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We analyze the electronic structure of topological surface states in the family of magnetic topolog-
ical insulators MnBi2nTe3n+1. We show that, at natural-cleavage surfaces, the Dirac cone warping
changes its symmetry from hexagonal to trigonal at the magnetic ordering temperature. In particu-
lar, an energy splitting develops between the surface states of same band index but opposite surface
momenta upon formation of the long-range magnetic order. As a consequence, measurements of
such energy splittings constitute a simple protocol to detect the magnetic ordering via the surface
electronic structure, alternative to the detection of the surface magnetic gap. Interestingly, while
the latter signals a nonzero surface magnetic flux, the trigonal warping predicted here is, in addition,
sensitive to the direction of the surface magnetic flux.

I. INTRODUCTION

Antiferromagnetic topological insulators (AFM-TIs)
are topological insulators that spontaneously break time-
reversal symmetry (Θ) while preserving the symmetry
S = ΘT1/2, where T1/2 is a lattice translation by half
of a unit cell [1]. The manifestations of the non-trivial
topology on a given surface of such a system depend on
whether or not the surface is symmetric under S. In the
family MnBi2nTe3n+1, the crystal structure consists of
septuple layers (SLs) of MnBi2Te4 separated by n − 1
quintuple layers (QLs) of Bi2Te3 [2, 3]. The Mn ions or-
der in an uniaxial antiferromagnetic structure, with the
Néel vector parallel to the stacking axis. The usually
studied surfaces are terminated either on a QL or on a
SL. As a result, such surfaces are S-broken and in the
magnetically ordered phase a gap ∆ is allowed in the
topological surface electronic spectrum.

∆ is expected to govern the low-energy physics when
the chemical potential lies inside the gap, enabling phe-
nomena such as the quantum anomalous Hall effect [4–
14]. While the surface electronic structure has been ex-
tensively studied [2, 3, 15–32], the observation and the
temperature evolution of ∆ remain as challenging and
heavily debated issues. In the simplest picture, ∆ should
vanish at T > TN (above the Néel temperature) due
to the restoration of Θ in a statistical sense. Perhaps
the clearest experimental data available today showing
compelling evidence for this is found in the ferromag-
netic compound MnBi8Te13 [31]. In MnBi2Te4, sev-
eral photoemission experiments find within their resolu-
tion a gapless surface spectrum at all temperatures [16–
18]. In these cases, it has been argued that the sur-
face magnetic structure might differ from the bulk one.
On the other hand, experiments that do show a finite ∆
at low temperatures do not always find it closes above
TN [2]. Different possible mechanisms that might pre-

vent the observation of the gap closing in photoemission
experiments have been discussed, including short-range
magnetic fields generated by chiral spin fluctuations [33],
anisotropy of the Mn-spin fluctuations [34], and fermionic
fluctuations [35]. In addition, the hybridization between
the Dirac cone and other, trivial bands might further
complicate the direct experimental study of ∆. This has
been recognized as a problem at QL-terminated surfaces,
where the Dirac cone has been theoretically and experi-
mentally found to be buried in the surface projection of
bulk bands, leaving at low energy the so-called hybridiza-
tion gap [29].

Importantly, doping is ubiquitous in as-grown samples
of MnBi2nTe3n+1, triggering the question of further con-
sequences of breaking Θ associated with deviations from
the low-energy Dirac limit. In this paper, we analyze
this issue and focus on the warping of the surface Dirac
cone. In non-magnetic TIs, soon after their discovery it
was observed that for usual levels of doping, the surface
Fermi contour presents a pronounced hexagonal warp-
ing [36–38] and the importance of Θ being preserved for
the resulting hexagonal symmetry was recognized early
on [39]. Here, we show that the opening of a magnetic
gap ∆ in S-broken surfaces is generically accompanied
by a reduction in the symmetry of the Dirac cone warp-
ing from hexagonal to trigonal. As we will show, ∆ also
plays a role in the low-temperature trigonal warping of
the Dirac cone.

From these results, a simple protocol emerges to de-
tect the long-range magnetic order via the surface elec-
tronic structure: measurements of the energy difference
between states of same band but of opposite surface mo-
menta should vanish in the paramagnetic phase and be-
come finite in the ordered phase. This protocol may prove
particularly useful on terminations of a crystal where the
Dirac point is known to be buried in the projection of
the bulk states or in p-doped systems, since both condi-
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tions make the magnetic gap ∆ inaccessible to photoe-
mission experiments. In addition, the trigonal distortion
exhibited by the surface Dirac cone warping in the low-
temperature phase is sensitive not only to the existence
of a net surface magnetic flux but also to its direction.

This article is organized as follows. In Sec. II, we an-
alyze the problem based on general symmetry considera-
tions for a 2× 2 model Hamiltonian of the (001) surface
Dirac cone. In Sec. III, we construct a tight-binding
model Hamiltonian for AFM-TIs having three-fold rota-
tional symmetry with respect to the Néel propagation
vector of the AFM phase together with reflection sym-
metries with respect to planes containing such axis. This
model allows us to continuously vary the sublattice mag-
netization mimicking the evolution of temperature in uni-
axial antiferromagnets. In Sec. IV, we present ab-initio
results of finite slabs of MnBi4Te7. Finally, Sec. V pro-
vides concluding remarks.

II. EFFECTIVE 2× 2 HAMILTONIAN FOR THE
SURFACE DIRAC CONE

We start by exploring the symmetries and surface elec-
tronic properties of AFM-TIs based on an effective two-
band Hamiltonian for their topological surface states.

A. Symmetries

The natural-cleavage planes of compounds in the fam-
ily MnBi2nTe3n+1 are positioned at by Te-Te van der
Waals gaps, here considered to be perpendicular to the
ẑ axis. The case n = 2 is illustrated in Fig. 1. The crys-
tal structure is minimally described either with the space
group R3m̄ (when n is even) or with P 3̄m1 (odd n). In
both cases, the surface crystal point symmetry is C3v,
which can be generated by a three-fold rotation C3z and
a reflection symmetry M : y → −y.

When including spin-orbit coupling, the magnetic
point symmetry depends on the direction of the Mn mag-
netic moments. We will consider the case typically ob-
served in bulk magnetometry experiments, where Mn
magnetic moments point along the trigonal axis [40–42].
In this case, the electronic structure is symmetric un-
der C3z and under the antiunitary reflection symmetry
M ′ = MΘ. Notice that the momenta invariant under
M obey ky = 0 while those invariant under M ′ satisfy
kx = 0.

Throughout this section, in order to construct 2 × 2
Hamiltonians for the surface Dirac cone, we use the rep-
resentations

C3z = exp(−iσzπ/3), (1a)

M = iσy, (1b)

Θ = iσyK, (1c)

M ′ = −K (1d)

θ
Γ M

K

(a) (b)

(c)

̂kx

̂kŷx ̂y | | b̂

̂z | | ̂c
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FIG. 1. (a) Crystal structure of MnBi4Te7. (b) Top view of
the crystal structure. (c) Surface Brillouin zone. The green
dashed line in (b) indicates the reflection symmetry plane M :
ŷ → −ŷ and in (c) the high-symmetry plane corresponding to
the combined symmetry M ′ = MΘ, with Θ the time-reversal
operator.

where σi are the Pauli matrices and K is complex conju-
gation. When a Hamiltonian H is said to be symmetric
under C3z, M , Θ, or M ′, it satisfies

C−1
3 H(kx, ky)C3 = H

(−kx +
√

3ky
2

,
−
√

3kx − ky
2

)
(2a)

M−1H(kx, ky)M = H(kx,−ky), (2b)

Θ−1H(kx, ky)Θ = H(−kx,−ky), (2c)

M ′
−1
H(kx, ky)M ′ = H(−kx, ky), (2d)

respectively.

B. Time-reversal symmetric case

We begin by revisiting the results for non-magnetic
topological insulators of the family Bi2Te3 derived in
Ref. [39] and consider the Hamiltonian

HΘ(k) = v(kyσx − kxσy) + i
λ

2
(k3

+ − k3
−)σz (3)

where k = (kx, ky) is the momentum vector, k = |k|,
and k± = kx ± iky. This Hamiltonian obeys Eqs. (2).
Defining the azimuth angle θ with respect to the x̂ axis,
the energies of the bands are

ε±(k) = ±
√
v2k2 + λ2k6 sin2(3θ), (4)
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FIG. 2. (a-c) Fermi contour for Fermi energies EF /E
∗ = 0.6,

0.9 and 1.2. Dashed red and solid blue curves correspond to
Θ-symmetric (∆/E∗ = 0) and Θ-broken (∆/E∗ = 0.4) cases,
respectively.

Warping effects originate from the term proportional to
λ and the Fermi contour has a hexagonal symmetry, θ →
θ+2π/6, with the vertices of the hexagon pointing along
ΓM .

C. Hexagonal warping as a helical correction to the
magnetic gap

Consider adding to Eq. (3) the simplest Θ-breaking
term

H∆(k) = HΘ(k) + ∆σz. (5)

This Hamiltonian obeys Eq. (2a) and breaks both
Eqs. (2b) and (2c), but satisfies their combination,
Eq. (2d). The energies are

ε±(k) = ±
√

∆2 + v2k2 − 2λ∆k3 sin(3θ) + λ2k6 sin2(3θ).

(6)

In this case, the spectrum acquires a gap ∆ and the
symmetry of the Fermi contour is lowered to trigonal
θ → θ + 2π/3 due to the term proportional to sin(3θ).

Figure 2(a-c) shows the Fermi contour for Fermi ener-
gies EF /E

∗ = 0.6, 0.9, and 1.2, respectively, where we
have used the units of energy E∗ = v/k∗ and of momen-

tum k∗ =
√
v/λ, as introduced in Ref. [39]. The latter

is a natural unit to account for the length scale asso-
ciated with the hexagonal warping. For each Fermi en-
ergy, the Fermi contours corresponding to ∆/E∗ = 0 and
0.4 are shown. As a reference, notice that for the case
∆ = 0, the parameters used in panel (c) match those
found in Ref. [39] to reproduce experimental results in
Sb2Te3 (v0 = 2.55 eVÅ, λ = 250 eVÅ3, E∗ = 0.23 eV
and EF = 1.2E∗). For these parameters, ∆ = 0.4E∗ ∼
0.1 eV. While the trigonal distortion is apparent in all
cases, it becomes less pronounced for relatively large dop-
ing because of the larger power in k associated with the
hexagonal warping term in Eq. (6).

Within this model, the product of ∆ and λ character-
izes the strength of the trigonal distortion. This can be
traced back to the fact that two terms associated with

FIG. 3. Momentum dependence of the hexagonal warping
term in eV for λ = 250 eVÅ3.

these parameters are proportional to the Pauli matrix σz.
Therefore, one can define an effective gap function

∆eff(k, θ) = ∆ + λk3 sin(3θ). (7)

While the first term induces a net spin moment and
breaks Θ, the second term induces a helical, momentum-
dependent spin texture compatible with Θ. Figure 3
shows this term using the value of λ = 250 eVÅ3, which
was found in Ref. [39] to appropriately describe the
hexagonal warping in Sb2Te3. This term cannot by itself
open a gap at Γ, where it vanishes. For finite ∆, however,
it does affect the energy dispersion of the gapped Dirac
cone in a quite distinctive manner. Taking, for example,
momenta along the M ′-invariant line kx = 0 (ΓK), for
vky � ∆ the eigenenergies of the Hamiltonian Eq. (5),
linearized in ∆ and λ, read

± v|ky|
(

1 +
∆λ

v2
ky

)
. (8)

Thus, for finite ∆, the hexagonal warping term bends the
Dirac cone. This bending is forbidden along ΓM due to
Eq. (2d) (see Fig. 4).

D. General case

Using Qsymm [43], we find that the most general
Hamiltonian symmetric under C3z and M ′ up to third
order in momentum is

H(k) = E0(k) +H∆(k) + β

(
0 −k2

+

k2
− 0

)
, (9)

where

E0(k) =
[ k2

2m∗
− iγ

2
(k3

+ − k3
−)
]
σ0. (10)
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FIG. 4. Energy disperson for the model Eq. (5) along ΓK (a)
or ΓM (b). Dashed red and solid blue curves correspond to
Θ-symmetric (∆/E∗ = 0) and Θ-broken (∆/E∗ = 0.4) cases,
respectively.

Notice that, in general, the Fermi velocity v and the mag-
netic gap ∆ appearing in H∆(k) admit quadratic correc-
tions

v(k) = v(1 + νk2), (11)

∆(k) = ∆(1 + δk2), (12)

respectively. The Hamiltonian in Eq. (9) satisfies sym-
metries given by Eqs. (2a) and (2d), and its energy bands
read

ε±(k, θ) =
k2

2m∗
+ k3γ sin(3θ)±

[
∆2 + v2(k)k2−

2[βv(k) + λ∆(k)]k3 sin(3θ) + β2k4 + λ2k6 sin2(3θ)
]1/2

(13)

The terms that break Θ are those associated with β, γ,
and ∆, and all of these contribute to the trigonal distor-
tion. While βv(k) affects the warping in a similar way to
the product λ∆(k), the term proportional to γ is diagonal
in spin subspace and has a different power in momenta.

III. EFFECTIVE LATTICE HAMILTONIAN
FOR MAGNETIC TIs WITH C3v

The models studied in the previous section contain the
basic ingredients to describe the hexagonal to trigonal
transition of the Dirac cone warping, but have a funda-
mental shortcoming that various parameters associated
with the breaking of Θ are generally allowed. Their rela-
tive importance is not obvious without additional infor-
mation, e.g., from experiment. In this section, we ana-
lyze the bulk electronic structure and topological surface
states based on tight-binding models that obey the point
symmetries of different compounds in the MnBi2nTe3n+1

family.

We first consider a model for a strong topological insu-
lator (STI) on a triangular lattice with Bravais vectors:a1

a2

a3

 =

 1 0 0

−1/2
√

3/2 0
0 0 1

x̂ŷ
ẑ

 . (14)

We define the crystal vector momentum k = (k1, k2, k3),
with kj = k · aj and consider the Bloch Hamiltonian:

HTI(k) =Γ1[µ+ f(k1, k2)− cos(k3)]

+ λ [Γ2 sin(k1) + Γ2,1 sin(k2)

− Γ2,2 sin(k1 + k2) + Γ3 sin(k3)],

. (15)

The scalar function f(k1, k2) is:

f(k1, k2) = −
2∑

j=0

cos(Cj3k1), (16)

and Γ1 = τzσ0, Γ2 = τxσx, and Γ3 = τyσ0, where Pauli
matrices τ encode the degree of freedom associated with
two orbitals per site. C3 denotes a threefold rotation
applied to the momentum, such that k1 → k2, k2 →
−k1 − k2, and −k1 − k2 → k1. The matrices Γ2,1 and
Γ2,2 are related to Γ2 by a threefold rotation C3:

Γ2,j = Cj
3Γ2C

−j
3 , C3 = τ0 exp

(
i
π

3
σz

)
. (17)

The Hamiltonian in Eq. (15) has inversion symmetry
I = τzσ0, time-reversal symmetry Θ = iτ0σyK, three-
fold rotation symmetry C3 and reflection symmetry M
with respect to the k1 = −2k2 plane (and analog planes
related by C3). Setting µ = 3 and λ = 1, we obtain an
STI with Z2 indices (ν0; ν1ν2ν3) = (1; 000) and a mirror-
protected topological crystalline insulator [44].

For the surface states to have a pronounced hexago-
nal warping in the Θ-symmetric phase, as usually ob-
served experimentally, we add a next-nearest-neighbor
intralayer hopping term

Ht(k) =tΓt[sin(k1 + 2k2)+

sin(k1 − k2)− sin(2k1 + k2)],
(18)

with Γt = τxσz. This term obeys time-reversal Θ, three-
fold rotation C3 and the mirror symmetries. Figure 5(a)
shows the surface Fermi contour obtained by solving the
Hamiltonian HTI +Ht in a slab geometry consisting of a
finite number of layers in the ẑ direction. For the calcu-
lations in this section we use the Kwant code [45].

We now consider the breaking of the time-reversal sym-
metry via a Zeeman field:

Hb = bSz, (19)

where Sz = τ0σz. This term breaks both the time-
reversal and mirror symmetry but preserves their prod-
uct, ΘM . Figure 5(b) shows the surface Fermi con-
tour with this added perturbation. Compared to the Θ-
symmetric case, the warping exhibits a trigonal symme-
try. In addition, the Fermi contours at opposite surfaces
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FIG. 5. (a) Surface Fermi contour for a tight-binding Hamil-
tonian of a strong topological insulator with C3v symmetry.
The iso-energetic contour has a sixfold rotational symmetry.
(b) Surface Fermi contour in the presence of a Zeeman field.
The Fermi contour of the top and bottom surfaces are ro-
tated by π/3 with respect to each other and both exhibit a
trigonal symmetry due to the time-reversal symmetry break-
ing. Bands associated with states at the bottom and top
surfaces are colored in red and blue, respectively. (c) Surface
Fermi contour for an antiferromagnetic topological insulator.
For an even number of magnetic layers, the surface magnetic
flux at opposite surfaces is identical and so are the trigonally-
distorted Fermi contours. Parameters were chosen as µ = 3,
λ = 1, t = 10, b = 0.2, and Fermi energy E = 0.7 for a system
with 20 layers stacked along ẑ.

of the slab (shown in red and blue) are rotated with re-
spect to each other. This rotation originates from the
fact that, at opposite surfaces of the finite slab, the field
Hb points in opposite directions relative to the surface
normal. Thus, the surface states at the two surfaces ex-
perience an opposite magnetic flux.

We now build a tight-binding model appropriate for an
AFM-TI. We follow the procedure introduced in Ref. [1],

which consists in adding a staggered Θ-breaking term to a
Hamiltonian that describes an STI. To do this, we double
the unit-cell long the ẑ direction and add a sublattice
degree of freedom represented by the Pauli matrices γi
(i = 0, . . . 3).

We introduce the Hamiltonian

HAFM = [HTI(k) +Ht(k)]γ0 + bSzγz. (20)

In this model the Zeeman coupling is opposite for adja-
cent layers. Importantly, this staggered field is the only
term associated with the breaking Θ, and it related to
the average Mn sublattice magnetization in a transpar-
ent way.

Figure 5(c) shows the corresponding surface Fermi con-
tour. For an even number of magnetic layers, the surface
magnetic flux at opposite surfaces points along the same
direction relative to the surface normal. Accordingly, in
this case the Fermi contour at both surfaces exhibits a
trigonal distortion of identical shape.

Notice that the dependence of the trigonal warping on
the direction of the surface magnetization can be directly
appreciated in the simplest model Hamiltonian Eq. (5).
Without hexagonal warping (λ = 0), the band structure
[Eq. (6)] depends only on ∆2 so that information on the
phase of ∆ is lost. This is no longer the case for finite
λ, for which the energy bands depend on the sign of ∆λ.
As a consequence, assuming a value of λ independent of
temperature and ∆ ∝ Ms, with Ms the surface mag-
netization, the trigonal distortion in the warping yields
information on the sign of Ms (or, equivalently, ∆).

IV. AB INITIO RESULTS

In this section, we present density functional theory
(DFT) calculations based on finite slabs of MnBi4Te7.
We use a structural model consisting of four unit cells and
of a vacuum of 30 Bohr radii. We use the experimental
bulk lattice parameters and atomic positions. The calcu-
lations are based on the GGA+U method with the gen-
eralized gradient approximation [46] as implemented in
the FPLO code version 48.00-52 [47]. We fix parameters
U = 5.34 eV and J = 0, as in Ref. [2], and use the atomic
limit flavor for the double counting correction. The spin-
orbit interaction is considered in the fully-relativistic,
four-component formalism. Numerical k-space integra-
tions are performed with a tetrahedron method with a
mesh of 12× 12× 1 subdivisions in the Brillouin zone.

Figure 6(a) shows the band-structure of MnBi4Te7

projected on the outermost SL and on the outermost QL
of the slab. The dependence on the surface termination
has been studied in detail experimentally and theoreti-
cally in Ref. [29]. One important point is that for the
SL termination the apparent gap is actually a magnetic
gap, while for QL-termination the magnetic gap is buried
into the projection of bulk bands. Figures 6(b) and (c)
show constant-energy contours which evidence the trig-
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FIG. 6. (a) MnBi4Te7 band structure projected on the out-
ermost quintuple layer (orange) and on the outermost septu-
ple layer (blue). Energies are measured with respect to the
Fermi energy of the full slab. (b) Constant energy contours of
quintuple layer-projected band-structure at energies 100 and
150 meV. (c) Same as panel (b) for the septuple layer termi-
nation.

onal symmetry of the warping, regardless of the surface
termination.

While here we only present results for MnBi4Te7,
theoretically-obtained surface Fermi contours with a sub-
stantial trigonal warping is also for MnBi2Te4, e.g. in
Ref. [22].

V. CONCLUSIONS

We have analyzed how long-range magnetic order af-
fects the symmetry of the surface Dirac cone in the family
of magnetic topological insulators MnBi2nTe3n+1. With
this aim, we have introduced effective continuum as well

as tight-binding models obeying the relevant symmetries
of the problem. Based on these models and on density-
functional calculations in the ordered phase, we have
shown that, in addition to opening a gap ∆ in the sur-
face electronic structure, the magnetic order lowers the
symmetry of the Dirac cone warping from hexagonal to
trigonal. As a consequence, surface states of opposite
momenta (or, in general, of states of surface momenta
related by a nπ/3 rotation, with n odd) become energy-
split below the ordering temperature. This observation
may provide a practical protocol to detect the magnetic
transition via the surface electronic structure, particu-
larly useful in cases where the magnetic gap ∆ is inac-
cessible to photoemission experiments either because the
Dirac cone is buried into the projection of bulk bands
or because the system is hole-doped. Furthermore, as
opposed to the surface magnetic gap, the trigonal distor-
tion is sensitive to the sign of the surface magnetization.
It could be interesting to analyze how the change in the
warping symmetry affects various surface phenomena as-
sociated with Dirac physics [48–54].

Note added.— During the final stages of this work, re-
lated preprints [55, 56] were posted in which the au-
thors too discuss the transition from hexagonal to trigo-
nal warping of the surface states triggered by the mag-
netism.
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Brink, A. Isaeva, B. Büchner, and V. Kataev, “Strongly
anisotropic spin dynamics in magnetic topological insu-
lators,” Phys. Rev. B 103, L180403 (2021).

[35] Marius Scholten, Jorge I. Facio, Rajyavardhan Ray,
Ilya M. Eremin, Jeroen van den Brink, and Flavio S.
Nogueira, “Finite temperature fluctuation-induced order
and responses in magnetic topological insulators,” Phys.
Rev. Res. 3, L032014 (2021).

[36] YL Chen, James G Analytis, J-H Chu, ZK Liu, S-
K Mo, Xiao-Liang Qi, HJ Zhang, DH Lu, Xi Dai,
Zhong Fang, et al., “Experimental realization of a three-
dimensional topological insulator, Bi2Te3,” Science 325,
178–181 (2009).

[37] Yuqi Xia, Dong Qian, David Hsieh, L Wray, Arijeet Pal,
Hsin Lin, Arun Bansil, DHYS Grauer, Yew San Hor,
Robert Joseph Cava, et al., “Observation of a large-gap
topological-insulator class with a single Dirac cone on the
surface,” Nat. Phys. 5, 398–402 (2009).

[38] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H.
Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin,
A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z.
Hasan, “Observation of Time-Reversal-Protected Single-
Dirac-Cone Topological-Insulator States in Bi2Te3 and
Sb2Te3,” Phys. Rev. Lett. 103, 146401 (2009).

[39] Liang Fu, “Hexagonal Warping Effects in the Surface
States of the Topological Insulator Bi2Te3,” Phys. Rev.
Lett. 103, 266801 (2009).

[40] Alexander Zeugner, Frederik Nietschke, Anja UB Wolter,
Sebastian Gaß, Raphael C Vidal, Thiago RF Peixoto,
Darius Pohl, Christine Damm, Axel Lubk, Richard Hen-
trich, et al., “Chemical aspects of the candidate anti-
ferromagnetic topological insulator MnBi2Te4,” Chem.
Mater. 31, 2795–2806 (2019).

[41] J.-Q. Yan, Q. Zhang, T. Heitmann, Zengle Huang, K. Y.
Chen, J.-G. Cheng, Weida Wu, D. Vaknin, B. C. Sales,
and R. J. McQueeney, “Crystal growth and magnetic
structure of MnBi2Te4,” Phys. Rev. Mater. 3, 064202
(2019).

[42] Aoyu Tan, Valentin Labracherie, Narayan Kunchur, Anja
U. B. Wolter, Joaquin Cornejo, Joseph Dufouleur, Bernd
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