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a b s t r a c t

This work presents a new formulation of the geometrically exact thin walled composite beam theory.
The formulation assumes that the beam can undergo arbitrary kinematical changes while the strains
remain small, thus compatibilizing the hypotheses of the strain measure and the constitutive law of the
composite material. A key point of the formulation is the development of a pure small strain measure
written solely in terms of scalar products of position and director vectors; the latter is accomplished
through the obtention of a generalized small strain vector by decomposition of the deformation gradient.
The resulting small strain measure is objective under rigid body motion. The finite element implemen-
tation of the proposed formulation is simpler than the finite strain theory implementation previously
developed by the authors. Numerical experiments show that the present formulation is very accurate
and computationally more efficient than the finite strain formulation, thus it is more convenient for
most practical applications.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The use of composite beams for modeling structural compo-
nents is a common practice; the behavior of slender parts of
modern machines such as wind turbines, satellites, cars, etc. is
often predicted using the thin-walled composite beam (TWCB)
approach. Good modeling practices normally imply the use of
geometrically nonlinear TWCB theories, which are capable of
describing not only large kinematical changes in the beam con-
figuration but also nonlinear interactions between different com-
ponents of mechanisms or multibody systems.

The thin-walled beam formulation is due to Vlasov [1]; remark-
ably, it has survived 50 years without drastic changes. One of the
principal extensions of the theory was the inclusion of the mechanics
of composite materials; several approaches that deal with the elastic
behavior of TWCBs can be found in the literature and they are
generally derived from Vlasov's thin walled beam theory. Although
most works introduce novel aspects in their formulations, very often
their hypotheses lead to geometrical or constitutive inconsistencies,
or both.

The vast majority of the thin-walled beam formulations that
can be found in the literature rely in the assumption of a dis-
placement field which is introduced into a Green strain expression

to obtain generalized strain measures in terms of the kinematic
variables and its derivatives. Commonly the kinematic variables
are taken as three displacements and three rotations, sometimes
also a warping degree of freedom is used.

At least one of the following four inconsistencies can be found
in almost all the works regarding TWCB, i.e. (i) the displacements
field is said to describe moderate or large kinematical changes
while the nonvectorial nature of the rotation variables is disre-
garded, (ii) a linear or second order nonlinear displacement field is
assumed, but then it is introduced into an arbitrary large strain
expression, (iii) some terms of the Green strain regarded as
nonlinear strain measures are eliminated causing the loss of the
objectivity of the resulting “linear” strain measures and (iv) the
kinematic description of the formulation admits large strains
while the constitutive law is only valid for small strains.

Taking, for instance, the developments by Librescu [2], it can
be found that they suffer from inconsistencies (i), (ii) and (iv).
Also, the works by Pi et al. [3–5] suffer from inconsistencies (i) and
(iii). Analyzing their works [3,4] it can be seen that the rotation
matrix is said to be second order accurate while its components
are treated as vectors, thus ignoring the non-commutativity of
rotations. Also, non-pure strain (higher order) terms of the Green
strain measure are eliminated without testing the objectivity of
the resulting strain measures. In [5] an exact rotation matrix is
used, but again the elimination of non-pure strain terms cast
doubt on the objectivity of the formulation; also, the rotation
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matrix is said to belong to the Special Orthogonal Group (SO3)
while it is linearized as it belonged to a vector space. The theories
developed by Cortínez, Piován and Machado in works [6–10]
for the study of the dynamic stability, vibration, buckling and
postbuckling of both open and cross section TWCBs suffer from
inconsistencies (i), (ii) and (iv).

Regarding geometrically exact TWCB formulations, Saravia
et al. [11,12] presented Eulerian, Total Lagrangian and Updated
Lagrangian formulations using a parameterization in terms of
director vectors. These formulations can describe kinematical
and strain changes of arbitrary magnitude consistently; however,
the constitutive law of composite laminates is only valid for small
strains. A similar problem affects most of the geometrically exact
formulations [13–16] developed for isotropic beams.

The mentioned works are only a few of many that present the
mentioned inconsistencies. Although it can be asked if the errors
that arise from these issues are actually of great influence in
practical situations, the uncertainty about the limit of application
of these hypotheses strongly motivates the development of a
consistent approach in which a validity assessment of the theory
is not needed. It is true that due to the accuracy of the modern
Variational Asymptotic Methods, the use of the TWCB approach
shall probably be reduced in the future. However, a vast amount of
efforts are being done by researchers to improve the theory, and
thus it is worth to develop a consistent large deformation–small
strain formulation for thin walled composite thin-beams.

In this context, this paper presents the derivation of mathe-
matical aspects of the finite deformation–small strain TWCB
formulation. In the present approach the kinematic changes
of the beam are assumed to be arbitrary, thus allowing finite
rotations. The deformation gradient is written in terms of the
director field; after obtaining its extended polar decomposition
[17,18], a vectorial pure small strain measure is found. Finally,
discrete versions of the small strain measures are found in terms
of the current director and displacement fields and its derivatives;
the obtained relations are remarkably simple and do not involve
derivatives of the reference triads. The discrete generalized strain
measures are proved to be objective under rigid body motions.
The formulation is implemented in a finite element formulation;
numerical results show that the proposed approach has excellent
accuracy compared to the finite strain implementation previously
developed by the author.

2. Kinematics

The kinematic description of the beam is extracted from the
relations between two states of a beam, an undeformed reference
state (denoted as B0) and a deformed state (denoted as B), as it
is shown in Fig. 1. Being ai a spatial frame of reference, two

orthonormal frames are defined: a reference frame Ei and a
current frame ei.

The displacement of a point in the deformed beam measured
with respect to the undeformed reference state can be expressed
in the global coordinate system ai in terms of a vector u¼
ðu1;u2;u3Þ.

The current frameei is a function of a running length coordinate
along the reference line of the beam, denoted as x, and is fixed to
the beam cross-section. For convenience, it is chosen the reference
curve C to be the locus of cross-sectional inertia centroids. The
origin of ei is located on the reference line of the beam and is
called pole. The cross-section of the beam is arbitrary and initially
normal to the reference line.

The relations between the orthonormal frames are given by the
linear transformations:

Ei ¼Λ0ðxÞai; ei ¼ΛðxÞEi; ð1Þ
where Λ0ðxÞ andΛðxÞ are two-point tensor fields ASOð3Þ; the special
orthogonal (Lie) group. Thus, it is satisfied that ΛT

0Λ0 ¼ I; ΛTΛ¼ I.
It will be considered that the beam element is straight, so Λ0 ¼ I.

Recalling the relations (1), the position vectors of a point in
the undeformed and deformed configurations respectively can be
expressed as

Xðs;X2;X3Þ ¼ X0ðxÞþ ∑
3

i ¼ 2
XiEi; xðs;X2;X3; tÞ ¼ x0ðs; tÞþ ∑

3

i ¼ 2
Xiei:

ð2Þ
where in both equations the first term stands for the position of
the pole and the second term stands for the position of a point in
the cross section relative to the pole. Note that x is the running
length coordinate and X2 and X3 are cross section coordinates.
At this point we note that since the present formulation is thought
to be used for modeling high aspect ratio composite beams, the
warping displacement is not included. As it is widely known, for
such type of beams the warping effect is negligible [19].

Also, it is possible to express the displacement field as

uðs;X2;X3; tÞ ¼ x�X ¼ u0ðs; tÞþðΛ�IÞ∑
3

2
XiEi; ð3Þ

where u0 represents the displacement of the kinematic center of
reduction, i.e. the pole. The nonlinear manifold of 3D rotation
transformations ΛðθÞ (belonging to the special orthogonal Lie
Group SO(3)) is described mathematically via the exponential
map [13]. The rotation tensor in component form yields

Λ¼ ∑
3

i;j ¼ 1
ΛijEi � Ej; ð4Þ

where the components Λij of the rotation tensor can be obtained
in the following form:

Λij ¼ Ei UΛEj ¼ Ei Uej ð5Þ

then it is possible to express the rotation tensor as

Λ¼ ∑
3

i;j ¼ 1
ðEi UejÞEi � Ej: ð6Þ

Now, using the tensor product property ða � bÞc¼ ðcUbÞa, it is
obtained

Λ¼ ∑
3

i;j ¼ 1
ðEi � EiÞej � Ej ¼ ∑

3

j ¼ 1
Iej � Ej; ð7Þ

Finally, with summation from 1 to 3 implicitly assumed, the
following expression for the rotation tensor can be obtained:

Λ¼ ej � Ej; ð8ÞFig. 1. 3D beam kinematics.

C.M. Saravia / Thin-Walled Structures 84 (2014) 443–451444



which will be a very useful expression for the derivation of a pure
vectorial measure of strain.

3. Small strain tensor

3.1. The Green strain measure

The main motivation for the development of a large deforma-
tion–small strain formulation is to give consistency to the
constitutive formulation of the geometrically exact composite
thin-walled beam theory [11,12]; since the constitutive equations
are only valid for small strains, it is important to derive a strain
measure consistent with this assumption.

As it was stated, most of the geometrically exact beam
formulations presented in the literature assume a linear elastic
constitutive law, which is accurate only for small strains, but it is
combined with a large strain deformation tensor. It is not trivial to
transform a large strain tensor in a small strain tensor without
losing its objectivity under rigid body motions [17], so an impor-
tant part of the section is devoted to show the mathematical
procedures that lead to an objective small strain measure.

The Green strain tensor is commonly written in three different
forms:

E¼ 1
2 ðx;i Ux;j�X ;i UX ;jÞ; ð9Þ

E¼ 1
2 ðð∇X � uÞsþð∇X � uÞT∇X � uÞ; ð10Þ

E¼ 1
2 ðFTF�IÞ; ð11Þ

where F is the deformation gradient and the displacement
gradient is given by

∇X � u¼ ∂u
∂X

ð12Þ

None of these forms can initially be seen as a linear plus a
nonlinear pure strain measure; elimination of any term in the
above expressions does not guarantees that the resulting formula-
tion is objective.

The first form of strain given in Eq. (9) was used in [11,12,
20,21], it is an attractive expression because it only requires the
derivatives of the position vector in the reference and current
configurations for its evaluation; however, after taking the dot
product we get a translational–rotational coupled expression that
has mixed kinematic and strain information. So, being the deriva-
tives of the position vectors

X ;1 ¼ X 0
0þX2E

0
2þX3E

0
3; x;1 ¼ x00þX2e02þX3e03;

X ;2 ¼ E2; x;2 ¼ e2;
X ;3 ¼ E3; x;3 ¼ e3;

ð13Þ

the insertion of these expressions in Eq. (9) gives a strain vector
E¼ E11 2E12 2E13½ �T such that

E11 ¼ 1
2 ðx020 �X 02

0 ÞþX2ðx00 Ue03�X 0
0 UE

0
3ÞþX3ðx00 Ue02�X 0

0 UE
0
2Þ

þ1
2 X

2
2ðe022 �E02

2 Þþ1
2 X

2
3ðe023 �E02

3 ÞþX2X3ðe02 Ue03�E0
2 UE

0
3Þ;

E12 ¼ 1
2 x00 Ue2�X 0

0 UE2�X3ðe03 Ue2�E0
3 UE2Þ

� �
;

E13 ¼ 1
2 x00 Ue3�X 0

0 UE3þX2ðe02 Ue3�E0
2 UE3Þ

� �
: ð14Þ

As the reader may see, ensuring that any of the above terms is
either a linear strain or a nonlinear strain measure is not trivial.

For the case of Eq. (10), which is sometimes understood as the
sum of a linear plus a nonlinear measure of strain, it is known that
the gradient of the displacement field is not objective under rigid
body motion, and thus it is not a pure measure of strain, i.e. it
contains both strain and kinematic information. Exploiting Eq. (11)

will be the approach used in this paper to obtain a pure small
strain measure.

3.2. The deformation gradient

As it was said before, to obtain a pure linear strain measure
without losing the capability of describing a large deformation
behavior it is necessary to derive a pure strain measure from one
of the expressions of the Green strain. Particularly the expression
of the Green strain in terms of the deformation gradient, i.e.
Eq. (11), has resulted useful for deriving pure strain measures [17].

The deformation gradient is a two point tensor given by the
derivatives of the current positions with respect to the reference
configuration as

F ¼∇X � x¼ ∂x
∂X

: ð15Þ

Thus, it can be said that the deformation gradient relates quan-
tities in the current configuration with quantities in the reference
configuration. Eventually, the deformation gradient can also be
written in the following form:

F ¼ f ijei � Ej; f ij ¼
∂xi
∂Xj

: ð16Þ

It must be mentioned that in order to exploit the above expres-
sions it should be necessary to express the current position vector
as x¼ xiei, but this is certainly not convenient since the transla-
tional part of x, i.e. x0, is naturally expressed as x0 ¼ x0iEi. Push
forwarding x0 to express it in the current frame is not recom-
mended since the rotation vector would appear explicitly; so it is
preferable to avoid thinking of ei as a current reference frame and
consider it as just a triad attached to the cross section. Then, the
expression of the deformation gradient must be written as

F ¼ FijEi � Ej; Fij ¼
∂xi
∂Xj

; ð17Þ

being xi ¼ xUEi. It is possible to operate over the deformation
gradient so that

F ¼ ∂xi
∂Xj

Ei � Ej ¼
∂ðxiEiÞ
∂Xj

� Ej ¼
∂x
∂Xj

� Ej; ð18Þ

and find a suitable expression for the explicit obtention of the
deformation gradient tensor.

The material derivatives of the position vector are easily
obtained in the following way:

∂x
∂X1

¼ x;s ¼ x00þX2e02þX3e03;

∂x
∂X2

¼ x;X2 ¼ e2;

∂x
∂X3

¼ x;X3 ¼ e2: ð19Þ

These tangent vectors can be inserted in Eq. (18) to obtain a pure
vectorial expression for the deformation gradient

F ¼ ðx00þXαe0αÞ � E1þeα � Eα; ð20Þ
where summation over α¼ 2;3 has been implicitly assumed.

At this point, Eq. (20) contains all the necessary information to
describe the finite deformation–finite strain behavior of the beam.

3.3. The small strain tensor

Recalling the distributive property of the tensor product the
deformation gradient expression in Eq. (20) can be written as

F ¼ ðx00þXαe0αÞ � E1þðej � Ej�e1 � E1Þ: ð21Þ
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Rearranging some terms this expression is compacted to

F ¼Λþðx00�e1þXαe0αÞ � E1: ð22Þ

A pure current strain vector ϵ is now defined as

ϵ¼ x00�e1þXαe0α; ð23Þ

then

F ¼Λþϵ � E1: ð24Þ

The last expression has an interesting meaning since permits
understanding the deformation gradient as a pure rotation
imposed by means of Λ plus a pure deformation measured by ϵ.
This is remarkable since for a finite deformation–finite strain
problem the strain measures are not commonly written in this
clear form.

The above conclusion as well as the derivation of the pure
strain measure ϵ is consistent with [17]; however, the develop-
ment of a pure large displacement–small strain measure for the
geometrically exact TWB theory requires to go further and find
expressions for the Green strain in terms of the director field.

To this end Eq. (11) is recalled and then the Green strain tensor
is written as

E¼ 1
2 ½ðΛþϵ � E1ÞT ðΛþϵ � E1ÞþI�: ð25Þ

Now this expression can be expanded to give

E¼ 1
2 ½Λ

TΛþΛT ðϵ � E1ÞþðE1 � ϵÞΛþðE1 � ϵÞðϵ � E1ÞþI�; ð26Þ

where the property ða � bÞT ¼ ðb � aÞ has been used. Exploiting

the identities Aða � bÞ ¼ ðAaÞ � b and ða � bÞA¼ a � ðATbÞ the
above expression simplifies to

E¼ 1
2 ½Λ

Tϵ � E1þE1 � ΛTϵþðE1 � ϵÞðϵ � E1Þ�

¼ 1
2 ½Λ

Tϵ � E1þE1 � ΛTϵþððE1 � ϵÞϵÞ � E1

i
ð27Þ

The last term can be rearranged if it is considered that ða � bÞc¼
ðcUbÞa, then

E¼ 1
2 ½Λ

Tϵ � E1þE1 � ΛTϵþðϵUϵÞE1 � E1� ð28Þ

Being Λ¼ ej � Ej; it can be seen that

E¼ 1
2 ½ððej � EjÞTϵÞ � E1þE1 � ððej � EjÞTϵÞþðϵUϵÞE1 � E1� ð29Þ

Again, using ða � bÞc¼ ðcUbÞa on the first and second terms

E¼ 1
2 ½ðϵUejÞEj � E1þE1 � EjðϵUejÞþðϵUϵÞE1 � E1� ð30Þ

From the above equation it is seen that the last term is a pure
nonlinear strain measure; so if it is desired to develop a large
deformation–small strain formulation this term can be dropped.
Thus, the matrix form of the small Green strain tensor is given by

Es ¼
ϵUe1 1

2 ϵUe2
1
2 ϵUe3

1
2 ϵUe2 0 0
1
2 ϵUe3 0 0

2
664

3
775: ð31Þ

Recalling Eq. (23) we can write the explicit vector form of the
strain measure as

Es ¼
x00 Ue1�1þXαe0α Ue1
x00 Ue2þX3e03 Ue2
x00 Ue3þX2e02 Ue3

2
64

3
75: ð32Þ

3.4. Generalized strains

The generalized strain is a strain measure that does not contain
geometric information of the beam cross section; in order to
obtain its expression, the small Green strain vector in Eq. (32) is
split as

Es ¼D ε; ð33Þ
where the cross sectional matrix is given by

D¼
1 X3 X2 0 0 0
0 0 0 1 0 �X3

0 0 0 0 1 X2

2
64

3
75: ð34Þ

and then the generalized small strain vector is

ε¼

ϵ
κ2
κ3
γ2
γ3
κ1

2
6666666664

3
7777777775
¼

x00 Ue1�1
e1 Ue03
e1 Ue02
x00 Ue2
x00 Ue3
e02 Ue3

2
6666666664

3
7777777775
: ð35Þ

As it can be seen, the generalized small strain vector has only six
components, this is of high value for obtaining an efficient finite
element computational implementation. Recalling the expression of
the generalized large strain vector from [11,12], we have

εL ¼

ϵ
κ2
κ3
γ2
γ3
κ1
χ2

χ3

χ23

2
66666666666666664

3
77777777777777775

¼

1
2 ðx00 Ux00�1Þ

x00 Ue
0
3

x00 Ue
0
2

x00 Ue2
x00 Ue3
e02 Ue3
e02 Ue

0
2

e03 Ue
0
3

e02 Ue
0
3

2
666666666666666664

3
777777777777777775

; ð36Þ

it is observed that not only the number of generalized strain is
reduced from nine to six, but also the expressions for the axial strain
and the curvatures is different; as the shear strains are linear even in
the nonlinear description of strains, they remain unchanged.

3.5. Objectivity of the small strain tensor

In previous sections it has been demonstrated that the discrete
form of the small strain tensor is a linear pure strain measure.
A very important property that this vector must possess is frame
invariance, i.e. it must be an objective measure of the strain state of
the beam.

Several works have been devoted to demonstrate the preserva-
tion of the objectivity of the discrete strain measures of geome-
trically exact beam formulations [22–29]. In this context, the
important contributions of Crisfield and Jelenic [24,27] showed
that geometrically exact beam finite element formulations para-
metrized with iterative spins, incremental rotation vectors and
total rotation vector fail to satisfy the objectivity of its discrete
strain measures. Recently, Mäkinen [30] has shown that their
conclusions regarding the objectivity of the discrete strain mea-
sures of formulations parametrized with the total and the incre-
mental rotation vector are incorrect. The misleading conclusions in
[24,27] about the Total and Updated Lagrangian formulations
aroused from the fact that linear interpolation does not preserve
an observer transformation, which in the cited work was assumed.

C.M. Saravia / Thin-Walled Structures 84 (2014) 443–451446



Pointing towards the development of a geometrically exact
beam formulation where the discrete strain measures are objec-
tive, interesting works presented alternatives that gained this
property by avoiding the interpolation of rotation variables
[22,23,28]. This was aided by the parametrization of the equations
of motion in terms of nodal triads, together with the obtention
of the discrete forms via interpolation of directors. Although the
discrete strain measures derived in this works preserve the
objectivity property, the linearization of the spins was not con-
sistent and the tangent stiffness matrix results to be non-
symmetrical (implying the loss of the quadratic convergence
property). A consistent derivation of an objective discrete strain
measure for geometrically exact thin walled composite beams was
presented by Saravia et al. [20].

In order to check the objectivity of the generalized small strain
measures this section proceeds superposing a rigid body motion
onto the configuration and then testing the invariance of the
discrete version of the strains.

A rigid body motion modifies the current configuration as

xn

0 ¼ cþQ x0; eni ¼Qei ð37Þ

where cAℝ3 and QASOð3Þ.
Now it is assumed zero initial strain and then the rigid body

motion is imposed onto the generalized small strains in Eq. (35);
taking, for example, the axial strain, i.e. ϵ, it can be demonstrated
that its discrete version is given by

ϵ¼ ðN0
jx

j
0ÞU ðNjê

j
3Þ; ð38Þ

where Nj are linear shape functions and êjiare nodal director triads;
summation over the nodal index j¼ 1 : 2 was implicitly assumed.

After the imposition of the rigid body motion the discrete axial
deformation is

ϵn ¼ ½cþQ ðNjx
j
0Þ�0 UQ ðNjê

j
3Þ ð39Þ

Taking the derivative of the first term yields

ϵn ¼ ½c0 þQ 0ðNjx
j
0ÞþQ ðN0

jx
j
0Þ�UQ ðNjê

j
3Þ; ð40Þ

and then being c0 ¼ Q 0 ¼ 0 the expression simplifies to

ϵn ¼Q ðN0
jx

j
0ÞUQ ðNjê

j
3Þ: ð41Þ

Since the scalar product of vectors is invariant under orthogo-
nal transformations it is seen that the above expression can be
simplified to

ϵn ¼Q ðN0
jx

j
0ÞUQ ðNjê

j
3Þ ¼N0

jx
j
0 UNjê

j
3: ð42Þ

Finally, comparing the last expression with Eq. (38) it can be
concluded that

ϵn ¼ ϵ; ð43Þ
so the discrete version of the axial generalized small strain is an
objective measure of strain.

Continuing with the curvatures, for example the flexural curva-
ture in direction 2, the discrete measure of strain takes the form

κ2 ¼Njê
j
1 UN

0
jê

j
3: ð44Þ

Proceeding as above it can be seen that after the imposition of
the rigid body motion to the configuration the discrete flexural
measure is modified as

κn

2 ¼ ½Q ðNjê
j
1Þ�U ½Q ðNjê

j
3Þ�0: ð45Þ

After derivation it is possible to operate as

κn

2 ¼ ½Q ðNjê
j
1Þ�U ½Q 0ðNjê

j
3ÞþQ ðNjê

j
3Þ0�; ð46Þ

again, being Q
0 ¼ 0 and taking the derivative to the interpolated

director field

κn

2 ¼Q ðNjê
j
1ÞUQ ðN0

jê
j
3Þ: ð47Þ

Once again, the invariance of the scalar products under orthogonal
transformation gives

κn

2 ¼Njê
j
1 UN

0
jê

j
3 ¼ κ2: ð48Þ

And again it is concluded that also the discrete version of the small
flexural strain is objective under rigid body motions.

It is important to note that since the small shear strain
measures have the same expression as the nonlinear shear strain
measures developed in [12], and in this work its invariance was
proved, the demonstration is not repeated.

Finally, it is concluded from the above expressions that the
discrete version of the generalized small strain vector is not
affected by superimposed rigid body motions; and thus it is an
objective measure of strain. It is interesting to note that since
linear interpolation of vector fields is invariant under rigid body
motion

Q N0
jê

j
i ¼N0

jðQêjiÞ ð49Þ

and since the scalar product is invariant under orthogonal trans-
formations, the above conclusions clearly make sense. The frame
invariance of the remaining generalized strains can be proven
in a similar manner; note that the generalized strains could
also be obtained by interpolation of nodal strains as, for example,

κ2 ¼N0
jðx0j U ê

j
iÞ but, although the frame invariance property is

maintained, the resulting strain measure is less accurate.

4. Variational formulation

The variational formulation relies on the virtual work principle
of the thin-walled composite beam, which is given by

δWðϕ; _ϕ; €ϕ;δϕÞ ¼ δWi�δWe�δWa ¼ 0; ð50Þ
where δWi; δWe and δWa represent the internal, external and
inertial virtual works. The deformation measure is only present
in the internal energy, so taking as reference the large strain
formulation, the present approach only modifies the expression of
the internal virtual work of the beam, i.e. [31]

δWi ¼
Z
L
δεTS dx; ð51Þ

where S is the generalized beam force vector. The obtention of
the finite element stiffness matrix is based on the derivation of
the virtual small strain vector, which is obtained performing the
variation of Eq. (35).

4.1. The virtual strain vector

The variation of the small generalized strain vector gives

δε¼

δx00 Ue1þx00 Uδe1
δe1 Ue03þe1 Uδe03
δe1 Ue02þe1 Uδe02
δx00 Ue2þx00 Uδe2
δx00 Ue3þx00 Uδe3
δe02 Ue3þe02 Uδe3

2
6666666664

3
7777777775
: ð52Þ

The last expression can be written in matrix form as

δε¼ℍδφ; ð53Þ
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where

ℍ¼

eT1 0 x00 0 0 0 0
0 0 e0T3 0 0 0 eT1
0 0 e0T2 0 0 eT1 0
eT2 0 0 x0T0 0 0 0
eT3 0 0 0 x0T0 0 0
0 0 0 0 e0T2 eT3 0

2
6666666664

3
7777777775
; δφ¼

δu0
0

δθ
δe1
δe2
δe3
δe02
δe03

2
666666666664

3
777777777775

: ð54Þ

The dimension of the matrix ℍ is reduced from 54 vector entries in
the nonlinear strain formulation to 42 in the linear counterpart;
also, the number of nonzero entries is reduced from 15 to 12. Since
the above relationship is key to the obtention of the element
stiffness matrix, the reduction of computational cost generated by
the large deformation–small strain formulation is evident.

The above expression can be further simplified if it is consid-
ered that δe1 ¼ δe2 � e3þe2 � δe3, then the dimension of ℍ and
δφ can be reduced as

ℍ¼

eT1 0 ð ~e3x00ÞT �ð ~e2x00ÞT 0 0

0 0 ð ~e3e03ÞT �ð ~e2e03ÞT 0 eT1
0 0 ð ~e3e02ÞT �ð ~e2e02ÞT eT1 0
eT2 0 x0T0 0 0 0
eT3 0 0 x0T0 0 0
0 0 0 e0T2 eT3 0

2
66666666664

3
77777777775
; δφ¼

δu0
0

δθ
δe2
δe3
δe02
δe03

2
6666666664

3
7777777775
: ð55Þ

In writing the above expression the geometric relation ~e 02e
0
2 ¼ 0

has been exploited.

4.2. Linearization

At this point the directional derivative is used to find the
linearized virtual work of the internal forces in the direction δϕ, i.e.

L δWiðϕ; δϕÞ� �¼ δWiðϕ0; δϕÞþDϕ δWiðϕ0; δϕÞUΔϕ; ð56Þ

being

DϕδWiðϕ0; δϕÞUΔϕ¼
Z
L
ðδεTΔSþΔδεTSÞdx: ð57Þ

The incremental beam force is easy to obtain asΔS ¼DΔε, but the
incremental virtual strains require some work. After derivation,
the increment of the generalized small strain vector gives

Δδε¼

δx00 UΔe1þΔx00 Uδe1þx00 UΔδe1
Δδe1 Ue03þδe1 UΔe03þΔe1 Uδe03þe1 UΔδe03
Δδe1 Ue02þδe1 UΔe02þΔe1 Uδe02þe1 UΔδe02

δx00 UΔe2þΔx00 Uδe2þx00 UΔδe2
δx00 UΔe3þΔx00 Uδe3þx00 UΔδe3

Δδe02 Ue3þδe02 UΔe3þΔe02 Uδe3þe02 UΔδe3

2
6666666664

3
7777777775
: ð58Þ

Again, the evaluation of Δδε requires 21 scalar products in
place of 25 of the large strain formulation.

It is common to write the geometrical stiffness part of the
virtual work considering that

ΔδεTS ¼ δφTGΔφ: ð59Þ

where the matrix G is given by

G¼

0 0 S1 Q 2 Q 3 0 0
A 0 0 0 0 0

0 0 0 M3 M2

0 0 0 0
0 M1 0

Sym 0 0
0

2
666666666664

3
777777777775

: ð60Þ

From the computational point of view, the most expensive
element of G is A. This element comes from the terms aUΔδei,
which involve second variations of the director field. The explicit
expression of the element A is

A¼ ∑
2

j ¼ 1
fN1Nj ½Ξð ~̂ej1x00ÞþT j ~x

0
0
~̂e
j

1T
T
j �:

þM2½Nj ½Ξð ~̂ej1e03ÞþT j ~e
0
3
~̂e
j

1T
T
j �þN0

j ½Ξð ~̂ej3e1ÞþT j ~e1 ~̂e
j

3T
T
j ��

þM3½Nj ½Ξð ~̂ej1e02ÞþT j ~e
0
2
~̂e
j

1T
T
j �þN0

j ½Ξð ~̂ej2e1ÞþT j ~e1 ~̂e
j

2T
T
j ��

þQ3Nj ½Ξð ~̂ej2x00ÞþT j ~x
0
0
~̂e
j

2T
T
j �þQ2Nj ½Ξð ~̂ej3x00ÞþT j ~x

0
0
~̂e
j

3T
T
j �

þT ½N0
j ½Ξð ~̂ej2e3ÞþT j ~e3 ~̂e

j

2T
T
j �þNj ½Ξð ~̂ej3e02ÞþT j ~e

0
2
~̂e
j

3T
T
j �� ð61Þ

where Ξ is an operator such that ΞT ð ~e iaÞ ¼Δ Tð ~e iaÞ
� �

, being Δ the
directional derivative symbol [12].

The relation between the variables δφ and δϕ̂j is given by

δφffi ∑
nn

j ¼ 1
Bjδϕ̂j; ð62Þ

being

Bj ¼

N 0
j 0

0 N j

0 N j ~e
jT
1 T

T
j

0 N j ~e
jT
2 T

T
j

0 N j ~e
jT
3 T

T
j

0 N 0
j ~e

jT
2 T

T
j

0 N 0
j ~e

jT
3 T

T
j

2
6666666666666664

3
7777777777777775

; δϕ̂j ¼
δû0j

δθ̂j

2
4

3
5: ð63Þ

After the above derivations it is straightforward to obtain the
tangent stiffness matrix for the small strain–large deformation
formulation; for the sake of brevity the full derivation is not
included here, but the reader can refer to [12] if additional details
are needed.

5. Numerical tests

In order to evaluate the accuracy of the formulation two numer-
ical tests are performed. The tests are chosen to address briefly the
adaptability of the new strain measure to large deformation cases;
the large strain formulation presented in [12] by the author is chosen
as baseline for comparison.

5.1. Bending of a curved cantilever composite beam

In the first test the evolution of the displacement field and
the generalized strains of a curved cantilever beam subjected to a tip
oblique load P ¼ f4:0� 104; � 4:0� 104; 8:0� 104g is analyzed;
the magnitude of the load is such that it induces large displace-
ments. The curved beam has a reference configuration defined
by a 451 circular segment lying in the xy plane with radius R¼ 100
(see Fig. 2).
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The material properties of the composite beam are listed in
Table 1 (units are N/m2); the cross section of the beam is boxed
with sides of length b¼ h¼ 1 and thickness t ¼ 0:1. The lamination
sequence is f45; �45; �45;45g.

The load generates a large deformation behavior, thus the
ability of the large deformation–small strain formulation can be
addressed by a close comparison with the large deformation–large
strain formulation presented in [12]. As it can be seen from the
evolution of the displacement field at the beam tip (see Fig. 3), the
present formulation behaves very well for the large deformation
case.

Figs. 4 and 5 show the progression of the generalized small
strain components. It can be observed that the present formula-
tion can measure the strain state of the beam accurately still when
strains are moderate.

5.2. Simple pendulum on the tip of a cantilever beam

The next test was thought to test the behavior of the formula-
tion when used to model the dynamics of flexible multibodies.
In this context, the beams are subjected to large rigid body
motions plus straining. Now, the displacement and deformation
time histories of the present formulation will be compared against
data obtained with the large strain approach in [32].

The model to be analyzed consist on an L-shaped mechanism
formed by a simple pendulum attached to a cantilever beam,
as Fig. 6 shows. The idea of the test is that gravity makes the
flexible pendulum fall and, as the beam is highly flexible, a com-
plex dynamic response is induced in the whole mechanism. Not
only the displacements and rotations are finite, also the elastic
deformations are quite high, probably one order of magnitude
higher than what can be found in practical situations.

Both the beam and the pendulum are 10 m long, the whole model
contains 40 beam finite elements and 1 hinge joint element. The
beam elements have a rectangular cross section with b¼ h¼ 0:1 and
thickness t ¼ 0:01. The lamination sequence is f45; �45; �45;45g
and the material properties of the laminate are given in Table 1.

Fig. 2. 451 cantilever beam.

Table 1
Material properties of EFG-Epoxy layers.

E11 E22 G12 G23 ν12

45.0�109 12.0�109 5.5�109 5.5�109 0.3
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Fig. 3. 451 cantilever beam – evolution of displacements at the beam tip.
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Fig. 4. 451 cantilever beam – evolution of strains at the beam root.
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Fig. 5. 451 cantilever beam – evolution of strains at the beam root.
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Fig. 6. L-shaped pendulum configuration.
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The multibody algorithm relies on the introduction of Lagrange
multipliers for the imposition of the kinematical constraints of the
hinge joint. The simulation lasts 10 s and it is discretized in time
by the generalized alpha method using 1000 time steps.

Fig. 7 shows the comparison of the evolution of displacements
measured in the pendulum tip; all displacement components are
showed in the same picture. It can be clearly seen that all the
components are calculated with remarkable precision, still when
the formulation assume small straining.

Figs. 8 and 9 show the time history of all the six components of
the generalized strain vector; it can be clearly observed that the
present formulation gives excellent results when used in a multi-
body problem with moderate strains.

There are several possible computational implementations
of the formulation, the fastest takes approximately 153 s for the
evaluation of the element tangent matrices; 80,040 callback to the
computational routine that performs this task are performed and
the full simulations lasts 322 s. The large strain formulation takes
211 s for evaluation of the element tangent matrices, while the
whole simulations lasts 390 s. This represents a reduction of about
38% in computational time; this improvement comes mainly from
the simplification of the linearization term in Eq. (60). This term is
the driver of the computational efficiency of the formulation, note
that the operator Ξ is a very complex trigonometric function of the
incremental rotation vector (see [20]).

6. Conclusions

This work presented a formulation for modeling thin walled
composite beam that exhibit small strain–large deformation beha-
vior. The formulation is especially suited for modeling high aspect
ratio composite beams that undergo large rigid body motions, such
as wind turbine wings, satellite arms, automotive body stiffeners, etc.

The formulation assumes that the kinematic behavior of the beam
can undergo arbitrary changes while the strains are restricted to be
small, thus compatibilizing the strain measure with the constitutive
law of composite laminates. The latter is achieved obtaining a pure
small strain measure written solely in terms of scalar products of
position and director vectors. The discrete version of the generalized
small strain is proven to be objective under rigid body motion.

The formulation leads to a finite element implementation that
is simpler than that of the finite strain theory previously devel-
oped by the author. The number of generalized strain measures is
reduced from nine to six, and thus the variational formulation is
considerably simpler.

In terms of computational cost, numerical experiments show
that the proposed formulation is computationally more efficient
than the finite strain form of the theory. The storage of strain
variables is reduced in a 30% and the computational time used for
the evaluation of the tangent stiffness matrices is reduced by 38%
compared to the consumption of the large strain formulation.

Comparisons of displacement and strain histories show that the
presented formulation gives excellent results in large deformation
scenarios. All kinematic variables were obtained with a very good
accuracy, the maximum error detected in all the tests performed
was 2%.
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