
Integr. Equ. Oper. Theory (2022) 94:11

https://doi.org/10.1007/s00020-022-02687-3

Published online March 16, 2022
c© The Author(s), under exclusive licence to Springer

Nature Switzerland AG 2022

Integral Equations
and Operator Theory

Arithmetic Progressions and Chaos
in Linear Dynamics

Rodrigo Cardeccia and Santiago Muro

Abstract. We characterize chaotic linear operators on reflexive Banach
spaces in terms of the existence of long arithmetic progressions in the
sets of return times. We also show that this characterization does
not hold for arbitrary Banach spaces. To achieve this, we study F-
hypercyclicity for a family of subsets of the natural numbers associated
to the existence of arbitrarily long arithmetic progressions.

Mathematics Subject Classification. 47A16, 37B20, 37A45, 11B25, 47B37.

Keywords. Hypercylic operators, Chaotic operators, Furstenberg fami-
lies, Arithmetic progressions, Small periodic sets.

1. Introduction

A linear operator T is said to be hypercyclic provided that there is x ∈ X such
that OrbT (x) := {Tn(x) : n ∈ N} is dense in X and chaotic if it is hypercyclic
and has a dense set of periodic points. The notion of chaos was introduced by
Devaney [15] and first developed by Godefroy and Shapiro [17] in the context
of linear dynamics. Since then it was one of the most important concepts
in the dynamics of linear operators. Linear dynamics has experienced a
lively development in the last decades, see [6,20]. For instance we know that
every infinite dimensional and separable Banach space supports a hypercyclic
operator [2,7] while there are Banach spaces without chaotic operators [10],
there are hypercyclic operators T such that T ⊕ T is no longer hypercyclic
[14], etc. Over the last years much of the attention was given to frequent
hypercyclicity (see e.g. [4,5,25]) and more recently to F-hypercyclicity [8,9,
11–13], for more general families F of subsets of N.

Given a hereditary upward family F ⊆ P(N) (also called Furstenberg
family) we say that an operator is F-hypercyclic if there is x ∈ X for which
the sets NT (x,U) := {n ∈ N : Tn(x) ∈ U} of return times belong to F for any
nonempty open set U ⊆ X. Thus, for example, if we consider Inf , the family
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of infinite sets, Inf -hypercyclicity is simply hypercyclity and if D denotes the
family of sets with positive lower density, then D-hypercyclicity is frequent
hypercyclicity. Over the last years several notions of F-hypercyclicity were in-
troduced such as upper frequent hypercyclicity [28], reiterative hypercyclicity
[8] and more recently piecewise-syndetic hypercyclicity [26].

Although most of the main concepts in linear dynamics are known to
fit within the framework of F-hypercyclicity, there is one notable exception:
chaos.

In this context, the following question was posed by Bonilla and Grosse-
Erdmann.

Question 1.1. ([11]). Does there exist a hereditary upward family F such that
F-hypercyclicity is equivalent to chaos?

A related (weaker) question is the following.

Question 1.2. Is it possible to characterize chaos in terms of the behavior of
a single orbit?

In the present note, we introduce a notion of F-hypercyclicity related to the
existence of long arithmetic progressions and study its connection with chaos
and other concepts in linear dynamics. We answer Question 1.1 affirmatively
on separable reflexive Banach spaces and Question 1.2 on arbitrary separable
Fréchet spaces.

The motivation to study the relationship between arithmetic progres-
sions and chaotic operators is simple: if T is a chaotic operator and U is a
nonempty open set then the existence of periodic points in U implies that
NT (x,U) must have arbitrarily long arithmetic progressions for any hyper-
cyclic vector x.

The study of sets having arbitrarily long arithmetic progressions (or sets
in AP) had a great development over the last century and is a central task in
number theory and additive combinatorics. For instance, the celebrated Sze-
meredi Theorem [29] and the Green-Tao Theorem [18] establish that the sets
having positive lower density and the set of prime numbers belong to AP. On
the other hand, there isn’t, up to our knowledge, a systematic investigation
on sets having arbitrarily long arithmetic progressions with bounded common
difference. Nevertheless, as we shall see, these sets play an important roll in
linear dynamics. We will denote by APb this family of subsets, and we will
use it to answer Question 1.1 for weak∗-weak∗ continuous operators: such an
operator is chaotic if and only if it is APb-hypercyclic (Theorem 3.1). For
arbitrary operators the family APb can still be used to characterize chaos
in terms of a single orbit: T is chaotic if and only if there is x ∈ X such
that for every nonempty open set U , the return times set N(x,U) contains a
subsequence (nk)k ∈ APb for which the set {Tnk(x)} is weakly precompact.
As a corollary, we obtain a Transitivity Theorem (Theorem 3.14) for chaotic
operators.

The paper is organized as follows. In Sect. 2 we fix notation and recall
some facts about hereditary upward families and F-hypercyclicity. In Sect.
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3 we study APb-hypercyclic operators, operators having dense small peri-
odic sets and their connection to chaos. We prove that these concepts are
equivalent for weak∗-weak∗ continuous operators (Theorems 3.1 and 3.12)
and we show the existence of an APb-hypercyclic weighted shift on c0 which
is not chaotic (Theorem 3.19). We also prove that hypercyclic weighted shifts
with dense small periodic sets are chaotic (Theorem 3.17) and that APb-
hypercyclic operators cannot have isolated points in the spectrum (Corollary
3.25). In Sect. 4 we close the article with some comments and open questions.

2. Preliminaries

A family F ⊆ P(N) is called a hereditary upward family or a Furstenberg
family if A ⊆ B and A ∈ F , then B ∈ F (see for example [1,11]). Given a
Furstenberg family F we will say that T is F-hypercyclic provided that there
is x ∈ X such that for every nonempty open set U , NT (x,U) := {n : Tn(x) ∈
U} ∈ F . Such an x is called an F-hypercyclic vector.

The following hereditary upward families and notions of F-hypercyclicity
are the most widely studied in the literature:

1. A is said to have positive lower density (or A ∈ D) if

dens(A) := lim inf
n

#{k ≤ n : k ∈ A}
n

> 0,

and an operator is said to be frequently hypercyclic if T is D hypercyclic.
2. A is said to have positive upper density (or A ∈ D) if

lim sup
n

#{k ≤ n : k ∈ A}
n

> 0,

and an operator is said to be upper or (U-) frequently hypercyclic if T
is D-hypercyclic.

3. A is said to have positive upper Banach density (or A ∈ BD) if

lim
n

lim sup
k

#A ∩ [k, k + n]
n

> 0,

and an operator is said to be reiteratively hypercyclic if T is BD-
hypercyclic.
A hereditary upward family is said to be upper provided that ∅ /∈ F

and F can be written as
⋃

δ∈D

Fδ, with Fδ =
⋂

m∈M

Fδ,m,

where D is arbitrary but M is countable and such that the families Fδ,m and
F satisfy

• each Fδ,m is finitely hereditary upward, that means that for each A ∈
Fδ,m, there is a finite set F such that F ∩ A ⊆ B, then B ∈ Fδ,m;

• F is uniformly left invariant, that is, if A ∈ F then there is δ ∈ D such
that for every n, A − n ∈ Fδ.

The families Inf , D,BD are upper while D is not upper (see [11]).
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Theorem 2.1. ( Bonilla-Grosse Erdmann [11]). Let F be a an upper heredi-
tary upward family and T be a linear operator on a separable Fréchet space.
Then the following are equivalent:

1. T is F-hypercyclic.
2. For any nonempty open set V there is δ ∈ D such that for any nonempty

open set U there is x ∈ U with NT (x, V ) ∈ Fδ.
3. For any nonempty open set V there is δ ∈ D such that for every

nonempty open set U and m ∈ M there is x ∈ U with NT (x, V ) ∈ Fδ,m.
4. The set of F-hypercyclic points is residual.

3. APb-hypercyclic operators and chaotic operators

In this section we study APb-hypercyclic operators and their relationship
with chaotic operators. In Sect. 3.1 we prove our main result, which shows
that the weak∗-weak∗ continuous chaotic operators on dual Banach spaces
are exactly the APb-hypercyclic operators. To prove it, we will need some
preliminary results and we also have to study the concept of dense small
periodic sets. In Sect. 3.2 we study APb-hypercyclic weighted shifts oper-
ators and show that the assumption on weak∗-weak∗ continuity cannot be
dropped, by exhibiting an APb-hypercyclic operator on c0 that is not chaotic
(Theorem 3.19). In Sect. 3.3 we study the spectrum of APb-hypercyclic op-
erators. Unless explicitly stated, all Banach spaces considered may be real or
complex.

3.1. The main result

Theorem 3.1. Let X be a separable Banach space which is a dual space and
let T be a weak∗-weak∗ continuous operator on X. Then T is chaotic if and
only if there exists x ∈ X such that for each nonempty open set U , NT (x,U)
contains arbitrarily long arithmetic progressions of common difference k, for
some k ∈ N.

Note that the above equivalence holds for arbitrary operators on reflex-
ive spaces. Theorem 3.1 is a direct consequence of Theorem 3.12 below. Let
us first define the Furstenberg family APb. Recall that the arithmetic pro-
gression of length m + 1 (m ∈ N), common difference k ∈ N and initial term
a ∈ N is the subset of N of the form {a, a + k, a + 2k, . . . , a + mk}.

Definition 3.2. We will denote by APb the family of subsets of the natural
numbers that contain arbitrarily long arithmetic progressions of bounded
common difference (i.e. there are arbitrarily long arithmetic progressions of
common difference bounded by k, for some fixed k ∈ N).

The family APb is an upper Furstenberg family: it is the union of the
families (APb)n of subsets having arbitrarily long arithmetic progressions
with fixed step n, and (APb)n is the intersection of the families (APb)n,m of
subsets having arithmetic progressions of fixed step n with length m.

The next proposition is similar to Theorem 2.1, but simpler as the proof
does not rely on Baire’s category Theorem. For the sake of the completeness,
we include the proof here.
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Proposition 3.3. Let T be a mapping on a separable Fréchet space. Then the
following assertions are equivalent.

(1) T is hypercyclic and every hypercyclic vector is APb-hypercyclic.
(2) There is an APb-hypercyclic vector.
(3) T is hypercyclic and for every nonempty open set U there is k such that

for every m ,
⋂m

j=0 T−jk(U) �= ∅.

(4) For every nonempty open set V , there is k such that for every nonempty
open set U and m, there are xm ∈ U and km with T km+jk(xm) ∈ V for
every 0 ≤ j ≤ m.

(5) For every pair of nonempty open sets U and V there is k such that for
every m there are km and xm ∈ U with T km+jk(xm) ∈ V for every
0 ≤ j ≤ m.

(6) The set of APb-hypercyclic vectors is residual.

Proof. (1) ⇒ (2) is immediate.
(2) ⇒ (3). Let x be an APb-hypercyclic vector and U be a nonempty

open set. Thus there is k such that, for every m there is km with T km+jk(x) ∈
U for every 0 ≤ j ≤ m. In particular, T km(x) ∈ ⋂m

j=0 T−jk(U).
(3) ⇒ (4). Let V be a nonempty set and k such that for every m,⋂m

j=0 T−jk(V ) �= ∅ is a nonempty open set. Let U be a nonempty open,
x ∈ U be a hypercyclic vector and m ∈ N. Thus, there is km ∈ N such that
T km(x) ∈ ⋂m

j=0 T−jk(V ). Equivalently, T km+jk(x) ∈ V for every 0 ≤ j ≤ m.
(4) ⇒ (5) is immediate.
(5) ⇒ (3). Clearly T is transitive and hence hypercyclic. Let U be a

nonempty open set. Thus, there is k such that for every m, there are km

and xm ∈ U with T km+jk(xm) ∈ U for every 0 ≤ j ≤ m. In particular,
T km(xm) ∈ ⋂m

j=1 T−jk(U).
(3) ⇒ (1). Let x be a hypercyclic vector and U be a nonempty open set.

Let k such that
⋂m

j=0 T−jk(U) is a nonempty open set for every m. Let m ∈ N,
then since x is hypercyclic there is km such that T km(x) ∈ ⋂m

j=0 T−jk(U).
Equivalently, T km+jk(x) ∈ U for every 0 ≤ j ≤ m.

(1) ⇒ (6) follows from the fact that the set of hypercyclic vectors is
residual.

(6) ⇒ (2) is immediate. �

In [25] it was shown that chaotic operators are reiteratively hypercyclic.
The proof given there essentially proves the following (which is also an im-
mediate consequence of equivalence (3) in the above proposition).

Proposition 3.4. Let T be a chaotic operator. Then T is APb-hypercyclic.

On the other hand, there are subsets of the natural numbers (for in-
stance the square free numbers) that have positive lower density but do not
belong to APb. So we cannot conclude that frequently hypercyclic operators
are APb-hypercyclic. There are also chaotic operators that are not upper
frequently hypercyclic [25]. Therefore there are APb-hypercyclic operators
that are not upper frequent hypercyclic. Moreover, since there are frequently
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hypercyclic operators on Hilbert spaces that are not chaotic [6, Section 6.5],
by Theorem 3.1 frequent hypercyclicity does not imply APb-hypercyclicity.

Very recently, it has been proven in [16, Theorem 2.5] that, for some
Furstenberg families F , if T is F-hypercyclic then T ⊕T is also F-hypercyclic.
That theorem may be applied for APb, but in this special case we have a
simpler proof.

Proposition 3.5. Let T be an APb-hypercyclic operator. Then
(i) T is reiteratively hypercyclic and weakly mixing.
(ii) T ⊕ T . . . ⊕ T︸ ︷︷ ︸

n

is APb-hypercyclic for every n.

Proof. Since APb sets have positive upper Banach density, T is reiteratively
hypercyclic. Moreover, by [8], reiteratively hypercyclic operators are weakly
mixing. This proves (i).

Let n ∈ N. Since T is weakly mixing, then T ⊕ T . . . ⊕ T︸ ︷︷ ︸
n

is hypercyclic.

By Proposition 3.3, to prove (ii) it suffices to show that, for every tuple
of nonempty open sets U1 . . . , Un, there is k, such that for every m and i,⋂m

j=0 T−jkUi is nonempty.
Let U1 . . . Un be nonempty open sets. Since T is APb-hypercyclic there

is for every i some ki such that for every m,
⋂m

j=0 T−jki(Ui) is nonempty. In
particular, if we consider k =

∏n
j=0 kj , we have that for every m and every

i,
⋂m

j=0 T−jk(Ui) is nonempty. �

Remark 3.6. In [13] the authors studied F-hypercyclicity for the family F =
AP of sets having arbitrarily large arithmetic progressions (of any common
difference). Although at first sight it may seem to be a concept very similar
to APb-hypercyclicity, it is not. It turns out that while APb-hypercyclicity is
related to chaos, AP-hypercyclicity is equivalent to multiple recurrence plus
hypercyclicity. It is shown there, for example, that such operators may even
fail to be weakly mixing (see [13, Theorem 5.1]).

In order to prove Theorem 3.1, we need the concept of dense small
periodic sets, which is a natural generalization of density of periodic points.
The notion was introduced by Huan and Ye in [21] for non linear dynamics
on compact spaces. We will say that a nonempty subset Y is a periodic set
for T if T k(Y ) ⊆ Y for some k > 0.

Definition 3.7. A mapping T has dense small periodic sets provided that for
every nonempty open set U there is a closed periodic set Y ⊆ U .

Proposition 3.8. A mapping T has dense small periodic sets if and only if for
every nonempty open set U there is k such that

⋂∞
j=1 T−jk(U) �= ∅.

In particular if T is hypercyclic and has dense small periodic sets then
it is APb-hypercyclic.

Proof. Let U be a nonempty open set and consider a nonempty open set
V ⊆ U such that V ⊆ V ⊆ U . Let x ∈ ⋂∞

j=1 T−jk(V ). Then the set Y =
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OrbTk(x) is a closed subset of U which satisfies T k(Y ) ⊆ Y . Reciprocally
given a nonempty open set U and Y ⊆ U a closed subset which is T k-
invariant, every x ∈ Y belongs to

⋂∞
j=1 T−jk(U).

The last assertion follows from Proposition 3.3. �
In Sect. 3.2 we will present an example of an APb-hypercyclic operator

that does not have dense small periodic sets.
The next lemma, which is purely linear as it exploits the linearity of

both the operator and the space, is an important ingredient for the proof of
the main theorem.

Lemma 3.9. Let Y be a k-periodic set for an operator T on a Fréchet space
X such that either

i) Y is weakly compact or
ii) X is a dual space, Y is weak∗-compact and T is weak∗-weak∗ continuous.

Then there is a k-periodic vector in co(Y )
τ
, where τ denotes weak or weak

star topology, respectively.

Proof. The proof is an elementary application of the Schauder-Tychonoff
fixed point Theorem for locally convex spaces [30].

Let Y be a k-periodic set. Then co(Y )
τ

is T k-invariant. Moreover,
co(Y )

τ
is τ -compact (by either the Krein-Šmulian Theorem [22] or [27, Chap-

ter II, 4.3]). Therefore, the Schauder-Tychonoff Theorem assures the exis-
tence of a fixed point of T k in co(Y )

τ
. This fixed point is a k-periodic vector

for T . �

For a subset A of a Banach space,
◦

A denotes the norm interior of A.

Proposition 3.10. Let T be a hypercyclic operator on a separable Banach
space. Consider the following statements.

i) T is APb-hypercyclic.
ii) For each nonempty open set U ⊆ X there is a closed periodic set of T ∗∗

contained in
◦

U
w∗

⊆ X∗∗.
iii) For each nonempty open set U ⊆ X there is k such that

∞⋂

j=1

(T ∗∗)−jk

( ◦
U

w∗
)

�= ∅.

iv) The norm closure of the periodic points of T ∗∗ contains X.
Then i) ⇒ ii) ⇔ iii) ⇔ iv).

Proof. i) ⇒ ii). Let U ⊆ X be a nonempty open set. If V = Bs(x0) ⊆
Br(x0) ⊆ U , with 0 < s < r, then V ⊆ U and V

w∗
⊆

◦
U

w∗
is a weak∗-

compact set in X∗∗. Let x ∈ V such that N(x, V ) ∈ APb. Thus, there are
k ∈ N and a sequence (an)n, such that T an+ik(x) ∈ V for every i ≤ n. There
is a weak∗-limit point y ∈ V

w∗
of the sequence (T an(x))n

Let Y = Orb(T ∗∗)k(y)
w∗

, the weak∗-closure of the orbit of y under
(T ∗∗)k. This set is clearly (T ∗∗)k-invariant, so we only need to show that
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Y ⊆
◦

U
w∗

. It suffices to show that for every m, (T ∗∗)km(y) ∈ V
w∗

. Fix
m ∈ N and notice that since T ∗∗ is weak∗-weak∗ continuous then (T ∗∗)km(y)
is a weak∗-limit point of ((T ∗∗)an+km(x))n = (T an+km(x))n. Since for any
n ≥ m, we have that T an+km(x) ∈ V , we conclude that Tmk(y) ∈ V

w∗
.

ii) ⇔ iii) Follows as in the proof of Proposition 3.8.
ii) ⇔ iv) Since by ii) any ball of the bidual X∗∗ centered at a point

of X contains a weak∗-compact periodic set, statement iv) holds by Lemma
3.9. The converse is immediate. �

Note that, in particular, the above proposition proves Theorem 3.1 for
reflexive spaces. Let us see that we can push this argument a little further.

In [21, Proposition 3.2] Huang and Ye studied the relationship be-
tween compact dynamical systems having dense small periodic sets and sets
Nf (x,U) having arbitrarily long arithmetic progressions with fixed step (see
also [24]). The following lemma is a generalization of their result to dynamical
systems on infinite dimensional spaces.

Lemma 3.11. Let X be a separable Banach space which is a dual space and
let T : X → X be a weak∗-weak∗ continuous mapping. Then T is APb-
hypercyclic if and only if T is hypercyclic and has dense small periodic sets.

Proof. One implication is Proposition 3.8. For the converse, using the same
argument as in the proof of i) ⇒ ii) in Proposition 3.10, it may be seen that
if T is a weak∗-weak∗ continuous mapping, then for each nonempty open set
U ⊆ X there is a closed periodic set of T contained in U ⊆ X. �

We can now prove our main theorem, which can be restated as follows.

Theorem 3.12. Let X be a separable Banach space which is a dual space and
let T : X → X be a weak∗-weak∗ continuous linear operator. The following
assertions are equivalent:

1. T is APb-hypercyclic.
2. T is hypercyclic and has dense small periodic sets.
3. T is chaotic.

Proof. (1)⇔ (2) is Lemma 3.11 and (3)⇒(2) is immediate.
(2)⇒ (3). Let U be a nonempty open set. We must show that T has a

periodic point in U . Consider V ⊆ U such that V is nonempty, open, convex,
weak∗-precompact and such that V ⊆ U . Let Y ⊆ V be a k-periodic set.

Then by Lemma 3.9, T has a k-periodic point in co(Y )
w∗

⊆ U . �

In a similar way we have.

Corollary 3.13. Let X be a Fréchet space and T a linear operator that has
dense small weakly compact periodic sets. Then T has a dense set of periodic
points.

If we apply Proposition 3.3 we obtain a transitivity theorem for chaotic
operators.
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Theorem 3.14. (A transitivity Theorem for chaotic operators.). Let X be a
separable Banach space which is a dual space and let T : X → X be weak∗-
weak∗ continuous. Then the following are equivalent:

1. T is chaotic.
2. For every pair of nonempty open sets U, V , there is k such that for every

m there are x ∈ U and km with T km+jk(x) ∈ V for every 0 ≤ j ≤ m.
3. T is hypercyclic and for every nonempty open set U there is k such that⋂m

j=1 T−jk(U) �= ∅ for every m.

If the operator is not weak∗-weak∗ continuous we still can characterize
chaos in terms of the behavior of a single orbit.

Theorem 3.15. (A characterization in terms of a single orbit). Let X be sep-
arable Fréchet space. The following are equivalent:

1. Every hypercyclic vector x satisfies that for every nonempty open set U
there is (an)n ∈ APb, such that (T anx)n converges to an element in U .

2. Every hypercyclic vector x satisfies that for every nonempty open set
U there is (an)n ∈ APb, such that (an)n ⊆ NT (x,U) and (T anx)n is
contained in a compact set of X.

3. There exists a hypercyclic vector x such that for every nonempty open
set U there is (an)n ∈ APb, such that (an)n ⊆ NT (x,U) and (T anx)n

is contained in a weakly compact set of X.
4. T is chaotic.

Proof. (1) ⇒(2) ⇒(3) is immediate.
(3) ⇒(4). By Corollary 3.13, it suffices to show that T has dense small

weakly compact periodic sets. So let U be a nonempty open set and consider
a nonempty convex open set V such that V ⊆ U . By assumption there is
k > 0 and a sequence (kn)n such that for each n, T kn+ikx ∈ V for every
i ≤ n and such that K := {T kn+jkx : 0 ≤ j ≤ n} is weakly precompact. Let
y be a weak accumulation point of {T knx : n ∈ N} ⊆ K. Then y ∈ K

w
. Since

V is convex it follows that y ∈ U . Proceeding as in the proof of Lemma 3.11
(but using that T is weak-weak continuous) we prove that Y = OrbTk(y)

w

is a periodic set contained in U . Moreover, Y is weakly compact because
Tmk(y) ∈ K

w
for every m.

(4)⇒(1). Let (ρn)n be an increasing fundamental system of seminorms.
Let x be a hypercyclic vector and U be a nonempty open set. Let y ∈ U
be a k-periodic vector. Since y is periodic, there is, for each m, a nonempty
open set Um around y such that ρm(T jkz − y) < 1

m for every 0 ≤ j ≤ m and
z ∈ Um.

For each m let km ∈ N(x,Um). Thus, km + jk ∈ N(x,U) for every
0 ≤ j ≤ m and ρm(T km+jk(x) − y) < 1

m for every 0 ≤ j ≤ m. Let (an)n be
the sequence formed by

⋃
m,0≤j≤m{km + jk}. It follows that (an)n ∈ APb

and that T an(x) → y. �

Remark 3.16. According to [23, Definition 1.25] a vector x ∈ X is said to
be quasiperiodic if for every ε > 0 there is p ∈ N such that ‖Tnp(x) − x‖ <
ε for every n ∈ N. On the other hand, the concept of F-recurrence was
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recently introduced in [12]. A vector x is said to be F-recurrent if for every
neighborhood U of x, N(x,U) ∈ F . Then a vector is quasiperiodic if and
only if it is F-recurrent with respect to the family F of sets of the natural
numbers that contain pN for some p ≥ 1. It is immediate that operators
having a dense set of quasiperiodic vectors have dense small periodic sets.
Therefore, the proof of Theorem 3.12 shows that on dual Banach spaces,
a linear weak∗-weak∗ continuous operator has a dense set of quasiperiodic
vectors if and only if it has a dense set of periodic vectors.

3.2. Weighted Shifts

In this subsection we show that every hypercyclic weighted shift with dense
small periodic sets is chaotic. We also show the existence of a weighted shift
operator on c0 that is APb-hypercyclic but does not have dense small periodic
sets and hence it is not chaotic (Theorem 3.19).

It is well known [19, Theorem 8] that a backward shift defined on a
Fréchet space with unconditional basis {en} is chaotic if and only if

∞∑

n=1

en ∈ X. (1)

Theorem 3.17. Let {en}n be an unconditional basis on a Fréchet space X and
let B : X → X be the backward shift defined in {en}. Then B is chaotic if
and only if it has dense small periodic sets.

Proof. By (1) it is enough to show that
∑∞

n=1 en is convergent.
Let ρ be a continuous seminorm such that for every x, |x1| ≤ ρ(x). Since

B has dense small periodic sets there is k ∈ N and x such that Bkn(x) ∈ 1
4{y :

ρ(y) < 1} + e1 for every n ≥ 0. Thus, |x1| ≥ 1 − 1
4 and ρ

(
Bnk(x) − x

)
< 1

2

for every n ∈ N. Then we have that |x1 − x1+nk| = |e∗
1(x − Bnk(x))| < 1

2
for every n. Thus, x1+nk = (x1 + δn), where δn is a number of modulus less
than 1

2 . Note that, in particular we get that |x1+nk| > 1 − 1
4 − 1

2 and hence
| 1
x1+nk

| < 4 for every n.
We consider now the series

∑∞
n=1 e1+nk =

∑∞
n=1

1
x1+δn

x1+nke1+nk,

which is (unconditionally) convergent by the unconditionality of {en}. Fi-
nally we notice that

∞∑

n=1

en =
k−1∑

j=0

∑

n≥1

e1+nk−j ,

which is convergent, because
∑

n≥1 e1+nk−j = Bj (
∑∞

n=1 e1+nk) for each j.
Therefore B is chaotic. �

Corollary 3.18. Let {en}n be an unconditional basis on a Fréchet space X
and let Bw : X → X be a weighted backward shift defined in {en}. Then Bw

is chaotic if and only if it has dense small periodic sets.

On the other hand we show next that there are weighted backward shifts
on c0 that are APb-hypercylic but that are neither upper frequently hyper-
cyclic nor chaotic. In [8] the authors exhibited an example of a reiteratively
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hypercyclic weighted shift on c0 that is not upper frequently hypercyclic. A
closer look at their proof will allow us to show that their operator is APb-
hypercyclic.

Theorem 3.19. Let S =
⋃

l,j [l10j−j, l10j+j] and (wn) the sequence of weights
defined by

wn =

⎧
⎪⎨

⎪⎩

2 if n ∈ S∏n−1
l=1 w−1

l if n ∈ (S + 1) \ S

1 else.

Then T := Bw : c0 → c0 is APb-hypercyclic and does not have dense small
periodic sets. In particular it is not chaotic.

The main argument used by the authors to prove that T is reiteratively
hypercyclic is that T satisfies an F-hypercyclicity criterion applied to the
family of sets with positive upper Banach density. Let us recall the criterion
restricted to weighted shifts on �p or c0.

Theorem 3.20. (Bès, Menet, Peris, Puig). Let F be a Furstenberg family such
that there exist disjoint sets (Ak)k ⊆ F such that

(i) for any j ∈ Ak, any j′ ∈ Ak′ , j �= j′ we have that |j − j′| ≥ max{k, k′};
(ii) for any k′ ≥ 0 and any k > k′

∑

n∈Ak+k′

en∏n
v=1 wv

∈ X and
∑

n∈Ak+k′

en∏n
v=1 wv

k→∞−−−−→ 0;

(iii) There are (Ck,l)k,l such that for every k′ ≥ 0, any k > k′ and any l ≥ 1,

sup
j∈Al

∥∥∥∥∥∥

∑

n∈Ak−j

en+k′∏n
v=1 wv+k′

∥∥∥∥∥∥
≤ Ck,l

and such that supl Ck,l → 0 when k → ∞ and such that for any k,
Ck,l → 0 when l → ∞.

Then Bw is F-hypercyclic in X = �p or c0.

Proof of Theorem 3.19. Bès et. al. [8] proved that the operator is not upper
frequently hypercyclic. Since a weighted backward shift on c0 is chaotic if and
only if it has dense small periodic sets and since chaotic weighted backward
shifts are upper frequently hypercyclic, we conclude that the operator does
not have dense small periodic sets.

In [8], sets (Ak)k satisfying i− iii) of the above criterion and of positive
upper Banach density were constructed. To prove that T is APb-hypercyclic,
it suffices to show that the sets (Ak)k chosen by the authors belong to APb.

Each Ak is defined as
⋃

j∈φ−1(k) Fj , where the φ−1(k) are disjoint infinite
subsets of N and the Fj are defined as Fj+1 := {10j0 + 102kl : 0 ≤ l ≤ l0},
where l0 > j and j0 is large enough (they are defined inductively). Thus,
for each j ∈ φ−1(k) each set Fj+1 is an arithmetic progression of length
greater than j with step 102k. Since the set φ−1(k) is infinite, we conclude
that the sets Ak have arbitrarily long arithmetic progressions with fixed
step 102k. �
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It is worth mentioning that in [11, Theorem 5.3] a simpler characteriza-
tion of F-hypercyclic unilateral weighted backward shifts for upper families
was proven.

3.3. The spectrum of an APb-hypercyclic operator

In this subsection we study the spectrum of APb-hypercyclic operators. Re-
call that chaotic operators are easily seen to have perfect spectrum. In [28],
Shkarin presented a very ingenious argument to prove that frequently hyper-
cyclic operators share the same property. We will see that APb-hypercyclic
operators also have perfect spectrum.

Recall that an operator is said to be quasinilpotent provided that ‖Tn‖ 1
n

→ 0. The proof of the next lemma is a modification of an analogous result
for frequently hypercyclic operators (see [28] or [20, Lemma 9.38]).

Lemma 3.21. Let X be a real or complex Banach space. Let S be an operator,
x∗ ∈ X∗ \ {0} and U = {y : Re(〈y, x∗〉) > 0, Re(〈S(y), x∗〉) < 0}. Suppose
that for some x ∈ U ,

lim inf
k→∞

|NS(x,U) ∩ [0, k]|
k + 1

= μ > 0. (2)

Then S − Id is not quasinilpotent.

Proof. Replacing x∗ by x∗
Re(〈x,x∗〉) we can suppose that Re(〈x, x∗〉) = 1.

Suppose that S − Id is quasinilpotent. Then, given ε > 0, there is some
constant M > 0 such that ‖(S − Id)k‖ ≤ Mεk, for every k. Thus we have for
z ∈ C, and |z| ≤ R that

∞∑

k=0

|Re(〈(S − Id)kx, x∗〉)|
∣∣∣∣
z(z − 1) . . . (z − k + 1)

k!

∣∣∣∣

≤ M‖x‖‖x∗‖
∞∑

k=0

εk R(R + 1) . . . (R + k − 1)
k!

=
M‖x‖‖x∗‖
(1 − ε)R

where, for the last equality, we have used the generalized binomial theorem.
This implies that

f(z) =
∞∑

k=0

Re(〈(S − Id)kx, x∗〉)z(z − 1) . . . (z − k + 1)
k!

defines an entire function of exponential type 0, such that f(0)=Re(〈x, x∗〉)=
1. Therefore, as a consequence of Jensen’s formula, the number of zeros of f
on the disk {|z| < R}, N(R) is bounded above by

log(M‖x‖‖x∗‖(1 − ε)−2R)
log 2

= c − 2R
log(1 − ε)

log 2
.

Thus, we have

N(k + 1)
k + 1

≤ c

k + 1
− 2(k + 1) log(1 − ε)

(k + 1) log 2
→ −2 log(1 − ε)

log 2
.



IEOT Arithmetic Progressions and Chaos in Linear Dynamics Page 13 of 18 11

This contradicts (2) because ε can be chosen arbitrarily close to 0, and
|NS(x,U) ∩ [0, k]| ≤ N(k + 1). Indeed, since

f(n) =
n∑

k=0

Re(〈(S − Id)kx, x∗〉)n(n − 1) . . . (n − k + 1)
k!

= Re(〈
n∑

k=0

(
n

k

)
(S − Id)kIdn−kx, x∗〉) = Re(〈Snx, x∗〉),

we have that n ∈ NS(x,U) if and only if f(n) > 0 and f(n + 1) < 0. Finally,
since f |R is real valued, f must have at least a zero in the open interval
(n, n + 1). �

We show now that APb-hypercyclic operators satisfy Ansari’s property.

Proposition 3.22. Let p ∈ N. Then, an operator T on a Fréchet space is
APb-hypercyclic if and only if T p is APb-hypercyclic. Moreover they share
the APb-hypercyclic vectors.

Proof. Assume that T is APb-hypercyclic, it follows by Ansari’s Theorem
that T p is hypercyclic. Since, by Proposition 3.3, for each nonempty open
set U there is k such that for every m ,

⋂m
j=1 T−jk(U) �= ∅, we have that for

every m ,
⋂m

j=1 T−jkp(U) �= ∅. Applying again Proposition 3.3, we conclude
that T p is APb-hypercyclic. The other implication is immediate.

By Proposition 3.3 every hypercyclic vector of an APb-hypercyclic oper-
ator is an APb-hypercyclic vector and by Ansari’s Theorem the hypercyclic
vectors of T and T p coincide. We conclude that T and T p have the same
APb-hypercyclic vectors. �

Note that, in contrast to the case of powers, the rotations of APb-
hypercyclic operators need not to be APb-hypercyclic.

Remark 3.23. There exist an APb-hypercyclic operator on a complex Hilbert
space and |λ| = 1 such that λT is not APb-hypercyclic.

Proof. It is known that there are a chaotic operator T in a Hilbert space and
λ ∈ T such that λT is not chaotic, see [3]. Hence, T is APb-hypercyclic and
by Theorem 3.12, λT is not APb-hypercyclic. �

Note that the above remark in particular implies that the family APb

has neither the Ramsey property nor the CuSP property, because for families
F having one of these two properties, rotations and powers of F-hypercyclic
operators are again F-hypercyclic (see [12,28]).

Theorem 3.24. Let T be an APb-hypercyclic operator on a real or complex
Banach space. Then T − λId is not quasinilpotent for any |λ| = 1.

Proof. Let λ = e2πiθ. Note that in the real case, we have just to prove the
cases θ = 1 and θ = 1

2 .
Suppose first that θ = p

q is a rational angle. Note that if T − λId is
quasinilpotent and q ∈ N (or q ∈ {1, 2} for the real case), then (T ∗∗)q −
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λqIdX∗∗ = (T q)∗∗ − IdX∗∗ is a quasinilpotent operator on X∗∗. Indeed, if Gq

denotes the set of q-th roots of 1, then

(T q)∗∗ − IdX∗∗ =
∏

ξ∈Gq

(T ∗∗ − ξIdX∗∗) .

Therefore, as n → ∞,

‖((T q)∗∗ − IdX∗∗)n‖ 1
n ≤

∏

ξ∈Gq

‖(T ∗∗ − ξIdX∗∗)n‖ 1
n

≤ ‖(T ∗∗ − λIdX∗∗)n‖ 1
n ·

∏

ξ∈Gq,ξ �=λ

‖T ∗∗ − ξIdX∗∗‖

= ‖(T − λId)n‖ 1
n ·

∏

ξ∈Gq,ξ �=λ

‖T ∗∗ − ξIdX∗∗‖ → 0.

We will apply the above lemma to S = (T q)∗∗. Let x∗ ∈ X∗ \ {0} and
U = {y ∈ X∗∗ : Re(〈y, x∗〉) > 0, Re(〈S(y), x∗〉) < 0}. Note that since T q is
hypercyclic, U �= ∅ and, moreover, it contains a nonempty open ball V of X

such that
◦

V
w∗

⊆ U .
Then, since T q is APb-hypercyclic, Proposition 3.10 implies that there

are x ∈
◦

V
w∗

and m ∈ N for which Sjm(x) ∈
◦

V
w∗

for every j ∈ N. In
particular lim infk→∞

|NS(x,U)∩[0,k]|
k+1 ≥ 1

m > 0.
Therefore we have that S − Id and hence T − λId is not quasinilpotent

for |λ| = 1 with rational angle.
It remains to prove the case when X is a complex space and θ is an

irrational angle. Note that it suffices to prove that S−Id is not quasinilpotent,
where S = e−2πiθT ∗∗.

Let x∗ ∈ X∗\{0} and U = {y ∈ X∗∗ : Re(〈y, x∗〉) > 0, Re(〈S(y), x∗〉) <
0} be the open set of X∗∗ defined in Lemma 3.21 for S. Since e−2πiθT is
hypercyclic, U is nonempty and contains a nonempty open ball V of X such

that
◦

V
w∗

⊆ U .
For δ > 0, let Vδ := {x ∈ V : d(x, V c) > δ and ‖x‖ < 1/δ}, which is a

nonempty open subset of V for δ small enough. Since T is APb-hypercyclic, by

Proposition 3.10, there is some x ∈
◦

Vδ
w∗

and m such that T jmx ∈
◦

Vδ
w∗

⊆ U
for every j ∈ N.

We claim that if ε < δ2/4π, y ∈
◦

Vδ
w∗

and ϕ ∈ p + (−ε, ε) for some

p ∈ Z, then e2πiϕy ∈
◦

V
w∗

⊆ U . Indeed, if z /∈
◦

V
w∗

,

‖e2πiϕy − z‖ ≥ ‖y − z‖ − ‖y(1 − e2πiϕ)‖ ≥ δ − 1
δ
ε2π > δ/2.

Define now

A := {j : −jmθ ∈ p + (−ε, ε) for some p ∈ Z}.

Since mθ is irrational, dens(A) > 0, and by the claim,

A ⊆ {j : Smjx ∈ U}.
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Thus

0 < dens(A) ≤ m · dens(NS(x,U)).

Therefore by Lemma 3.21, S − Id is not quasinilpotent. �

Corollary 3.25. The spectrum of an APb-hypercyclic operator cannot have
isolated points.

Proof. If λ is an isolated point of the spectrum of a hypercyclic operator
then by the Riesz decomposition Theorem and the fact that the property
of having dense small periodic sets is preserved under quasiconjugacies, we
may construct an operator S having dense small periodic sets and such that
σ(T ) = λ. Since T is hypercyclic, it would be of the form T = S + λI for
some |λ| = 1. By the spectral radius formula, S would be quasinilpotent,
contradicting Theorem 3.24. �

Corollary 3.26. There are no APb-hypercyclic operators on hereditarily inde-
composable Banach spaces.

4. Final comments and questions

We would like to end this note with some questions related to the results
discussed in the preceding paragraphs.

The proof of Theorem 3.12 relies on the normability of the space.

Question 4.1. Does Theorem 3.12 hold on arbitrary Fréchet spaces?

In Theorem 3.19 we showed the existence of an APb-hypercyclic oper-
ator that is not chaotic. By Theorem 3.17 the operator does not have dense
small periodic sets. In fact, we could not come up with an operator that has
dense small periodic sets and does not have a dense set of periodic points.

Question 4.2. Is any hypercyclic operator with dense small periodic sets nec-
essarily chaotic. Or, more generally, does any operator with dense small pe-
riodic sets have a dense set of periodic points?

We answered Question 1.1 for a wide class of operators and spaces.
However the general question whether there exists a Furstenberg family F
for which F-hypercyclicity is equivalent to chaos remains open.

The following diagram shows the known implications between the con-
cepts appearing in this article. A solid arrow means that the implication
holds. A dashed arrow means that the implication holds with some extra
hypothesis (here in both cases weak∗-weak∗ continuity of the operator suf-
fices). For the dotted line we don’t know if the implication holds in general
(Question 4.2) and all other implications are known to be strict.
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