
Instability of universal terms in the entanglement entropy

Marina Huerta * and Guido van der Velde†

Centro Atómico Bariloche, 8400-S.C. de Bariloche, Río Negro, Argentina

(Received 26 May 2022; accepted 17 June 2022; published 30 June 2022)

The role of symmetries in what concerns entanglement entropy has been extensively explored in the last
years and revealed a profound connection with the quantum field theory’s algebraic structure. Recently, it
was found that some universal contributions to the entanglement entropy and mutual information may be
nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the
particular case of the entanglement entropy of the Maxwell theory in (2þ 1) dimensions for rotationally
symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the
only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems
from the Fourier angular n ¼ 0mode. This simplification allows us to check explicitly the many issues that
characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras
break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property.
More interestingly, we present concrete lattice realizations that confirm that the logarithmic “universal”
term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This
ambiguity hinders the identification of possible topological contributions characteristic of models with
generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual
information for two nearly complementary concentric disks. We obtain the expected universal contribution
with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual
information as the appropriate probe to sense additivity-duality breaking and the consequent universal
topological contributions.
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I. INTRODUCTION

After a fruitful period of research, entanglement entropy
(EE) has been shown to play a relevant role in the
characterization of quantum field theories (QFT). At
present, it is well stated that the EE divergences structure
has a strong geometric character and reveals universal
features of the theory when choosing appropriate states and
regions. The landscape in this regard is more subtle and vast
than we could naively expect: depending on our theory and
specific interest we have at our disposal not only different
choices of states and regions but also different nets of
algebras, that is, different assignations of the operators
available in the model to regions. In the last years, there has
been a lot of progress in the understanding of this last point.
As we could expect, recent investigations [1–3] reveal

that the nonuniqueness of the assignation of a local algebra

to a region can be, in general, understood as a source of
ambiguities for the entanglement entropy. In this regard,
symmetries play a fundamental role in distinguishing
apparent (ambiguities) from fundamental differences in
the universal terms of the EE. The discussion about the EE
ambiguities precedes this last issue. Historically, the first
source of ambiguities discussed in the literature is due to
the regularization scheme dependency of the EE that
reveals only some pieces of the EE are universal [4–8].
Later, it was noticed that also the particular choice of the
operator content on the boundary, such as the addition of a
center, a set of operators commuting with all the operators
within the region, could affect the EE and modify the
universal terms [9,10]. Within the framework of this
discussion, the topological theories [11,12] and the
Maxwell field in (3þ 1) dimensions are emblematic
examples [13–18]. Regarding these two sources of ambi-
guities, one way to get rid of them but keeping track of the
EE universal pieces of interest is to consider instead other
information quantities, such as mutual information (MI) or
more generally relative entropies, well defined in the QFT’s
context. More precisely, these quantities are finite and
independent of the regularization scheme and chosen
conveniently also contain the EE universal pieces.
Moreover, relative entropies are also independent of how
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we choose the operator content on the boundary: the
classical contribution to the MI due to the addition of a
center located on the boundary studied in [10] does not
survive the continuum limit, leaving the mutual information
invariant. From this perspective and returning to the algebra-
region assignation problem, it was shown in [1,2] that only in
models where the duality or additivity property of the
algebras is broken, there is a “genuine” physical, nonunique
algebra choice, affecting universal pieces. In other words, the
uniqueness of universal terms against a particular algebra
choice depends on the failure of these properties which, in
turn, depends on the completeness of the theory.
We will call a model incomplete when the algebra

generated by the local degrees of freedom does not coincide
with the maximal one compatible with causality. For
example, this is typically the case of a model associated
with the neutral subalgebra that does not contain any charged
operator. More generally, orbifolds belong to this family:
they are obtained from a theory (complete) associated with
an algebra F by retaining only the set of operators invariant
under the action of a symmetry group G. For these models,
there is no way to satisfy duality and additivity at the same
time. In restoring duality, for example, the addition of
nonlocal operators that break additivity is necessary and
vice versa, if instead we choose to restore additivity.
Remarkably, additive algebras lead to different universal
terms than those associated with dual algebras, even when
these are read from well-defined relative entropies. The
emergence of different universal terms notably distinguishes
this scenario from the ones described previously. Unlike the
ambiguities coming from regularization scheme prescrip-
tions or boundary centers, the nonuniqueness of algebras
assignations in incomplete models with global (or local)
symmetries not only has a physical basement but an explicit
manifestation revealed through topological contributions
that alter the EE and MI universal terms.
In this article, we concretely illustrate the previous ideas

for the particular case of the Maxwell field in (2þ 1)
dimensions. This is a very appropriate stage for this
purpose, because it not only admits a detailed and very
accurate numerical treatment but also provides with a clear-
cut manifestation of the algebra-region problem.
We follow the algebraic perspective of [1–3], where

these issues are addressed in great detail for models with
global or local symmetries. The Maxwell field in (2þ 1)
dimensions is dual to the scalar theory, more precisely, to
the subalgebra generated by the derivatives of the field.
The subalgebra can be understood as the orbifold that
results by quotienting the full algebra by the symmetry
ϕ → ϕþ const. This model also exhibits spontaneous
symmetry breaking (SSB) which, as we will see later,
makes the definition of a regularized entropy in terms of MI
more subtle or impossible. As extensively discussed in [1],
incomplete models with SSB present fundamental algebra
region problems even for regions with trivial topology.

The case we consider here belongs to this class and
according to the results in [1] the particular choice of
the algebra affects nontrivially the EE, naturally, but also
the universal terms in the mutual information.
Here, we are particularly interested in the two following

results predicted in [1] concerning the Maxwell field and
derived for models with SSB:

Sscalar − SMaxwell ¼ −
1

2
logðR=δÞ ð1Þ

for the entropy of a disk of radius R and δ the UV cutoff and

Iscalar − IMaxwell ∼
1

2
logðlogðR=ϵÞÞ; ð2Þ

for the mutual information between a disk of radius
R− ¼ R − ϵ

2
and the exterior of a diskRþ ¼ Rþ ϵ

2
separated

by a distance ϵ in the almost complementary regions
limit ϵ → 0.
The result (1) was previously derived by means other

than the algebraic approach, for instance, employing a
direct wave function calculation [19] or the replica method
[20]. Later, it was numerically confirmed in a square lattice
for different choices of the boundary center [10].
It is important to note that, within the algebraic per-

spective, the differences in (1) and (2) have a concrete
interpretation since they measure the change in universal
terms for two different algebra assignations. The scalar
algebra contains the maximal set of operators (consistent
with causality), while the Maxwell one contains only the
symmetry invariant subset. It is interesting to note the
unexpected difference in the dependence on R in (1) and (2)
which, as we will discuss later in detail but anticipate here,
is related to the additivity/duality tension for models with
broken symmetry. Moreover and consistently with this last
remark, we will show Eq. (1), contrary to what happens for
the MI difference in Eq. (2), is not satisfied for all lattice
regularizations. This tells us that there is an instability
affecting the entanglement entropy universal terms. In other
words, if Eq. (1) depends on the regularization, then, it is
simply nonuniversal. This is one of the most important
results in this article, which is organized as follows.
We start reviewing very briefly the algebraic perspective

of the algebra-region problem for models with global
symmetries. We introduce here definitions, properties,
and results that will be useful for the rest of the discussion.
Then, we focus on the Maxwell model. We start describing
the model in the continuum and then its realization in a one-
dimensional radial lattice. The circular symmetry allows us
to dimensionally reduce the problem by integrating out the
angular dependence. This reduction results in an infinite set
of fields, one for each angular mode. As we are looking for
differences between Maxwell theory and the full scalar, we
center our attention in the zero mode, which is the only one
that distinguishes them. We explore different subalgebra
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regularizations and show that Haag duality is manifestly
broken. We calculate numerically ΔS ¼ SS − SM in disks
and remarkably find that only for some lattice realizations,
all of them with the same continuum limit, this difference
is logarithmically divergent in the disk radius, as shown
in (1). The instability of ΔS reinforces the idea suggested
in [1] that entropy differences might not be good enough to
detect the presence of multiple (fundamental) algebraic
assignments. This is in the reasoning line according to
which entropies suffer ambiguities that could not be cured
in general, even considering differences. The only reliable
cases are the ones that stem from relative entropies. In this
line, we know that there is a fundamental multiplicity
that affects the model that can be traced by calculating
ΔI ¼ IS − IM. In fact, we numerically check this quantity
for different subalgebra choices and find ΔI ¼
1=2 log logðR=ϵÞ in all cases, in perfect agreement with (2).
In all the calculations, it was helpful to consider the
commutant algebras for the unbounded regions, not only
for numerical calculation convenience but also to provide
the numerics of physical interpretation.
For pure states, when Haag duality holds, we expect

SðVÞ ¼ SðV 0Þ, where V 0 is the complementary region of V.
In the present case, the commutant algebra is not simply the
algebra sitting on the complementary region (AV 0 ≠ A0

V),
but rather an algebra with extra nonlocal operators that
implement the symmetry in V. In this regard, we find some
novel results concerning unbounded twist operators, which
enter the game when the entropy of unbounded regions,
such as the exterior of a disk, is taken into account. In the
present analysis, it is important to note that to obtain
relevant information about the model in the continuum, our
numerical results coming from calculations on a finite
radial lattice must pass first through the IR limit of infinite
lattice size and then the UV limit of null lattice spacing. The
subtleties that arise in this respect are discussed in Sec. V.
Finally, we end the discussion with some concluding
remarks.

II. ALGEBRAS AND REGIONS

For pure quantum states, the EE associated to a spatial
region V is a measure of the entanglement between the
degrees of freedom (DOF) located inside and outside V,
respectively. This definition obviously relies on the iden-
tification of the local operators belonging or not to V,
which induces a partition of the complete Hilbert space as a
tensor product H ¼ HV ⊗ HV 0 , V 0 being the complemen-
tary region whose space-time points are spatially separated
from those of V. The EE SV defined as the von Neumann
entropy SV ¼ −trρV log ρV depends on the reduced density
matrix ρV , which is in turn obtained from ρ by tracing over
the DOF in V 0: ρV ¼ trV 0ρ. When the state ρ is pure, we
have in general SV ¼ SV 0 . In the language of algebras, this
is related to the duality property of local algebras

AV 0 ¼ A0
V ð3Þ

called Hagg duality [21–23]. A0 is the commutant algebra,
containing the operators that commute with operators in A.
On the other hand, for two causally complete regions V1

and V2, we expect local algebras to satisfy the additivity
property

AV1
∨ AV2

¼ AV1∨V2; ð4Þ

where V1 ∨ V2 ¼ ðV1 ∪ V2Þ00 the smallest causally com-
plete region containing the two. It was found in [1,2] that
these properties are not granted to be satisfied in models
with an “incomplete” operator content. This is the case of
models associated to a subalgebra O containing only the
operators of the full algebra F that are invariant under
the action of certain global symmetry group G. These are
the orbifolds F=G.
Let us be more precise. Given a net, the additive algebra

for a region V can be constructed from those of B ⊂ V as

AaddðVÞ ¼ ⋁
B is a ball; B⊆V

AðBÞ: ð5Þ

This is the minimal algebra that contains all operators
locally formed in V. Suppose that AaddðVÞ ⊊ AðVÞ, then it
is clear that we can have different nets with the same
operator content of the full theory.
Among these possible algebra choices, we can identify

the greatest one that can be assigned to V and still satisfy
causality. In turn, this must correspond to a minimal one
assigned to V 0,

AmaxðVÞ ¼ ðAaddðV 0ÞÞ0: ð6Þ

Evidently if AaddðVÞ ⊊ AmaxðVÞ then it follows that the
additive net does not satisfy duality. In order to restore
duality, one can enlarge the additive net by adding non-
locally generated operators. In general this may be done in
multiple ways. We will call such nets Haag-Dirac (HD)
nets. Haag-Dirac nets satisfy duality

AHDðVÞ ¼ ðAHDðV 0ÞÞ0; ð7Þ

but by construction will not satisfy in general additivity.
This is the tension we refer to in the introduction that
clearly cannot be avoided in incomplete theories. It is
important to notice that for global pure states the entropy of
an algebra A is equal to the one of its algebraic commutant
A0. The present discussion shows this does not imply an
equality of entropies for complementary regions, except for
a HD net.
Following the notation of [2], let us call a ∈ AmaxðVÞ a

collection of nonlocally generated operators in V such that
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AmaxðVÞ ¼ ðAaddðV 0ÞÞ0 ¼ AaddðVÞ ∨ fag; ð8Þ

and where b ∈ AmaxðV0Þ is a set of operators nonlocally
generated in V 0 such that

AmaxðV 0Þ ¼ ðAaddðVÞÞ0 ¼ AaddðV 0Þ ∨ fbg: ð9Þ

From their own definition, it is clear that the dual sets of
operators fag and fbg cannot commute with each other.
Moreover, their algebra can be interpreted as a generalized
symmetry in the sense of [24], directly linked to the
symmetries involved in the model.
In summary, in constructing Haag-Dirac nets AHDðVÞ

satisfying duality we have to resign some operators of
AmaxðVÞ or AmaxðV 0Þ: causality dictates that we cannot
take all possible operators both for V and V 0. In fact, the
assignation AmaxðVÞ for all V does not form a net.
In the present context, the relevance of the study of the

properties of different possible nets relies in the funda-
mental consequences these have on the universal terms in
the EE. This problem will be analyzed in depth for the
Maxwell field in the following sections.

III. THE MODEL:
ENTROPY AND LOCAL ALGEBRAS

Maxwell’s theory in (2þ 1) dimensions is an interesting
example of an incomplete theory leading to the failure of
additivity and/or duality. In three dimensions these prob-
lems manifest very neatly, since Maxwell is dual to the free
scalar, through the identity

∂μϕ ¼ 1

2
ϵμνρFνρ: ð10Þ

More concretely, the model is that of the derivatives of the
scalar field and is naturally invariant under the trans-
formation ϕ ∼ ϕþ c, for any constant shift c. Thus, it
can be treated with the tools developed for theories with
global symmetries. In fact, the general case of gauge
theories in three dimensions is particular in this sense.
We know that pure gauge theories in d dimensions present
algebra-region problems for regions with nontrivial homo-
topy groups π1 and πd−3 [2]. On the other hand, for global
symmetries, this happens for regions with nontrivial π0 and
πd−2. These two notions coincide in d ¼ 3 and the Maxwell
field is, in fact, an example of this duality between the
generalized gauge symmetry and the global one.
According to this, as a theory with global symmetries,

we expect that there might be many algebra choices for a
region V with nontrivial homotopy groups π0ðVÞ or π1ðVÞ.
For example, we could associate to a couple of disjoint
disks the algebra generated by local operators at each disk,
that isAadd ¼ O1 ∨ O2, or we could rather consider as well
other neutral operators belonging to the model, that create a
charge in a disk and the opposite one in the other, thus

being nonlocal in the region of interest. In the language
of Sec. II, this operator, called an intertwiner, belongs to
the class a defined in (8) and has the form eiλðϕð1Þ−ϕð2ÞÞ.
The maximal algebra Amax ¼ O1 ∨ O2 ∨ fI12g is dual
to the additive algebra of the complement AmaxðVÞ ¼
ðAaddðV 0ÞÞ0. Alternatively, the dual picture is based on
the complementary region V 0, and involves operators in the
class b of (9). In this case we have ðAaddðVÞÞ0 ¼
AmaxðV 0Þ ¼ AaddðV 0Þ ∨ τ where τ is the twist operator
defined as τ ¼ expQV , with QV ¼ R

V j0 ¼
R
V ∂0ϕ the

symmetry charge in V. In the following sections, we will
repeatedly use this last approach, choosing additive alge-
bras for the regions of interest and in considering its
commutant, dealing with enlarged algebras containing twist
operators. We will explicitly show that twist operators
(or in their dual version intertwiners) are responsible for
the appearance of new topological contributions. Being
unavoidable contributions with topological character, they
lead to universal terms. We repeat here for convenience
what it is expected in d ¼ 3:

ΔS ¼ Sscalar − SMaxwell ¼ −
1

2
logðR=δÞ

for the entropy of a disk of radius R, with δ the UV cutoff,
and

ΔI ¼ Iscalar − IMaxwell ∼
1

2
logðlogðR=ϵÞÞ

for the mutual information between a disk of radius
R− ¼ R − ϵ

2
and the exterior of a diskRþ ¼ Rþ ϵ

2
separated

by a distance ϵ → 0.
Although we will not discuss here the details of the

derivation of (1) and (2) in [1,2], in order to contextualize the
results, we emphasize that these are based on the identi-
fications ΔSðRÞ¼SF ðωjω ∘ EÞ and ΔIð1;2Þ¼SF ðω1jω1 ∘
E1ÞþSF ðω2jω2 ∘E2Þ−SF ðω12jω12 ∘ E12Þ. The relative
entropy SF ðωjω∘EÞ, defined on the full algebra F of the
scalar, measures the “distance” between the stateω in the full
model (here the vacuum for the free scalar) and the stateω∘E
which is the vacuum where the nonlocal operators have been
projected to zero expectation values within the region (here a
disk). The conditional expectation E is the one in charge of
this projection. Basically, E acts on the elements of the full
algebra selecting the part invariant under the symmetry
group. The same generalizes to SF ðω12jω12∘E12Þ, defined
on the full algebra for two disconnected regions 1,2 (here the
disk of radius R− and the complement of a disk of radius
Rþ). The fact of having been able to express the differences
ΔS and ΔI in terms of relative entropies simplifies enor-
mously the discussion due to the properties of relative
entropies: well defined in the continuum, ordered by
inclusion, entropic certainty and uncertainty relations. In
fact, we remark that Eq. (1) becomes meaningful only
through the identification with a relative entropy that in
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the present model is divergent. As we will discuss later and
anticipated in the Introduction, this is not always the case:
using the radial lattice regularization scheme, there are some
choices of local algebras for the Maxwell field whose
entropies do not satisfy SOðωÞ ↔ SF ðω∘EÞ, leading to
ΔS ≠ SF ðωjω∘EÞ ¼ SF ðωÞ − SF ðω∘EÞ and a consequent
violation of Eq. (1). For Eq. (2) instead, involving MI,
already well defined in the continuum no matter the
regularization scheme we use, these concerns disappear,
promoting the latter as a more reliable test for duality/
additivity breaking.
We stress the fact that our model has SSB with an infinite

symmetry breaking parameter. This is what makes diver-
gent the relative entropy SF ðωjω∘EÞ in (1) for regions with
trivial topology.

A. Conformal invariance

We end by noting that Maxwell’s theory in three
dimensions is incomplete in a broader sense than the
one discussed above. As explained in [25], Maxwell theory
is scale invariant but not conformal invariant. This is
because the gauge invariant operator with lowest scaling
dimension, namely the field strength tensor Fμν, is not a

primary. By the duality relation (10) it becomes evident that
it is a descendant of the scalar field, which does not belong
to the Maxwell theory. In other words, we must complete
the theory to the free scalar model if we want to save
conformal invariance.
A quantum information probe for the lack of conformal

invariance of our model is mutual information. For two
nonintersecting regions (here disks) R1 and R2, separated
by a distance d, mutual information is

IðR1; R2; dÞ ¼ SðR1Þ þ SðR2Þ − SðR1 ∪ R2Þ: ð11Þ

For conformal theories and nonintersecting regions com-
pletely characterized by four points, such as two separated
disks, mutual information must be a function of the cross

ratio η ¼ ðx2−x1Þðx4−x3Þ
ðx3−x1Þðx4−x2Þ, or in terms of the disks’ radii (Fig. 1)

η ¼ R1R2

ðR1 þ d=2ÞðR2 þ d=2Þ : ð12Þ

Thus, we compute mutual information in the square lattice,
for disks of radius R1 and R2, separated by a distance d, and
compare the results for different configurations with fixed
η ¼ 1=5. See Fig. 2. The details of the numerical calcu-
lation can be found in [10] where the authors studied the
Maxwell’s EE for different geometries, circles included, in
a two-dimensional square lattice.
As expected, in the full scalar theory mutual information

converges to the same value for all the configurations, as
long as the cross ratio η is preserved. On the contrary, when
we consider just the Maxwell subalgebra mutual informa-
tion is not constant even at fixed η, which reflects the
breaking of conformal symmetry.

FIG. 1. Cross ratio for four points. R1 and R2 are the disk radii,
whereas d represents the separation between the disks.

5 10 15 20 25 30 35

0.016

0.018
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0.022

0.024

0.0188
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0.00005

0.00015
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0.00035
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0.00017

FIG. 2. Mutual information vs separation d between disks. We define η ¼ R1R2

ðR1þd=2ÞðR2þd=2Þ. At small d, where the size of the disks is
comparable to the lattice site (a unit), mutual information oscillates. At large d, it converges to an asymptotic value, which represents the
continuum limit. Left panel: scalar theory. Right panel: Maxwell theory.
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IV. SCALAR AND MAXWELL FIELDS
IN (2 + 1) DIMENSIONS: THE DISK

ENTANGLEMENT ENTROPY

In this section we review the necessary ingredients to
calculate the entanglement entropy of the scalar and
Maxwell fields in rotationally invariant regions. Taking
advantage of this symmetry, we dimensionally reduce each
system to a half line in the radial direction. We then
regularize the degrees of freedom in a one dimensional
lattice and explain how to numerically compute the
entanglement entropy from the lattice correlators and
commutation relations.

A. Modes decomposition

The massless scalar field Hamiltonian in (2þ 1) dimen-
sions is

H ¼ 1

2

Z
d2xfπ2 þ ð∂iϕÞ2g; i ¼ 1; 2: ð13Þ

As we are interested in the disk EE, we find convenient
the use of polar coordinates r, θ. In these coordinates, the
fields admit the following Fourier expansion

ϕðr; θÞ ¼ 1ffiffiffiffiffiffi
2π

p
X
n

ϕnðrÞeinθ; ð14Þ

ϕnðrÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

dθϕðr; θÞe−inθ; ð15Þ

with analogous expressions for π. Besides, rescaling
fields as

ϕ̃n ¼
ffiffiffi
r

p
ϕn; ð16Þ

π̃n ¼
ffiffiffi
r

p
πn; ð17Þ

we recover standard commutation relations for the radial
fields

½ϕ̃nðrÞ; π̃†n0 ðr0Þ� ¼ iδn;n0δðr − r0Þ: ð18Þ

In these coordinates, the reduced Hamiltonian that
results by integrating the angular variable is

H ¼
X
n

1

2

Z
∞

0

dr

�
π̃2n þ r

�
∂

∂r

�
ϕ̃nffiffiffi
r

p
��

2

þ
�
n
r

�
2

ϕ̃2
n

�
:

ð19Þ

We note that H0 [Eq. (19) with n ¼ 0] is not equivalent
to the Hamiltonian of a (1þ 1)-dimensional massless
scalar. More precisely, analyzing the second term of the
above Hamiltonian we find

r

�
∂

∂r

�
ϕffiffiffi
r

p
��

2

¼ r

�
ϕ0ffiffiffi
r

p −
ϕ

2r3=2

�
2

¼ r

�ðϕ0Þ2
r

þ ðϕÞ2
4r3

−
ϕ0ϕ
r2

�

¼ ðϕ0Þ2 þ ðϕÞ2
4r2

−
ϕ0ϕ
r

; ð20Þ

where ðϕ0Þ2 in the last identity coincides with the one-
dimensional scalar and

ðϕÞ2
4r2

−
ϕ0ϕ
r

¼ −
�
ϕ2

2r

�0
−

ϕ2

4r2
ð21Þ

gives an extra contribution ϕ2

4r2. Moreover, in general for
n ≠ 0, the Hamiltonian Hn corresponds to a one-

dimensional scalar with a quadratic contribution ϕ2

r2 ðn2 − 1
4
Þ.

On the other hand, the Hamiltonian of the Maxwell
theory is usually written in terms of the electric and
magnetic physical fields E and B

H ¼ 1

2

Z
d2xðB2 þ E2Þ;

¼
X
n

1

2

Z
∞

0

rdrfB2
n þ ðEr

nÞ2 þ ðEθ
nÞ2g: ð22Þ

Equation (10) can be inverted to yield, in polar
coordinates,1

Frθ ¼ −
1

r
∂0ϕ ¼ 1

r
B;

Frt ¼ 1

r
∂θϕ ¼ Er;

Fθt ¼ −
1

r
∂rϕ ¼ 1

r
Eθ: ð23Þ

This leads to the following identities between the Fourier
modes of the electric/magnetic and the scalar fields

Bn ¼ −
1ffiffiffi
r

p ∂0ϕ̃n;

Er
n ¼

in
r
ϕn ¼

in

r3=2
ϕ̃n;

Eθ
n ¼ −∂rϕn ¼ −∂r

�
ϕ̃nffiffiffi
r

p
�
: ð24Þ

Substituting (24) into (22), we recover the scalar reduced
Hamiltonian, as expected. However, Eq. (24) also shows

1Note that the 1=r factor that relates Fθt with Eθ comes from
the fact that the latter is the component of the electric field in the θ̂
direction, rather than an angular component in the tangent space
spanned by f ∂

∂r ;
∂

∂θg.
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that when n ≠ 0 there is a one to one correspondence
between the scalar mode ϕ̃n and Er

n. In other words, not
only do the reduced radial theories coincide but also
their operator content. This is because the transformation
ϕ → ϕþ c translates into ϕn → ϕn þ

ffiffiffiffiffiffi
2π

p
cδn;0 in Fourier

space leaving the n > 0 modes invariant.
Instead, the zero mode satisfies Er

n¼0 ¼ 0, so the
Maxwell field is equivalent to the derivative of the
scalar field. In this case, if we define B̃0 ¼

ffiffiffi
r

p
B0,

the Hamiltonian reads

H0 ¼
1

2

Z
∞

0

drfB̃2
0 þ rðEθ

0Þ2g; ð25Þ

and the commutation relation between the gauge invariant
degrees of freedom is

½Eθ
0ðrÞ; B̃0ðr0Þ� ¼

�
∂r

�
ϕ̃0ðrÞffiffiffi

r
p

�
; π̃0ðr0Þ

�
; ð26Þ

¼ i∂r

�
δðr − r0Þffiffiffi

r
p

�
: ð27Þ

B. Numerics

In order to make numerical computations we consider
a collection fϕi; πig, each living in a lattice site i with
Hamiltonian

H ¼
X
ij

πi
2 þ ϕiKijϕj; ð28Þ

satisfying

½ϕi; πj� ¼ iCij; ð29Þ

which generalizes the case of canonically conjugate var-
iables, where Cij ¼ δij.
For Gaussian models the reduced density matrix ρV of

the vacuum in a given region V can be expressed in terms of
the correlators of the theory [5]. In turn, these can be read
from the Hamiltonian (28)

Xij ≡ hϕiϕji ¼
1

2
K−1=2

ij ; Pij ¼ hπiπji ¼
1

2
K1=2

ij : ð30Þ

When the algebra associated to V has no center, or
equivalently when CjV is invertible, the entanglement
entropy is [5]

SðVÞ ¼ Tr

��
Θþ 1

2

�
log

�
Θþ 1

2

�

−
�
Θ −

1

2

�
log

�
Θ −

1

2

��
; ð31Þ

Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C−1
V XVðCT

VÞ−1:PV

q
ð32Þ

where the subindex V means that we restrict the matrices to
the degrees of freedom in V.
Conversely, if we choose an algebra generated by all the

πj operators in V (with j ∈ f1;…; ng), but only a subset of
ϕi (with i ∈ B ¼ f1;…; kg), such that the operators πl,
l ∈ A ¼ fkþ 1;…; ng span a center, then the EE is the
sum of two terms

SðVÞ ¼ SQðVÞ þHðAÞ: ð33Þ

The first term is a quantum contribution, equal to (31), but
defining instead [10]

Θ ¼
ffiffiffiffiffiffiffiffi
X̃ P̃

p
; ð34Þ

X̃ ¼ C−1
B XBðCT

BÞ−1; ð35Þ

P̃ ¼ ½PV
−1jB�−1: ð36Þ

The second term is a classical contribution, that is, the
Shannon entropy due to the operators in A∶

HðAÞ ¼ 1

2
Trð1þ log ð2πPAÞÞ: ð37Þ

This is an ambiguous quantity that depends on the
normalization of the operators in A, which is not fixed
by the commutation relations. However, relative entropies
and mutual information are independent of this choice,
hence being well-defined measures.
In summary, once the lattice Hamiltonian of the system

is identified and an algebra of operators is assigned to a
region, the EE can be calculated numerically, as explained
above. In particular for the scalar and Maxwell cases, from
the dimensionally reduced Hamiltonian (19), we get for
each scalar mode n

Kn
1;1 ¼

3

2
þ n2; ð38Þ

Kn
i;i ¼

n2

i2
þ 2; i ¼ 2;…; m; ð39Þ

Kn
i;iþ1 ¼ Kiþ1;i ¼

−ðiþ 1
2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iðiþ 1Þp ; i ¼ 1;…m − 1; ð40Þ

where m is the lattice total size, and

Cij ¼ δij; ð41Þ

since ϕ̃n
i and π̃nj are canonically conjugated variables. The

total EE is a sum over the EE of each independent mode.
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The n > 0 part of the Maxwell EE is exactly the same
as the scalar’s, because both the Hamiltonians and the
algebras coincide. All the difference is in the n ¼ 0
contribution. Nevertheless, we can profit from the identi-
fication of (24) to compute the correlators of the gauge

invariant operators ϕMi ≡ Eθ
0i ¼ ϕ̃iþ1ffiffiffiffiffiffi

iþ1
p − ϕ̃iffiffi

i
p as

XMij ≡ hϕMiϕMji ¼
X̃iþ1jþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðiþ 1Þðjþ 1Þp þ X̃ijffiffiffiffi

ij
p

−
X̃ijþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðjþ 1Þp −

X̃iþ1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðiþ 1Þjp : ð42Þ

Additionally, from (27) we can read

Cij ≡ −i½ϕMi; πMj� ¼
δiþ1;jffiffiffiffiffiffiffiffiffiffi
iþ 1

p −
δi;jffiffi
i

p : ð43Þ

V. UNIVERSAL TERMS:
ANALYSIS AND RESULTS

A. Maxwell and scalar algebras in the radial lattice

Based on the observation that the algebra-region assig-
nation, in general nonunique, affects dramatically the
corresponding entanglement entropy, it is mandatory to
explore this issue for the reduced Maxwell theory in the
radial lattice. Here, intervals represent spherically sym-
metric regions, such as a disk when the intervals are
connected to the origin. In that case, the most natural
choice for the Maxwell subalgebra would be to include all
the momentum operators πM at the disk sites, as well as the
links ϕM ≡ ϕ̂ inside, depicted in red in Fig. 3. This algebra
has a center and its entropy is not purely quantum. Another
possibility, which averts this issue, is to take one

momentum out of the net so that the number of conjugate
operators gets balanced. One would be tempted to anticipate
that in the continuum limit, even knowing the entropy is for
sure sensitive to what the site with a missing momentum is,
the universal part will not. We will see later that this is not
the case: entropy differences as (1) are sensitive to different
choices and the identification with a relative entropy is not
guaranteed for every lattice realization.
Let us introduce some definitions that will be used

throughout the rest of the discussion. In the radial lattice,
consider a disk of radius R corresponding to the interval of
length imax attached to the origin, with R ¼ ðimax þ 1

2
Þδ and

δ the unit lattice spacing chosen here δ ¼ 1. The full scalar
algebra FR associated to this region is chosen to be

FR ¼ fϕ̃1;…; ϕ̃imax
; π̃1;…; π̃imax

g ð44Þ

as shown in the fifth panel of Fig. 3. This is, each lattice
point has a pair of canonically conjugated variables
ðϕ̃i; π̃iÞ.
On the other hand, the Maxwell model contains link

operators ϕMi ≡ ϕ̂i ¼ ϕ̃iþ1ffiffiffiffiffiffi
iþ1

p − ϕ̃iffiffi
i

p and momentum operators

πMi ≡ π̂i ¼ π̃i.
The first four panels in 3 represent different subalgebra

choices for a disk of radius R ¼ 4þ 1=2. We will call
Maxwell subalgebras BV , CV , and DV associated to a
general one component region V, the nets with a momen-
tum operator πk taken out from the first, the last, and a
middle site, respectively. On the other hand, we call
subalgebra EV with all momentum operators in V.
Note that the first three, B, C, and D, correspond to

algebras without center. Concretely, the operator content in
these cases is

BR ¼ fϕ̂1;…; ϕ̂ðimax−1Þ; π̂2;…; π̂imax
g; ð45Þ

CR ¼ fϕ̂1;…; ϕ̂ðimax−1Þ; π̂1;…; π̂ðimax−1Þg; ð46Þ

DR ¼ fϕ̂1;…; ϕ̂ðimax−1Þ; π̂1;…; π̂k−1; π̂kþ1…; π̂imax
g; ð47Þ

with a balanced number of link and momentum operators
in all three cases. Finally, the fourth panel represents the
orbifold subalgebra E

ER ¼ fϕ̂1;…; ϕ̂ðimax−1Þ; π̂1;…; π̂imax
g: ð48Þ

It is easy to see that the subalgebra E has a center, that is,
there is an operator

Pimax
i¼1

ffiffi
i

p
π̂i that commutes with all the

operators in the region.
We will measure the relevance of the different choices

in terms of how these affect the universal topological
contributions in the entropy and mutual information
differences (1) and (2). This will be the main subject of
the following sections.

FIG. 3. Radial lattice: link operators in red ϕMi ¼ ϕ̂i ¼
ϕ̃iþ1ffiffiffiffiffiffi
iþ1

p − ϕ̃iffiffi
i

p , and momentum operators attached to the lattice

vertices πMi ¼ π̂i ¼ π̃i. The first four panels correspond (from
top to bottom) to Maxwell subalgebras BR, CR, DR, and ER. The
fifth panel corresponds to the full scalar algebra FR.
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B. Scalar in the disk

Although the EE of the full scalar has no logarithmic
term in odd dimensions, each mode in the Fourier decom-
position contributes with a logarithmic piece, naturally
expected in the dimensionally reduced model. The can-
cellation of the logarithmic pieces occurs only when
summing over the total number of (infinite) modes. For
instance, for the n ¼ 0 mode, which is the relevant one in
the comparison with the Maxwell EE, we get

cSlog ¼ 0.1666551 ∼
1

6
: ð49Þ

We find that this coefficient is completely stable and
independent on the infrared cutoff of the lattice. We also
note that this coincides with the logarithmic coefficient for
the one-dimensional scalar on the half line, as it should.
Nevertheless, the whole sum of modes reproduces the

linear behavior

S ¼ c1R − c0; ð50Þ

c0 ¼ 0.062811; ð51Þ

where c0 is the universal constant F term [26,27]. This
serves us as second cross check for the n ¼ 0 result.
In (50), the EE was computed exactly for every mode

up to nmax ¼ 2000. Large n corrections were taken into
account by fitting the EE for the set n ¼ f1500; 2000;
2500; 3000; 3500g, with the function

Sn¼
ca
n4

þcb
n4

log½n�þcc
n6

þcd
n6

log½n�þce
n8

þcf
n8

log½n�; ð52Þ

and then summing over the best fit
P∞

n¼2001 Sn. The
procedure was repeated for lattice sizes m ¼ 400, 500,
600, 700, 800, 900, and later the infrared limit was taken.
The results are plotted in Fig. 4.

C. Haag duality breaking

Orbifolds with symmetry breaking present algebra
region problems even in regions with trivial topology.
The breaking of Haag duality for disks is one manifestation
of it. As explained in Sec. II, this can be restored at the
expense of losing the additivity property. The Haag duality
breaking can be tested straightforwardly in the radial lattice
for the Maxwell field just by comparing the commutant
algebra associated with a region with the algebra of the
complement. If we take, for example, the subalgebra C
in the segment 1 ≤ i ≤ n, where R ¼ nþ 1=2, then the
commutant algebra2 is

C0R ¼
��

ϕn;
Xn
i¼1

ffiffi
i

p
πi

�
; ðϕnþ1; πnþ1Þ;…; ðϕm; πmÞ

�
:

ð53Þ

Namely, the commutant is made up of the full scalar
algebra outside the disk, and an extra mode that contains
the operator

P
n
i¼1

ffiffi
i

p
πi. Clearly, C0R does not coincide with

the algebra in the complementary region CR0 ≠ C0R. On the
other hand, given that the entropies of pure states in
commutant algebras must agree that we have

SðCRÞ ¼ SðC0RÞ ¼ SðFR0 ∨ fðϕn; τð0 → RÞÞgÞ; ð54Þ

where we denote τð0 → RÞ as the twist operator [1] defined
in the radial lattice as

τðn1 → n2Þ ¼
Xn2
i¼n1

ffiffi
i

p
πi: ð55Þ

These are nonlocally generated operators within the region
V 0
ðn1;n2Þ and are the ones that implement the symmetry. We

numerically computed the EE both in CR and C0R written in
(53) and found a perfect match. These results are shown in
Fig. 5. The equality between entropies, in turn, serves as a
cross-check for the operator content of the commutant
algebra C0R that, in cases like this, in which Haag duality is
broken, may be highly nontrivial. On the contrary, Haag
duality is satisfied for the n ¼ 0 mode of the scalar field in
the disk, as expected for a complete theory. This is shown
in Fig. 6.
Since later we are going to study mutual information

between a disk of radius R and the complementary region
of a disk of radius Rþ d, with d ≪ R, we complete the
analysis considering the two other relevant cases: the outer

30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

FIG. 4. Disk scalar entropy as a function of the radius R.
The curve corresponds to the linear fit SðRÞ ∼ −0.062811þ
0.464578R.

2We remove the tildes to avoid cumbersome notation.
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region of a disk Rþ d≡ kþ 1=2 and a two-component
region corresponding to the union of a disk R≡ nþ 1=2
and the complement of a disk Rþ d. Note that, for
multicomponent regions, the combination of the subalge-
bras listed above for each component results in many more
possible choices in the total algebra assignment. We present
here some examples:

B0
ðRþdÞ0 ¼ FRþd ∨ fðϕkþ1; τðRþ d → ∞ÞÞg;

C0R∪ðRþdÞ0 ¼ F ðR;RþdÞ ∨ fðϕn; τð0 → RÞÞg
∨ fðϕ∞; τðRþ d → ∞ÞÞg; ð56Þ

where the subindex ðR;Rþ dÞ denotes the shell with inner
radius R and outer radius Rþ d.

Note that the twist operators appearing in the above
commutant algebras are quantum operators contributing to
the quantum entropy as the rest of the harmonic modes.
However, if we had chosen subalgebra E, then the twist
operators would have belonged to the center, thus giving
rise to a classical contribution. Stated differently, the
quantum/classical character of the twists depends on the
algebra assigned to the region.

D. Instability of disk entropy difference

As explained in Sec. III, we will show the difference
between the disk entropy of the Maxwell theory and that of
the scalar is a good order parameter for the spontaneous
symmetry breaking of the orbifold model only when it
corresponds in the continuum to a relative entropy. In that
case, it grows logarithmically with the disk radius, with a
coefficient clog ¼ 1=2 as predicted in the literature. Aiming
to numerically verify this behavior, we compute ΔS in the
radial lattice, and compare the results obtained for the
different algebra choices.
Once again, note that we just need to care about the

n ¼ 0 mode, since ΔS ¼ SMn¼0 − SSn¼0.
3 Hence cMlog − cSlog≡

Δclog, with cSlog given in (49).
The coefficient cMlog has been calculated using the method

described in Sec. IV B. The entropy for the subalgebras
C, B, and D is given by Eq. (31) and for E by Eq. (33). The
correlators (42) were obtained as the infinite lattice size
limit m → ∞ of the ones calculated for different sizes
m ¼ 2000, 3000, 4000, 5000, 6000. We fitted the numeri-
cal data with the function a0 þ a1

m þ a2
m2 and identified the

correlator for infinite lattice size with the coefficient a0.
We considered disks with radius R ¼ 5; 6;…; 34; 35 and
fitted the data with the function c0 þ clog log tþ c−1

t .
We list Δclog for different Maxwell subalgebras in

Table I.
These results become highly relevant in terms of what

they imply regarding the universal contribution (1): they
reveal that the entropy difference is unstable. More con-
cretely, the topological logarithmic contribution, well
defined in the continuum through a relative entropy, is
not trustfully captured in the radial lattice through the EE.
Some choices reproduce the continuous result and some do
not. In other words, only for the subalgebras BR and ER the

0 200 400 600 800 1000

0.4

0.6

0.8

1.0

FIG. 6. Scalar in a disk: entropy vs disk radius. The blue points
correspond to FR and red points to FR0 in the complementary
region. Here, Haag duality is satisfied FR0 ¼ F 0

R. Calculation
done in a finite lattice (1000 points) for n ¼ 0 mode.

TABLE I. Logarithmic coefficient of the EE for Maxwell
subalgebras.

Algebra BR CR DR ER

Δclog 0.499 7.43 × 10−5 ∼0.08 0.500

20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

R

S

FIG. 5. Maxwell in a disk: entropy vs disk radius. The black
points correspond to Maxwell subalgebra C, whereas the yellow
ones correspond to C0. Here, CR0 ≠ C0R. Calculations are done in a
lattice of size m ¼ 100.

3In order to present the results in a clearer way, in this section
alone we define the entropy difference as minus that of Eq. (1).

MARINA HUERTA and GUIDO VAN DER VELDE PHYS. REV. D 105, 125021 (2022)

125021-10



relative entropy involving the full scalar vacuum ω and the
projected vacuum ω∘E can be identified with ΔS.
The results for the subalgebras BR and CR can be

accounted for by analyzing the respective commutant
algebras, which are identical to that of the scalar, save
an extra mode. For example,

B0
R ¼

��
ϕ1;

Xn
i¼1

ffiffi
i

p
πi

�
; ðϕnþ1; πnþ1Þ;…; ðϕm; πmÞ

�
;

ð57Þ

whereas the commutant of the full algebra in the disk is

F 0
R ¼ fðϕnþ1; πnþ1Þ;…; ðϕm; πmÞg: ð58Þ

Therefore, the difference in entropies can be thought of
as stemming from the contribution of this additional mode.
For a large enough region (n ≫ 1), this goes roughly as

ΔS∼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ1ϕ1i

Xn
i¼1

Xn
j¼1

ffiffi
i

p ffiffi
j

p
hπiπji

vuut ∼
1

2
lognþ const:;

ð59Þ

supporting the numerical result Δclog ∼ 1=2 shown in the
first column of Table I.
As anticipated in Sec. V C, C0R involves instead the

extra mode ðϕn;
P

n
i¼1

ffiffi
i

p
πiÞ, with commutation relation

½ϕn;
P

n
i¼1

ffiffi
i

p
πi� ∝

ffiffiffi
n

p
. Hence,

ΔS ∼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
hϕnϕni

Xn
i¼1

Xn
j¼1

ffiffi
i

p ffiffi
j

p
hπiπji

vuut ∼ const:; ð60Þ

which justifies why Δclog ∼ 0 when subalgebra CR is
chosen. ΔS for these two cases is shown in Fig. 7.

On the other hand, the same argument does not apply for
an algebraDR with a missing πk operator, site k being some
fraction of the total size n. In Fig. 8 we plot Δclog as a
function of the site without momentum operator and show
that the result is approximately constant provided that the
site is not at the end points. We get Δclog ∼ 0.08. This is not
surprising, since this configuration mimics the behavior of
a 2d scalar field EE in a region with defects [28], which
induce a correction to the logarithmic term of precisely
Δcefflog ∼ 1=12. In fact, we have included this choice only for
completeness reasons, since naturally the introduction
of defects in the region leads us to an absolutely different
problem.
Finally, as long as the algebra ER (defined in Sec. VA)

is concerned, E0
R is different from the scalar due to the

presence of a center containing the twist τ1→n ¼
P

n
i¼1

ffiffi
i

p
πi.

Its contribution is given by the classical entropy (37),

ΔS∼
1

2
log

Xn
i¼1

Xn
j¼1

ffiffi
i

p ffiffi
j

p
hπiπji þ const∼

1

2
lognþ const:;

ð61Þ

which is consistent with the numerical result Δclog ∼ 1=2 in
the last column of Table I.
As discussed in Sec. III, the universality of ΔS is based

on the identification ΔS ¼ SF ðωjω∘EÞ. In fact, when the
choice of the local algebra is such that the respective
entropies do not satisfy SOðωÞ ↔ SF ðω∘EÞ, then ΔS≠
SF ðωÞ−SF ðω∘EÞ¼SF ðωjω∘EÞ and consequently Eq. (1)
is violated. Hence, it is clear that the choice BR gives rise
to an entropy SOðωÞ which cannot be identified with
SF ðω∘EÞ, as opposed to the choices CR and ER.
In this regard, it is important to note that in the CR

case (46), the twist operator τ1→n ¼
P

n
i¼1

ffiffi
i

p
πi, which

0 5 10 15 20 25 30

0.0

0.5

1.0

1.5

FIG. 7. ΔS for subalgebras B (blue) and C (yellow).

1

0

0.08

0.5

FIG. 8. Logarithmic coefficient of the entropy for the Maxwell
field, relative to the scalar’s. The horizontal axis represents the
lattice site with a missing π operator, n being the total size of the
region. The result is roughly independent of the position, as long
as it scales with the total size.
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implements the symmetry within the disk, does not
belong to the disk algebra due to the missing πn at the
boundary, which in turn causes the twist to appear in the
commutant as an extra quantum mode ðϕn; τ1→nÞ (53).
This leaves us with an outer conditional expectation Eout
as opposed to an inner one Einn, implemented by
operators belonging to the algebra of the disk and for
which the condition SOðωÞ ↔ SF ðω∘EinnÞ is guaranteed.
On the other hand, for the choices ER (48) and BR (45),
the twist τ1→n does belong to the disk algebra, explicitly
in the first case, and effectively in the second, both with
an inner conditional expectation Einn associated. When
the BR realization is chosen, the twist appears in the
commutant as an extra Gaussian mode ðϕ1; τ1→nÞ (57),
but this time, due to the missing π1 operator, this is
independent of the disk size (contrary to what happens for
the CR choice). Noting that the missing π1 or, in the dual
commutant picture, the extra ϕ1 represents operators
living in a ball of size δ placed at the center of the disk,
they become irrelevant once the continuum limit is taken,
promoting the twist as an effective center with an
associated Einn.

E. Mutual information difference between F and O

In this section we test Eq. (2) numerically. As an order
parameter for duality/additivity breaking due to the pres-
ence of nonlocal operators, ΔI is a relative entropy
associated to regions with nontrivial topology. Being a
well-defined quantity in the continuum limit, free of
divergences and independent of the regularization scheme,
the universal terms that come about in the radial lattice
calculation become stable, unaware of the regularization
issues that we discussed above for the entropy.
As explained in Sec. III, we are interested in the mutual

information between a disk of radius R and the complement

of a disk of radius Rþ d in the limit d → 0, corresponding
to nearly complementary regions. This is

IM;S ¼ SM;SðRÞ þ SM;SððRþ dÞ0Þ − SM;SðR ∪ ðRþ dÞ0Þ:
ð62Þ

Here the subindices M and S denote Maxwell and scalar
algebras, respectively. The second and third term involve
unbounded regions that we are going to treat as usual,
considering instead the commutant algebras associated
conveniently to finite regions. Furthermore, given that
we will ultimately compute the difference between the
Maxwell mutual information and the scalar counterpart, it
is more insightful to work with the commutant algebras of
each region, which differ only in the appearance of twist
operators, as discussed in the previous section. Although in
the scalar theory the commutant algebras trivially corre-
spond to the operators in the complementary region,
thanks to the Haag duality, we know that this is not the
case when we consider instead the commutants in the
Maxwell subalgebra.
We will analyze the mutual information for a particular

algebra choice and discuss the differences that might arise
if a different assignation is made (remember that there are
multiple possibilities by combining different options for
each region’s component). We note it is not necessary to
explore all possible realizations, since, due to the regulari-
zation scheme independence of the MI, it is evident that any
other combination will result in the same ΔI.
Let us define R ¼ nþ 1=2 and Rþ d ¼ kþ 1=2 and

choose BR and BðRþdÞ0 the subalgebras assigned to the disk
of radius R and the complement of a disk of radius Rþ d,
respectively. The corresponding commutants are given by

B0
R ¼

��
ϕ1;

Xn
i¼1

ffiffi
i

p
πi

�
; ðϕnþ1; πnþ1Þ;…; ðϕm; πmÞ

�
¼

��
ϕ1;

Xn
i¼1

ffiffi
i

p
πi

��
∨ FR0 ; ð63Þ

B0
ðRþdÞ0 ¼

�
ðϕ1; π1Þ;…; ðϕk; πkÞ;

�
ϕkþ1;

Xm
i¼kþ1

ffiffi
i

p
πi

��
¼ FRþd ∨

��
ϕkþ1;

Xm
i¼kþ1

ffiffi
i

p
πi

��
; ð64Þ

B0
R∪ðRþdÞ0 ¼

��
ϕ1;

Xn
i¼1

ffiffi
i

p
πi

�
; ðϕnþ1; πnþ1Þ;…; ðϕk; πkÞ;

�
ϕkþ1;

Xm
kþ1

ffiffi
i

p
πi

��
;

¼
��

ϕ1;
Xn
i¼1

ffiffi
i

p
πi

��
∨ F ðR;RþdÞ ∨

��
ϕkþ1;

Xm
kþ1

ffiffi
i

p
πi

��
; ð65Þ

where we have included in (65) the commutant of the subalgebra of the union B0
R∪ðRþdÞ0 present in the mutual information

definition. For the sake of clarity, an outline of the algebras involved in the mutual information is shown in Fig. 9.
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The first piece in (62) follows straightforwardly from the
analysis made in the previous section. In the present case,
the additional mode is responsible for the behavior4

ΔSdisk ≡ SSðRÞ − SMðRÞ ¼ SðFRÞ − SðBRÞ ∼ −
1

2
logR:

ð66Þ

The same would have applied if we had chosen ER (see
Table I). On the contrary, CR would have lead to no
logarithmic contribution.
Meanwhile, the presence of unbounded twist operators

makes the computation of the second and third terms in
(62) more costly. However, we will argue that once the
infrared and the continuum limits are taken (in that order),
their contribution can be neglected in the calculation. The
unbounded twist is present both in the second and third
terms with opposite sign. Its contribution to the entangle-
ment as we take the infinite lattice size limit decouples from
the rest, allowing the cancellation. Being a mode with
divergent self-correlation in the infinite lattice limit
hτ; τi → ∞, it will decouple from the rest of the system
(in accordance with the monogamy property of the entropy
[29,30]). Let us see this in more detail.
Consider the case of two regions: V1, a disk of radius R,

and V2, a shell (R − d, R). In addition, consider some
algebras A1;2 made up of the operators locally generated in
V1;2, together with the unbounded twist τR;∞. As discussed
in Sec. V C, this may or may not be part of the classical
center, depending on our algebra choice.
Let us analyze first the quantum case, such that Ai ¼

AVi
∨ fðϕR; τR;∞Þg with i ¼ 1; 2. It is possible to see

that the difference SðA1Þ − SðA2Þ can be replaced by
SðAV1

Þ − SðAV2
Þ since

SðAV1
∨ fðϕR; τR;mÞgÞ − SðAV2

∨ fðϕR; τR;mÞgÞ
⟶
m→∞

SQðAV1
Þ þHðϕRÞ − ðSQðAV2

Þ þHðϕRÞÞ
⟶
ϵ→0

SðAV1
Þ − SðAV2

Þ: ð67Þ

An explanation is in order. First, we take the infrared
limit, which, as we already argued, enables us to get rid
of the unbounded twist operator. What results from this
operation is an algebra with center: the operator ϕR does
not commute with the twist, which contains in the sum the
momentum πR, but once the twist is eliminated it becomes a
center of the algebra. For algebras with the center we know
the entropy is composed by two parts, the quantum entropy
SQ, and HðϕRÞ, the classical contribution of the center.
Second, we take the continuum limit, in which we can
safely neglect the contribution of the operator ϕR to the
quantum piece and ΔSQ → ΔS. This is related to the fact
that in the continuum limit the classical contributions
properly combined in the mutual information vanish [10]
and the quantum part becomes independent of the presence
of the center. In fact, Eq. (67) could be completed to obtain
a mutual information and the above discussion would apply
directly. We have checked (67) numerically, getting perfect
agreement for hτ; τi ∼ 1000. Note that the order of limits is
very important. Equation (67) will be useful in the analysis
for the subalgebras B and C, both involving an unbounded
quantum twist.
If, instead, the twist operator forms a center, as in the

subalgebra E, the analysis is even easier:

SðAV1
∨ τR;∞Þ − SðAV2

∨ τR;∞Þ
¼ SQðAV1

Þ þHðτR;∞Þ − ðSQðAV2
Þ þHðτR;∞ÞÞ

⟶
ϵ→0

SðAV1
Þ − SðAV2

Þ ð68Þ

Here, we start with algebras with center in the limit
m → ∞. The first equality is simply the application of
the definition of the entropy for algebras with nontrivial
center. The last step is again inspired on the universality
of the MI with respect to the presence of centers in the
continuum limit and was numerically checked.
Resuming the analysis for the choice BR and BðRþdÞ0 ,

according to (64) and (65), and considering (67), we get

SMððRþ dÞ0Þ − SMðR ∪ ðRþ dÞ0Þ ¼ SðF ðRþdÞÞ − SðGÞ;
ð69Þ

where

FIG. 9. Commutant of Maxwell subalgebras. Gray regions represent the scalar algebra, while the red segments depict the twist
operator, linked to a single scalar mode at the dot.

4Beware that the definition adopted in the previous section for
the difference ΔS is minus the one used here.
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G≡
��

ϕ1;
Xn
i¼1

ffiffi
i

p
πi

��
∨ F ðR;RþdÞ ð70Þ

with commutant G0

G0 ¼ BR ∨ F ðRþdÞ0 : ð71Þ

With these elements in place, the remaining contribution to
ΔI is given by the difference between the entropy of the
scalar field at the shell and that of the full algebra at the
shell, plus a twist operator from the origin to R. That is,

ΔSshell ≡ ΔSððRþ dÞ0Þ − ΔSðR ∪ ðRþ dÞ0Þ
¼ SðGÞ − SðF ðR;RþdÞÞ: ð72Þ

Setting the shell width to the unit radial lattice size,
numerical calculations yield

ΔSshell ∼
1

2
logRþ 1

2
log logR: ð73Þ

This agrees with the analytic approximation of the twist
algebra entropy reported in [1]. See Fig. 10 for a more
detailed account on the numerical results.
Note that the logarithmic contribution of (66) cancels

that of (73), leading to

ΔI ¼ ΔSdisk þ ΔSshell ∼
1

2
log logR; ð74Þ

as expected.
It is interesting to note that, no matter the algebra choice,

the difference ΔI can always be expressed in terms of
differences between disk and shell entropies.

Moreover, it is worth stressing that had we chosen, for
example, Maxwell subalgebra CR and CðRþdÞ0 , then both
(66) and (73) would have changed in their logarithmic
contribution, but the two logarithmic pieces would cancel
anyway. We have numerically calculated (73) for this
subalgebra choice and obtained

ΔSshell ∼
1

2
log logR; ð75Þ

which together with ΔSdisk ∼ 0 consistently leads to the
same ΔI as above.
Finally, for the case ER and EðRþdÞ0 , thanks to (68)

we can follow the same steps as before and evaluate
ΔSdisk þ ΔSshell without taking into account the unbounded
twists. According to the discussion in the previous section,
the entropy difference is ΔSdisk ∼ −1=2 logR. Meanwhile,
ΔSshell can be calculated analytically [1] and gives the same
result as that associated to subalgebra B, so ΔI remains
unaffected.
As we mentioned at the beginning, the same log log

contribution is guaranteed for all possible assignations due
to the regularization scheme independence of the MI. This
legitimates mutual information as a well-defined informa-
tion measure and a good order parameter for the model
incompleteness.
Furthermore, note that for the Maxwell field the mutual

information of nearly complementary spherical regions is
not a regularized version of the disk entanglement entropy,
as can be deduced by comparing Eqs. (1) and (2). If we had
obtained the same logarithmic behavior as the entropy
(present for the particular algebra choices for which it
becomes a relative entropy), then we would have arrived
at a violation of monotonicity. What prevents this from
happening is the contribution of the nonlocal operators
responsible for the incompleteness of the model. More
concretely, the entropy of the union does not vanish as
usual in the limit of small separation, but rather diverges, as
shown in (73). And that contribution is exactly that of the
twist algebra implementing the symmetry in the disk.

VI. FINAL REMARKS

We compute numerically the EE of the Maxwell field for
different rotationally invariant regions with the purpose of
checking the novel topological contributions to the EE and
MI due to the “incompleteness” of the model, predicted in
[1,2]. In this setup, it turns out that once the problem is
reduced to the half-line, thanks to the rotational symmetry,
the subalgebra of the derivatives of the scalar field is
equivalent to the one of the fields themselves except for
the Fourier n ¼ 0 mode ϕ0. This is reminiscent of what
happens in d ¼ 4 for the sphere. In four dimensions, the
Maxwell and scalar theories also differ in the zero mode,
only just that the ϕ0 completely disappears from the
Maxwell theory.

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIG. 10. ΔSshell vs disk radius R. The red points are the
numerical values, and the blue curve represents the best fit
fðRÞ ¼ −0.169296þ 0.502607 logRþ 0.500937 log logR. A
total lattice size of m ¼ 1000 was used, but the correlators were
obtained from the m ¼ 5000 radial lattice to better approximate
the exact discrete correlators.
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Here, we explore different lattice realizations for disks
DR and find that only some of them give the expected
ΔS ∼ − 1

2
logðR=δÞ. As suggested in [1,2], the entropy

difference is unstable and depends on the lattice details.
The universal character of the logarithmic correction for the
entropy relies on the identification of the difference ΔS
with a relative entropy, well defined in the continuum. We
show explicit realizations where this identification fails
causing, in turn, the failure of the universal character of the
correction.
Contrary to the EE, the mutual information difference is

for all the subalgebra choices in perfect agreement with the
predicted result. The reason is clear, being not only the
difference but each mutual information itself a relative
entropy.
Following the same line of reasoning, we can also

understand why mutual information and entropies depend
differently on R. In incomplete models with spontaneous
broken symmetry, it is not possible to define a regularized
entropy through the mutual information. That is,
2SregR ¼ IðR−; Rþ0Þ, in the nearly complementary regions
limit R− ∼ Rþ. The reason is that this identification relies
on the Haag duality property, which is not satisfied for
some subalgebras. As explained in the last section, it is the
emergence of extra nonlocal operators that spoils the

interpretation of the MI as a regularized entropy and in
turn disconnects the universal character of both quantities.
We also find interesting issues related to unbounded

twist operators. When we deal with unbounded regions, it is
standard to consider instead the commutant algebra asso-
ciated to the complementary bounded region, profiting that
for pure states the algebra in a region and its commutant
have the same EE. In the cases presented here, the
commutant algebra contains unbounded twist operators.
We show that the infrared limit (infinite lattice size)
followed by the continuum limit (zero lattice spacing),
necessary to extract a quantity of the continuum, removes
the unbounded twists no matter if we have chosen a
subalgebra with quantum or classical twists. This cancel-
lation occurs in MI where the same unbounded twist
appears in one of the regions and the union, with opposite
signs.
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