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Abstract: Background: The Ziziphus mistol fruit (vulgar name mistol) is used in northwestern Ar-
gentina in traditional food and beverage preparations and popular medicines for liver and respiratory
disorders. Aims: The aim of this research was to evaluate the hypoglycemic and anti-inflammatory
activity in pulp powders and sub-products (skin and seeds) of mistol fruit, along with their toxicity.
Methods: Powders from mistol seeds, pulp, and skin were obtained. Antioxidant capacity and
inhibitory activity against key enzymes involved in metabolic syndrome were determined by in vitro
assays. Results: The mistol powders obtained from the different fruit parts reduced glucose bioac-
cessibility. Before and after simulated gastroduodenal digestion, the polyphenol-enriched extracts
(PEE) obtained from mistol powders increased glucose uptake by yeast cells and inhibited the pivotal
enzymes of the inflammatory pathway (cyclooxygenase-2, lipooxygenase-1, and phospholipase A2).
The analyzed mistol powders did not show acute toxicity or genotoxicity in model organisms and
cell cultures. Conclusions: These results evince the potentiality of both the pulp from Z. mistol fruits
and residual biomass (seeds and skin) to obtain biofunctional powders to use as supplements for
metabolic disorders associated with chronic diseases.

Keywords: Ziziphus mistol; hypoglycemic effect; anti-inflammatory effect; pulp powders; by-products
powders

1. Introduction

Chaco forest in Argentina is undergoing a significant process of degradation of its
biodiversity due to deforestation, desertification, and changes in the land use [1]. The
genus Ziziphus includes approximately 170 pantropical species, 25 of which are native
to the Americas and the Caribbean [2]. The genus is represented by trees and shrubs
that can be found mainly in arid environments, due to their ability to adapt to water
shortage. Various studies on the reproductive biology of the genus have shown a broad
diversity in the reproductive system of Ziziphus [3]. Ziziphus mistol Griseb (Rhamnaceae),
commonly known as mistol, is an edible tree that grows in the Chaco forest; together with
Aspidosperma quebracho-blanco, Cercidium praecox Burkart and Carter, Geoffroea decorticans
Burk, and Prosopis nigra (Griseb) Hieron [4], it constitutes the essential matrix corresponding
to the semi-arid Chaco woodland. It is a thorny deciduous honey plant (10–15 m tall)
widely spread throughout Perú, Bolivia, Paraguay, and Argentina (Figure 1). It has a
smooth bark and its branches are pubescent, zigzagging with long, sharp spines located
in pairs at the nodes. It is a semi-evergreen tree with simple, deciduous leather-looking
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leaves and margins that are barely toothed and parallel to each other. The fruit is a globose
drupe approximately 1.5 cm in diameter with a pasty and sweet pulp [5]. Although the
Z. mistol tree is an endangered species, it is classified as a species with “insufficient data”
(DD) according to the IUCN [6,7] red list. That is a consequence of the anthropogenic
action throughout the last decades that has degraded Chaco forest natural resources at
the expense of promoting the advancement of soybean crops and the extension of the
agricultural border. Although the mistol is not extensively cultivated, it provides a wide
variety of non-wood forest products derived from fruits, bark, and leaves. The fruits can be
used as food in the manufacture of typical foods and drinks in northwest Argentina, and in
traditional medicines for liver and respiratory disorders. The fruits and leaves are used
as expectorants, disinfectants, skin healings, and antidotes for poisonous insect bites. The
bark is astringent, contains saponins, and is used by locals to wash clothes and used to feed
domestic animals [8]. The fruit is a globose drupe, reddish-brown, approximately 1.5 cm in
diameter with a sweet, pasty pulp [8]. Mistol powders were previously studied for their
nutritional and phytochemical composition and functional properties [8]. According to
this study, the different mistol fruit powders have low sodium and lipid contents, as well
as high contents of proteins, potassium, and fibers. Additionally, all of them, particularly
the seed powder, have a high level of flavonoid compounds. Chalcones and derivatives of
quercetin, apigenin, and kaempferol are highlighted in the chromatographic profiles [8].
The polyphenolic-enriched extracts obtained from mistol seed, pulp, and skin powders
have an antioxidant capacity and inhibitory activity on key enzymes, such as α-glucosidase,
α-amylase, and lipase [8], involved in the metabolic syndrome.
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Recent studies have shown that there is a relationship between inflammation and
metabolic abnormalities in diabetes, which leads to endothelial injury and the develop-
ment of vascular complications [9]. When produced chronically in diabetic patients, the
inflammatory mediators produced by the arachidonic acid metabolic pathway trigger
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pathological processes that culminate in major complications. A recent analysis showed
an association between higher levels of inflammatory markers and the incidence of type II
diabetes mellitus [10]. For this reason, the search for natural compounds that inhibit the
enzymes responsible for the production of these mediators is proposed as a key therapeutic
objective to prevent or improve renal and cardiovascular complications in diabetes [11].
Considering this background and the functional traits of Z. mistol fruits, the present work
aimed to evaluate the hypoglycemic activity and inhibitory activity of key enzymes in the
inflammatory pathway by polyphenols from seed, pulp, and skin powders of Z. mistol.

2. Materials and Methods
2.1. Plant Material and Powders

Ripe fruits of Z. mistol Griseb were collected from different wild trees from February
to March 2015 in Fernández, Santiago del Estero, Argentina (27◦55′25.1′′ S; 63◦53′7.0′′ W).
The plant material was identified by Dr. Soledad Cuello, a botanical taxonomy expert, and
entered into the herbarium. The correct name of the selected species was checked in “The
World Flora Online” [12]. Seeds, pulp, and skin were obtained from the fruits, lyophilized,
and crushed to powders, which were then vacuum packed and kept at −20 ◦C.

2.2. Polyphenols-Enriched Extracts

The polyphenols-enriched extracts (PEE) were obtained from pulp, seed, and skin
powders of Z. mistol fruits. The extract production (1 g powder in 5 mL 95◦ ethanol)
was carried out at 25 ◦C in three successive extractions until exhaustion of all phenolic
compounds. Each extraction was assisted by ultrasound for 30 min. Then, the samples
were put together, filtered, and dried in a vacuum stove.

Total phenolic content in the PEE was determined by Folin–Ciocalteau assay [13], and
the results were expressed as mg of gallic acid equivalents (GAE)/100 g of powder of each
fruit part.

2.3. Simulated Gastroduodenal Digestion of Mistol Powder and PEE

The mistol skin, pulp, and seed powders (0.5 g), as well as the PEE, were subjected to
a simulated gastroduodenal digestion process (GD) following the methodology described
by Orqueda et al. [8]. Powder suspensions were centrifuged at 10,000× g, and both the
digested and non-digested powders were used to determine the adsorption and diffusion
capacity of sugars. After the GD process, the phenolic compounds were recovered with
ethyl acetate. The recovered organic phase was dried and resuspended in DMSO (1 mg
GAE/mL) for subsequent analyses.

2.4. Hypoglycemic Activity
2.4.1. Glucose Adsorption of Mistol Powders

The glucose adsorption capacity of each powder sample obtained from mistol both be-
fore and after GD was analyzed according to the methodology proposed by Orqueda et al. [14].
For the test, 10 mL of glucose solution (20 mM) and 0.5 g of powder from each part of the
fruit were mixed and incubated at 37 ◦C for 4 h, agitating frequently. Then, the mixtures
were centrifuged (4000× g for 20 min), and the free glucose content was determined in the
supernatants. Glucose bound to the mistol powders was calculated:

Glucose bound: [(G1 − G2)/(Weight of the sample)] × volume of solution

G1: glucose concentration in the initial solution (20 mM).
G2: free glucose concentration after 4 h.

2.4.2. Mistol Powders’ Effect on Glucose Diffusion

The impact of the mistol powders on in vitro glucose diffusion was determined ac-
cording to a previous method [14]. Briefly, the mistol powders, both before and after GD,
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(0.25, 0.5, and 1 g) were put in contact with 5 mL of glucose solution (20 mM) and dialyzed
against 40 mL distilled water at 37 ◦C. The glucose content in the dialysate was determined
by using the enzymatic glycemia kit (Wiener lab. 1400101, Rosario, Argentina). A negative
control without mistol powder samples was performed.

2.4.3. Improvement in Glucose Uptake in Saccharomyces cerevisiae Cells by Mistol PEE

The analysis was carried out according to a previous protocol [14]. A yeast suspension
(100 µL) in distilled water (10%; w/v) was mixed with each PEE before and after the
simulated GD process (10–100 mg/mL). Then, 1 mL of 20 mM glucose solution was added
to this mixture, incubated for 1 h at 37 ◦C, and centrifuged at 2500× g for 5 min. The
glucose concentration in the supernatant was determined by using an enzymatic glycemia
kit. The percentage increase in glucose uptake by S. cerevisiae cells was calculated.

2.5. Anti-Inflammatory Activity of Mistol PEE

In all cases, the percentage of inhibition of each inflammatory enzyme was calculated
at a fixed concentration of 100 µg GAE/mL. Commercial anti-inflammatory drugs were
used as positive controls for the test.

2.5.1. Inhibition of the Enzyme Phospholipase A2 (sPLA2)

The activity of the sPLA2 enzyme was analyzed according to the method described by
D’Almeida et al. [15] using 1,2-diheptanoylthio-glycerophosphocholine (1,2 dHGPC) as the
substrate. The reaction mixture contained 50 µL of Tris-HCl buffer (10 mM, pH 8), 10 µL
of 10 mM 5.5’-dithiobis-2-nitrobenzoic acid (DTNB), 10 µL of sPLA2 enzyme (1 µg/mL),
and 100 µg GAE/mL of the tested samples dissolved in DMSO. The reaction was started
by adding 150 µL of 1.66 mM 1,2 dHGPC and held for 20 min at 25 ◦C. Absorbance was
measured on a microplate reader (Biotek ELx808, Gen5™ Data Analysis Software, Agilent,
Santa Clara, CA, USA) at 414 nm every 2 min for 20 min. The commercial anti-inflammatory
drug Naproxen was used as the reference compound (50 µg/mL).

2.5.2. Inhibition of the Lipooxygenase Enzyme (LOX)

The test was carried out following the methodology proposed by D’Almeida et al. [15].
The reaction mixture contained enzyme (0.9 mM soybean LOX-1), substrate (50 µM linoleic
acid dissolved in 0.2 M sodium borate buffer pH 9), and the PEE. The absorbance of the
reaction was measured every 30 sec for 5 min at 234 nm. Indomethacin was used as the
reference compound (50 µg/mL).

2.5.3. Inhibition of the Cyclooxygenase Enzyme (COX)

The inhibitory activity against the COX-2 enzyme of the mistol seeds, pulp, and skin
extracts was measured by using a COX inhibitor detection assay kit (Cayman Chemical,
Ann Arbor, MI, USA) through the production of prostaglandin (PG) by ELISA. PG from
arachidonic acid was obtained through the action of the recombinant human COX-2 enzyme.
Inhibitory tests were carried out with different concentrations of mistol extracts (5–100 µg
GAE/mL) or nimesulide (0.25–2.0 µM). The percentage of inhibition of PGE2 production
was calculated for each extract of the different parts of the fruit.

2.6. Toxicity Assays
2.6.1. Acute Toxicity

The toxicity test using A. salina has been used for decades as a rapid detection method
on a laboratory scale. This technique has proven to be highly advantageous due to its
simplicity and low cost, its good correlation with other animal testing methods, and the
possibility of evaluating a large number of samples at the same time and in a short period of
time. Increasing concentrations of each PEE (2.5–1000 µg GAE/mL) were used to determine
its acute toxic effect by utilizing the A. salina microplate assay [16]. Negative controls with
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DMSO and positive controls with potassium dichromate (10–40 µg/mL) were assayed.
After 24 h of exposition, the number of dead shrimps in each well was counted.

2.6.2. Salmonella Mutagenicity Assay

Salmonella Typhimurium strains TA98 and TA100 were used to evaluate the possible
mutagenic effect of PEE (125 to 500 µg GAE/plate) [17]. The 4-nitro-o-phenylenediamine
reagent (4-NPD, 10 µg/plate) was used as a positive control. Three plates per dose and
two separate sets of experiments were performed in each case. The results were expressed
as the number of revertants/plate, and the Mutagenicity Ratio (MR) was also calculated,
which is the ratio between the number of test plate revertants (induced revertant, IR) and
the number of revertants on the control plate (spontaneous revertant, ER): MR = IR/ER.
The samples were considered mutagenic when the revertant average number was twice as
much or higher than the spontaneous revertants or if the MR was above two [17].

2.6.3. Cytotoxicity Tests

GM07492-A (human fibroblasts) cell lines were kindly provided by Laboratory Mu-
tagenesis, University of Franca, São Paulo, Brazil. The cell line was cultured in HAM-
F10/DMEM medium (1:1) supplemented with 10% Fetal Bovine Serum (FBS) and con-
taining 1% penicillin/ampicillin at 36.5 ◦C in a humidified 5% CO2 atmosphere. For
the experiments, 1 × 104 cells were seeded on 96-well plates containing 100 µL HAM-
F10/DMEM medium supplemented with 10% FBS and were incubated at 36.5 ◦C for 24 h.
After this period, the treatments were carried out for 24 h using each extract at concen-
trations between 0 and 1000 µg/mL. Cell controls, i.e., no treatment, and solvent (1%
DMSO) controls were included. Cell viability was determined with the MTT tetrazolium
salt assay [17]. The results are expressed as IC50 (concentration in µg/mL that inhibits 50%
of cell growth).

2.7. Statistical Analysis

The values were determined at least three times with three individual samples. Each
experimental value obtained was expressed as the mean ± standard error (SEM). A one-
way ANOVA with a Tukey post-hoc test with a confidence level of 95% was used for group
comparisons. The analyses were carried out by using the statistical software InfoStat (2015,
Grupo InfoStat, Universidad Nacional de Córdoba, Córdoba, Argentina) and R studio
software (2022.02.3, RStudio.Inc., Boston, MA, USA).

3. Results and Discussion
3.1. Hypoglycemic Effect of Mistol Extracts and Powders

The malfunction of the regulatory mechanisms of the glucose metabolism is a primary
hallmark of metabolic disease. Complementary natural strategies are needed to prevent or
improve this malfunction and prevent the progression of normoglycemia to prediabetes
and type-2 diabetes throughout the life of patients at risk [18]. Mistol fruits are excellent
sources of natural functional food ingredients conferring health benefits. The mistol pulp,
skin, and seed extracts were previously characterized by Orqueda et al. [8], and numerous
chemical compounds were detected, including flavonoids and procyanidins, many of
which featured biological activities. Among these, derivatives of quercetin, rhamnetin, and
kaempferol were detected. Previous studies have demonstrated that these compounds
show antioxidant capacity and inhibitory activity of enzymes related to carbohydrate
metabolism [8]. For this reason, the ability of mistol powders to adsorb glucose or to
promote glucose diffusion, as well as the effect of mistol PEE on glucose uptake by cells,
was evaluated. These assays are often used to study the effects of plant extracts and
natural compounds on glucose bioavailability and glucose absorption and, therefore, their
antihyperglycemic and antidiabetic potentials [19,20].
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3.1.1. Glucose Adsorption Capacity of Mistol Powders

Figure 2 depicts the ability of both digested and undigested mistol powders to bind
glucose at 20 mM concentration. All mistol powders effectively bound the glucose, and no
significant differences (p > 0.05) were observed between undigested and digested samples.
The mistol skin powder was the most active in the adsorption of glucose (about 65%
adsorption), followed by the pulp, and then by the seed powder (Figure 2). This property
is probably due to the higher amount of fibers present in mistol skin, in comparison to
the other parts of the fruit, widely reported as hypoglycemic [21]. Fibers often provide
a diffusion barrier due to their high viscosity and ability to bind glucose [22]. The skin
powder has the highest amount of crude fiber (23.2%) compared to the other fruit parts,
namely, 13.8 and 18.8% for the skin and pulp powder, respectively [8]. However, besides
the quantity of fiber, the chemical composition can influence the viscosity of the gels [23].
Additionally, dietary fibers can significantly reduce the transit time in the gastrointestinal
tract of ingested food, a fact which can be translated as less time available for di- and
polysaccharides in the diet to be digested and absorbed [22].

Foods 2022, 11, x FOR PEER REVIEW 6 of 13 
 

and natural compounds on glucose bioavailability and glucose absorption and, therefore, 
their antihyperglycemic and antidiabetic potentials [19,20]. 

3.1.1. Glucose Adsorption Capacity of Mistol Powders 
Figure 2 depicts the ability of both digested and undigested mistol powders to bind 

glucose at 20 mM concentration. All mistol powders effectively bound the glucose, and 
no significant differences (p > 0.05) were observed between undigested and digested sam-
ples. The mistol skin powder was the most active in the adsorption of glucose (about 65% 
adsorption), followed by the pulp, and then by the seed powder (Figure 2). This property 
is probably due to the higher amount of fibers present in mistol skin, in comparison to the 
other parts of the fruit, widely reported as hypoglycemic [21]. Fibers often provide a dif-
fusion barrier due to their high viscosity and ability to bind glucose [22]. The skin powder 
has the highest amount of crude fiber (23.2%) compared to the other fruit parts, namely, 
13.8 and 18.8% for the skin and pulp powder, respectively [8]. However, besides the quan-
tity of fiber, the chemical composition can influence the viscosity of the gels [23]. Addi-
tionally, dietary fibers can significantly reduce the transit time in the gastrointestinal tract 
of ingested food, a fact which can be translated as less time available for di- and polysac-
charides in the diet to be digested and absorbed [22]. 

 
Figure 2. Glucose adsorption capacity (determined by measuring the mM of glucose in dialysate) of 
digested and undigested mistol powders. Values are presented as mean ± SEM and scrutinized by 
1 or 2-way ANOVA, followed by a Tukey or LSD test using R studio software. Different letters on 
the bars indicate significant differences between the three parts of the fruit, evaluated according to 
Tukey’s test (p ≤ 0.05). No significant differences (p ≤ 0.05) were observed between digested and 
undigested powders. 

3.1.2. Effect of Mistol Powders on Glucose Diffusion 
The ability of mistol powders to delay glucose diffusion through a dialysis membrane 

was evaluated, simulating passage through the intestinal mucosa. The most active portion 
of the fruit was again the skin, allowing only 15% of the glucose tested to diffuse through 
the dialysis membrane (Figure 3). Once more, no significant differences were observed 
between the digested and undigested powders. These effects could also be attributed to 
the dietary fibers that could form highly viscous gels that entrapped glucose. Similar re-
sults showing the delay of glucose diffusion through membranes by fruit and plant fibers 

Figure 2. Glucose adsorption capacity (determined by measuring the mM of glucose in dialysate) of
digested and undigested mistol powders. Values are presented as mean ± SEM and scrutinized by
1 or 2-way ANOVA, followed by a Tukey or LSD test using R studio software. Different letters on
the bars indicate significant differences between the three parts of the fruit, evaluated according to
Tukey’s test (p ≤ 0.05). No significant differences (p ≤ 0.05) were observed between digested and
undigested powders.

3.1.2. Effect of Mistol Powders on Glucose Diffusion

The ability of mistol powders to delay glucose diffusion through a dialysis membrane
was evaluated, simulating passage through the intestinal mucosa. The most active portion
of the fruit was again the skin, allowing only 15% of the glucose tested to diffuse through
the dialysis membrane (Figure 3). Once more, no significant differences were observed
between the digested and undigested powders. These effects could also be attributed to the
dietary fibers that could form highly viscous gels that entrapped glucose. Similar results
showing the delay of glucose diffusion through membranes by fruit and plant fibers were
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previously reported [21]. These beneficial effects on glucose metabolism suggest specific
strategies and biological contexts that can be exploited to maximize the antidiabetic benefits
of mistol powders; however, additional in vivo research is also warranted.
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3.1.3. Effect of Mistol Powders on Glucose Uptake by Yeast Cells

All Z. mistol extracts efficiently improved the transport of glucose through the cell
membranes of yeast cells (Figure 4). A positive dose–response effect was observed for
all samples. The seed samples were the most effective at the highest concentration tested
(100 mg/mL). The study of glucose transport across the yeast cell membrane has been
considered a meaningful in vitro technique that is effective for the screening of natural
compounds with hypoglycemic activity [24]. Since glucose transport across the yeast cell
membrane occurs via facilitated diffusion and is promoted by specific membrane carriers,
i.e., those that transport glucose down a concentration gradient, an increase in the glucose
uptake implies an improvement in the use of intracellular glucose [25]. Additionally, the
polyphenols of mistol fruits could affect the glucose transporters of the yeast membrane.
Thereby, polyphenols could promote glucose entry into the cells. In this regard, aforegoing
studies demonstrated the antihyperglycemic activity of kaempferol and procyanidin B2,
both present in mistol PEE [8]. An increase in glucose uptake and glycogen synthesis in
the cells of skeletal muscle is associated with an improvement in AMPKα activity and
the expression of the Glut4 transporter, both essential for glucose entry into cells [26–28].
Da Costa Mousinho et al. [29] demonstrated that aqueous and methanolic extracts of
Ziziphus mucronata cortex favored glucose consumption in C2C12 muscle cells, 3T3-L1
adipocytes, and HepG2 hepatocarcinoma cells. However, these extracts did not report a
significant effect on the improvement in insulin secretion by pancreatic β cells.
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methanolic extracts and Prosopis species pods [32,33]. Additionally, Tran et al. [34] demon-
strated the inhibitory power of triterpenoids and lignans isolated from Z. jujuba var. in-
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Table 1. Inhibitory activity of pro-inflammatory enzymes by extracts (PEE) of Z. mistol. 

Sample Inhibition (%) (100 μg GAE/mL) 
 sPLA2 LOX COX-2 

Seeds NI 89.8 ± 2.3 a 91.0 ± 0.9 c 
Pulp 46.0 ± 1.2 b 83.0 ± 1.0 b 96.0 ± 2.6 b 
Skin 25.0 ± 0.6 c 65.1 ± 0.6 c 68.5 ± 1.5 d 

Naproxen 95.00 ± 2.80 a - - 

Figure 4. Effect of mistol extracts (PEE) on glucose consumption by S. cerevisiae: Skin (�), pulp (•),
and seed (N) PEE. Results are expressed as the mean of three independent tests with SEM. The symbol
* at a given extract concentration indicates significant differences (p ≤ 0.05) between percentage of
improvement in glucose intake by yeast cells between the three parts of mistol fruits, according to
Tukey’s test.

3.2. Antiinflamatory Activity of Mistol PEE

At present, there is a wide variety of commercial anti-inflammatory drugs of different
chemical natures. Non-steroidal anti-inflammatory drugs (NSAIDs), along with corticos-
teroids, are the most widely used for acute and chronic inflammatory pathologies, due to
their high efficacy, despite the adverse effects caused by long-term use [30]. The search for
natural compounds that inhibit the enzymes of the metabolic pathway of arachidonic acid,
responsible for the production of pro-inflammatory mediators, is proposed as a central
therapeutic objective to prevent or improve renal and cardiovascular complications in
diabetes [11].

Current research reports show that low-grade inflammatory processes are associated
with the risk of developing type-2 diabetes, contribute to insulin resistance, and are related
to the cellular and molecular alterations that characterize metabolic syndrome, including
hyperglycemia [31]. Our results showed that all extracts obtained from Z. mistol fruits
inhibit lipoxygenase and cyclooxygenase-2 enzymes (Table 1), reaching percentages close to
or higher than 90% for the seed and pulp powder extracts. The PEE activities on the lipooxy-
genase enzyme were higher than previously reported for Z. mistol whole fruit methanolic
extracts and Prosopis species pods [32,33]. Additionally, Tran et al. [34] demonstrated the
inhibitory power of triterpenoids and lignans isolated from Z. jujuba var. inermis on the
expression of the COX-2 enzyme. These results could suggest that the phenolic compounds
of Z. mistol extracts would also be inhibitors of this enzyme expression and activity.
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Table 1. Inhibitory activity of pro-inflammatory enzymes by extracts (PEE) of Z. mistol.

Sample Inhibition (%) (100 µg GAE/mL)

sPLA2 LOX COX-2

Seeds NI 89.8 ± 2.3 a 91.0 ± 0.9 c

Pulp 46.0 ± 1.2 b 83.0 ± 1.0 b 96.0 ± 2.6 b

Skin 25.0 ± 0.6 c 65.1 ± 0.6 c 68.5 ± 1.5 d

Naproxen 95.00 ± 2.80 a - -

Indomethacin - 16.00 ± 0.80 d

Nimesulide - - 100.0 ± 5.0 a

sPLA2: phospholipase A2; LOX: lipooxygenase; COX-2: cyclooxygenase-2. Values are expressed as percent
inhibition at a fixed concentration of 100 µg GAE/mL for extract samples and 50 µg GAE/mL for naproxen,
indomethacin, and nimesulide (positive controls). Results are expressed as the mean of three independent tests
with SEM. NI: No inhibition shown in the concentration tested. (-): Not assayed (each standard compound was
tested for a specific enzyme). Different letters in the same column show significant differences between each part
of the fruit, according to Tukey’s test (p ≤ 0.05).

Regarding phospholipase A2 (sPLA2), the pulp extract was the most active at inhibiting
this pro-inflammatory enzyme (Table 1). The enzyme sPLA2 is the first enzyme in the
arachidonic acid pathway. Thereby, the inhibition of sPLA2 activity by Z. mistol polyphenols
may reduce the production of the arachidonic acid that would be converted to eicosanoids
by COX and LOX. There are numerous reports of anti-inflammatory activity resulting
from in vivo assays of other Ziziphus species, such as Z. lotus and Z. spina-christi [35,36].
Kadioglu et al. [36] evaluated the anti-inflammatory capacity of Z. spina-christi extracts,
focusing on main flavonoid compounds. Through molecular docking software, the authors
were able to determine the action of spinosyn, a flavonoid found in Z. mistol extracts [36].
Other authors reported anti-inflammatory activity for flavonoid C-glycosides derived from
apigenin and kaempferol, by inhibition of COX and LOX [37,38], and anti-inflammatory
activity for chalcones such as chalconaringenin and floridzine, present in polyphenol
extracts obtained from the mistol. Other natural and synthetic chalcones [8,39] impacted
not only on COX-2 activity but also on the iNOS enzyme. This frame shows that the
bioactive compounds present in Z. mistol are excellent sources for the design of multi-vector
drugs against inflammation, many of them with complementary activities that help reduce
the different types of ailments that occur in inflammatory diseases [40,41].

3.3. Toxicity of Mistol PEE

The Ames test has a high predictive effect of carcinogenicity (around 80%) through
diverse mechanisms like point mutations, base-pair substitutions, or frameshift mutations.
For this reason, the mutagenic effect of Z. mistol extracts was evaluated to ensure their
safe use. None of the concentrations of the PEE tested showed mutagenic effects against
the TA98 or TA100 strains up to 500 µg GAE/plate, indicating the absence of mutagens
in their composition that could cause base-pair substitution mutations (detected with
TA100) or frameshift (recognized with TA98) (Table 2). Furthermore, all mutagenicity ratio
(MR) values were lower than 2, thus indicating the absence of toxicity towards the genetic
material of the strains. Similar results were previously obtained for whole-fruit extracts of
Z. mistol [32]. Although there are no reports on the genotoxicity of Z. mistol seed, pulp, and
skin extracts, studies indicate the absence of toxicity for Z. jujuba extracts on the DNA of
cells such as lymphocytes, PC12 cells, and HepG2 cells [42–44].
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Table 2. Mutagenic activity of extracts (PEE) of the three parts of the Z. mistol fruit assayed in
Salmonella strains.

Sample µg
GAE/Plate

N◦ Revertants/Plate MR

TA98 TA100 TA98 TA100

Seeds

175 104 ± 17 b 30 ± 7 b 0.79 1.00

250 110 ± 5 b 35 ± 2 b 0.83 1.16

500 110 ± 1 b 45 ± 4 b 0.83 1.50

Pulp

175 100 ± 5 b 16 ± 2 b 0.76 0.53

250 112 ± 12 b 13 ± 1 b 0.85 0.43

500 121 ± 20 b 20 ± 3 b 0.92 0.64

Skin

175 99 ± 13 b 19 ± 2 b 0.75 0.63

250 112 ± 5 b 25 ± 5 b 0.85 0.83

500 136 ± 11 b 28 ± 2 b 1.03 0.93

Negative control
(DMSO) 131 ± 37 b 30 ± 6 b

Positive control
(4-NPD) 2861 ± 114 a 1998 ± 38 a

µg GAE/plate: µg of gallic acid equivalents/plate. MR: Mutagenicity Ratio. DMSO: dimethyl sulfoxide. 4-NPD:
4-nitro-o-phenylenediamine at a concentration of 10 µg/plate. The results correspond to mean values between
triplicates of two independent tests. Different letters in the same column show significant differences between
each part of the fruit, according to Tukey’s test (p ≤ 0.05).

Additionally, the acute toxicity of mistol PEE, using brine shrimp larvae as an organism
model, was evaluated. Acute toxicity tested through the Artemia salina has been used for
decades as a rapid and simple detection method on a laboratory scale due to its good
correlation with animal models [45]. No extracts were found to be significantly cytotoxic
up to concentrations of 1000 µg GAE/mL (data not shown). Similar results were found for
other Ziziphus species, such as Z. oxyphylla stem extracts [46]. However, there are reports of
high lethality for elevated concentrations of fruit extracts from other Ziziphus species using
this bioassay (with lethal concentrations 50 between 8 and 45 µg/mL) [47].

As for the cytotoxicity test, none of the extracts showed cytotoxicity on human lung
fibroblasts (normal cells) (GM 07492A) up to concentrations of 1000 µg GAE/mL (data
not shown). Toxicity studies in cell lines allow assay sample concentrations and exposure
times that can be transferred to the human condition. Although there are no reports about
the cytotoxicity of mistol extracts on normal cells, there are reports of cytotoxic activity of
lipids found in Z. mistol seeds on adenocarcinoma cells; these results were based on the
study of the decrease in the incidence of murine mammary carcinoma with the application
of a diet with 5% Z. mistol seeds oil [48].

The results obtained in toxicity evaluations on different levels, i.e., prokaryotic cells,
eukaryotic cells, and complex organisms, indicate the absence of toxicity of the phenolic
compounds obtained from mistol powders in the same concentration range where they
have anti-inflammatory and hypoglycemic activity.

4. Conclusions

Although Z. mistol offers an interesting variety of non-wood forest products, mainly
from its fruits, it is an endangered tree due to the current degraded state of the Chaco forest.
Knowledge of the beneficial functional properties of mistol fruit powders can allow recovery
of mistol, encouraging its sustainable consumption in Argentina as healthy food or as a
complement for the prevention of metabolic disorders. The mistol powders represent a safe
source of bioactive compounds for a healthy diet, diminishing the glucose bioaccessibility
and modulating the inflammatory response, which makes them especially attractive for the
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prevention or amelioration of health conditions such as metabolic syndrome and related
pathologies. However, clinical trials are essential to support these anti-inflammatory and
hypoglycemic activities in humans.
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