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ABSTRACT
This work aims to evaluate the added value of interferometric
coherence to backscatter information of Synthetic Aperture Radar
(SAR) systems for soybean and corn mapping. First, SAR response
to crop growth, and then accuracies for the classification using a
combination of SAR variables were evaluated for scenarios that
employ in-season or the entire season time series. Results showed
that: i) using a single feature, the backscatter at vertical-horizontal
(VH) polarization would be the most suitable variable; ii) the com-
plementarity of coherence to single backscatter at vertical-vertical
(VV) polarization was demonstrated, adding a significant contribu-
tion to late sown corns differentiation and iii) the combination of
VV and VH backscatter would be the preferable variables for the
proposed classification. In this case, the adding of coherence did
not show a significant accuracy improvement, while a high com-
putational cost is required. Finally, high general accuracies (until
90%) for early-season maps were achieved.
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1. Introduction

Soybean (Glycine max L.) and corn (Zea mays L.) are two of the most important food
crops in the world. They are extensively grown all over the globe and attract considerable
attention in global food production. Maize is a high-yield crop with extremely high nutri-
tional value, and soybean is an important high-protein raw material for food production.
Therefore, these crops are of great importance for national food security in many coun-
tries (She et al. 2020). In this context, Argentina has been the fourth main corn producer
(third exporter), and the third one for soybean in the last 5 years (FAO 2022). In 2021,
the sowed area of soybean in Argentina reached 16.7MH, and the acreage of corn reached
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7.7MH (Di Yenno and Terr�e 2021). Having a spring-summer-autumn cycle, these crops
compete with each other. Then, the identification of these crops is relevant for agricultural
systems, providing basic information for regional crop growth conditions and yield esti-
mates (Aoki et al. 2021). In this sense, crop rotations are key agronomic tools to enhance
farm productivity, preserve the soil, and ensure provision of ecosystem services (J. Li
et al. 2019; Bowles et al. 2020). The knowledge of the spatio-temporal distribution of
crops is essential to characterize rotations at field scale and estimate their impacts on sev-
eral outcomes (Aoki et al. 2021). In this context, crop mapping at field scale is the first
step and a key point to monitor agricultural systems. This allows public policymakers and
private managers obtaining valuable information related to food production and sustain-
ability, logistic planning, supply chain evaluation for other industries, research priorities
identification, and commodity markets evaluation, among others (Pott et al. 2021).

Remote sensing has widely proven to be a reliable tool for crop mapping purposes.
Satellite data provide a timely, efficient, low-cost, and objective tool to crop identification
and mapping at large-scale (Weiss et al. 2020). Among remote sensing data, optical
images have been the most used satellite imagery for cropland mapping. Moreover,
Synthetic Aperture Radar (SAR) data has demonstrated to provide complementary infor-
mation to optical data for crop classification purposes (Blaes et al. 2005; McNairn et al.
2009). SAR is an active microwave remote sensing technique. Being independent of exter-
nal light sources and atmospheric condition, it can continuously collect data. This charac-
teristic avoids missing information due to cloudy or rainy weather during crop growing
season, which is the main problem for optical imaging systems (L. Li et al. 2019). Also,
scattering response of SAR systems signal is strongly linked to the crop canopy along
crop life cycle due to the signal sensitivity to geometric and moisture conditions
(McNairn et al. 2014).

The use of optical remote sensing to map the corn and soybean distribution has been
confirmed worldwide (Chang et al. 2007; Zhong et al. 2016; Cai et al. 2018; Wang et al.
2019; Wang et al. 2020). Furthermore, previous works have evaluated the use of SAR
imagery time series (McNairn et al. 2014; Whelen and Siqueira 2018; Dingle Robertson
et al. 2020; Amherdt et al. 2021), as well as the synergy of SAR and optical data (Pott
et al. 2021) for corn and soybean mapping. However, such classification is not usually
estimated at an early stage of the crops growing season, which is important to assist with
production forecasts (McNairn et al. 2014). For crop mapping, both intensity and polari-
metric variables are the most used among SAR information (McNairn and Shang 2016).
On the other hand, phase information is not frequently exploited for such purposes.
Recently, Busquier et al. (2020) and Mestre-Quereda et al. (2020) evaluated SAR coher-
ence for crop-type mapping in Sevilla, Spain, whose results suggest the complementarity
of coherence to backscatter information.

Therefore, in the present study time series of backscatter at vertical transmitted-vertical
received (VV) and vertical transmitted-horizontal received (VH) polarization, as well as
coherence information from C-band SAR images acquired by the Sentinel-1 satellites were
used aiming to:

i. Assess the contribution of interferometric coherence to backscatter information for
soybean and corn mapping, discerning crop sequences, as well as early and late
sown crops.

ii. Evaluate the contribution of SAR data for periods linked to corns and soybeans
growth stages for their mapping, as well as the in-season maps accuracies.
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2. Materials and methods

The general scheme for proposed classifications in this work is depicted in Figure 1.

2.1. Study area

The study area is located in the core agricultural region of Argentina, in the northern of
Buenos Aires province. This area is included in the sub-region of the Undulated Pampa,
within the Humid Pampa region. The study area covers a total of 366620 hectares and
lies between 33� 330 13’’ and 34� 170 47’’ south latitude and 60� 030 27’’ and 60� 530 51’’
west longitude (Figure 2). Climate typeof the region is humid/subhumid, with average
annual rainfall of 1056mm. Fall and spring/summer are rainy seasons, with a considerable
variability in monthly and annual precipitations. Soils of the study area were developed
from loess-like sediments and are mainly Mollisols.

Figure 1. Study workflow.
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Extensive cereal and oil crops are produced under rainfed conditions and with no-till-
age cropping system. The main one in the study area is soybean, which covers around
75% of summer field crop acreage (Bitar et al. 2020). On a year basis, soybean is cropped
as a single crop (full season soybean) or in a wheat/soybean sequence (hereafter named
WC-Soybean). In this case, despite the lower soybean yield due to its seeding time after
the optimal period, the farm income is higher due to the double harvest in the year. On
the other hand, corn is the second summer crop most widely sowed in the region with
19% of the cropped area (Bitar et al. 2020). Sowing period of maize is distributed between
early (September–early October) and late (end of November–December) (Gayo and L�opez
2018). Within the late planted, a small proportion of fields follow a winter crop (wheat,
barley, winter legumes, among others), hereinafter called WC-Corn, while most of fields
are preceded by a fallow period much longer than early sowing. (Late Corn). For the late
sown corn, a better fit of rainfall supply and the crop evapotranspirative demand is
achieved due to the less demanding atmospheric conditions in March and April (Otegui
et al. 2021). Due to this, between 15 and 25% of the total sown area corresponds to late-
sown corn (both single crop or a crop sequence), according to previous estimates (Gayo
and L�opez 2018).

For crop sequences (both WC-Soybean and WC-Corn), winter crops are usually har-
vested during the months of November and December.

2.2. Data

2.2.1. SAR data
In this study, 49 Sentinel-1 single look complex (SLC) images were available for the
studied period from 2019-10-14 to 2020-08-21. Data was obtained from the Copernicus
Open Access Hub (https://scihub.copernicus.eu/) server. Employed images were acquired
in Interferometric Wide Swath (IW) mode every 6 days for most of the period (except in

Figure 2. On the right side, in yellow, the study area location in the north of Buenos Aires province. On the left side,
study area extension represented by the yellow rectangle (background: ‘color-infrared’ composite from Landsat-9
images acquired on March 27, 2022).
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4 cases, with a temporal difference of 12 days) depending on data availability. Images at
IW mode have a nominal spatial resolution of 20 by 5 meters in azimuth and range direc-
tion, respectively, and a Maximum Noise Equivalent Sigma Zero of �22 dB (Attema et al.
2010). Further, only a single sub-swath (IW3) of the images in descending orbit (number
68) were used. Incident angle from this sub-swath ranges from 40� to 46� (mean incident
angle of 43� over the study area), depending on satellite orbit altitude. The use of both
single relative orbit and single sub-swath decreases the effect of coherence decorrelation
linked to the geometric configuration of interferometric pair (see Section 2.3.1). In this
context, coherence behaviour would be mainly dominated by the temporal decorrelation
caused by dielectric and geometric changes on the targets (analysed crops) (see Section
2.3.1). A summary of the employed images can be observed in Table 1.

2.2.2. Reference data
For training and assessment of the classification tests, 605 polygons (samples) were used.
They correspond to the crops mentioned in Section 2.1, as well as to Rangelands (land
for livestock grazing). The samples were obtained in-situ (29 samples) through interviews
with farmers, field inspection and field validation database provided by the Strategic
Guide for Agriculture of the Rosario Board of Trade, as well as by visual interpretation of
optical images (576 samples). For the latter, multi-spectral images acquired by the
Sentinel-2A and -2B, and Landsat-7 and -8 were downloaded from Copernicus Open
Access Hub and from the United States Geological Survey (USGS) server (https://earth-
explorer.usgs.gov/), respectively. All polygons were generated within each field to reduce
edge type problems linked to SAR images pre-processing (correlation of adjacent pixels
due to spatial filtering).

Table 1. Polygons of the classes used in the present study for both classifications training and assessment.

Sentinel-1 satellite/
product ID

Acquisition date [day
month year]

Sentinel-1 satellite/
product ID

Acquisition date [day
month year]

S1B/0C1E 14 October 2019 S1A/4011 05 April 2020
S1B/958F 26 October 2019 S1B/6043 11 April 2020
S1A/417C 01 November 2019 S1A/F2EF 17 April 2020
S1B/712E 07 November 2019 S1B/4A2E 23 April 2020
S1A/837B 13 November 2019 S1A/8AA7 29 April 2020
S1B/FFB4 19 November 2019 S1B/B763 05 May 2020
S1A/CE7D 25 November 2019 S1B/BC53 17 May 2020
S1B/8254 01 December 2019 S1A/8D4A 23 May 2020
S1A/5096 07 December 2019 S1B/DC25 29 May 2020
S1B/B4FE 13 December 2019 S1A/57FC 04 June 2020
S1A/4249 19 December 2019 S1B/38B2 10 June 2020
S1B/D1D0 25 December 2019 S1A/9DCE 16 June 2020
S1A/22A4 31 December 2019 S1B/AC28 22 June 2020
S1B/3241 06 January 2020 S1A/AD0F 28 June 2020
S1A/D087 12 January 2020 S1B/C46D 04 July 2020
S1B/2F95 18 January 2020 S1A/CD28 10 July 2020
S1A/A4AA 24 January 2020 S1B/69B3 16 July 2020
S1B/3B2A 30 January 2020 S1B/E823 28 July 2020
S1A/DD17 05 February 2020 S1A/6243 03 August 2020
S1B/88C0 11 February 2020 S1B/2B8C 09 August 2020
S1A/22ED 17 February 2020 S1A/A5EA 15 August 2020
S1B/7184 23 February 2020 S1B/3B4E 21 August 2020
S1A/0E2E 29 February 2020 S1B/E823 28 July 2020
S1A/C38B 12 March 2020 S1A/6243 03 August 2020
S1B/0805 18 March 2020 S1B/2B8C 09 August 2020
S1A/A84E 24 March 2020 S1A/A5EA 15 August 2020
S1B/CB39 30 March 2020 S1B/3B4E 21 August 2020
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The dataset is summarized in Table 2.

2.2.3. Precipitation
Daily precipitation data recorded from two meteorological stations located in the cities of
Pergamino (http://siga2.inta.gov.ar/#/) and Arrecifes (https://www.meteosalto.com.ar/) was
used to evaluate SAR variables response to the analysed crops. Precipitation data ranged
from 1 October 2019 to 31 August 2020.

2.3. Methodology and processing

2.3.1. Interferometric coherence
The interferometric coherence module is the magnitude of the complex correlation coeffi-
cient between two radar acquisitions (interferometric pair) in different times (repeat-pass)
or from different positions at the same moment (single-pass). It represents the quality of
the interferometric phase. For practical purposes, taking advantage of the SAR phase stat-
istical behaviour, the interferometric coherence module (hereafter called coherence for
abbreviation) can be estimated employing a moving window using the concept of
Maximum Likelihood Estimation (Hanssen 2001). Then, it can be calculated by the next
equation (Seymour and Cumming 2002):

c ¼
PN

n¼1y
ðnÞ
1 � y�ðnÞ2

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 y

ðnÞ
1

��� ���2 � PN
n¼1 y

ðnÞ
2

��� ���2
r (1)

where yi is the complex observation for the i acquisition, and N is defined by the win-
dows moving size.

Coherence can be decomposed by operational (noise and geometric decorrelation) and
target (volume and temporal decorrelation) dependent factors, which all have a multi-
plicative effect. Thus, coherence can be represented by the formula (Zebker and
Villasenor 1992; Rosen et al. 2000):

ctotal ¼ cthecgeocvolctem (2)

where each term is described in the next:

� cgeo corresponds to the geometric decorrelation. It essentially depends on the satellite
position difference for the interferometric pair acquisitions (baseline). This term can
be compensated by using a spectral filter which reduces such effect, avoiding the
coherence loss.

� cthe corresponds to the noise decorrelation. It is induced by thermal noise in the inter-
ferometric channels and other noise components like Range and Doppler ambiguities,
depending on Signal-to-Noise-Ratio. This is a decorrelation source of consideration

Table 2. Polygons corresponding to the whole dataset of evaluated classes.

Class Number of polygons Area (Ha)

Soybean 114 2794.5
WC-Soybean 123 3708.7
Early Corn 120 2793.8
Late Corn 111 2227.5
WC-Corn 32 772.6
Rangelands 105 2873.3
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for low backscatter value areas like calm water. For practical purpose, thermal decorre-
lation term could be considered negligible over land covers (Engdahl 2013)
like vegetation.

� cvol represents the volume decorrelation. It is produced by the volume scattering, and
it is strongly linked to incidence angle differences between images of interferometric
pairs. Repeat-pass system configuration of Sentinel-1 satellites was design to acquire
images within a small orbital tube (Geudtner and Torres 2012). Then, this configur-
ation prevents volume decorrelation from being a significant term (Jacob et al. 2020).

� ctem corresponds to the temporal decorrelation. It is a characteristic decorrelation
source for repeat pass SAR systems. Temporal term depends on the changes in the
landscape between image acquisitions of interferometric pairs. This effect is closely
related to distribution and orientation of the elements inside the resolution cell, and to
dielectric changes between two acquisitions at different times (Morishita and Hanssen
2015). It is the main cause of decorrelation during growth stages for corn and soy-
bean fields.

2.3.2. SAR data processing
Time series of backscatter coefficient at both available polarization (r0

VV, r0
VH), and

coherence at VV polarization (cVV) were generated. Images processing was carried out
using the Sentinel Application Platform (SNAP) software from the European Space
Agency. In this study, only VV polarization coherence was utilized due to the higher
Signal-to-Noise-Ratio compared to VH polarization. In this sense, the higher the Signal-
to-Noise-Ratio, the lower the thermal noise decorrelation (Zebker and Villasenor 1992).
Moreover, the use of coherence at VV polarization would yield not only better results
than VH polarization, but also similar results to the combination of VV and VH polariza-
tion for crop mapping purposes (Mestre-Quereda et al. 2020). In addition, coherence time
series at VV and VH polarization have shown similar behaviour for others vegetation
cover like wheat crop and forest (Frison et al. 2018; Ouaadi et al. 2020). Considering the
latter, VH polarization coherence would not provide relevant additional information to
VV polarization, while its calculation implies a high computational cost.

The images pre-processing for r0
VV and r0

VH obtaining consisted of: i) applying orbit
file; ii) removing thermal noise; iii) radiometric calibration (sigma-nought obtaining); iv)
applying a spatial multilook for speckle noise reduction; v) speckle filtering (median fil-
ter); vi) geometric terrain corrections and image geocoding and v) backscatter values con-
version to dB units.

Coherence images were obtained by: i) images co-registration through the Back
Geocoding algorithm for Sentinel-1 data (using precise orbit files of images and a digital
elevation model) and the Enhance Spectral Diversity algorithm; ii) coherence estimation
(subtracting the Flat-Earth and Topographic phases); iii) coherence maps resampling to
obtain square pixels of same size as backscatter coefficients (point iv of images pre-proc-
essing); iv) applying spatial filter (median) and v) coherence maps geocoding.

Both, intensity (r0
VV and r0

VH) and coherence time series were geocoded using the
Shuttle Radar Topography Mission digital elevation model. Final outputs consist of 28
meters square pixels images in the global coordinate system World Geodetic System 1984.
The pixel size was established by considering the relationship between speckle noise
reduction and crop fields size in the study area.
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2.3.3. Classification methodology
Regarding the analysed SAR features, classifications were performed using all individual
variables (r0

VV, r0
VH and cVV) and all possible combinations (a total of 7 classification

tests). Additionally, all classification tests were performed 4 times (4 classification sets)
employing different time ranges considering: all available images (October
2019–September 2020) and time ranges related to the growth stages of the study crops.
These ranges were selected to: i) analyse the contribution of SAR information at early,
middle and late crop growth stages, as well as the post-harvest residue of the crops and
ii) assess the accuracy of the in-season maps.

Classification tests were carried out through the random forest classifier (Breiman
2001). Classifier training parameters were set for all cases as follows: number of trees
(100) and number of samples in each node (6). Despite random forest would not be
prone to overfitting (Ok et al. 2012), a class-balanced sampling was used for the model
training to avoid favouring major classes. To achieve this, classifications were performed
according to the following strategy:

1. Selection of the class with the lowest number of samples.
2. Obtaining of new sampling from the reference dataset. For each class (excluding the

class of the previous step) a random selection of samples was made, with the condi-
tion that total area of the selected polygons in each case must be the same to the
class of the previous step (with a maximum difference of 5%).

3. From new sampling (point 2), 50% of the polygons were used for the classifier train-
ing. These samples were randomly selected with a balanced distribution per class.

4. Due to the polygons size differences, each classification test was performed 5 times
by variating the used samples for classifier training, according to point 3. This pre-
vents the results from depending on the sample selection in point 3 (different total
pixels number per class).

2.3.4. Classification assessment
Confusion (or error) matrix and their derived metrics were used to assess the classifica-
tion tests. For each case, the matrix was obtained employing the samples not used in the
classifier training. Overall accuracy (Congalton and Green 2020, p. 69–76) and the kappa
index (Congalton and Green 2020, p. 127–129) were used for the classifications’ general
assessment. On the other hand, the producer’s accuracy (PA) and the user’s accuracy
(UA) were computed for individual assessment of the classes (Congalton and Green 2020,
p. 69–76). For each classification test, error matrix and above-mentioned accuracy metrics
correspond to the average of the 5 performed classifications according to point 4 of
Section 2.3.3.

3. Results

3.1. SAR features time series analysis

Previously to classification tests assessment, individual SAR features (r0
VV, r0

VH and cVV)
time series were analysed for each class. In each time series of each class, the average and
standard deviation of pixel values corresponding to the total polygons (whole dataset) are
depicted. Figure 3 shows the backscatter coefficient behaviour at both VV and VH polar-
ization. Moreover, time series of coherence at VV polarization are observed in Figure 4.
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Figure 3. The five upper plots correspond to the time series of backscatter coefficient of the classes at VV (magenta)
and VH (green) polarization. Points represent the average values, while vertical lines represent standard deviation for
all polygons of each class. For crop classes, horizontal line represents the seasonal crop calendar with the seeding
period (light blue), vegetative stage (green), reproductive stage (yellow) and harvest period (brown). The lower plot
corresponds to the daily precipitation data registered by the Pergamino (red) and Arrecifes (blue) stations.
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Figure 4. The five upper plots correspond to the time series of coherence of the classes at VV polarization. Points
represent the average values, while vertical lines represent standard deviation for all polygons of each class. For crop
classes, horizontal line represents the seasonal crop calendar with the seeding period (light blue), vegetative stage
(green), reproductive stage (yellow) and harvest period (brown). The lower plot corresponds to the daily precipitation
data registered by the Pergamino (red) and Arrecifes (blue) stations.
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In Figure 3, similar behaviour was observed for r0
VV and r0

VH throughout the time ser-
ies for all evaluated classes. These features have been broadly studied for corn and soy-
bean monitoring (Jiao et al. 2011; Veloso et al. 2017; Vreugdenhil et al. 2018; Khabbazan
et al. 2019; Kumari et al. 2019; Nasirzadehdizaji et al. 2021). However, some differences
in backscatter between and in the crops along their life cycles are important to be
highlighted.

Firstly, seeding period showed the lowest values for both crops. It is likely to be due to
the signal interaction with bare soil (smooth roughness surface). In vegetative stage, a
sharp backscatter increase was observed for both crops, mainly during the first half of this
stage. This would be related to the crop growing and the consequent leaves development
at this period. Under this condition, the higher the biomass, the stronger the backscat-
tered signal due to the volume backscattering mechanism increase (Khabbazan et al. 2019;
Xie et al. 2021). It should be noted that time-lapse of mentioned up-ward trend was
shorter for late sown than for early sown crops (both soybean and corn). During the late
period of vegetative stage and during the reproductive stage, some important differences
between soybean and corn were observed, regardless of the sowing period. For soybean,
this period is usually characterized by leaves development until mid-late of reproductive
stage, while the very end of this reproductive stage is described by a high rate of crop sen-
escence and leaves loss. These crop variations would be linked to the high and unchanged
backscatter values until the end of the crop cycle. After that, a marked decrease of back-
scatter was noticed (mainly for r0

VH). It could be related to the decrease of signal inter-
action with vegetation, due to both the low biomass close to soybean maturity time (thin
dry stem standing) and the crop harvesting. This pattern can be seen during March for
Soybean and April for WC-Soybean. On the other hand, backscatter for maize crop
showed constant values from late vegetative stage to early reproductive stage and, from
this point on, a slight downward trend until harvest period was observed. This behaviour
could be related to corn plant architecture for mentioned periods and the plant moisture
loss due to the plant drying out. Unlike soybeans, maize leaf senescence rate increases
from early reproductive stage (Borr�as et al. 2003), and dry leaves remain downwards
(only some of the dry leaves fall off the plant). Under this condition, backscattering
response could be linked to a decrease of volume backscattering component, and a lower
backscattered energy due to the lower moisture presence in the plant. For maize crop,
although a backscatter decrease was noticed from the end of the crop cycle, such decrease
was not as significant as for soybeans. In the study region, maize fields are generally not
harvested from a couple of weeks up to several months after reaching physiological
maturity for grain drying out (depending on climatic conditions and crop seeding time).
During this period, the whole plant senescence is usually reached, and the backscattering
response would be dominated by the contribution of the soil and the corn stalks (Ulaby
et al. 1984).

Likewise, some relevant points of backscatter time series should be highlighted:

i. For most of the vegetative and reproductive stages, both r0
VV and r0

VH values for
soybean were higher than for corn (regardless of seeding periods).

ii. In both crops, early and late sown periods can be distinguished due to the time lag
of their life cycles. In this sense, backscatter information in specific periods, such as
the month of December, could be relevant to discern early and late sown crops.
During this month, backscatter values for early sown crops (vegetative stage) are
higher than for late sown crops (seeding period).

GEOCARTO INTERNATIONAL 11



iii. Until December, backscatter values differences between crop sequences (WC-
Soybean and WC-Corn) and Late Corn can be observed. Although they both have a
similar seeding period, the different field cover prior to crop summer sowing, as well
as the presence of residue of harvested winter crop for crop sequences would produ-
ces unlike backscatter values. For this period, such differences were even higher
between early sown crops (Soybean and Early Corn) and late sown crops (Soybean,
Late Corn and WC-Corn).

For Rangelands class, relatively constant values from October to January (summer
beginning) were observed. Then, a backscatter increase was noticed, and after that, con-
stant values remained (minor changes) until May. This backscatter behaviour could be
linked to the higher vegetation presence in early January. From May to September, a
backscatter downward trend was observed. During this period (dry season), moisture loss
in vegetation cover would reduce the backscattered energy. It is important to point out
that throughout the time series, backscatter values were never higher than those corre-
sponding to the vegetative and reproductive stages of the crops.

Above-mentioned relationships between crop growth and backscatter behaviours are
linked to the coherence time series shown in Figure 4. High coherence values were
observed during the seeding period of the crops compared to crops growing season. For
this period, vegetation cover absence on field would produce similar signal-ground inter-
action for the interferometric pairs’ images (depending on soil moisture changes and the
structure of winter crop residue for crop sequences). As the crops grow, a coherence
downward behaviour is evident until reaching the lowest values for each crop. This pat-
tern is clearly noticeable during the first half of vegetative stages. During this period, geo-
metric changes in the fields due to crop growth are likely to occur with a consequent
temporal decorrelation increase. From this point on, low coherence values until the end
of the crops cycle were observed. For this period, geometric and dielectric changes in can-
opy like leaves movement caused by the wind and the crop drying out would produce a
strong temporal decorrelation. From the end of crop cycle and during the harvest period,
a coherence increase was observed in both crops. The latter could be linked to the field
harvesting. Harvested fields would produce more stable ground conditions compared to
vegetation cover for interferometric pairs’ images (Kavats et al. 2019; Shang et al. 2020;
Amherdt et al. 2021).

It should be noted that during December, coherence values for late sown crops (seed-
ing period) were higher than for early sown crops (vegetative/reproductive stage). This
could contribute to early and late sowing crops differentiation.

Coherence time series for Rangelands class showed: i) relatively high (compared to val-
ues corresponding to crops vegetative/reproductive stages) constant values for the
October-December time range; ii) a slight increase in the month of December; iii) higher
(compared to December) constant values in the January-May time interval and iv) an
upward behaviour from May to June and values with minor changes from June.

Some peaks can be clearly identified in both backscatter (high values) and coherence
(low values) time series. These could be linked to rainfall events. For backscatter values,
the higher the moisture content, the higher the backscattered energy. Furthermore, varia-
tions in soil and canopy moisture due to precipitation have previously been reported as a
significant decorrelation source (Ahmed et al. 2011; Simard et al. 2012). Such behaviours
are clearly evidenced in both backscatter and coherence time series for Rangelands class
(also observed for crop classes) at the end of December, at mid-March, and at the end of
April. This patterns was observed in late November as well. In that case, although rainfall
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events were reported prior to the images acquisition, those precipitation values were not
as intense as for the rest of the above mentioned cases.

3.2. Crop classification

According to the defined classifier training strategy, the class with the lowest number of
samples corresponded to WC-Corn (point 1 of Section 2.3.3). The summary of the
obtained sampling according to the point 2 of Section 2.3.3 is shown in Table 3.

Regarding the performed classification sets to evaluate the SAR information for differ-
ent crops growth stages, the used time ranges for each set are described below:

i. Range 1: complete dataset of SAR images. It corresponds to almost a whole year
(October 2019–September 2020). This period contains information from the drying
period of winter crops to corn and soybean crops (early and late sown) post-har-
vest period.

ii. Range 2: from 14 October 2019 to 12 January 2020. This period contains informa-
tion from the drying period of winter crops up to: i) early/mid reproductive stage of
early sown corn (full plant development is reached); ii) the end of vegetative stage of
early sown soybean (maximum values of both height and fresh biomass are not
probably reached) and iii) the beginning of vegetative stage of late sown crops
(period characterized by low/medium leaf development). In this set, the contribution
of SAR data up to early/middle growth stages of study crops to the proposed classifi-
cation, as well as the in-season classifications (defined as ‘early-season’ classifications)
accuracies were evaluated.

iii. Range 3: from 14 October 2019 to 24 March 2020. This period contains information
from the drying period of winter crops up to: i) harvest period of early sown crops
(whole plant senescence is reached); ii) the end of reproductive stage for WC-
Soybean and iii) the beginning of reproductive stage of late sown corns (maximum
values of both height and fresh biomass are probably reached). In this set, the con-
tribution of SAR data up to middle/late growth stages of study crops to the proposed
classification, and the in-season classification (defined as ‘mid-season’ classifications)
accuracies were evaluated.

iv. Range 4: from 14 October 2019 to 10 June 2020. This period contains information
from the drying period of winter crops to harvest period (whole plant senescence is
reached for unharvested fields) of late sown corns, and post-harvest period of the
rest of study crops.

General and individual metrics derived from error matrices (Table S1) for classifica-
tions assessment (Section 2.3.4) were depicted in 2 tables. Moreover, classification
obtained through backscatter at VV polarization was taken as reference for the scores’

Table 3. Randomly selected polygons from the whole dataset according to the classifier training strategy (points 1
and 2 of Section 2.3.3).

Class Number of polygons Area (Ha)

Soybean 32 775.0
WC-Soybean 28 805.4
Early Corn 32 737.4
Late Corn 37 741.4
WC-Corn 32 772.6
Rangelands 28 791.8
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comparison in each classification set (analysed time ranges). This polarization was chosen
as reference because the co-polarization is the conventional one for singular polarization
SAR systems. In the next subsection, obtained results are described. In Figure 5 an
example of the proposed crop classification for the study area is shown.

3.2.1. Classification tests
In Table 4 similar relationships between the classification tests can be observed for all the
classification sets. Firstly, classification tests obtained using the coherence were the less
accurate. For the latter, the decrease (compared to the r0

VV classification) in overall accur-
acy and the kappa index, respectively, in each classification set was: 7% and 9 points for
Range 1; 8% and 9 points for Range 2; 14% and 17 points for Range 3; and 8% and 10
points for Range 4. Secondly, the rest of classification tests highlighted slightly higher gen-
eral accuracies (compared to the r0

VV classification). In this sense, highest differences
were seen using backscatter coefficient at both VV and VH polarization and all the ana-
lysed features. For these, the increase in the overall accuracy and the kappa index,

Figure 5. Example of the proposed crop-type map. It corresponds to the obtained using the r0
VV þ r0

VH þ cVV SAR
features for Range 4 to train the classifier. Urban areas were masked out with the Global Man-made Impervious
Surface (GMIS) Dataset from LANDSAT (Brown de Colstoun et al. 2017).
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respectively, in each classification set was, 2% and 3 points for Range 1; 5–6% and 6–7
points for Range 2; 3% and 3–4 points for Range 3; and 2% and 3–4 points for Range 4.

Regarding the individual scores (Table 5), similar patterns for all the classification sets
were evidenced as well. A decrease in most of the classes was observed for the coherence
classifications (compared to the r0

VV classifications). In this context, the highest decrease
was observed for WC-Soybean, Late Corn, WC-Corn (except for Range 2) and

Table 5. User’s and producer’s accuracy for all classification test corresponding to each evaluated classification set.

Classifier training input

User’s accuracy (%) Producer’s accuracy (%)

S WC-S EC LC WC-C R S WC-S EC LC WC-C R

Range 1
r0
VV 96.8 98.5 96.8 96.2 59.1 97.1 98.3 96.0 97.2 86.7 88.7 97.7

r0
VH 98.5 98.3 98.8 95.2 64.8 98.0 97.2 98.0 98.2 87.6 90.8 99.7

cVV 96.6 89.7 92.3 80.5 38.7 97.1 94.7 83.9 95.9 76.6 85.3 89.2
r0
VV þ cVV 97.9 99.0 98.3 97.0 66.6 99.4 98.8 97.5 99.3 91.6 90.7 97.7

r0
VH þ cVV 98.6 98.7 99.0 95.6 67.6 98.4 97.7 97.9 99.0 89.8 91.7 99.3

r0
VV þ r0

VH 98.9 98.6 98.7 95.8 69.8 99.1 98.1 98.2 98.6 90.1 91.0 99.7
r0
VV þ r0

VH þ cVV 98.9 98.6 99.0 96.7 69.6 99.6 98.2 98.4 99.4 91.0 91.4 99.5
Range 2

r0
VV 92.9 92.2 91.3 79.8 29.1 87.7 93.9 74.9 93.4 69.2 75.9 92.9

r0
VH 96.6 93.0 95.0 81.1 30.4 96.6 93.1 71.1 97.8 83.6 85.6 96.6

cVV 93.3 81.2 89.4 63.9 26.1 79.3 90.8 61.7 92.4 61.5 75.6 93.3
r0
VV þ cVV 94.7 93.4 95.3 86.8 34.3 89.8 95.8 77.3 97.8 76.7 77.7 94.7

r0
VH þ cVV 97.0 94.2 95.4 84.8 34.9 96.6 93.7 76.4 98.3 85.4 85.8 97.0

r0
VV þ r0

VH 96.3 94.9 95.3 85.5 33.1 97.8 94.5 76.8 98.6 84.0 85.1 96.3
r0
VV þ r0

VH þ cVV 96.6 95.0 95.5 85.3 36.4 97.8 94.8 78.7 99.0 84.4 84.1 96.6
Range 3

r0
VV 93.7 97.0 94.5 87.1 46.7 95.9 97.8 89.5 96.6 76.4 78.5 97.6

r0
VH 97.7 97.4 97.7 85.4 52.6 97.5 96.9 90.3 97.5 83.3 87.1 99.4

cVV 93.9 84.5 91.2 62.1 15.6 95.8 90.7 55.7 95.4 68.4 62.1 86.9
r0
VV þ cVV 96.5 97.6 96.2 88.4 56.8 97.9 97.3 91.6 98.2 84.9 86.0 97.5

r0
VH þ cVV 97.7 97.1 97.9 87.3 55.8 98.8 96.8 91.1 99.0 85.2 88.4 99.3

r0
VV þ r0

VH 97.5 97.7 97.2 87.7 56.7 99.2 97.3 92.4 99.0 83.1 89.2 99.5
r0
VV þ r0

VH þ cVV 97.4 97.5 97.4 88.3 59.0 99.6 97.3 92.7 99.4 84.4 89.2 99.4
Range 4

r0
VV 96.4 98.7 95.2 95.9 60.5 97.0 98.4 95.7 97.2 85.7 88.8 97.4

r0
VH 98.5 98.4 98.2 94.0 63.5 97.9 97.2 97.3 97.9 87.1 91.1 99.6

cVV 96.5 91.4 92.8 75.3 32.1 97.4 94.7 77.6 96.1 79.4 80.7 88.9
r0
VV þ cVV 97.8 98.9 97.6 96.3 66.7 99.0 98.7 96.7 98.8 91.3 90.7 97.7

r0
VH þ cVV 98.6 98.5 98.4 94.2 70.4 98.9 97.3 97.2 98.8 90.8 92.5 99.2

r0
VV þ r0

VH 98.8 98.5 97.9 96.0 68.2 99.3 97.9 98.1 98.9 88.9 91.7 99.6
r0
VV þ r0

VH þ cVV 98.9 98.7 98.0 95.4 73.3 99.5 97.7 97.9 99.3 91.2 92.2 99.5

S: Soybean; WC-S: WC-Soybean; EC: Early Corn; LC: Late Corn; WC-C: WC-Corn; R: Rangelands.

Table 4. Overall accuracy and kappa index scores corresponding to each classification test for the analysed
time ranges.

Classifier
training input

Range 1 Range 2 Range 3 Range 4

Overall
accuracy

(%)
Kappa
index

Overall
accuracy

(%)
Kappa
index

Overall
accuracy

(%)
Kappa
index

Overall
accuracy

(%)
Kappa
index

r0
VV 95.41 0.94 84.55 0.81 91.68 0.90 95.14 0.94

r0
VH 96.48 0.96 87.35 0.85 93.50 0.92 96.14 0.95

cVV 88.17 0.85 76.89 0.72 77.68 0.73 86.77 0.84
r0
VV þ cVV 97.06 0.96 88.10 0.85 93.89 0.92 96.70 0.96

r0
VH þ cVV 96.95 0.96 89.34 0.87 94.28 0.93 96.82 0.96

r0
VV þ r0

VH 97.15 0.96 89.49 0.87 94.45 0.93 96.97 0.96
r0
VV þ r0

VH þ cVV 97.48 0.97 90.16 0.88 94.76 0.94 97.29 0.97
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Rangelands classes. For these classes, the decrease in UA and PA, respectively, in each
classification set was, 9% and 12% (WC-Soybean), 15% and 10% (Late Corn), and 20%
and 3% (WC-Corn) for the Range 1; 11% and 13% (WC-Soybean), 16% and 8% (Late
Corn), and 8% and 12% (Rangelands) for Range 2; 13% and 34% (WC-Soybean), 26%
and 8% (Late Corn), and 31% and 16% (WC-Corn) for Range 3; and 7% and 18% (WC-
Soybean), 20% and 6% (Late Corn) and 28% and 8% (WC-Corn) for Range 4. In sets cor-
responding to Range 1, 3 and 4, a significant PA decrease for the class Rangelands was
observed (9%, 11% and 9% for each set, respectively). On the other hand, the rest of clas-
sification tests showed similar performances (slightly higher) for most of the classes (com-
pared to the r0

VV classifications). Only classes corresponding to late sown corns (Late
Corn and WC-Corn) showed a significant increase. Such pattern was more noticeable for
the classification set corresponding to Range 2.

In addition, some relevant points from Tables 4 and 5 should be mentioned:

� Contribution of coherence to backscatter at VV or VH polarization for the proposed
classification (for all classification sets). Increases in individual scores for all classes
were achieved by adding coherence to backscatter information. These increases were
more noticeable for Range 2. The highest differences were observed for late sown corn
(both Late Corn and WC-Corn).

� VH polarization yielded better results than VV polarization using backscatter at single
polarization (for all classification sets).

� Classification tests using VV and VH polarization backscatter, as well as all the ana-
lysed SAR variables produced the best scores (general and individual) in all classifica-
tion sets. Further, minor differences between them were observed (except for Range 4,
in which an increase of 5% in UA for WC-Corn was noticed when adding coherence
to backscatter information).

� Highest individual scores corresponded to classes of early sown crops (soybean and
corn) for all classifications sets.

� Lowest individual scores corresponded to classes of late sown crops (soybean and
corn). Particularly, WC-Corn showed the lowest scores (mainly in UA values) for all
the obtained classifications.

� All classification tests showed a significant improvement compared to the classification
obtained using only backscatter at VV polarization (excluding the obtained one using
coherence information) in classification set corresponding to Range 2. The major
increases were for corn classes (particularly late sown corns).

4. Discussion

This study confirmed the added value of coherence to backscatter information for crop
classification purposes (Busquier et al. 2020; Mestre-Quereda et al. 2020). Particularly, the
contribution of coherence to backscatter information for corn and soybean mapping con-
sidering different sowing times, and single or double crop systems was demonstrated for
the first time. The accuracies improvement by adding coherence to backscatter informa-
tion was higher when using single polarization backscatter (VV or VH) for all the classifi-
cation sets. Such enhancement was more significant for early-season map (Range 2). On
the other hand, coherence addition to backscatter information at both VV and VH polar-
ization produced some improvements in accuracy scores (mainly individual scores), but
these were not significant enough. In this case, the use of coherence would not be
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convenient for the proposed classification due to the high computational cost implied in
the coherence estimation and the classification process.

This study also evaluated the most suitable variables among the analysed SAR features,
as well as the contribution of SAR information corresponding to different crops growth
stages for the proposed classification. In this context, the using of backscatter information
at both VV and VH polarization would be the most adequate for the proposed classifica-
tion. As mentioned before, the addition of coherence to backscatter variables is not wor-
thy considering the low accuracy improvement and the high computational burden. In
this sense, the integration of both VV and VH polarization has been reported as the most
suitable combination for crop classification purposes among the backscatter information
(McNairn and Shang 2016). For the latter classification tests (r0

VV þ r0
VH and

r0
VV þ r0

VH þ cVV), a significant improvement in accuracies for crop sequences (corn and
soybean) classes was observed from classification set corresponding to Range 2 compared
to classification set corresponding to Range 3. This suggests that the period between both
classification sets would contain valuable information for soybean and maize discerning
(double crop systems) but not for late sown corns (Late Corn and WC-Corn) differenti-
ation. Regarding the preferable polarization, VH polarization would be more suitable than
VV polarization, mainly for in-season classification (Range 2 and 3). This is consistent
with McNairn and Shang (2016) findings, who reported the linear cross-polarization as
the best single polarization for crop classification purposes. For all classification sets, clas-
sification performances using only coherence for classifier training were the lower. In this
context, coherence classifications corresponding to Range 2 and 3 sets reached very simi-
lar scores. Indeed, classification corresponding to Range 2 resulted more adequate than
the Range 3 one for late sown crops discrimination. Only for the Rangelands class, classi-
fication test obtained in the classification set corresponding to the Range 3 highlighted a
significant improvement compared to that obtained for Range 2. All scores showed an
improvement for the classification sets that contained information on the complete crops
growing season (Range 1 and 4). This suggests that most valuable coherence information
would be found for the winter crop harvesting period, seeding and emergence of summer
crops periods, and from the beginning of summer crops drying out. Coherence informa-
tion would be not relevant during most of vegetative and reproductive periods of the
crops for the proposed classification. This could be linked to the strong temporal decorre-
lation component during the latter mentioned growth stages for both crops according to
the observed in Section 3.1. Such coherence behaviour during the growth period for other
crops has been previously reported (Villarroya-Carpio et al. 2022). Moreover, all late
sown crops showed an enhancement of accuracies in classification sets corresponding to
Range 1 and 4 compared to classification set corresponding to Range 3 (for all classifica-
tion tests). This evidences the contribution of SAR information (mainly backscatter infor-
mation) during the mid/late reproductive periods of the crops. Furthermore, general and
individual accuracies for classification sets corresponding to Range 1 and 4 were almost
the same (for all classification tests). This suggests that there is no valuable SAR informa-
tion during harvest and post-harvest periods, particularly for maize crop. These periods
were evaluated due to the relationship of the SAR response with different crop residues
according to previous studies (McNairn et al. 2001, 2002), which could contribute to crop
classification.

As mentioned in Section 3.2.1, WC-Corn class achieved the lowest accuracy scores in
all classification tests for all classification sets. This could be related to the similar time
series (mainly for backscatter information) between this class and the rest of the classes
corresponding to late sown crops. As described in Section 3.1, the WC-Corn backscatter
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and coherence time series exhibited similar behaviour to that of WC-Soybean from
October to December, and from December onward time series were analogous to those of
Late Corn. This could produce misclassification between these classes (mainly between
Late Corn and WC-Corn).

Obtained results can be compared with previous works on soybean and corn mapping.
However, it must be considered that each study about crop-type mapping with SAR data
has specific characteristics related to the study site (evaluated crop, climatic conditions,
among others) and the employed data (SAR variables, signal frequency, acquisitions num-
ber, among others). In this context, achieved results are in accordance with those obtained
by Amherdt et al. (2021), but some relevant differences must be pointed out: first, the
capability of distinguishing Late Corn and WC-Corn, being the major challenge due to
their very similar calendars; second, the SAR information contribution for different
growth stages of the crops, evidenced by the performed classification sets; and third, the
coherence contribution to crop mapping. Further, obtained mid-season map (Range 3)
was quite similar to that obtained by Dingle Robertson et al. (2020) by combining back-
scatter at VV and VH polarization for corn and soybean mapping in the region; while,
achieved general accuracy using VH polarization backscatter information for the whole
crops growing season (Range 1 or 4) was similar to that reported by Whelen and Siqueira
(2018) for corn and soybean classification in North Dakota, United States. It is worth not-
ing that in these works only crop type was distinguished using C-band SAR data, without
considering different sowing dates and crop systems as in the present study. On the other
hand, a dense dataset of SAR imagery would be suited for the ‘early-season’ crops map-
ping (mainly for soybean crop) comparing the obtained results with those reported by
McNairn et al. (2014). It is important to highlight that classification corresponding to the
aforementioned work was attained using the combination of C-band and X-band SAR
images (small dataset of images) and a Decision Tree classifier. In the present study, not
only crop-type mapping but also crop discerning according to seeding time and crop sys-
tem (single crop or crop sequence) was feasible with a high accuracy. In this sense, accur-
acy scores for maize crop classes were similar for early and late planted corn, but
significantly worse for the double crop system (employing backscatter information of the
whole crop season) compared to those obtained by L. Li et al. (2019). In addition,
obtained results in the present study were similar and even more accurate (mainly using
backscatter at both VV and VH polarization) compared to those obtained by de Abelleyra
et al. (2020), who employed optical images time series for corn and soybean mapping
over the same region. In this context, Dingle Robertson et al. (2020) also reported better
performance when using SAR image time series compared to optical image time series for
soybean and maize mapping. As already mentioned, optical images have been extensively
studied for cropland mapping. However, SAR sensor characteristics would allow to separ-
ate one crop type from another due to the recognition of changes in and between the
structure of the crops throughout their growth stages (McNairn et al. 2014). Therefore,
although not a substitute for optical data, SAR data proved to be a suitable source for
crop classification, particularly for mapping corn and soybeans.

Potential limitations from this work are mainly related to:

� The SAR images time span. In this context, the evaluation for more than one summer
crops season would allow more robust conclusions to be drawn. Also, a larger number
of images for the winter crop growing season could provide critical information to dis-
criminate the WC-Corn and Late Corn.
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� The unavailability of a larger reference dataset obtained in-situ. In this sense, the pos-
sible erroneous definition of classes for some samples due to misinterpretation of the
optical images would decrease the accuracy of the classifications.

5. Conclusions

In this work the coherence contribution to backscatter information for soybean and corn
mapping was demonstrated. In addition, the contribution of crops growth stages to pro-
posed classification and in-season maps accuracies were assessed. In this context, the
main challenges were both the crop-type discerning, as well as its discrimination accord-
ing to crop systems (single crop of crop sequence) and sowing time.

Results evidenced the coherence added value to single backscatter coefficient (VV or
VH), mainly for late sown corns (Late Corn and WC-Corn) discerning. In this sense,
coherence addition to backscatter information could be a suitable tool for soybean and
corn mapping using C-band singular VV polarization SAR images. However, the combin-
ation of backscatter at VV and VH polarization would be the preferable variables for the
proposed classification. In this case, the addition of coherence would not be convenient
due to the minor accuracies improvement and the high computational burden involved in
coherence estimation and classifier training. Among the backscatter variables, VH polar-
ization resulted more adequate than VV polarization. Also, results showed that there is
useful SAR information up to the end of the crops growing season for proposed classifica-
tion. Despite that, there is valuable SAR information until early and middle stages of
crops growth. In this context, time series of C-band SAR images would be an adequate
source for early season classification of corn and soybean. Both early season and middle
season classifications achieved a high accuracy, mainly using backscatter information at
VV and VH polarization or all the analysed SAR features. The availability of early season
maps allows to better plan various input supply tasks, and/or organize logistics and trans-
portation to consumer markets.

Moreover, further studies evaluating different crop types should be carried out to con-
firm the added value of coherence to crop mapping purposes, as well as the suitability of
SAR data to obtain accurate in-season maps.
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