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Structure formation in a conserved mass model of a set of individuals interacting
with attractive and repulsive forces
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We study a set of interacting individuals that conserve their total mass. In order to describe its dynamics we
resort to mesoscopic equations of reaction diffusion including currents driven by attractive and repulsive forces.
For the mass conservation we consider a linear response parameter that maintains the mass in the vicinity of
a optimal value which is determined by the set. We use the reach and intensity of repulsive forces as control
parameters. When sweeping a wide range of parameter space we find a great diversity of localized structures,
stationary as well as other ones with cyclical and chaotic dynamics. We compare our results with real situations.
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I. INTRODUCTION

Many natural or artificial systems, by being considered
as a group of interacting individuals, subject to a nonlinear
potential and affected by a random movement (temperature)
driving its diffusion, can be modeled by means of meso-
scopic equations of a reaction-diffusion type. Research about
it has resulted in the formation of patterns and localized
structures [1–10]. For some of these results, the attractive
(medium-reach) forces between individuals played a relevant
role. In these studies, explicitly or implicitly, repulsive forces
of very short reach were also contemplated, but with a negli-
gible effect compared with the attractive forces (just imposing
a maximum limit on the density of individuals) [1–6].

However, works resorting to individual-based modeling
in order to describe the collective movement in dynamical
population have emphasized not only the importance of the
medium-reach attractive forces (in order to avoid dispersion,
thus promoting aggregation as a strategy of defense against
predators [11,12]), but also that of the repulsive force, of
shorter reach, in order to avoid collisions and overcrowd-
ing [13–19].

We believe it is necessary to develop an exhaustive study
using mesoscopic equations of the reaction-diffusion type
that, in addition to the effect of attractive forces, gives a
relevant role to the repulsive forces.

From another perspective, the aforementioned mesoscopic
models resort to a nonlinearity that in general aims to describe
births, deaths, and effects of the environment, which may
justify the fact that the mass (number of individuals) is not
preserved during the dynamics that drives the system toward
the steady state. This fact can be debatable in many real
situations, for example, if the object of study is a group of
individuals that obeys a collective dynamics. In this case, it is
expected that a situation of stability requires that the mass of
individuals remain constant during such dynamics. However,
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the reality is that for no population does the mass remain ex-
actly constant. Even if it is stable, there are always temporary
variations around a given value of its average mass [20,21].

Following this line of thought, it would be expected that for
a group of individuals whose subsistence depends on sustain-
ing their mass within the range of a given optimal value [22],
it provides some mechanism to achieve that purpose. A simple
way to model it can be identifying linear response parameters
to the variations of the mass, whose response ensures the re-
covery of its optimal value and, consequently, the subsistence
of the whole.

Here we elaborate an illustrative one-dimensional model
contemplating all these considerations, with the aim of reveal-
ing the possible stationary (forms of self-organization) and/or
dynamics (cyclical or chaotic behavior) structural responses
that a system with these characteristics could offer. Then we
solve numerically the equations that describe its dynamics and
compare the results with possible real situations. Finally, we
focus on a type of stationary solution that we call localized
patterns, place them in a context of reality, and characterize
them through a spectral analysis.

Next we describe the model, show our results, place them
in a natural context, and finally present our brief conclusions.

II. MODEL

A one-dimensional model of typical reaction diffusion can
be described by

∂t u = F (u) + D ∂xxu, (1)

where u(x), is a continuous function representing the individ-
uals’ density for a given position x, F (u) (usually a nonlinear
function) defines the behavior of the system, and D is the
diffusion coefficient. This description has its limits. In order
to conceive them, we consider dividing the space into cells
whose size is large enough to include a large number of
individuals, but much smaller than the characteristic size of
the inhomogeneity that is intended to be described. In this
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framework, u expresses the number of individuals per cell and
x the location of the cell.

In particular, we consider studying a bistable system (with
two possible stationary homogeneous solutions), so we pro-
pose

F (u) = A(u − β )(α − u)(u − γ ). (2)

This system accepts propagation fronts as solutions [23],
but not localized structures or any other structure with dynam-
ics. If β < α < γ , such fronts evolve towards the stationary
states β or γ , depending on which of the two is the most stable
state. Then α is the threshold state (unstable) that separates the
two attraction basins.

As already mentioned, we consider a population of in-
teracting individuals. Depending on the distance between
individuals, these repel or attract each other [13–19]. At-
tractive forces between particles adsorbed on a surface have
already been incorporated into Eq. (1). This was carried out
using a medium field technique that considers a current driven
by the negative gradient of an average attraction force field
U [u](x). This field is constructed by adding up the potential
due to the attraction between a “witness” particle, located at
the point x, and all the particles located up to a certain dis-
tance ra, which we call the reach of attractive forces [1–3,24].
Later a similar technique was applied to describe the gre-
garious instinct [4–6], a behavior that many species use to
defend themselves from predators or improve access to food
and foraging [11,12]. Then it was shown that the attractive
forces between individuals (gregarious instinct) give rise to
the formation and stabilization of simple structures and fronts
connecting patterns. In those works [4–6], ra was considered
much greater than the reach of possible repulsive forces (rr),
a situation in which the effect of such forces on the dynamics
that leads to the formation of patterns is negligible.

For some years now it has been emphasized that repulsive
forces can be fundamental to define the behavior of popula-
tions [13–19]. Accepting that for most real situations the reach
of attractive forces is greater, although not much greater, than
the reach of repulsive forces, we believe it necessary to study
more thoroughly its effect on the formation of structures and
their dynamics.

We now, using the technique referred above, incorporate
both effects into Eq. (1), that of the attractive and repulsive
forces.

First, we write the average force field U [u](x) caused by the
interaction between individuals as

U [u](x) = U [u]
a (x) + U [u]

r (x),

where the subscripts a and r indicate attraction and repulsion,
respectively. Then we write the average attracting (subscript
a) and repelling (subscript r) force fields as

U [u]
a/r (x) = Ia/r

∫
dx′ fa/r (|x′ − x|)u(x′).

Here Ia/r fa/r (|x′ − x|) represents the attractive (subscript a)
and repulsive (subscript r) potential (which is negative for
attractive force and positive for repulsive force) between in-
dividuals separated by a distance |x′ − x|, where Ia/r is the
corresponding intensity. Given the average character of both
force fields, the details of their forms are irrelevant, therefore,

looking to shorten the times of the numerical calculation and
considering fa/r normalized to 1, we choose a square shape,
namely, fa(x) = −1

2(ra−rr ) for rr � |x| � ra and fr (x) = 1
2(rr−rm )

for rm � |x| < rr , where rm indicates the minimum possible
proximity between individuals, which limits their density to a
value um. Of course, fa/r (x) = 0 outside those limits.

The negative gradients of both average force fields drive
currents: while the average attracting force fields tend to ag-
glutinate the individuals, the average repelling force fields
tend to disperse them. These currents would be proportional
to u(um − u), since the greater the density of individuals, the
larger the current will be, and the greater the free space to
circulate, the greater will be the current. However, we assume
that there is an optimum density uo < um that conditions such
currents so that they are proportional to u(uo − u). This means
that the currents can change sign if such an optimum density
is exceeded. In other words, the optimal density imposes a
threshold for a drastic change in system behavior. Redefining
u as u

uo
and assimilating uo in the system constants, we can

replace u(uo − u) with u(1 − u).
Later we will see that within a wide range of parameter

values that we explore, our model produces structures such
that u(x) � 1 for any x value (structures that we call nor-
mal). But, within the same range of parameters, our model
also produces structures such that u(x) > 1 for short intervals
δx ∼ rr (which we call abnormal). This means that for this
case, the model considers that when individuals pile up too
much, the repulsive forces act like being attractive (the cur-
rent agglutinates individuals instead of disperses them). The
same phenomenon, but opposite, is also true for attractive
forces, but since they act in a medium range and u(x) > 1 for
short intervals δx ∼ rr , the corresponding effect is not very
noticeable.

This situation makes us think of other one, when the nu-
clear forces dominate over the electric forces: if the distance
between protons exceeds the radius of the atomic nucleus,
the protons repel, but when this is lower than that radius,
they attract. This effect of the model is harder to fit in a real
physical or biological context. It expresses a kind of change
of bond between individuals, which occurs when its average
distance is shortened beyond a certain threshold. Since it does
not seem unreal to consider individuals who respond to this
rule (at least, we can think that this could mean a response of
the species to overpopulation, predation, or a random fluctua-
tion, or visualize artificially designed individuals that respond
to that rule), and, given the surprising diversity of results ob-
tained in this regard, we decided to include them in this report,
but showing only some structures and dynamics, postponing a
detailed study for later.

Considering the above arguments, we write the currents
driven by the interactions between individuals as

Ja/r (x) = εa/r u(1 − u) ∂xUa/r,

where εa/r represents the respective interaction intensities
weighted with the energy of movement (if the individuals
were particles adsorbed on a surface, this energy would be
kT , where k is the Boltzmann constant and T the tempera-
ture [1–3,24]).
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We will use εr and rr as our control parameters. Then the
total current, including the diffusion, is

JT (x) = −∂xu + Ja(x) + Jr (x). (3)

In order to write this current, we have redefined F (u) as
F (u)/A and rescaled t by A and x by Ldiff =

√
D
A (diffusion

length).
Therefore, for the model so far defined, the equation that

governs the dynamics of the set of individuals that are at-
tracted each other to medium distances and repel each other
to short distances is written as

u̇ = F (u) − ∂xJT (x). (4)

This model does not serve to describe a set of individuals
whose number or mass is conserved. Next, we consider that
there is an optimal mass for the survival of the set and a linear
response mechanism that holds the mass in the vicinity of that
value.

We choose the threshold (α) as the linear response parame-
ter, which will change so that at each stage of the evolution of
the system, the mass tends to remain approximately constant
(around its optimal value). To build such a mechanism we
write the mass of the system for a given time t0:

m(t0) =
∫

u(x, t0) dx. (5)

Then considering that for the time t0 + δt , there will be pro-
duced a δu, we can write the mass for the time t0 + δt as

m(t0 + δt ) =
∫

u(x, t0 + δt ) dx ∼= m(t0) +
∫

δu dx. (6)

Now, we consider that δu is produced not only by Eq. (4), but
also by a correction δα whose objective is to recover the value
of the mass corresponding to time t0. Therefore,

δu =
[

F (u) + δF (u)

δα
δα − ∂xJT (x)

]
δt . (7)

Then for the mass recovering its value of time t0 we must
determine∫

δu dx =
∫ [

F (u) + δF (u)

δα
δα − ∂xJT (x)

]
δt dx = 0.

(8)
Considering that the current is null in x = ∓∞, the current
flow does not contribute to modify the mass, so Eq. (8) is
reduced to ∫ [

F (u) + δF (u)

δα
δα

]
dx = 0. (9)

Thus, the linear response of the system to hold the mass
around its optimal value, in each stage δt , is calculated as

α(t + δt ) = α(t ) + δα = α(t ) −
∫

F (u) dx∫
δF (u)

δα
dx

. (10)

In summary, the dynamics of the system is determined by
both Eq. (4) that in each stage δt modifies u and Eq. (10) that
at each stage δt modifies α.

From a mathematical point of view, this mechanism can
be applied to any parameter that characterizes the model; we
choose α because it is the one that defines the stability of the

other two solutions and through its control the system can be
converted to monostable, choosing which of the two solutions
will remain.

In the context of natural populations, our view is that the
mechanism represents the genetic or acquired response of a
system that, by natural selection, it learned to conserve its
average mass by controlling the value of that parameter. The
information handled by this parameter can be related to births
and deaths, with migrations toward places of higher or lower
foraging or predation, with the incorporation or expulsion of
individuals to or from the system, etc. We can also imagine
artificial contexts, in which the conserved parameter is not
necessarily the mass, which opens a panorama that can lead
to robotics [25–27]).

If we think of a group of individuals whose subsistence
depends on their cohesion and conservation of their average
number, the nonlinearity added to the mechanism of linear
response and attractive forces would constitute a synergistic
response to the attempts of the environment to break that
cohesion and/or change their number. On the other hand,
repulsive forces have the function of signaling an optimal
living space for the proper functioning of each individual.
Regarding the solutions for which u(x) > 1 within a short
interval δx ∼ rr (abnormal), one can think of a readaptation
to the overpopulation or predation or in artificially constructed
individuals.

In general terms, we here propose a homogenously bistable
system model, mathematically simple, that includes attrac-
tive and repulsive forces between individuals, and a linear
response mechanism to maintain the bounded mass in the
vicinity of an given optimal value, all this with the objective
of exploring its capacity to generate various structures as pos-
sible responses to the eventualities posed by its environment.

III. RESULTS

In order to numerically resolve the dynamics defined by
Eqs. (4) and (10), we proceed to do a spatial discretization in a
regular one-dimensional lattice composed of 28 800 sites with
spacing δx = 6.25 × 10−3 and time step δt = 6.25 × 10−6

(for the most sensitive situations, we use δt = 6.25 × 10−7),
i.e., u(xi ) −→ ui, with i the cell index. The numerical scheme
used in the simulations is the method of finite differences.
We ensure the numerical convergence applying the criterion
dt

dx2 < 0.16. Considering that ∂2
x u −→ 1

δx2

∑
j (u j − ui ) (one

dimension), where the sum is over the nearest neighbors, the
discretized version of Eq. (4) is written as

δui

δt
= F (ui ) + 1

δx2

∑
j

(u j − ui ) + 1

2δx

[
δJi

a + δJi
r

]
, (11)

where

δJi
a = ui+1(1 − ui+1)(U i+2

a − U i
a)

− ui−1(1 − ui−1)
(
U i

a − U i−2
a

)
,

δJi
r = ui+1(1 − ui+1)

(
U i+2

r − U i
r

)
− ui−1(1 − ui−1)

(
U i

r − U i−2
r

)
,
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and

U i
a/r = ∓ εa/r

2(ra/r − rr/m)

∑
ja/r

ui+ ja/r+1 + ui+ ja/r

2
,

where ja/r indicates that the sum is over the attractive or
repulsive force’s reach, respectively.

Then the discretized version of Eq. (10) is written as

α(t + δt ) = α(t ) −
∑

i F (ui )∑
i(ui − β )(ui − γ )

.

In order to ensure zero flow in the border we used as bound-
ary conditions ∂xu = 0. Since the force field U i

a/r depends on
ui with i varying from i ± 1 to ±ira/r , we apply this condition
from the system’s right or left border until the cell ±ira/r .

As mentioned before, we choose as control parameters
those that characterize the repulsive forces (εr and rr), and
we assign values to the rest of the parameters based on already
known results [5,6]. So, for all our results, β = 10−4, γ = 0.9,
εa = 12, and ra = 1. Then we vary rr from 0.1 to 0.9 and εr

from 1 to 96.
We started by launching the system from an approximately

rectangular profile built with hyperbolic tangents, sweeping
the parameter space in the aforementioned range. Except for
the value of the initial mass, the result was independent of the
particular detail of this profile. For all the cases reported in this
paper, we use an initial mass m = 320, and it is practically a
rectangle of sides �x = 800 and �u = 0.4. Although the ini-
tial mass value defines the optimum mass value, it is not equal
to the latter. In a short transient, the system determines the
optimal mass. For the initial mass value that we use, the opti-
mum mass has always a small correction |δmc| < 0.3, which
is added to 1283. Once the system determines the optimum
mass (mo = 1283 + δmc), the same remains constant provided
that the solutions found are stationary (a fact corroborated up
to the computer’s accuracy limit). The same goes for the linear
response parameter α. By varying the control parameters, the
small correction δmc changes slightly, but its absolute value
is always less than 0.3. For solutions with dynamics, δmc

varies slightly with time, meaning oscillations of mo with an
amplitude of the order of 10−2 at most (relative amplitude of
the mass oscillations: �10−5). When we test with other values
of the initial mass, we do not observe significant qualitative
changes in our results. That is why we focus on a single initial
mass value.

In order to optimize the solution search process, every time
an atypical structure stabilized, we went back to sweeping the
parameter space, but initiating the system from that atypical
structure. In all cases the system held the mass around its
optimal value (1283 + δmc). Thus we went through that space
several times, each time starting the system from a different
profile. Using this simple but laborious strategy we found
diverse structures with stationary form and dynamic structures
showing cyclical or chaotic behavior. The latter are like those
stationary or similar, but varying with time, moving, and de-
forming. Although this behavior was observed for both types
of structures (normal and abnormal), it is much more abundant
and forceful for abnormal structures than for normal ones.
Except for cyclic or chaotic cases, the normal structures were
always symmetrical, while the abnormal ones, depending on

0 4000
x

1
u(x)

(a)

0 4000
x

1
u(x)

(b)

0 8000
x

1
u(x)

(c)

FIG. 1. Simple localized structures (normal): (a) rr = 0.3 and
εr = 10; (b) rr = 0.3 and εr = 3; (c) rr = 0.2 and εr = 1.

the values of the parameters, for some cases were symmetri-
cal; for others they were asymmetric, and even, depending on
the initial condition, for the same set of parameter values, we
obtained symmetric and asymmetric solutions. Whenever we
tried, we were able to find the antisymmetric solution (as seen
in a mirror) of a previously obtained asymmetric solution.
Although we did not do it for all cases (we found many
asymmetric solutions), we did it enough times to convince
ourselves that this was the rule.

A fact to be highlighted is that, while the symmetrical
stationary solutions always resulted in zero speed, the station-
ary asymmetric solutions resulted in a constant speed, whose
direction is defined by the asymmetry of the structure. In fact,
the more asymmetric, the faster they moved (of course, the
corresponding antisymmetric solutions always moved in the
opposite direction). Consistent with the behavior described
above, the dynamic structures showed a speed that changes
with their shape. Since the equations are spatially symmet-
ric, the stabilization of asymmetric solutions could indicate
symmetry breaking; however, because asymmetric structures
move, we tend to believe that such asymmetry could be com-
pensated by the current associated with said movement: the
asymmetry drives the current, and the latter sustains such
asymmetry. In fact, this could be the thread by which to look
for an explanation for dynamic solutions. Inhomogeneous cur-
rents that vary over time are driven by asymmetries (spatial
variations in density) whose inhomogeneities generate varia-
tions in time of such currents. Temporal and spatial variations
of one and the other mutually feed back. We will postpone
this discussion for another paper; we think that the subject
requires a more comprehensive work. Next, although we show
some representative examples selected from the great variety
of solutions obtained, we will focus on those that we named
before as normals.

We classify the normal forms into smooth localized struc-
tures (SLSs) and localized patterns (LPs: a localized envelope
modulating a pattern). In Fig. 1 we show examples of SLSs, in
Fig. 2 we show examples of LPs, and in Fig. 3 we show same
examples of abnormal forms.

The formation of patterns and localized structures in
reaction-diffusion models that include attractive forces be-
tween individuals should not be surprising. Opposing the
diffusion process (which homogenizes), attractive forces
(binders) destabilize homogeneous solutions and give rise to
the formation of patterns and smooth localized structures [5].
The novelty here is that, by adding the effect of short-range
repulsive forces and a mechanism that conserves the mass of
the system, localized patterns emerge. Later we will see that
the spatial period of these localized patterns grows with the
reach of the repulsive forces, a fact that highlights the effect
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0 4000
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u(x)

(d)

FIG. 2. Localized patterns (normal): (a) rr = 0.6 and εr = 5;
(b) rr = 0.15 and εr = 20; (c) rr = 0.7 and εr = 7; (d) rr = 0.45 and
εr = 10.

of such forces on the conformation of the pattern within the
envelope.

Looking at Fig. 2 we notice that most of the localized
patterns have a very high spatial frequency in relation to the
width of their envelope. The global view gives the impression
of evenly spaced discontinuous peaks. We make clear that all
profiles are continuous. As an illustration of this, in Fig. 4 we
show an enlargement of part of Fig. 2(b).

For stationary structures (forms with or without velocity
that are sustained over time), after an initial transient (short
in relation to the total observed time), both the mass and the
linear-response parameter α are held at a constant value. But,
differently, the cases of cyclic or chaotic behavior manifested
through the curves of α versus t , which were correlated with
corresponding changes in the forms of the structures. The vari-
ations in time of α(t ) were also correlated with the variations
of the mass of the system, but, while the relative variations
of α(t ) were remarkable, the relative variations of the mass
were completely negligible. Comparing the corresponding
quotients between the average sizes of the oscillation and
the average values of the parameters in question, in all the
observed cases we find that the relative variations of α(t )
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u(x)

(a)

0 2000
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u(x)

(b)

0 2200
x

1
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FIG. 3. Abnormal structures: (a) rr = 0.45 and εr = 3; (b) rr =
0.7 and εr = 25; (c) and (d) rr = 0.9 and εr = 80; (e) rr = 0.7 and
εr = 5; (f) rr = 0.6 and εr = 3.

2100 2200 2300
x0

0.2

0.4

0.6

0.8

1.0

u(x)

FIG. 4. Localized patterns (normal). Enlargement of part of
Fig. 2(b): rr = 0.15 and εr = 20.

are several orders of magnitude larger than the corresponding
variations of the mass. In this regard, we conclude that the
linear response mechanism satisfies the intended objective: to
maintain the mass of the system in the vicinity of an approxi-
mately constant average value.

In the following, we will show some examples among
the many observed cyclic and chaotic cases: curves of α(t )
accompanied by profiles samples illustrating such evolution
(samples taken every certain time interval).

A. Cyclical or chaotic behavior

First, we illustrate the cyclical or chaotic behavior for
normal patterned forms (localized patterns). These arise for
small values of rr and large values of εr (see figure captions
to roughly locate the parameters domain and specific data).
We did not find significant differences between the observed
forms for different values of the parameters within the per-
tinent domain (see Fig. 14). Figure 5 shows the curves of α

versus t corresponding to a cyclic and another chaotic case,

FIG. 5. Localized pattern (normal) case: α(t ) curves. (a) rr = 0.4
and εr = 90. (SCDS); (b) a previous case cycle [full circles indicate
the sample times for profiles u(x) we will show in Fig. 6]; (c) rr =
0.35 and εr = 60. (CDS); and (d) previous case: focusing on a shorter
time. t = 107δt , where δt = 6.25 × 10−6.
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FIG. 6. Localized pattern (cyclic normal form) case: successive
samples of profiles u(x) corresponding to the case shown in Fig. 5(b).
They were taken in same time and order indicated by the full circles.
In order to better illustrate the localized patterns, we show in (j) an
enlargement of part of (c).

which were calculated during a much longer time than the
characteristic times observed in the dynamics. We also show
the curves focusing on a short time interval to illustrate the
detail (a period for the cyclic case). The points marked in
these last curves allow us to identify the time values for
which we show u(x) in Figs. 6 (cyclic) and 7 (chaotic). We
observe that u(x) is a localized pattern, that is, a localized
envelope modulating a pattern. We observe that the spatial
period changes significantly with the control parameters but
does not do so over time, while the localized envelope, in
addition to varying significantly with control parameters, also
does so over time. The changes of the localized envelope with
t are evident for the cyclic case and barely perceptible for
the chaotic case. We also note that such a difference in the
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FIG. 7. Localized pattern (chaotic normal form) case: successive
samples of profiles u(x) corresponding to the case shown in Fig. 5(d).
They were taken in the same time and order indicated by the full
circles. In order to better illustrate the localized patterns, we show in
(j) an enlargement of part of (i).

sensitivity of the envelope with respect to time is correlated
with the difference in the range of variability of α, which is
much smaller for the chaotic case than for the cyclic case. In
summary, for normal forms the chaotic behavior consists of
very small fluctuations of the envelope of the structure which
are motivated by variations of the α parameter, that in turn are
produced with the objective of conserving the mass around a
given optimal value.

Next, although it is not a main topic of our article, we also
show an example for abnormal cyclical dynamical structures
and another for those that are chaotic. Figure 8(a) shows α(t )
for an interval long enough to reveal the periodicity of the
dynamics, and Fig. 8(b) shows one of the cycles in detail. The
points indicate the sample times of the profiles shown in Fig. 9
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FIG. 8. Dynamic abnormal structures, an example illustrating the
behavior observed in cyclical cases: α(t ) curve. (a) rr = 0.63 and
εr = 4; (b) a previous case cycle [full circles indicate the sample
times for profiles u(x) we will show in the following figure]. t =
107δt , where δt = 6.25 × 10−7.

(see figure captions to roughly locate the parameters domain
and specific data). Figure 10 shows α(t ) for a intermittent
chaotic case (interspersed by short quasiperiodic intervals). It
is evident that no global period is recorded in such a curve,
which also indicates chaotic behavior. Figure 10(b) is a focal-
ization over a much shorter time range, where we can see the
details. Figure 11 displays samples of the successive profiles
that emerge as time passes.

We note that for abnormal forms we also find completely
chaotic cases, with curves α(t ) such as those one shown in
Fig. 5(c).

As in the case of localized patterns, some abnormal struc-
tures and some α(t ) curves exhibit sharp peaks that suggest
discontinuities. In this regard, we clarify that all our calcula-
tions have sufficient resolution to guarantee continuity in such
cases. First, such as for localized patterns, an enlargement of
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FIG. 9. Dynamic abnormal structures: successive samples of
profiles u(x) corresponding to the case shown in Fig. 8(b). They were
taken in the same time, and order is indicated by the full circles.

FIG. 10. Dynamic abnormal structures, an example illustrating
the behavior observed in chaotic cases: α(t ) curve. (a) rr = 0.35 and
εr = 19; (b) same as the previous case, but for a very much shorter
time. t = 107δt , where δt = 6.25 × 10−7.

the suspected parts of such structures reveals a continuous
curve. Second, in order to avoid large files, the points to
construct the α(t ) curves were taken every certain number of
calculated points. For many of the cases in which we suspect
discontinuity we increased the frequency of sample points,
and thus we could observe that the suspected structures turned
out always to be continuous, and, except for a few chaotic
cases, we were also able to corroborate the continuity of the
questioned α(t ) curves. As an example, in order to illustrate
these situations, we show the curves of α(t ) for a periodic and
another chaotic case. In Figs. 12 and 13 show the correspond-
ing curves.

B. Phase diagrams for normal forms

We made maps using curves of εr versus rr to locate do-
mains of normal forms. This is shown in Fig. 14. The entire
range of scanned control parameters is divided into two main
domains. One domain that corresponds to stationary smooth
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FIG. 11. Dynamic abnormal structures: successive samples of
profiles u(x) corresponding to the case shown in Fig. 10(c).
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FIG. 12. Dynamic abnormal structures: an example of a periodic
case in which the α(t ) curve appears to be discontinuous, but an en-
largement of the supposed discontinuity shows that it is not. (a) α(t )
curve for rr = 0.35 and εr = 45; (b) enlargement of an apparent
discontinuity. t = 107δt , where δt = 6.25 × 10−7.

localized structures (SLSs), roughly defined by the ranges of
εr and rr : [1, 20], [0.1, 0.65], and the other one, the rest of the
parameters range explored, correspond to the (stationary and
nonstationary) localized patterns (LPs), a range that in turn we
divide into three domains: stationary (SLP), cyclical (WLP),
and chaotic (FLP). On the line that limits both domains, the
solutions are like that one displayed in Fig. 2(d), which de-
scribes an intermediate situation between a smooth localized
structure and localized pattern. We notice that there is a small
region (striped area in plot) of superposition of the two main
domains, a fact that at least indicates bistability: depending
on the shape of the excitation, the system can evolve to a
smooth localized structure or a localized pattern. On the map,
the cyclical dynamics regions is marked with the label WLP
and the chaotic dynamics regions with the label FLP.

For the same range of previously scanned parameters, de-
pending on the initial profile, abnormal solutions also emerge.
We consider that, given the great diversity of these solutions,
a map similar to the previous one is too convoluted and there-
fore not very illustrative.

We note that for each situation (defined by the values of the
control parameters) there are several possible solutions. Thus,
it is the initial profile that defines which of these solutions the
system will select.

IV. MODEL RESULTS AND REALITY

What do these results tell us about a group of individuals
with the capacity for self-organization? A group of living
beings must feed and protect themselves from the attacks
of the environment (predators, climatic variations, etc.) to

FIG. 13. Dynamic abnormal structures, An example of a chaotic
case in which the α(t ) curve appears to be discontinuous, but an
enlargement of one of the supposed discontinuities shows that it is
not. (a) α(t ) curve for rr = 0.35 and εr = 50; (b) enlargement of an
apparent discontinuity. t = 107δt , where δt = 6.25 × 10−7.

FIG. 14. Phase diagram for normal structures: punctuated area
�→ domain corresponding to stationary simple localized structures
(SLSs), white area �→ domain corresponding to (stationary -SLP-
, periodic -WLP-, and chaotic -FLP-) localized patterns (LPs), and
striped area �→ overlap between both domains.

survive. Since the food is obtained from the environment, the
larger the area of exposure, the better the foraging. Under this
premise, individuals should be scattered throughout the envi-
ronment. However, it is known that many living beings, from
microorganisms [28–31] to mammals [11,32–34], including
insects [18,35–40], birds [21,22,41], and fish [13–17], tend to
aggregate and move together, a phenomenon that is usually
referred to as gregarious or herd instinct or also collective
movement. The reasons for aggregation are diverse; the most
widespread is that of defense against predators, although they
can also come together to create an appropriate climate for
their biological and/or social functions, to execute foraging
strategies, for more accurate navigation, or a combination
of these factors. Therefore, there is a compromise between
predation risk or other factors and foraging optimization. In
this regard, we can consider several situations for which the
solutions of our model are a good answer:

Situation A: there are no predators, a group temperature
above that of the environment is required, and food is scarce.
Answer A: smooth structure as shown in Fig. 1(c).

Situation B: there are a few predators, a group temperature
above that of the environment is required, and the food is
abundant. Answer B: smooth structure as shown in Fig. 1(a)
or (b).

Situation C: There are many predators and a group temper-
ature above that of the environment is required, but food is
scarce. Answer C: localized pattern.

To solve case “A,” since there is no danger of predator
attacks, the group can expose a large area to the environment.
Then, to solve case “B,” when some predators are present,
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the strategy to reduce the risk is to reduce the exposure area;
furthermore, if food is abundant, a large exposure area is not
necessary. Finally, case C is extreme, and therefore extreme
measures are necessary and they are required: (1) a large area
of exposure to access the food and (2) a small area of exposure
against predators. Assuming that the food is much smaller
than the predator (or depending on the case, individuals and
food much smaller than a predator’s mouth [42]), a localized
pattern offers the appropriate response.

The self-organization of microorganisms in biofilms de-
serve a particular mention. Depending on the aggressiveness
of their environment, bacteria in biofilms adopt different
phenotypes to survive and procreate [43]. The rugose and
smooth variants are two examples that have been known for
many years [42]. Each phenotype has physical properties that
distinguish it from the others: resistance to osmotic, acidic,
oxidative, and biological stressors [44]. In particular, studies
have shown that production of smooth and rugose variants is
a defensive strategy adapted by Vibrio cholerae against pre-
dation by protozoan grazing [45], a major cause of bacterial
mortality in natural aquatic habitats. In general, microorgan-
isms change phenotype to increase population diversity and
maximize evolutionary success. Variation between smooth
and rugose phenotypes can be controlled by changing a nu-
cleotide in a gene [46].

From another approach, the confinement of the cells,
intrinsic to the biofilm growth mode, induces multiple
physico-chemical gradients which can impact various bi-
ological functions. Such changes translate into different
physico-chemical interactions [47–50]. Models that consider
these interactions have resulted in the formation of both
smooth and high-order structures [51,52]. Of particular inter-
est to this paper are the ring and wrinkle patterns observed in
biofilms [53–55], whose one-dimensional versions look very
similar to our localized patterns and to some of our abnormal
forms. Since the biofilm expansion on nutritious surfaces en-
hances nutrient uptake [56], the patterning (ring and wrinkle)
is a way that may enhance its availability as an answer to
scarcity [57].

In this paper, we reduce all interactions to short-range re-
pulsive and medium-range attractive forces. If we, in addition,
consider that interactions between bacteria in biofilms can
drive their mobility [58] and that biofilm populations have
limitations such as availability of nutrients in the immedi-
ate environment, the penetration of these nutrients into the
biofilm, the elimination of residues, the desorption and death
of bacteria, etc., all these phenomena leading to a stationary
situation, we note that our one-dimensional model has all the
necessary ingredients to outline a simplified description of the
generic behavior of a biofilm.

In summary, the individuals that our model contemplates
can be microorganisms, insects, birds, fish, or mammals, all
of them with different response times, which are considered
through the parameter A in Eq. (2). As a thought exercise,
we can consider each such individual as a being that reacts
automatically to the disturbances provoked by the environ-
ment. The set of disturbances �→ possible reactions would
be genetically “carved” by the history of the species. Then
we consider that each of these automatic reactions involves
two processes. Primary to them is the selection of the set

FIG. 15. Spectral function (SF/105) for three typical cases:
(a) rr = 0.2 and εr = 50; (b) rr = 0.5 and εr = 50; (c) rr = 0.8 and
εr = 50.

of values of the parameters that define their interaction (re-
sponse state), which would be the same for all individuals,
since such selection would determined by the disturbance. The
other process is related to the choice of initial profile. If we
include abnormal structures in this analysis, the multistability
is ensured for all situations, and therefore the initial profile
becomes relevant. The disturbance could generate a random
movement, and then the final selection of the structure or
response between the two, three, or four options, according to
the degeneration of the response state, would also be random.
But the most probable is that the disturbance implies a certain
degree of order which would be partially transferred to the
initial profile. Therefore, the structure or response would also
be determined by the disturbance, since once the initial profile
is determined, the basin of attraction corresponding to a given
response is also determined.

Thus, this simple model, which we might consider a toy
model, allows us to show that it is possible that a population,
resorting to a mechanism of responses to environmental dis-
turbances based on the manipulation of the reach and intensity
of repulsive forces between individuals, would dispose of
multiple options to define these responses.

V. SPECTRAL ANALYSIS

A. Localized patterns

We did Fourier transforms of the patterned solutions, for
which we adapted a fast transform program (FFT) from Nu-
merical Recipes [59]. In addition to the spatial frequency of
the enveloped pattern (νe), we calculated what we call the cen-
ter of frequencies and the dispersion around it. In other words,
the localized pattern exposes a main frequency νe that can be
calculated by measuring the distance between folds τe = 1/νe,

FIG. 16. Special period τe (distance between folds) vs rr and εr .
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FIG. 17. Center of frequencies (νc
e ) vs rr and εr .

but also, to a lesser degree, other frequencies contribute to the
assembly of the structure. To consider all the contributions,
we calculate the center of frequencies (νc

e ) and the dispersion
(δνe) around it, considering the spectral function as the weight
factor for each frequency. In Fig. 15 we show curves of the
spectral function for three typical cases. In the first place,
we note a dominant frequency peak, which, we corroborate,
coincides with the inverse of the distance between folds of
the localized patterns. When comparing them, we note that
the frequency peaks in cases (a) and (b), although very low,
occupy a wider band than the other case (c), but which shows
peak heights comparable to that of the main one. Then we
notice that the frequency peaks of cases (b) and (c) are closer
together than those of the first one (a). Both the center of
frequency and the dispersion reflect the difference between
case (b) and the other two, the adopting latter larger values
than for case (b). This is due to the fact that while in cases
(a) and (c) the differences between the separation between
peaks (greater in one case than the other) and their height (less
in one case than the other) mutually compensate their effect
on dispersion and center of frequencies, such compensation
does not happen for case (b). Figures 16, 17, and 18 show
the surfaces τe(rr, εr ), νc

e (rr, εr ), and δνe(rr, εr ). We observe
that the spatial period of the pattern (τe) is monotonically in-
creasing with both the reach and the intensity of the repulsive
forces. However, τe is considerably more sensitive with rr than

FIG. 18. Dispersion (δνe) vs rr and εr .
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FIG. 19. Special period τe (distance between folds) vs rr for εr =
50.

with εr . On the other hand, the other two surfaces (Figs. 17
and 18) present a “valley” in the central region of values
of rr . In the “valley,” the spectral function is as shown in
Fig. 15(b) and identified as case (b). Case (a) is typical of the
“hillside” corresponding to the smallest rr values, and case (c)
is characteristic of the “hillside” corresponding to the largest
rr values. Looking at the three figures it is clear that rr impacts
the frequency spectrum much more than εr . In general, all
three surfaces are smooth except for a few breaks in the range
of rr : [0.25–0.55]. To observe this phenomenon in more detail,
in Fig. 19, 20, and 21 we show the curves corresponding to a
given intensity value (εr = 50). We observe that such behavior
is a reflection of somewhat abrupt changes in the shape of
the structures. The latter is illustrated in Fig. 22, which shows
three stationary structures, which emerge as rr changes in the
range of reference values. Beyond the aforementioned range,
the width of the emerging structures increases with the reach
of repulsive forces but without changing the general shape of
the pattern envelope. The fourth structure shown in Fig. 22
exemplifies this situation. For smaller values of the intensity
something similar happens, but the forms that the envelope
of the pattern takes within the break range are different. Fig-
ure 23 illustrates these differences.

FIG. 20. Center of frequencies (νc
e ) vs rr for εr = 50.
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FIG. 21. Dispersion (δνe) vs rr for εr = 50.

If we consider a linear world, increasing the width of a
localized structure is a defense against predators, since it in-
creases the number of unexposed individuals (only individuals
located at the limits of the structure are exposed). In the
same sense, given a mass of individuals, a single structure is
more convenient than several small ones. However, the surface
exposed to food is small, since it can enter only through
the limit points of the structure. A patterned structure solves
the problem, since the surface exposed to food is strongly
increased, while the attack of predators is circumscribed only
to the limits of the structure. We observed that the relevant
parameter that considers both requirements (access to food
and defense against predators) is the width of the structure
(localized pattern) multiplied by the spatial frequency, that is,
the number of folds that make up the structure. We conclude
that the more folds, the more surface exposed to food in
relation to the surface exposed to predators. Figures 24 and 25
show the corresponding surfaces: the width of the structure
(SW) and the number of folds (FN) as a function of rr and εr .
We observe that the width of the structure is monotonically
increasing with both control parameters, although it is clear
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FIG. 22. Localized patterns for εr = 50. In the break range
(a) rr = 0.3, (b) rr = 0.4, and (c) rr = 0.5. Beyond break range
(d) rr = 0.8.
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FIG. 23. Localized patterns for εr = 15. In the break range
(a) rr = 0.3, (b) rr = 0.4, (c) rr = 0.45, and (d) rr = 0.55. Beyond
break range (e) rr = 0.8.

that the relevant parameter is rr . We also notice that the slope
is much larger above the break range. On the other hand, the
surface corresponding to the number of folds has a “valley.”
The “hillside” due to smaller rr values is justified by short
periods (high density of folds) and the other “hillside,” be-
cause the structures that emerge are very wide. They are two
different strategies that serve to optimize the combination of
both objectives: access to food and defense against predators.

B. Cyclical and chaotic cases

Although we consider that the views of Fig. 5, 8, and 10
are sufficient evidence to characterize the respective cyclical
and chaotic behaviors reported, the Fourier transform of the

FIG. 24. Width of the localized pattern (SW) vs rr and εr .
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FIG. 25. Number of folds of localized pattern (FN) vs rr and εr .

evolution of the linear response parameter is a way of objecti-
fying such characterization.

In Figs. 26 and 27 we show the spectral function corre-
sponding to the periodic cases shown in Fig. 5(a) and Fig. 8.
We note that only a few specific frequencies contribute to the
α(t ) curve. As expected, for both cases, the inverse of the
frequency corresponding to the dominant peak coincides with
the period of the corresponding curve. In Figs. 28 and 29
we show the spectral function corresponding to the chaotic
cases shown in Fig. 5(b) and Fig. 10. We note that for both
cases, typical of chaotic situations, an infinity of frequencies
contribute to characterize the α(t ) curve.

VI. BRIEF CONCLUSIONS

The life of large groups of individuals is governed by links
and rules of a diverse nature which can be translated into
complex physical interactions. Although mesoscopic models
resort to a simplification of such interactions, they are able
to predict global aspects of their behavior. In this regard,
researchers on the subject agree on the relevance of attrac-
tive and repulsive forces among the individuals that make up
these groups. We have found a simple way to characterize
the impact of attractive and repulsive interaction forces on a
set of individuals that holds their number around an optimal

FIG. 26. Spectral function (SF) corresponding to α(t ) curve for
a periodic normal case: rr = 0.4 and εr = 90.

FIG. 27. Spectral function (SF) corresponding to α(t ) curve for
a periodic abnormal case: rr = 0.63 and εr = 4.

value. We have been surprised by the great diversity of stable
solutions that can be found just by varying the reach and
intensity of the repulsive forces. Within that diversity we find
multistability: many possible answers for a given set of values
that characterize the system and that we call a response state.
Although it still surprises us, it is currently expected for a
set of self-assembled individuals, the interactions between
individuals act on scales much smaller than the size of the
structures found. However, in this work, such scales appear in
the spatial period of the localized patterns, as well as in the
“fingers” of abnormal structures.

Our view is that given a disturbance of the environment, the
set of individuals “read” their inherent order, and depending
on it, decide a response state (which is defined by the set of
values that characterize the system state, among which the
reach and intensity of the repulsive forces are included) and
an initial profile. Thus, if the response state is multistable, the
initial profile defines the definitive answer.

We have focused on the solutions we call normal. In par-
ticular, folds in localized patterns can be associated with the
wrinkles and rings observed in biofilms. In this regard, we
have explained how the number of folds impacts the relation-
ship access to food and defense against predators.

FIG. 28. Spectral function (SF) corresponding to α(t ) curve for
a chaotic normal case: rr = 0.35 and εr = 60.
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FIG. 29. Spectral function (SF) corresponding to α(t ) curve for
a chaotic abnormal case: rr = 0.35 and εr = 19.

Finally, we mentioned that, among the different solutions,
we find pairs of asymmetrical-antisymmetric structures that

move in opposite directions and whose speed increases with
asymmetry. This result draws our attention, not only for
the fact itself, but also because the edge conditions of the
system impose zero current. However, far from the edges,
such currents are not prohibited. We intuit that the observed
asymmetries are stabilized by these same currents. This phe-
nomenon is consistent with the fact that for the cyclic or
chaotic cases, the structures asymmetry changes with time
and therefore, also, the direction of their speed. Furthermore,
dynamic solutions can be associated with a reconversion game
in which asymmetries in densities and currents feed off each
other to give rise to that kind of “dance” that structures per-
form. Of course, this is an issue that requires extra work that
we leave for the near future.
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