S(B)− S(A ∪B) , (1.1)

and has a meaning as a measure of the total amount of correlations between the regions.
In a conformal field theory (CFT), and when the lowest dimension operator is a scalar of
dimension ∆, and the separation L between the regions is much larger than their sizes,
we have

I(A,B) ∼ C(A)C(B)
L4∆ . (1.2)

This limit was analyzed in [1] using a OPE expansion of the twist operators and further
refined in [2], where the coefficients C(A) were computed for the case of spherical regions.
See [3–7] for previous d = 2 analysis. In more generality, when the lowest dimension
operator is not scalar some tensorial structures appear in the coefficients. See [8, 9].
Subleading terms have also been computed [9–11], and some cases beyond the sphere
are also known [12]. As a result of this analysis it is understood that the power series
expansion of the mutual information for large distances contains the complete information
of the spectrum of conformal dimensions of the CFT.

One of the main results of this work is a new superadditive inequality for the mutual
information in CFTs, derived from the Markov property on the null cone and strong sub-
additivity of the entropy. We will see that this provides another entry for the relationship
between entropic quantities and general properties of QFTs. A basic nonperturbative re-
sult in unitary field theories is the existence of unitarity bounds of the form ∆ ≥ ∆∗ for
the dimensions ∆ of conformal primary operators. A violation of the bound implies the
existence of certain negative norm states in the Hilbert space. These bounds also con-
strain the structure of general QFTs that start from ultraviolet conformal fixed points. We
will show how mutual information superadditivity gives rise to certain unitarity bounds.
Strong subadditivity contains information on the “unitarity” of the theory, meaning here
the positive definite scalar product in the Hilbert space. However, its relation to the more
standard manifestations of unitarity, like reflection positivity, have remained quite obscure.
The relation found in this paper of strong subadditivity and unitarity bounds provides a
special instance in which this connection becomes more direct.1

An important aspect in our approach involves going beyond purely spatial regions for
the mutual information, allowing for null deformations of their boundaries; see figures 1–4
below. We find that saturation of superadditivity implies a certain geometric continuity of
the mutual information that can only hold for free fields. In fact, this continuity actually
defines what is a free field in entropic terms. Because of this, only the unitarity bounds
for fields that have the tensor structure corresponding to conformal primary free fields are

1We also recall that strong subadditivity and the Markov property have been especially useful in the
context of the proof of the irreversibility of the renormalization group flow in QFT [13–16].
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reproduced by the entropic inequalities. It remains to understand if and how the general
unitarity bounds can be derived from the mutual information.

In this paper we also further develop tools for computing the leading term of the mutual
information in the long distance limit. We give a formula computing this term depending
on the modular flows of the two regions. This generalizes the calculations in [1, 2]. With the
help of this formula we give the explicit result for two spheres with arbitrary orientations
in spacetime and for the contribution of primary fields in any tensor representation. For
spatial spheres we will show that the leading term has a remarkably simple form,

I(A,B) ∼ c(∆) dim(R)
(
RARB
L2

)2∆
, (1.3)

where the coefficient depends only on the scaling dimension ∆ and the dimension of the
Lorentz representation R of the lowest dimensional primary field. For boosted spheres the
mutual information depends on the lowest weights of R, and is given below in section 4.5.
The result can be further extended for free fields to regions with arbitrary boundaries on
the null cone.

The plan of the paper is as follows. In section 2 we describe the strong superadditivity
of mutual information, and its application to the case of spheres in a CFT. We also show
how the saturation of this inequality in the long distance limit can only happen for free
fields. In section 3 we derive a formula for the coefficients of the mutual information in the
long distance limit valid for any shapes for two regions. In section 4 after computing these
coefficients explicitly in several cases of interest, we derive the general formula for the case
of two spheres with arbitrary orientations in spacetime and conformal primaries in general
Lorentz representations. The formula for the coefficients based on modular flows allows us
to prove the saturation of the inequalities in the free case from a different perspective in
section 5. This result will allow us to give the explicit form of the coefficients for free fields
and for any region in the light cone. In this same section we also compare in detail the
entropic bounds with unitarity bounds. We end in section 6 with a brief discussion and
conclusions. Two appendices contain additional technical details used in the main part of
the paper.

2 Mutual information superadditivity and the long distance expansion

In this section we derive the strong superadditivity property of mutual information on the
null cone and use it to obtain bounds on the scaling behaviour of the mutual information
at large distances. These bounds saturate for free fields.

2.1 Strong superadditivity on the null cone

For a CFT, the entanglement entropy of the vacuum in regions having a boundary on the
null cone satisfies the Markov property. This is the saturation of strong subadditivity [14].
Calling A1, A2 to the two regions with boundaries on the null cone, we have for the entropies

S(A1) + S(A2) = S(A1 ∩A2) + S(A1 ∪A2) . (2.1)

– 3 –
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Figure 1. Two regions A1, A2 with boundary on a null cone and another spatially separated
region B.

Given two arbitrary space-like separated regions A, B we can compute the mutual
information

I(A,B) = S(A) + S(B)− S(A ∪B) . (2.2)

This is a well defined quantity in any type of operator algebras, including the type III1
von Neumann algebras encountered in QFT. Taking two regions A1, A2 with boundaries
on the null cone as above, and another spatially separated region B (see figure 1), we can
compute

I(A1 ∩A2, B) + I(A1 ∪A2, B)− I(A1, B)− I(A2, B) (2.3)
= S(A1 ∪B) + S(A2 ∪B)− S((A1 ∩A2) ∪B)− S((A1 ∪A2) ∪B) ,

where we used (2.1). The combination of entropies in the right hand side is always non-
negative by the strong subadditivity property of entropy. Therefore, we obtain the strong
superadditivity for the mutual information,

I(A1 ∩A2, B) + I(A1 ∪A2, B)− I(A1, B)− I(A2, B) ≥ 0 , (2.4)

valid when one of the entries in the mutual information satisfies the Markov equation (2.1).
In the rest of the work we will study implications of this inequality, and its infinitesimal
form, for CFTs.

2.2 Two spheres and conformal invariance

In a conformal field theory the mutual information is conformally invariant. For the case
of two spheres this is particularly powerful since the sphere is completely determined by
the two time-like separated points at the tips of the causal domain of dependence. If we
take the mutual information between two spheres, four points determine the configuration
space of the mutual information (see [8]). Conformal symmetry implies that the mutual
information must be a function of the two possible independent cross ratios between these
four points [17]. Moreover, it can be expanded in terms of conformal blocks, as we discuss
in more detail in appendix A.
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Figure 2. Two spheres determined by four points xi located at the tips of their causal domains.
In a CFT the mutual information between these two spheres is conformally invariant and depends
solely on the two independent cross-ratios formed by xi in any dimension.

Let us call the past and future tips of the causal diamond of the first sphere x1 and x2
respectively, and call x3, x4, the past and future tips corresponding to the second sphere.
We write

x2 − x1 = 2R1n1 , x4 − x3 = 2R2n2 (2.5)

with n1, n2 two future directed unit time-like vectors (n2
1 = n2

2 = −1), and R1, R2 the radii
of the spheres. We define the distance L by

x3 − x1 = L l , (2.6)

with l a unit spacelike vector, see figure 2.
For our purpose, it will be convenient to choose the following two independent cross

ratios

χ1 = |x1 − x2||x3 − x4|
|x1 − x3||x2 − x4|

= 4R1R2
L|2R1n1 − Ll − 2R2n2|

, (2.7)

χ2 = |x1 − x2||x3 − x4|
|x1 − x4||x2 − x3|

= 4R1R2
|2R1n1 − Ll||2R2n2 + Ll|

, (2.8)

where the norm is computed with the Minkowski signature (− + . . .+). The relation
between (χ1, χ2) and the conventional cross-ratios (u, v) is

u = x2
12x

2
34

x2
13x

2
24

= χ2
1 , v = x2

14x
2
23

x2
13x

2
24

= χ2
1
χ2

2
. (2.9)

For spatially separated spheres χ1 ∈ (0, 1), χ2 ∈ (0,∞) and χ2 > χ1. Both cross ratios
increase under inclusion of the spheres. I(χ1, χ2) is a positive monotonically increasing
function under inclusion.

We will be interested in the limit of long distance between the spheres. We will see that
this limit has information on the conformal dimensions and spins of operators. Expanding
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for L� R1, R2 we have

χ1 = 4R1R2
L2 + 8R1R2

L2 l ·
(
n1
R1
L
− n2

R2
L

)
+
(4R1R2

L2

)2
((n1 · n2)− 1) (2.10)

+ 8R1R2
(R1 +R2)2

L4 + 6R1R2
L2

(
l ·
(
n2

2R2
L
− n1

2R1
L

))2
+O((R/L)5) ,

χ2 = 4R1R2
L2 + 8R1R2

L2 l ·
(
n1
R1
L
− n2

R2
L

)
+
(4R1R2

L2

)2
(2(l · n1)(l · n2)− 1)

+ 8R1R2
(R1 +R2)2

L4 + 6R1R2
L2

(
l ·
(
n2

2R2
L
− n1

2R1
L

))2
+O((R/L)5) . (2.11)

The two cross ratios have the same leading term 4R2R2/L
2. The leading term of the

difference is
χ2 − χ1 ∼

16R2
1R

2
2

L4 (2(n1 · l)(n2 · l)− n1 · n2) . (2.12)

The combination (2(n1 · l)(n2 · l)−n1 ·n2) is always positive because χ2 ≥ χ1. In fact, one
can check that for two space-like separated causal diamonds,

(2(n1 · l)(n2 · l)− n1 · n2) ≥ 1 , (2.13)

by e.g. putting the four points in the same plane.
We assume the mutual information falls as a power of the distance L and the leading

term has a definite tensorial structure. This follows from the OPE in terms of field operators
which we review in the next section. A power of χ1 or χ2 will give us the leading term
power falloff, while the possible tensorial dependence can only come from an integer power
of the difference χ2−χ1. Therefore, while the overall power of L of the leading contribution
can be any, the tensorial character can only be an integer power of (2(n1 · l)(n2 · l)−n1 ·n2),
greatly simplifying the analysis when the contribution comes from interchange of fields
with spin. That is, the long distance leading term of the mutual information has to be of
the form

I ∼ ck (2(n1 · l)(n2 · l)− n1 · n2)k
(
R2

1R
2
2

L4

)∆

= C(n1, n2, l)
(
R2

1R
2
2

L4

)∆

, (2.14)

for some integer k ≥ 0, and ck > 0. Typically, there is a combination of different k for the
same ∆ in the leading long L limit. In appendix A we compare this expression with the
conformal block expansion of the mutual information. In this expansion 2∆ and k have
the interpretation of the conformal dimension and spin of the field interchanged by the two
spheres. In the rest of this section we investigate the restrictions on ∆ for each k using
mutual information strong superadditivity.

2.3 Strong superadditivity for two spheres

We want to use strong superadditivity to get inequalities for the mutual information of
two spheres. Therefore we need to have spheres on both sides of the inequality. This is
possible only by taking many boosted rotated spheres and applying strong superadditivity

– 6 –
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Figure 3. Geometric setup of multiple boosted and rotated spheres used to derive (2.31).

many times. In the limit an inequality involving only spheres is obtained. The geometric
construction is the same as the one used for proving the irreversibility theorems [13, 15, 16].
See figure 3.

We will apply strong superadditivity changing the position of the first sphere in a
null cone. The second sphere is kept fixed with radius R2 and orientation n2. The vector
x3−x1 = L l is also fixed.2 Following [13], we take the radius of the first sphere r̃1 =

√
R1r1

and rotate it around a fixed time-like unit vector n1. We take many evenly rotated spheres.
The rotated spheres have future directed time like unit vector

ñ1 = Λ 1
2
√
R1r1

(R1 + r1, (R1 − r1)~Ω) , (2.15)

where ñ2
1 = −1 (recall we are using the metric signature (−1, 1, . . . , 1)), and ~Ω is the unit

spatial vector which later is averaged over the unit sphere. The average direction of the
rotated spheres is given by

n1 = Λt̂ , (2.16)

where t̂ is the unit vector in the time direction and the matrix Λ is a boost transformation
that sets the average orientation of the spheres.

Following [13] from the application of strong subadditivity we get

1
vol(Sd−2)

∫
dΩ I(r̃1, ñ1) ≤

∫ R1

r1
dr β(r) I(r, n1) , (2.17)

where we are only showing explicitly the dependence on the parameters of the left region
of figure 3. The normalization factor vol(Sd−2) = 2π(d−1)/2/Γ[(d − 1)/2] is the volume of

2There are other inequalities for the mutual information coming from strong subadditivity for the entropy
of the union of the two spheres when we change the position of the two spheres at the same time. However,
these inequalities do not use the Markov property of the entropy of single spheres in the null cone and turn
out to give weaker inequalities on ∆.
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the unit sphere of spatial directions. The numerical coefficient appearing in the integral on
the right hand side of (2.31) is the density of the number of spheres as a function of the
radius [13]:

β(r) =
2d−3Γ

(
d−1

2

)
√
πΓ
(
d−2

2

) (r1R1)
d−2

2 (r − r1)
d−4

2 (R1 − r)
d−4

2

rd−2(R1 − r1)d−3 . (2.18)

For strong superadditivity (as happens with strong subadditivity) there is no loss
of generality in considering only the infinitesimal version,3 provided that all infinitesimal
deformations of arbitrary regions are considered. Here we limit ourselves to the infinitesimal
version of (2.17). We can take R1 = r1 + ε, and expand to quadratic order in ε. In this
approximation

ñ1 = Λ
((

1 + ε2

8r2
1

)
t̂+

(
ε

2r1
− ε2

4r2
1

)
Ω̂
)
, (2.19)

We will also use ∫
dΩ Ωi = 0 ,

∫
dΩ ΩiΩj = vol(Sd−2)

d− 1 δij . (2.20)

Let us evaluate both sides of (2.17) to order ε2. The integrand in the left hand side
expands to

I(r̃1, ñ1) ≈ I(r1, n1) + ε

2∂r1I(r1, n1) + ε2
[ 1

8r1

(
r1∂

2
r1I(r1, n1)− ∂r1I(r1, n1)

)
(2.21)

+ 1
8r2

1
nµ1∂nµ1 I(r1, n1) + 1

4r1
(ΛΩ)µ∂r1∂nµ1 I(r1, n1) + 1

8r2
1

(ΛΩ)µ(ΛΩ)ν∂nµ1 ∂nν1 I(r1, n1)
]
.

Performing the angular integral gives4

∫
dΩ

vol(Sd−2) I(r̃1, ñ1)≈ I(r1,n1)+ ε

2∂r1I(r1,n1)+ε2
[ 1

8r1

(
r1∂

2
r1I(r1,n1)−∂r1I(r1,n1)

)
+ 1

8r2
1
nµ1∂nµ1 I(r1,n1)+ 1

8r2
1

1
d−1(gµν+nµ1nν1)∂nµ1 ∂nν1 I(r1,n1)

]
. (2.22)

To evaluate the right hand side, we expand I(r, n1) to quadratic order in r − r1, but keep
the full dependence in β(r) (to deal properly with the limit r → r1 and r → R1). The
result is∫ R1

r1
drβ(r)I(r,n1)≈

I(r1,n1)+ ε

2∂r1I(r1,n1)+ ε2

8(d−1)r1

(
dr1∂

2
r1I(r1,n1)−2(d−2)∂r1I(r1,n1)

)
. (2.23)

Therefore the mutual information strong superadditivity (SSA) for multiple spheres gives

r2
1∂

2
r1I(r1,n1)−(d−3)r1∂r1I(r1,n1)−(gµν+nµ1nν1)∂nµ1 ∂nν1 I(r1,n1)−(d−1)nµ1∂nµ1 I(r1,n1)≥ 0.

(2.24)
3Strong subadditivity is equivalent to monotonicity of mutual information, and it is clear that mono-

tonicity under inclusion is equivalent to its infinitesimal version.
4This amounts to replacing (ΛΩ)µ(ΛΩ)ν → 1

d−1 (gµν + nµ1n
ν
1).
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Before turning to the long distance limit, let us analyze the geometrical character
of (2.24). Using the covariant derivative

∇µ = ∂

∂nµ
+ nµn

ν ∂

∂nν
(2.25)

(this takes into account that (nµ)2 = −1 and so that nµ∇µ = 0), we see that the angular
variations combine to give the Laplacian,

gµν∇µ∇ν = (gµν + nµnν) ∂

∂nµ
∂

∂nν
+ (d− 1)nµ ∂

∂nµ
. (2.26)

Furthermore, we can characterize the causal diamond for a region in terms of an oriented
area,

Aµ = rd−2
1 nµ1 , (nµ1 )2 = −1 . (2.27)

Then (2.24) becomes simply

gµν
d

dAµ
d

dAν
I(χ1, χ2) ≥ 0 . (2.28)

For comparison, the infinitesimal strong subadditive inequality for the EE in d dimensions
is [15]

r2∆S′′(r)− (d− 3)r∆S′(r) ≤ 0 , (2.29)

which can be written as the second derivative with respect to the norm of the oriented
area |A| = rd−2. Compared to the EE, the mutual information inequality has angular
dependence because we have two spheres.

2.3.1 The long distance limit

Let us now evaluate (2.24) in the long distance limit (2.14). We get

2(2∆+k)
(

∆− d+k−2
2

)
(2(n1 ·l)(n2 ·l)−n1 ·n2)k+k(k−1)(2(n1 ·l)(n2 ·l)−n1 ·n2)k−2≥ 0 .

(2.30)
As a cross-check of the steps leading to (2.24), we can also compute (2.17) using the
limit (2.14) from the start,

(r1R1)∆R2∆
2

(vol(Sd−2))

∫
dΩC(ñ1, n2, l) ≤ C(n1, n2, l)

∫ R1

r1
dr β(r) r2∆R2∆

2 . (2.31)

This leads to the same result (2.30).
Choosing spheres boosted with respect to l with a large boost parameter ∼ β we get

(2(n1 · l)(n2 · l)− n1 · n2) ∼ cosh(β). (2.32)

Therefore the first term in (2.30) has to be positive by itself. This gives

∆ ≥ d+ k − 2
2 . (2.33)

– 9 –
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This implies in particular that there is a lower bound on the decay of the mutual information
at large distances for any CFT

I & L−2(d−2). (2.34)

We have obtained these bounds for spheres, but by monotonicity the same bounds hold for
regions of any other shapes in the long distance limit. We will see in the next section how
these bounds reproduce unitarity bounds for field operators.

In the long distance limit, the angular dependence is only through the combination

T ≡ 2(n1 · l)(n2 · l)− n1 · n2 . (2.35)

Then (2.24) simplifies to

r2
1∂

2
r1I(r1, T )− (d− 3)r1∂r1I(r1, T )− (T 2− 1)∂2

T I(r1, T )− (d− 1)T∂T I(r1, T ) ≥ 0 . (2.36)

For (2.14), this readily reproduces (2.30). We find that (2.36) can be expressed entirely in
terms of cross-ratios in the long distance limit:

u2∂2
uI(u, v)+u∂2

vI(u, v)+u(v−1)∂u∂vI(u, v)+ 4− d
2 u∂uI(u, v)+ 2− d

2 (v−1)∂vI(u, v) ≥ 0 .
(2.37)

But away from the long distance limit, we get that the inequality cannot be written solely
in terms of cross-ratios.

2.3.2 The case d = 2

Let us consider the mutual SSA (strong superadditivity) in the simplest case of d = 2,
varying the endpoints of interval A as in the entropic C-theorem [13, 18]. Expanding to
quadratic order in ε and using the chain rule, we obtain the differential inequality

u2∂2
uI + uv∂2

vI +
(
u2 + u(v − 1)

)
∂u∂vI + u(∂uI + ∂vI) ≥ 0 . (2.38)

We see that the inequality can be expressed entirely in terms of the cross-ratios (2.9); this
is special to d = 2.

As a check, let us consider the long distance limit, where

u ≈ 16R
2
1R

2
2

L4 , v ≈ 1− 8R1R2
L2 (2(n1 · l)(n2 · l)− n1 · n2) . (2.39)

Replacing

I ≈
(
R2

1R
2
2

L4

)∆

(2(n1 · l)(n2 · l)− n1 · n2)k = u∆
(1− v

2u1/2

)k
(2.40)

into (2.38) gives(
∆2− k

2

4

)
(2(n1 ·l)(n2 ·l)−n1 ·n2)k+ 1

4k(k−1)(2(n1 ·l)(n2 ·l)−n1 ·n2)k−2≥ 0 . (2.41)

This is the right result for d = 2.

– 10 –
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2.4 Saturation of inequalities, pinching property, and free fields

The saturation of the inequality (2.33) gives a scaling dimension that coincides with the
dimension of conformal primary free fields of helicity h = k/2.5 There is a surprising
way in which saturation of strong superadditivity points to free fields in this context. To
show this, we consider the following limit of the mutual information. As before, we take
one of the regions to have boundary described by γ1(Ω) on a null cone, where Ω are the
angle variables describing the directions on the cone, and γ1(Ω) is the radial (or temporal)
coordinate on the surface. Consider deforming γ1(Ω) only for a small region around some
null direction Ω̃, and taking the limit γ1(Ω̃) → 0 to a new surface γ′1(Ω); see figure 4. In
the limit when the region we cut out includes the apex of the causal cone, the space-time
volume determined by the causal region associated to γ′1(Ω) (the volume of the causal
development of the corresponding null surface) is zero. The full causal region in this limit
is just a null surface. We refer to this geometric deformation as “pinching” the original
spacetime region.

It is known that smearing fields on a null surface is not enough to produce an operator
in the Hilbert space, unless the operator is free [20–22]. Therefore, if the theory does not
contain free fields, the algebra associated to the region disappears in the limit where the
first region approaches γ′1, and the mutual information associated to γ′1 should vanish. We
call this property the “pinching property”, that is

lim
γ1→γ′1

I(γ1, B) = 0 , (pinching property: non-free models) (2.42)

for any fixed B. In contrast, for free fields, the limit should give a non vanishing mutual
information since there is a non trivial algebra for null surfaces in this case. Moreover,
in the limit where the angular region which was pinched is very small there should be no
change in the mutual information with respect to the original region, even if the space-time
volume of the region vanishes. This is because, for a free field, any operator in the region
with boundary γ1 can be expressed as an operator on the null surface by the equations of
motion. Then the mutual information should be continuous as we take limits of regions on
the null surface.

Therefore, there is a very different behaviour of the mutual information as a function
of γ1 for free and non free theories. The continuity of the entropy, or non pinching property,
gives a definition of what is a free model from the point of view of the entanglement entropy.
Notice that this is not exactly the same as the definition of free theory in terms of Wick’s
theorem for correlators. This latter applies for example to generalized free scalar fields
with dimension ∆ > (d− 2)/2 and in this case we expect the pinching property to hold.

We will show that when k = 0,∆ = (d − 2)/2 or k = 1,∆ = (d − 1)/2 the mutual
information is continuous under pinching on the null cone and the theory has to be free.
For higher values of k ≥ 2 again the saturation is associated to free fields but we discuss
these cases later. For k ≥ 2 and ∆ = (d+ k − 2)/2 the inequality (2.30) actually does not

5See e.g. [19] for a discussion of unitarity bounds and further references. We will return to this in
subsection 5.2.
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Figure 4. Pinching γ1 to γ′
1 gives a null surface with vanishing space-time volume.

saturate and other terms with smaller k have to appear with the same scaling ∆ for the
saturation of strong superadditivity to take place.

Let us then consider k = 0,∆ = (d − 2)/2 or k = 1,∆ = (d − 1)/2. Inserting these
values in the inequality (2.31) (the non-infinitesimal inequality) it is the result of a direct
calculation that it saturates exactly. As the inequality is the result of applying strong
superadditivity many times for boosted and rotated spheres, it follows that the saturation
of the final inequality implies the saturation of each of the intermediate instances where
strong superadditivity was applied. In particular, strong superadditivity for the mutual
information with just two boosted spheres must saturate. These spheres can be of any size
and boost parameter. The following reasoning shows that this saturation implies in turn
the saturation of strong superadditivity for any two surfaces γa, γb, on the light cone. We
are only considering the long distance leading term.

Let us consider the mutual information I(A,B) with B fixed and different A’s on a
null cone. Strong superadditivity is

F (A1, A2) = I(A1 ∩A2, B) + I(A1 ∪A2, B)− I(A1, B)− I(A2, B)
= S(A1B) + S(A2B)− S((A1 ∩A2)B)− S((A1 ∪A2)B) ≥ 0 . (2.43)

If we keep the intersection A1 ∩A2 fixed, this quantity is decreasing with decreasing A1 or
A2 by strong subadditivity. Therefore, if F (A1, A2) = 0, the same holds for smaller regions
with the same intersection. In the same way (2.43) is decreasing with increasing A1 or A2
keeping the union A1 ∪ A2 fixed. Therefore, if F (A1, A2) = 0, the same holds for bigger
regions with the same union. Applying these two rules we get that F (γa, γb) = 0 for any
intermediate regions γa, γb such that A1 ∩ A2 ⊂ γa, γb ⊂ A1 ∪ A2, and γb ∩ A1 ⊂ γa ∩ A1,
γa ∩ A2 ⊂ γb ∩ A2. Given that we can choose spheres A1, A2 (with the same radius)
arbitrarily, it is not difficult to see that we have F (γa, γb) = 0 for any regions in the
light cone.

Therefore, in analogy with the case of saturation of strong subadditivity of the entropy,
we can say that in this situation the mutual information I(γ,B) (in the long distance limit)
is Markovian with respect to the surface γ in the light cone

I(γ1 ∩ γ2, B) + I(γ1 ∪ γ2, B)− I(γ1, B)− I(γ2, B) = 0 . (2.44)
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This implies I(γ,B) is a local functional of γ(Ω) [16], i.e. an integral

I(γ,B) =
∫
dΩ f(γ(Ω), B) . (2.45)

This directly implies the mutual information is non-pinching in the above sense. The
model then has to contain a free field. We will see the cases k = 0 or k = 1 precisely
correspond to free scalars and fermions respectively, and we will discuss in more detail the
interpretation of k > 1.

Away from the long distance limit the mutual information for free fields is of course non-
pinching, but the inequality does not saturate any more. This is because of the contribution
of polynomials of the free fields, as explained in the next sections.

3 Replica computation of the long distance expansion

In this section we derive a general formula for the mutual information coefficients in the long
distance limit. The formula generalizes previous ones in the literature that were valid for
spheres to the case of arbitrary regions. It involves the modular flows of the regions A,B.

3.1 OPE expansion of the mutual information

We follow [1] to write the coefficient of the mutual information for well separated regions.
The Renyi entropies of integer index are given by expectation values of twist operators in
an n replicated theory [23]. That is,

trρnA = 〈Σ(n)
A 〉 , (3.1)

where some regularization is assumed, which is equivalent to a small smearing of the
operator Σ(n)

A . This relation was originally thought in Euclidean time but also holds in
real time for arbitrary space-like regions [24]. The operator Σ(n)

A is just the twist (the
operator that implements a symmetry locally) of the replicated theory corresponding to
the symmetry of cyclic permutation of copies. This symmetry is evidently unbroken in
the replicated model. The twist operator transforms fields in the causal development of A
and commutes with the operators in the causal complement A′. The expectation value of
the right hand side of (3.1) is on the product state of the vacuum in each of the n copies
(or any other state formed by products of the same state in the different copies). For two
disjoint regions A, B, we have

trρnAB = 〈Σ(n)
A Σ(n)

B 〉 . (3.2)

Then, the idea of [1] is to replace each twist operator in this expression by an operator prod-
uct expansion (OPE) in terms of field operators in each copy to obtain a series expansion
of the mutual information for long distances. The OPE can be written

Σ(n)
A = trρnA

∑
{kj}

C
Aα0...αn−1
{kj}

n−1∏
j=0

φ
αj
kj

(rjA) . (3.3)

The pre-factor trρnA is a normalization such that the first coefficient of the expansion
corresponding to the identity operator is one, CA1 = 1. Each of the operators φαjkj belongs
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to the jth copy, kj determines the type of field operator and αj is a possible spin index. rjA
is a point inside A in the copy j.

The Renyi entropy is Sn(A) = (1− n)−1tr(ρnA), and the Renyi mutual information

In(A,B) = Sn(A) + Sn(B)− Sn(AB) = 1
1− n log

(
trρnA trρnB

trρnAB

)
. (3.4)

In the long distance limit this is dominated by the operator of smallest dimension in the
OPE expansion. The mutual information is obtained in the limit n→ 1. The leading term
of the mutual information is dominated by two copies of the smallest dimension operator
in the theory, each one in a different replica.6 One then gets for the leading term

I(A,B) ∼ lim
n→1

 n

2(n− 1)

n−1∑
j=1

CA,αα
′

0j CB,ββ
′

0j

Gαβ(rA, rB)Gα′β′(rA, rB) (3.5)

= Dαα′, β,β′

A,B Gαβ(rA, rB)Gα′β′(rA, rB) ,

where
Gαβ(rA, rB) = 〈0|φα(rA)φβ(rB)|0〉 . (3.6)

If the operators in the two copies are complex there is an additional factor 2 in (3.5).
Calling ∆ to the dimension of the lowest dimension operator, (3.5) falls as L−4∆. The

coefficients could in principle be obtained from (3.3) taking correlators with fields at large
space-like distances

CAαα
′

0j Gαγ(rA, r)Gα′γ′(rA, r) =
〈Σ(n)

A φγ0(r)φγ
′

j (r)〉
trρnA

, r2 →∞ . (3.7)

3.2 Computation of the leading coefficient in terms of modular flows

In order to better understand this coefficient we recall that (in presence of a regulator)
the Hilbert space can be decomposed as HA ⊗ HA′ for the region A, where A′ is the
complementary region. Then we can write a tensor product basis for the Hilbert space on
each copy as {|eia, f ib〉}, where i is the index of copies and a, b the ones spanning the basis
for each copy. Then we can write the twist operator in explicit form [24]

Σ(n)
A =

n−1⊗
i=0

(∑
a

|ei+1
a 〉〈eia|

)
⊗ 1HA′ , (3.8)

with cyclic notation |ena〉 ≡ |e0
a〉. This operator is unitary and does not depend on the

chosen basis. If |0i〉 is the global state in the copy i, and |Ω〉 = ⊗i|0i〉, it is not difficult to
show using the Schmidt decomposition for |0i〉 in HiA ⊗HiA′ , that

〈Ω|Σ(n)
A |Ω〉 = trρnA ,

〈Ω|Σ(n)
A O

A,j |Ω〉 = tr
(
ρnAOA

)
, (3.9)

〈Ω|Σ(n)
A O

A,j
1 OA,j

′

2 |Ω〉 = tr
(
OA1 ρ

n−(j−j′)
A OA2 ρ

(j−j′)
A

)
,

6The contribution to the mutual information of only one operator in one copy vanishes because the
coefficient of the one copy operators in the expansion should have a factor n−1, such that limn→1 Σ(n)

A = 1,
see [2].
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where OA is an operator in A in the original single copy space, and OA,j is its representative
in the jth copy. In the right hand side of these formulas we have expressions in a single
copy Hilbert space. We also have

Σ(n)
A′ Σ(n)

A |Ω〉 = |Ω〉 , Σ(n)
A |Ω〉 =

(
Σ(n)
A′

)−1
|Ω〉 , (3.10)

where (Σ(n)
A′ )−1 just changes the order of copies with respect to Σ(n)

A′ .
Therefore, the right hand side of (3.7), where the operators live in A′, amounts to

evaluate
tr(ρnA′ ρ

−j
A′ φ

γ(r) ρjA′ φγ
′(r))

trρnA
= tr(ρnA′ φ

γ
A(r, τ = ij)φγ′(r))

trρnA
(3.11)

where all operators are in a single copy theory, and

φγA(r, τ) = ρiτA′φ
γ(r)ρ−iτA′ (3.12)

is the field transformed by the modular flow of A′, which coincides, except for the sign of
τ , with the modular flow of A (and this is why we have called it with subscript A).

Next we follow similar steps as in [2]. It is convenient to write the sum over j in (3.5)
as a contour integral in the complex plane. We write

n−1∑
j=1

tr(ρnA′ φ
γ
A(r1, ij)φγ

′(r1)) tr(ρnB′ φδB(r2, ij)φδ
′(r2))

=
∮
dτ tr(ρnA′ φ

γ
A(r1, τ)φγ′(r1)) tr(ρnB′ φδB(r2, τ)φδ′(r2))F (n, τ) . (3.13)

The function F is

F (n, τ) = 1
2πi

n−1∑
j=1

1
τ − ij

= 1
2π (ψ(n+ iτ)− ψ(1 + iτ)) , (3.14)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. The contour of integration has to
contain the imaginary points ij, j = 1, . . . , n − 1 and avoid the origin. For n > 1 this
function has poles on the positive imaginary axis τ = iu, u ≥ 1. Then the contour of
integration encircles this semi-axis to get an analytic continuation in n of the sum (3.13).
In the limit n→ 1 we have

F (n, τ)→ (1− n)
(

1
2πψ

′(−iτ) + π

2 sinh2(πτ)

)
+O((n− 1)2) . (3.15)

The first function within the brackets does not have poles along the positive imaginary axis
and does not contribute. For the second term the integration contour can be deformed to
have τ = i/2 + s, with s real. Then

lim
n→1

(1− n)−1
n−1∑
j=1

tr(ρnA′ φ
γ
A(r1, ij)φγ

′(r1)) tr(ρnB′ φδB(r2, ij)φδ
′(r2))

= −
∫ ∞
−∞

ds
π

2 cosh2(π s)
〈φγA(r1, i/2 + s)φγ′(r1))〉 〈φδB(r2, i/2 + s)φδ′(r2))〉 . (3.16)
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Putting all together, from (3.5) and (3.7), the coefficient of the correlators in the
expansion of the mutual information in (3.5) can be extracted from

Dαα′,β,β′

A,B Gαγ(rA, r1)Gα′γ′(rA, r1)Gβδ(rB, r2)Gβ′δ′(rB, r2) (3.17)

=
∫ ∞
−∞

ds
π

4cosh2(πs)
〈φAγ (r1, i/2+s)φγ′(r1))〉〈φBδ (r2, i/2+s)φδ′(r2))〉 , r2

1,2→∞ .

Though we have used arguments about twist operators and reduced density matrices in the
intermediate steps of the calculation, which require regularization, the final result (3.17)
makes perfect sense in the continuum theory itself. The correlation function of a field with
a modular evolved field is analytic in the strip Im τ ∈ (0, 1), and obeys KMS periodicity
between the boundaries of this strip [25]. Therefore there is no divergence of the correla-
tors for s = 0 due to a suppression factor produced by the imaginary component of the
modular parameter.

This formula gives the coefficient for any shape of A,B. However, it depends on the
correlators with modular evolved fields, by the modular flows corresponding to A,B, in
the far away limit. These modular flows are in general not easy to compute, except for the
case of spheres, or other regions in the null cone, if we restrict attention to the action of
the flow on the null cone. For spheres our formula coincides with the one in [2].

4 Evaluation of mutual information coefficients for spheres

In this section we compute the leading term of the mutual information directly from (3.17).
We recover some results in the literature for spheres as a check of the formulas in the
previous section. We generalize these results to include the dependence of the mutual
information with the relative boost between the spheres, as well as give the general result
for arbitrary tensor structure of the primary fields. After analysing a few simple examples,
we will focus on the contribution from general conformal primary fields. In particular, for
spatial spheres the result is that of a scalar operator of the same conformal dimension times
the dimension of the Lorentz representation.

We will need formulas for the modular flow of spheres. Taking a sphere of radius
R centred at the origin with time-like direction n = t̂, the modular flow is a conformal
transformation that writes (see [25])

x0(τ) = N(τ)−1R

(
x0R cosh(2πτ) + 1

2(R2 − x2) sinh(2πτ)
)
,

xi(τ) = N(τ)−1R2 xi , (4.1)

N(τ) = x0R sinh(2πτ) + 1
2 cosh(2πτ)(R2 − x2) + 1

2(R2 + x2) ,

with x2 = −(x0)2 + xixi. In formula (3.17) we will need to evaluate this transformation
for a far away spatial point x2 � R2, that is otherwise arbitrary. For simplicity, will take
x0 = 0, or x ·n = 0. We will also need to replace a complex modular parameter τ → i/2+s.
After this change of parameter, and in the large r = |~x| limit, we get simply

x(i/2 + s)→ 0 . (4.2)
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This might be surprising, but is explained by the fact that the imaginary modular time
i/2 effects an inversion of coordinates and sends the distant point x to the origin. The
coordinate transformation matrix is, to leading order in r/R,

dxµ(i/2 + s)
dxν

= Ω (2nµnν + Iµν (x)) , (4.3)

where the conformal factor is
Ω = R2

r2 cosh2(πs)
, (4.4)

and
Iµν (x) = δµν − 2x̂µx̂ν (4.5)

is the matrix that implements inversions.7 The Lorentz transformation in (4.3)

Λµν = 2nµnν + Iµν (x) (4.6)

changes the sign of the time coordinate and the spatial coordinate parallel to x̂. It satisfies
Λ2 = 1. It corresponds to a boost in the direction x̂ with imaginary boost parameter iπ.

4.1 Scalar field

We use formula (3.17) for a real scalar field and spheres. We have

DA,B = lim
r2
1,2→∞

|r1|4∆|r2|4∆
∫ ∞
−∞

ds
π

4cosh2(πs)
〈φA(r1, i/2+s)φ(r1))〉〈φB(r2, i/2+s)φ(r2))〉 ,

(4.7)
where we have normalized the two point function of the scalar as 〈φ(0)φ(x)〉 = |x|−2∆.
In this formula the two expectation values are independent and we can use an indepen-
dent coordinate system for each sphere where the spheres are centered at the origin, the
orientation vectors are t̂ and choose r1,2 = r, r · t̂ = 0.

The modular evolved correlators write

〈φ(r, τ)φ(r)〉 = Ω∆(d2(τ))−∆ , (4.8)
d2(τ) = (x(τ)− x)2 . (4.9)

After the replacement t→ i/2 + s and the limit of r � R we have

d2(τ)→ r2 . (4.10)

Plugging this back in (4.7), and using (4.4), we get

DA,B = R2∆
A R2∆

B

∫ ∞
−∞

ds
π

4
1

cosh(πs)2+4∆ = c(∆)R2∆
A R2∆

B . (4.11)

with the numerical coefficient

c(∆) =
√
π Γ[1 + 2∆]

4 Γ[3/2 + 2∆] . (4.12)

7In other words, for x′µ = xµ/x2, we have ∂x′µ

∂xν = 1
x2 I

µ
ν (x).
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The mutual information becomes

I(A,B) ∼ c(∆)R
2∆
A R2∆

B

L4∆ . (4.13)

This result coincides with the one in [2]; see also [6] for intervals and [26] for a numerical
analysis of a specific case.

4.2 Spinor field

For a spinor field

〈ψ(0)ψ̄(x)〉 = i
x̂/

|x|2∆ . (4.14)

The transformation law of the field is

ψ = Ω∆ S

( 1
Ω
∂x′µ

∂xν

)
ψ′ , (4.15)

where S(Λ) is the spinorial representation of the Lorentz transformation. For (4.6) this is
the boost with imaginary argument iπ in the x̂ direction:

S(Λ) = −i ( 6n)( 6 x̂) . (4.16)

Using this in (3.17) we get

DAB = 2c(∆)R2∆
A R2∆

B 6n1· 6n2 . (4.17)

The mutual information follows by contracting with two correlators:

I(A,B) ∼ 2[ d2 ]+1c(∆)R
2∆
A R2∆

B

L4∆ (2(n1 · l)(n2 · l)− (n1 · n2)) . (4.18)

For spheres in the same plane it gives the scalar result times 2×2[ d2 ]. The same result (with-
out attention to the tensorial structure for relatively boosted spheres) was obtained in [9].

The result (4.17) may strike for its simplicity, considering that in each region we can
form different fermion bilinears with the same dimension

ψ̄ψ , ψ̄γµψ , ψ̄[γµ, γν ]ψ , . . . (4.19)

However, the first term does not contribute for a massless field,8 and the antisymmetric
tensors cannot contribute because they must be contracted with powers of the same vector
nµ, or metric tensors. Therefore, only the vector contribution from ψ̄γµψ survives. This
agrees with a calculation in [11].

8In even dimensions, the contribution from ψ̄ψ vanishes due to chiral symmetry. In odd dimensions a
nonzero contribution would violate parity and so is absent on the sphere.
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4.3 Vector field

Let’s consider a primary field of spin 1,

〈φµ(x)φν(y)〉 = Iµν(x− y)
|x− y|2∆ , (4.20)

where Iµν was defined in (4.5). Recall that if a conformal transformation is decomposed
into a local dilatation times a local Lorentz rotation,

∂x′µ

∂xν
= Ω(x) Λµν (x) , (4.21)

where

Ω2 = 1
d
ηανηµβ

∂x′µ

∂xα
∂x′β

∂xν
, (4.22)

then a primary spin one field transforms as

φν = Ω∆
( 1

Ω
∂x′µ

∂xν

)
φ′µ . (4.23)

In our present case, the conformal transformation comes from the modular flow, and
the above gives

〈φµ(r, τ)φν(r)〉 = Ω∆
( 1

Ω
∂x′α

∂xµ

)
Iαν(x− x0)

(d2(τ))∆ . (4.24)

From (4.4), (4.10), and (4.3), we have to replace

〈φµ(r, τ)φν(r)〉 → R2∆

r4∆ cosh(πs)2∆ (2nµnα + Iαµ (r))Iαν(r)

= R2∆

r4∆ cosh(πs)2∆ Iµδ(r)(2n
δnα + gδα)Iαν(r) . (4.25)

In the last step we have used the orthogonality n · r = 0.
Inserting this in (3.17) the factors of Iµν(r) cancel on both sides of the equation and

we get
Dµ1µ2, ν1ν2
AB = Dscalar

AB (2nµ1
1 nµ2

1 + gµ1µ2)(2nν1
2 n

ν2
2 + gν1ν2) . (4.26)

The expansion of the mutual information follows by contracting this tensor with two cor-
relators with the indices µ1, ν1 and µ2, ν2. We get

I(A,B) ∼ c(∆)R
2∆
A R2∆

B

r4∆

[
4 (2(n1 · l)(n2 · l)− n1 · n2)2 + (d− 4)

]
. (4.27)

Note that for spatial spheres, this simplifies to d times the scalar contribution, which is the
right number of components for a spin one field.
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4.4 Antisymmetric rank 2 field

We now analyze the case of a primary antisymmetric tensor field Fµν of dimension ∆ in d
space-time dimensions. A special example of interest is the Maxwell field with ∆ = 2 in
d = 4, which is free. The following combinations at A and B contribute to the mutual OPE:

FµνF
µν , nµnα FµνF

ν
α . (4.28)

This gives a maximum tensorial index k = 2, but contains k = 0 too. When inserted
in the mutual SSA, the k = 2 contribution gives rise to both k = 2 and k = 0 terms,
see (2.30). The first one saturates when the field becomes free, but the second one does
not. Since a free field should saturate exactly the mutual SSA, it has to be that the
additional k = 0 exchange in (4.28) does the job of cancelling the nonzero term in (2.30).
Using the modular flow result (3.17) we now calculate the contribution of this primary field
to the mutual information. We use this result in the next section to exhibit the precise
cancellation on the inequality when d = 4 and ∆ = 2.

The correlator is constructed from the inversion tensor (4.5),

〈Fµν(x)Fαβ(0)〉 = Iµα(x̂)Iνβ(x̂)− Iµβ(x̂)Iνα(x̂)
|x|2∆ , (4.29)

with x̂µ = xµ/|x|. Similarly to (3.17), the conformal transformation from the modular flow
in (3.17) acts on Fµν as a local dilatation and a local Lorentz transformation on each of
the indices of the field. For r � 1 as needed in (3.17), we have

〈Fµν(r, τ)Fαβ(r)〉 → R2∆

r4∆ cosh2∆(πs)
Λµ′µ (n)Λν′ν (n)

(
Iµ′α(r)Iν′β(r)− Iµ′β(r)Iν′α(r)

)
(4.30)

where the Lorentz transformation is given in (4.6).
Replacing (4.30) into (3.17) gives

Dµν,µ′ν′; ρσ,ρ′σ′
A,B = 1

16D
scalar
A,B

(
Iµµ′(in1)Iνν′(in1)− Iµν′(in1)Iνµ′(in1)

)
×
(
Iρρ′(in2)Iσσ′(in2)− Iρσ′(in2)Iσρ′(in2)

)
. (4.31)

Note that the inversion tensor is evaluated on the imaginary vector inµ, Iµν(in) =
2nµnν + gµν . Contracting with

〈Fµν(rA)Fρσ(rB)〉 〈Fµ′ν′(rA)Fρ′σ′(rB)〉 , (4.32)

after a few manipulations we obtain the long distance limit of the mutual information

I(A,B) ∼ c(∆)R
2∆
A R2∆

B

L4∆

[
4(d− 2) (2(n1 · l)(n2 · l)− n1 · n2)2 + (d− 4)2 − d

2

]
. (4.33)

For spatial spheres, this gives d(d− 1)/2 times the scalar contribution, again reproducing
correctly the number of components in Fµν .
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4.5 Contribution of an arbitrary conformal primary

After going over the previous examples, we will now analyze the contribution of a conformal
primary field in a general tensor Lorentz representation. We will first obtain a formula for
the case of boosted spheres in terms of the character of a particular Lorentz transformation.
Specializing to spatial spheres we will find the remarkably simple result that a general
conformal primary contributes as a scalar of the same dimension times the dimension of
the spin representation. Using the formula for characters of the Lorentz group we then
give the general result in an explicit form.

Consider a conformal primary field Oα of dimension ∆ transforming in a representation
R of the Lorentz group. Here α is a multi-index for the vector space of the representation
R, and the representation corresponds to a Young tableaux determining the symmetry of
the indices.9 The propagator

〈Oα(x)Oβ(0)〉 = Gαβ(x) = 1
|x|2∆ Ĝαβ(x) , (4.34)

where Ĝαβ(x), which contains the tensor structure, is independent of ∆. See [27, 28] for
correlation functions for mixed-symmetry tensors. In more detail, we can construct the
two-point function in terms of products of inversion tensors

Iαβ(x) ≡ Iα1β1(x) . . . Iαnβn(x) (4.35)

projected onto the appropriate symmetry space,

Ĝαβ(x) = (P (R)) ᾱα Iᾱβ̄(x) (P (R))β̄β = (P (R)) ᾱα Iᾱβ(x) = Iαβ̄(x) (P (R))β̄β , (4.36)

where P (R) is the corresponding projector. In the last two equations we have used that
the projectors over definite Young-tableaux symmetry commute with the product of two
index tensors such as (4.35).10 This together with the property I2 = 1 gives

Ĝ · Ĝ = P (R) , (4.37)

where we have used a matrix notation.
As an example, for an antisymmetric tensor Fµν ,

〈FµνFρσ〉 = 1
|x|2∆ (Iµρ(x)Iνσ(x)− Iµσ(x)Iνρ(x)) (4.38)

= 1
|x|2∆P

µ̄ν̄
µν Iµ̄ρ̄(x)Iν̄σ̄(x)P ρ̄σ̄ρσ , (4.39)

where the projector for the rank two antisymmetric representation is

P µ̄ν̄
µν = 1

2
(
δµ̄µδ

ν̄
ν − δν̄µδµ̄ν

)
. (4.40)

9For some brief information about Young diagrams see section 5.2 below.
10In fact all operators of index permutation and traces commute with this type of tensors. In particular

Lorentz transformations of the tensor space have the same structure (4.35) and commute with permutations
and traces, keeping invariant the symmetry type of a tensor.
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Given these formulas, let us analyze the leading contribution of a conformal primary
operator to the mutual information,

I(A,B) ∼ Dαα′, β,β′

A,B Gαβ(rA, rB)Gα′β′(rA, rB) , (4.41)

with the coefficient DA,B computed in (3.17) using the modular flow of the two-point
function. We record this here for convenience:

Dαα′,ββ′

A,B Gαγ(rA, r1)Gα′γ′(rA, r1)Gβδ(rB, r2)Gβ′δ′(rB, r2) (4.42)

=
∫ ∞
−∞

ds
π

4cosh2(πs)
〈φAγ (r1, i/2+s)φγ′(r1))〉〈φBδ (r2, i/2+s)φδ′(r2))〉 , r2

1,2→∞ .

The modular flow in the right hand side acts in terms of a conformal transformation,

〈φAγ (r1, i/2 + s)φγ′(r1))〉 = Ω∆

|d(τ)|2∆ R(Λ1) γ̄γ Ĝγ̄γ′(r1)

→
(

R2
A

r4
1 cosh2(πs)

)∆

R(Λ1) γ̄γ Ĝγ̄γ′(r1) . (4.43)

Here Ĝ is defined in (4.34), R(Λ1) is the Lorentz transformation (4.6) in the representation
R of the primary operator, and in the last line we used the rescaling factor Ω found above
in (4.4) as well as the limit r1 →∞ that gives (4.10).

Note that Ĝ is given in terms of products of inversion tensors projected onto the
appropriate symmetry subspace, and similarly R(Λ1) will contain tensor products of
Λµ1 ν = 2nµ1n1 ν + Iµν (r1) times projectors. Recalling r1 · n1 = 0, gives

Λµ1 ν Iνρ(r1) = Iµρ(in1) , (4.44)

independent of r1. Therefore

R(Λ1) γ̄γ Ĝγ̄γ′(r1) = Ĝγγ′(in1) . (4.45)

We found examples of this property previously for the current and the antisymmetric field.
Using this and (4.37), the solution to (4.42) simplifies to

Dαα′, ββ′

A,B = c(∆)(RARB)2∆ Ĝαα
′(in1) Ĝββ′(in2) . (4.46)

The result for the leading mutual information is then

I(A,B) ∼ c(∆)
(
RARB
L2

)2∆
Ĝαα

′(in1)Ĝα′β′(l)Ĝβ
′β(in2)Ĝβα(l)

= c(∆)
(
RARB
L2

)2∆
Tr
(
Ĝ(in1)Ĝ(l)Ĝ(in2)Ĝ(l)

)
. (4.47)

This general expression is quite simple and compact: we find the scalar field result times
a factor that comes from conjugating the modular-boosted operator with the two-point
function Ĝ(l) that connects the two regions. The trace is taken over the representation R
of the conformal primary, and this part of the contribution is independent of ∆.
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We can give a geometric interpretation to this result by rewriting it as

I(A,B) ∼ c(∆)
(
RARB
L2

)2∆
Tr
(
P (R) · I(in1) · I(l) · I(in2) · I(l)

)
(4.48)

= c(∆)
(
RARB
L2

)2∆
TrR (Λ(n1, l, n2, l)) .

Since I(ina), a = 1, 2, is the reflection in the plane perpendicular to na, and I(l) is the
one in the plane perpendicular to l, the matrix Λ(n1, l, n2, l) in the trace is a Lorentz
transformation formed by the product of four reflections. Then, the mutual information is
proportional to the character of the representation R evaluated for a particular, geometri-
cally determined, Lorentz transformation.11

Before giving a more explicit expression, let us apply this result to spatial spheres.
In this case, n1 = n2 and both are orthogonal to l, the unit vector in the direction of
rA − rB. In this case the reflections in (4.48) commute and cancel each other, giving
Λ(n1, l, n2, l) = 1. Then the trace is just the dimension of the representation, and we thus
arrive to

I(A,B) ∼ dim(R) c(∆)
(
RARB
L2

)2∆
. (4.49)

We conclude that for spatial spheres the leading contribution of a conformal primary op-
erator to the mutual information is that of a scalar field of the same conformal dimension
times the dimension of its Lorentz representation.

We can make more explicit the general expression (4.48) using the characters of the
representations of Lorentz group [29]. These are given in terms of the eigenvalues of the
Lorentz transformation. Calling

cosh(β) = 2(n1 · l) (n2 · l)− n1 · n2 , (4.50)

the eigenvalues of Λ(n1, l, n2, l) (the product of four reflections) are (e2β , e−2β , 1, . . . , 1). A
quick way to derive this is to evaluate Λ(n1, l, n2, l) when the four points xi of figure 2
are placed on the same plane. Here we present the result, while technical details of the
derivation are in appendix B.

For odd dimensions d = 2q + 3, q = 0, 1, . . ., the Young diagram giving the represen-
tation of the Lorentz group is determined by the lengths m1, . . . ,mq+1 of the rows, with
0 ≤ m1 ≤ m2 ≤ . . .mq+1.12 Defining the matrices

Aj =
{

(ms + s− 1/2)2p−1

(2p− 1)!

}s=1,...,ĵ,...,q+1

p=1,...,q
, (for d = 3, q = 0, A1 = {1}) , (4.51)

where ĵ is to be omitted, we have

I(A,B)∼ c(∆)
(
RARB
L2

)2∆
(∑q+1

j=1(−1)j+q+1 sinh(2β(mj+j−1/2)) det(Aj)
sinh(β)(cosh(2β)−1)q

)
. (4.52)

11The Lorentz transformation Λ(n1, l, n2, l) is not invariant under cyclic permutation of the arguments
in general, but the trace it is.

12If the number of rows in the Young diagram is less than q + 1 we have to complete the sequence
with zeros.
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For even d = 2q + 2, q = 1, 2, . . . we have instead

Aj =
{

(ms + s− 1)2p

(2p)!

}s=1,...,ĵ,...,q+1

p=0,...,q−1
, (4.53)

I(A,B) ∼ c(∆)
(
RARB
L2

)2∆
( ∑q+1

j=1(−1)j+q+1 cosh(2β(mj + j − 1)) det(Aj)
(cosh(2β)− 1)q

)
. (4.54)

For even dimensions, if m1 6= 0, we have two dual representations with the same tensor
structure. If both components are present we have to multiply (4.54) by 2.

Let us apply this result to some examples. In the case of a graviton in d = 4 (q = 1),
the lowest dimension primary is the curvature tensor, having symmetry given by a square
Young diagram with m1 = 2,m2 = 2 and ∆ = 3. This gives

I(A,B)∼ 512
3003

(
RARB
L2

)6(
32(2(n1 ·l)(n2 ·l)−n1 ·n2)4−24(2(n1 ·l)(n2 ·l)−n1 ·n2)2+2

)
.

(4.55)
Another example is the contribution for a symmetric two index tensor, corresponding to
~m = (0, . . . , 0, 2). We get

I(A,B)∼ c(∆)
(
RARB
L2

)2∆
× (4.56)(

16(2(n1 ·l)(n2 ·l)−n1 ·n2)4+4(d−6)(2(n1 ·l)(n2 ·l)−n1 ·n2)2+ d(d−7)
2 +7

)
.

The case of the stress tensor follows replacing ∆ = d. The case of a totally antisymmetric
field of d/2 indices in even dimensions reads

I(A,B) ∼ c(∆)
(
RARB
L2

)2∆
4
(
d− 2
d−2

2

)(
(2(n1 · l) (n2 · l)− n1 · n2)2 − 1

d

)
. (4.57)

For ∆ = d/2 this corresponds to the free helicity 1 field.

5 Consequences of the inequalities and the structure of the mutual
information

In section 2.4 we argued that the strong superadditive inequality saturates, in the long
distance limit and on the null cone, precisely for free fields. The formula for the long
distance expansion of the mutual information allows us to prove this in a different way.
Then we discuss the interpretation of the inequalities in terms of unitarity bounds. The
bounds provided by mutual information superadditivity are sharp only for fields with spin
structure that supports a free conformal field. The saturation of the inequality for free
fields will allow us to give the general form of the long distance expansion for two arbitrary
regions with boundaries γA and γB on null cones.
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5.1 Free fields have leading coefficients which are local on the null cone

For a region A determined by a surface γA on the null cone, the modular flow for a CFT
acts independently and locally on each null line of the cone, while it is non local outside
of it [14]. For a free field, using the linear equations of motion, we can write the field
φγ(r) as a linear expression on the same field smeared on the null cone.13 Then, the
operator formed by its modular evolution φγA(r, i + s) depends on γA as a sum over the
different null rays. In consequence, the coefficient Dα,α′,β,β′

A,B of formula (3.17) is additive
over the different null rays that form the region γA. In particular the mutual information is
Markovian with respect to γA in the long distance limit, in the sense that strong subadditive
combinations vanish.

This exactly coincides with our findings in section 2.4 on the saturation of the strong
superadditivity inequality precisely for the dimensions of free fields. For an interacting
field, the field equations that allow us to write the field as an operator on the null cone are
non linear, and the mutual information is not additive as a function of the null rays in γA.
There is also the fact that, strictly speaking, we cannot write the interacting field sharply
on the null cone.

For free fields, composite fields formed by products of fields can also be written on the
null cone but as non linear polynomials in the free fields at different points. Therefore, the
subleading contributions produced by these composite fields are non local on the angular
variables of the null cone and do not saturate the strong superadditive inequalities. Still,
these contributions are given by multiple integrals over the light ray directions. Hence,
they will also be non pinching. This is as expected, since a quenching of any subleading
term in the mutual information of a free field as we pinch the null surface would give a
non continuous behaviour which is not allowed for a free field. The functional form of the
coefficients as a function of γA in the interacting case must then be more subtle. In the
interacting case, the coefficients of the expansion of the mutual information could not be
written as convergent expansions of multiple integrals along the angular variables since
these contributions are continuous under pinching.

5.2 Unitarity bounds

As described above, the inequalities can only saturate for free fields, and will more generally
give unitarity bounds related to the free field dimensions. Let us describe these inequalities
for the specific examples in section 4. We recall the inequality

2(2∆+k)
(

∆− d+k−2
2

)
(2(n1 ·l)(n2 ·l)−n1 ·n2)k+k(k−1)(2(n1 ·l)(n2 ·l)−n1 ·n2)k−2≥ 0 .

(5.1)
corresponding to a mutual information leading term I∼(R2

1R
2
2/L

4)∆ (2(n1 · l)(n2 · l)−n1 · n2)k.
For a scalar field the structure of the mutual information (4.13) corresponds to the

case k = 0, which according to (5.1) gives ∆ ≥ (d− 2)/2. This coincides with the unitarity
bound of a scalar field. Since the mutual information measures correlations coming from

13We have to conformally extend Minkowski space to the cylinder, such that the cone extends to a
complete Cauchy surface.
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all fields of the theory, any scalar field violating this bound would also violate strong
superadditivity. For a Dirac fermion field the formula (4.18) corresponds to the case k = 1.
As for the case k = 0, eq. (5.1) has only one term in this case. The inequality gives
∆ ≥ (d− 1)/2 corresponding to the unitarity bound for a Dirac field.

The mutual information for the antisymmetric field Fµν is given by (4.33). In this
case we have a combination of terms with k = 2 and k = 0 with the same ∆. These two
contributions arise from the operators FµνFµν , nµnα FµνF

ν
α contributing to the OPE in

each of the regions. Accordingly, the inequality in this case is the corresponding linear
combination of the inequalities (5.1) for k = 2, k = 0:

4(d−2)(2∆−d)(∆+1)(2(n1 ·l)(n2 ·l)−n1 ·n2)2+((d−9)d+16)∆
(

∆− d−2
2

)
+4(d−2)≥ 0 .

(5.2)
This follows from plugging (4.33) into the mutual SSA (2.36). We recall that (2(n1 · l)(n2 ·
l)−n1 · n2) ≥ 1, and can have arbitrarily large values for relatively boosted spheres. Then
to satisfy the inequality we have to have a positive leading k = 2 term, giving ∆ ≥ d/2.
However, the unitarity bound for an antisymmetric conformal primary field is ∆ ≥ d− 2,
which is stronger. This coincides with ∆ ≥ d/2 only for d = 4, where the saturation
corresponds to the free Maxwell field. We can check that the full inequality (5.2) is always
satisfied, given the unitarity bound. However, it is in general weaker than the unitarity
bound for an antisymmetric field, except for d = 4, where the saturation coincides with
the field being free.

This allow us to understand what will happen more generally for other free fields. For
free scalar and fermions the equations (5.1) for k = 0, 1 contain only one term and saturate
at the unitarity bound. Higher spin free fields give place to larger k in (5.1), and the
saturation of the unitarity bound makes the first term vanish but not the second. However,
for these higher spin free fields there are other contributions to the inequality corresponding
to terms with the same ∆ but lower k. These terms must cancel in the full inequality that
must saturate completely for a free field. In fact (5.2) vanish for d = 4,∆ = 2.

For the vector field mutual information (4.27) we have again a combination of the cases
k = 2 and k = 0. Replacing into the mutual SSA inequality gives

2(2∆−d)(∆+1)(2(n1 ·l)(n2 ·l)−n1 ·n2)2+ 1
2 [4−(d−4)(d−2−2∆)∆]≥ 0 . (5.3)

The first term can be increased by boosting, so it gives ∆ ≥ d/2. This is the unitarity
bound for free helicity one fields. The unitarity bound for the vector field is instead
∆ ≥ (d − 1), saturating for conserved currents. This is in agreement with our previous
discussion, because a conserved current is in general not a free field. Related to this, the
second term with k = 0 does not vanish either. On the other hand, when d = 2 both of these
terms vanish. This saturation indicates the presence of a free field. We can understand
this by recalling that in this dimensionality the current is dual to the derivative of a free
field, Jµ = εµν∂νφ, and the conservation equation ∂µJ

µ = 0 becomes the Klein-Gordon
equation for the scalar.14

14Using (2.13) one can check that (5.3) is positive definite for all (d,∆) with ∆ ≥ d/2.
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Figure 5. Examples of Young diagrams corresponding to Jµ, Tµν (symmetric), Fµν (antisymmetric)
and Φ[µ1µ2µ3][ν1ν2][σ1σ2]. In this last case, we also symmetrize over (µ1ν1σ1) and over (µ2ν2σ2).

Let us now recall the situation in d dimensions for general spin.15 Conformal primary
fields are classified by their dimension ∆ and an irreducible representation of SO(d). These
can be encoded by Young diagrams, with a box for each tensor index, and boxes in a row
(column) denoting symmetrization (resp. antisymmetrization) of the associated indices.
The number of boxes in row i is denoted by li, and the number of boxes in column i is hi.
The diagram is ordered according to l1 ≥ l2 ≥ . . . ≥ lh1 , and h1 ≥ h2 ≥ . . . ≥ hl1 . The
corresponding tensor, making manifest the antisymmetrizations, is

Φ[µ1
1...µ

1
h1

][µ2
1...µ

2
h2

]...[µl11 ...µ
l1
hl1

] . (5.4)

The tensor is traceless, and the overall height h1 has to be smaller than the rank of the
SO(d) algebra (d/2 for d even, or (d − 1)/2 for d odd). We illustrate these properties
in figure 5.

The unitarity bound is
∆ ≥ l1 − hl1 + d− 1 , (5.5)

where, as just reviewed, l1 is the length of the first (longest) row, and hl1 is the length
of the rightmost (shortest) column. In particular, a completely symmetric tensor with l

indices obeys
∆ ≥ d+ l − 2 , (l1 = l , h1 = 1) , (5.6)

while for a completely antisymmetric tensor with h1 indices

∆ ≥ d− h1 , (l1 = 1 , h1) . (5.7)

When the bound is saturated, a first level descendant of the primary operator becomes
null; this translates into conservation equations ∂µΦµ... = 0.

Note that at fixed l ≡ l1 the smallest unitarity bound in (5.5) corresponds to the
largest possible hl1 . This is attained when h1 = . . . = hl = bd2c, namely for a rectangular
Young diagram with bd2c rows and l columns. This gives the smallest bound

∆ ≥ d− 1−
⌊
d

2

⌋
+ l . (5.8)

For even space-time dimensions, the bound is saturated by free primary fields of helicity l,
which have the tensor structure [19, 31, 32]

Φ[µ1
1...µ

1
d/2][µ2

1...µ
2
d/2]...[µl1...µld/2] . (5.9)

15See e.g. [19, 30]. We also found very useful the more recent work [28].
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Besides the conservation equation, free primary fields satisfy an extra constraint analogous
to the Bianchi identity.16 Besides free scalars and fermions, a familiar example is the
Maxwell field Fµν with l = 1 and d = 4, discussed above. In higher dimensions, the free
helicity l = 1 field is a d/2 form F[µ1...µd/2]. Another example is the Riemann curvature
tensor Rαβγδ for a free graviton in d = 4 (helicity l = 2). For d odd, free fields occur only
for l = 0 (Klein-Gordon scalar) and l = 1/2 (free Dirac fermion).

We see that the saturation of the mutual superadditive inequality in d dimensions for
a given k and ∆ = (d− 2 + k)/2 must correspond to a free field of helicity

l = k

2 . (5.10)

(Note that l here is what we have denoted by the helicity h in other sections. We have
not used this notation here to avoid confusion with the heights hi of the Young diagram.)
We have tensorial contributions with k = 2l, 2l − 2, . . . 0. The leading k term has zero
coefficient for the conformal dimension of the free field. The other coefficients cancel each
other such that the mutual superadditive inequality is exactly saturated.

In this way the strong superadditive inequality gives the unitarity bound for all primary
fields of the form (5.9). It does not however give the most constraining bound on ∆ for
fields with other spin structure. The reason is that these fields saturate the unitarity bound
without being free. On a more practical level, we see that the inequalities are labelled
by just one number k, which is just enough to produce the bounds for the fields (5.9).
Other fields with different index structure can only give place to the same type of leading
k contributions for the mutual information. The existence of free fields giving place to
the same k contribution is hiding the unitarity bound so that it is not visible from the
superadditive inequality.

5.3 General form of the coefficient on the null cone for free fields

The fact that the inequality must exactly saturate for a free field gives us the general
structure of the coefficients in this case. For spheres, and helicity h, we must have an
expansion of the form

I(A,B)∼ c((d−2+2h)/2)dim(R(h))
(
RARB
L2

)(d−2+2h) h∑
s=h0

as (2(n1 ·l)(n2 ·l)−n1 ·n2)2s ,

(5.11)
with h0 = 0 or h0 = 1/2 for integer or half-integer helicity respectively, and dim(R(h)) is
the dimension of the representation of helicity h. This formula corresponds to a highest
value of k = 2h and ∆ = (d − 2 + 2h)/2. The saturation of (2.30) gives the relations
between the coefficients

as = −(d+ 2h+ 2s− 4)(h− s+ 1)
s(2s− 1) as−1 . (5.12)

16A half-integer helicity corresponds to a spinor, and the number of blocks is then the floor of the helicity.
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For spatial spheres (2(n1 · l)(n2 · l)−n1 ·n2) = 1, and we obtain from the general result for
spatial spheres

h∑
s=h0

as = 1 . (5.13)

This completely fixes the as,

as = bs∑h
l=h0 bl

, bs =
s∏

l=h0+1
−(d+ 2h+ 2l − 4)(h− l + 1)

l(2l − 1) , bh0 = 1. (5.14)

Further, as we have argued before, the saturation of strong superadditivity tells us that
the dependence of the mutual information on arbitrary regions γA, γB with boundary on
null cones must be additive with respect to the angular directions. This gives us the general
form of the dependence in the shape of these regions. In fact, if we want to construct a
tensor out of the surface described by γµA, and that this tensor is formed additively on the
different null lines, we can only form the quantities

Cµ1µ2...µn
A = (vol(Sd−2))−1

∫
dσx γ

µ1
A (x)γµ2

A (x) . . . γµnA (x) , (5.15)

where γµA(x) is the null vector position of the surface and x parametrizes the null cone, and
the normalization factor vol(Sd−2) is the volume of the d−2 dimensional unit sphere. This
tensor has dimension n+ d− 2, is completely symmetric and traceless. We need two such
tensors for A and B and these tensors can only be contracted by two correlators, as shown
by the replica trick calculation. Since the total dimension is zero we must have for a free
field n = 2h. Since correlators of primary fields in a CFT are combinations of the inversion
tensor Iµν , and these correlators are contracted with the symmetric tensors (5.15) we have
the general structure for helicity h in any dimensions

Ih(A,B) ∝ L−2(d−2+2h)Cµ1µ2...µ2h
A Iµ1ν1(l)Iµ2ν2(l) . . . Iµ2hν2h(l)Cν1ν2...ν2h

B , (5.16)

where l is the unit vector in the direction from A to B.
We can calibrate the overall coefficient of this expression in each case. For example,

taking into account that for a sphere we have

CA = Rd−2
A , CµA = Rd−1

A nµA , CµνA = RdA
d

d− 1 (nµAn
ν
A + gµν/d) . (5.17)

and using (5.11), we obtain for arbitrary regions with boundary in the null cone,

I(A,B) ∼
c
(
d−2

2

)
L2(d−2) CACB , h = 0 , (5.18)

I(A,B) ∼
c
(
d−1

2

)
L2(d−1) 2[ d2 ]+1 (2(CµAlµ)(CνBlν)− CµACB µ) , h = 1/2 , (5.19)

I(A,B) ∼
c(d2)
L2d

4(d− 1)2

d2

(
d−2
d−2

2

)(
4(CαβA lαlβ)(CαβB lαlβ)− 4CαβA CBασlβl

σ + CαβA CBαβ

)
,

h = 1 . (5.20)
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As discussed in appendix A, the mutual information for boosted spheres is a confor-
mally-invariant function of the cross-ratios (u, v), which can be expanded in terms of con-
formal blocks. These arise from the exchange of primary traceless symmetric operators
between regions A and B. Evaluating (5.16) for boosted spheres should then give the lead-
ing contribution from a conformal block of spin 2h; the reason is that this is the contraction
of 2h inversion tensors (which come from the two-point function of the exchanged primary)
with the unique symmetric traceless tensor formed with 2h ni’s on each sphere. Writing
for this case

Cµ1...µ2h
A = nα1

1 . . . nα2h
1 Pµ1...µ2h

α1...α2h (5.21)

where P is the projector onto symmetric traceless rank 2h tensors (and similarly for region
B), we obtain

Ih(A,B) ∝ L−2(d−2+2h) nα1
1 . . . nα2h

1 Pµ1...µ2h
α1...α2h Iµ1ν1(l)Iµ2ν2(l) . . . Iµ2hν2h(l)nν1

2 . . . nν2h
2

∼ L−2(d−2+2h)C
d/2−1
2h (n1 · I(l) · n2) (5.22)

where in the last step we have used the Gegenbauer polynomials Cd/2−1
2h (x) (see eq. (2.17)

of [34]). In appendix A we show that this agrees with the result from the conformal block
expansion.

6 Conclusions

The strong superadditive property of the mutual information for a CFT for regions with
boundary on the null cone, eq. (2.4), is a consequence of strong subadditivity of the en-
tropy plus the Markov property of the entropy on the null cone. This inequality implies
certain unitarity bounds (2.33) when applied to the long distance expansion of the mutual
information. These correspond to the unitarity bounds that saturate for free fields. These
unitarity bounds, derived from mutual information properties al long distances, depend
only on the two point function of the leading primary field. As a generalized free field
with the relevant two point function of dimension ∆ is a valid CFT, having the operator
with dimension ∆ as the lowest dimensional operator, the bounds apply to any field in any
CFT, disregarding the presence of other lower dimensional fields.

There is a natural reason why these are the only bounds captured by the mutual
information inequality. Saturation of strong superadditivity implies the mutual information
has a local expression as a function of the surface γ on the null cone; see subsection 5.3.
This in turn implies that the mutual information does not vanish under pinching of the
surface along a null ray, i.e., a local deformation along a null ray that makes the spacetime
volume enclosed in the causal region vanish (see figure 4). The mutual information does
not vanish under pinching only for free fields which have a non trivial algebra localizable
on the null surface. This may be taken as an entropic definition of a free field.

We have also shown a general formula (3.17) for the long distance expansion of the
mutual information for regions of arbitrary shapes that depends on the modular flows of
these regions. This formula independently shows the locality of the long distance mutual
information on the null cone for free fields. For spheres with arbitrary orientations we
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obtained in (4.48), (4.52), (4.54), the general form of the leading long distance contribution
from general primary operators with spin.

For spherical regions the contribution of specific primary fields to the mutual informa-
tion in the long distance limit is universal, in the sense that it depends only on the two point
function of the field and not on the specific theory to which it belongs. This is because the
modular flow for the spheres is geometrical and universal. Further, as the geometric form
of the flow does not depend on the spacetime dimension, the coefficients do not depend
on d in an explicit form. This is not the case for other regions. Hence it is expected that
further details of the theory would appear into the mutual information coefficients in this
more general case. We can see that this must be so for example considering the case of a
conserved current, which has a universal two point function. The current can belong to a
free theory, in which case the contribution has to be continuous under pinching, while the
opposite must hold for the contribution of a current in an interacting theory.

It is possible that the inequalities for non spherical regions and interacting models may
contain additional useful information. However, it seems at present difficult to compute
these coefficients in interacting theories. Another interesting question is how the informa-
tion on the other unitarity bounds is encoded in the mutual information, if at all. A possibil-
ity would be that these bounds should result (in the entropy) from (unknown) inequalities
beyond strong subadditivity involving higher derivatives with respect to the shape.
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A Conformal block expansion of the mutual information

In a CFT, it is useful to expand the mutual information in conformal partial waves,17

I(A,B) =
∑
{∆,`}

b∆,`G∆,`(u, v) (A.1)

where the cross-ratios are defined as in (2.9), which we reproduce here,

u = x2
12x

2
34

x2
13x

2
24

= χ2
1 , v = x2

14x
2
23

x2
13x

2
24

= χ2
1
χ2

2
. (A.2)

The conformal block contributions correspond to an exchange of a primary operator ap-
pearing in the expansion of the Renyi operators corresponding to the two spheres [8, 9, 11].
The contribution of each sphere must be proportional to the given primary field contracted
with powers of the vectors ni that determine the orientation of the sphere. Contractions
with the metric vanish because primaries are traceless. Therefore operators with some

17Properties of conformal partial waves can be found for instance in [33] and references therein.
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antisymmetric indices have zero coefficient in the expansion and only symmetric traceless
representations appear in the conformal block expansion. In this appendix we analyze
the long distance limit of (A.1), obtaining the expansion used in (2.14). We will identify
the parameters ∆, ` in the conformal partial wave in terms of the leading operator con-
tribution to the mutual information. At the end, we explore briefly the null limit for the
mutual information.

The long distance limit for the mutual information (see section 2.2) corresponds to
u→ 0, v → 1, with the cross-ratios related to the geometric parameters by

u = 16R
2
1R

2
2

L4 +O(L−5)

v = 1− 8R1R2
L2 (2(n1 · l) (n2 · l)− n1 · n2) +O(L−3)

= 1 + 2u1/2x̂21 · I(x̂31) · x̂43 . (A.3)

In the last step we used

x̂µ21Iµν(x̂31)x̂ν43 = nµ1 (gµν − 2lµlν)nν2 = −(2(n1 · l) (n2 · l)− n1 · n2) . (A.4)

We see that the tensorial dependence from (2.12) and (2.14) appears in this limit via
(1− v)/2u1/2.

To relate the conformal partial wave expression to the long distance limit of section 2
we need to take the simultaneous limit u → 0, v → 1. In this limit, the conformal partial
wave is [34]

lim
u→0,v→1

G∆,l(u, v) ∼ cd,l u
∆
2 C

d/2−1
l

(
v − 1
2u1/2

)
, (A.5)

where cd,l is a normalization constant, and C
d/2−1
l (x) is a Gegenbauer polynomial. For

reference, the values for the first few spins are

C
d/2−1
0 (x) = 1

C
d/2−1
1 (x) = (d− 2)x

C
d/2−1
2 (x) = d(d− 2)

2 (x2 − 1/d)

C
d/2−1
3 (x) = d(d− 2)

6 ((d+ 2)x3 − 3x) . (A.6)

Hence, we recognize that this reproduces the long distance limit with the tensorial
dependence in (2.14), after identifying ∆ here with 2∆ in (2.14), and ` with k. The confor-
mal partial wave expression also shows that the tensorial dependence includes the leading
term in (2.14) as well as lower powers (2(n1 · l) (n2 · l)− n1 · n2)k−2, . . ., whose coefficients
are uniquely fixed in terms of the leading one. This can also be checked explicitly. As an
example, let us consider the exchange of a primary traceless symmetric l = 2 operator. Its
two-point function is

〈φµν(x)φρσ(0)〉 = Cφ
x2∆

(1
2Iµρ(x)Iνσ(x) + 1

2Iµσ(x)Iνρ(x)− 1
d
gµνgρσ

)
(A.7)
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where the last term is fixed by the tracelessness condition. The contribution to the mutual
information for two boosted spheres is obtained by contracting with the normal vectors
ni of each region (contraction with the metric vanishes since the operator is traceless).
This gives

nµ1n
µ
1 〈φµν(x)φρσ(0)〉nρ2nσ2 ∝ (2(n1 · l) (n2 · l)− n1 · n2)2 − 1

d
, (A.8)

which reproduces the relative coefficient predicted by the l = 2 Gegenbauer polynomial
in (A.6).

Finally, we ask if the null limit for the mutual information yields new bounds. This is
obtained by boosting x3 and x4 relative to x1 and x2. This is accomplished by fixing x2

14
(so that the two regions are space-like), while x2

13, x
2
23 and x2

24 become large. In this limit,
u→ 0 and v → 0, with u/v2 fixed. When u→ 0 (cfr. eq. (2.39) in [33]),

G∆,`(u, v) ∼ u
1
2 (∆−`)(1− v)` 2F1

(∆ + `

2 + a,
∆ + `

2 + b; ∆ + `; 1− v
)
, u→ 0 , (A.9)

where the parameters a and b are related to the dimensions of the conformal primary
operators in the 4-point function, a = −1

2(∆1−∆2), b = 1
2(∆3−∆4). In our case, we only

need to consider a = b = 0. Expanding the hypergeometric function in G(u, v) for v → 0
gives

G∆,`(u, v) ∼ Γ(∆ + `)
Γ(∆+`

2 )2
u

1
2 (∆−`) log(1/v) . (A.10)

As before, we need to replace here ∆ → 2∆, ` → k for the mutual information. Plugging
this expression into (2.24) and taking the limit n1 · l � 1, n2 · l � 1 yields the unitarity
bound ∆ ≥ d+k−2

2 . This is the same as the long distance expansion result, so in this respect
the null limit is not adding new constraints. Nevertheless, it would be interesting in future
work to perform a more detailed analysis of the mutual information in the null limit.

B Details on the calculation of the general coefficient for spheres

According to (4.48) the calculation of the general coefficient of the mutual information for
arbitrary spheres and representations boils down to the calculation of the character of the
Lorentz representation for a specific Lorentz transformation. We use the formulas for the
characters in [29] to get an explicit result. These characters are functions of the eigenvalues
of the Lorentz transformation matrix. For the Lorentz transformation in question (see
section 4.5) the eigenvalues are

1, . . . , 1, e2β , e−2β . (B.1)

For these particular values the formulas for the characters have an indeterminate 0/0
expression, and we have to take a limit. The formulas for the characters are different
according to the parity of the spacetime dimension d.

For odd dimensions d = 2q + 3, q = 0, 1, . . ., the Young diagram giving the represen-
tation of the Lorentz group is determined by the lengths α = (m1, . . . ,mq+1) of the rows
of the diagram, with 0 ≤ m1 ≤ m2 ≤ . . .mq+1. Let lr = mr + (r − 1/2). Let us call the
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eigenvalues of a Lorentz transformation Λ by 1, λ1 = eiε1 , . . . , λq = eiεq , λq+1 = e2β , and
the rest of the eigenvalues are necessarily λ−1

1 , . . . , λ−1
q , λ−1

q+1. There are three real eigen-
values and the rest are phases (for the Lorentz transformations we are interested in). The
character reads

χα(Λ) = A

B
,

A = det
{
λ
lj
i − λ

−lj
i

}
i,j=1,...,q+1

, (B.2)

B =
q+1∏
r=1

(λ1/2
r − λ−1/2

r )
∏

q+1≥r>s≥1

[
(λr + λ−1

r )− (λs + λ−1
s )
]
.

For the eigenvalues (B.1), A and B have in general multiple zeros. Then we expand
around the eigenvalues (B.1) for infinitesimal values of the phases εi. First we expand the
determinant A by the last row

A =
q+1∑
j=1

(−1)j+q+1(2 sinh(2βlj)) det
({
λlsi − λ

−ls
i

}s=1,...,ĵ,...q+1

i=1,...,q

)
. (B.3)

In this last determinant we expand

λlsi − λ
−ls
i =

∑
n odd

(iεi)n 2 l
n
s

n! . (B.4)

Then the determinant in (B.3) is

det

{ ∑
n odd

(iεi)n 2 l
n
s

n!

}s=1,...,ĵ,...q+1

i=1,...,q

 . (B.5)

Terms having the same n for two different s do not contribute since they lead to proportional
vectors in the index i. We have to select in the determinant a different n for each different
s. To get the lowest order in the expansion we select the values of n to be the first q odd
integers. Let n0(s) be the ordered increasing assignation, and call Σ to the permutations
of the first q odd integers. We get for the leading term of (B.5)

2q det{(iεi)2p−1}i,p=1,...,q
∑
σ∈Σ

(−1)sig(σ) ∏
s=1,...,ĵ,...,q+1

l
σ(n0(s))
s

σ(n0(s))!

= 2q det

{ lhs
h!

}s=1,...,ĵ,...q+1

h=1,3,...,2q−1

 det{(iεi)2p−1}i,p=1,...,q . (B.6)

On the other hand, expanding B we get

B = 2q+1 sinh(β)(cosh(2β)− 1)q
q∏
r=1

(iεr)
∏

q≥r>s≥1
((iεr)2 − (iεs)2) . (B.7)
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The leading dependence on εi exactly cancels the Vandermonde determinant of powers of
εi in (B.6). The limit εi → 0 of the character is

χα(Λ) =

∑q+1
j=1(−1)j+q+1 sinh(2βlj) det

({
lhs
h!

}s=1,...,ĵ,...q+1

h=1,3,...,2q−1

)
sinh(β)(cosh(2β)− 1)q . (B.8)

For even dimensions d = 2q+2, q = 1, 2, . . ., the Young diagram is again determined by
the lengths of the rows α = (m1, . . . ,mq+1) in increasing order. Let now lr = mr + (r− 1).
The eigenvalues define the λi, i = 1, . . . , q + 1 as above, but there is no eigenvalue 1 in the
even dimensional case. The character writes

χα(Λ) = A

B
,

A =
∣∣∣det{λlji + λ

−lj
i }i,j=1,...,q+1

∣∣∣+ ∣∣∣det{λlji − λ
−lj
i }i,j=1,...,q+1

∣∣∣ , (B.9)

B = 2
∏

q+1≥r>s≥1

[
(λr + λ−1

r )− (λs + λ−1
s )
]
.

The second determinant in A is subleading in the limit and can be neglected. The first
determinant can be expanded as above with the only difference that only even powers
appear in the expansion analogous to (B.4). The result is readily obtained with the same
reasoning and is quoted in section 4.5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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