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Abstract
Fungal diversity, woody debris, and wood decomposition were assessed in Nothofagus pumilio forests with and without 
forest management (controls) in Argentina, and were related with the forest structure and microclimate. We established a 
wood decomposition assay to determine mass loss of branches and twigs in two decay classes (1, incipient and 2, interme-
diate decay stage), and used generalized linear mixed-effects models to evaluate whether fungal diversity and mass loss 
differed between treatments (managed forests and controls). We found no differences in richness nor in abundance between 
treatments, and their community composition was similar. However, Botryobasidium vagum, Phanerochaete velutina, and 
Sistotrema brinkmanii were more abundant in managed forests, and Amyloathelia aspera was more abundant in controls. 
Branches in the intermediate decay stage showed greater mass loss in managed forests than in controls, but mass loss of the 
other debris types did not differ between treatments. The volume of coarse woody debris was greater in managed forests 
than in controls, and had a positive effect on fungal richness. Our results indicate that N. pumilio forest management did not 
generate evident changes in fungal diversity, or in wood decomposition after 20 years of the forest management. However, 
the higher mass loss of branches in the intermediate decay stage observed in managed forests suggests that there were some 
factors operating in those forests in the past which may have accelerated decomposition. This highlights the need for studies 
evaluating changes in canopy cover, microclimate, and fungal community, including potential key species, in the short term 
and the long term after forest management.
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Introduction

Biodiversity influences ecosystem functioning (Loreau et al. 
2001), but how ecosystem functioning and biodiversity are 
related is still poorly understood. Decomposition is a key 
process in ecosystem functioning because it causes the 
recycling of carbon and nutrients from dead organic mat-
ter (Swift 1977). Thus, understanding how biodiversity and 
decomposition are related is extremely important to forest 
conservation and sustainable management.

In forest ecosystems, the decomposition of wood is an 
essential and complex process regulated by different factors: 
environmental conditions, decomposer organisms, and wood 
traits. Their relative importance may change over time, dur-
ing the different stages of this process (Weedon et al. 2009). 
For example, van der Wal et al. (2015) reported that moisture 
content is a relevant factor at the beginning of decomposi-
tion but then, as wood decomposition proceeds, the composi-
tion of the fungal community becomes more relevant for this 
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process. Regarding wood traits, there is a general consensus 
that macronutrients, in particular nitrogen and phosphorus, 
are key factors in woody material decomposition because 
decomposer organisms do not have to invest energy towards 
nitrogen and phosphorus acquisition and can use it only for 
lingocellulase synthesis (Sinsabaugh et al. 1993; Weedon 
et al. 2009).

Wood-inhabiting fungi are the main decomposer organ-
isms in temperate forests (Rayner and Boddy 1988); hence, 
they play a key role in nutrient cycling and soil formation 
(Lonsdale et al. 2008) and, consequently, in forest mainte-
nance. The diversity of wood decomposer fungi is affected 
by microclimate and by the amount, types, and decay stage 
of the woody debris present in the forest (Parisi et al. 2018; 
Olou et al. 2019). Previous studies have reported that fungal 
diversity peaks in the most highly decayed substrates (Rajala 
et al. 2012; Tomao et al. 2020). Besides, a positive effect 
of increased stand structure heterogeneity on abundance 
and diversity of wood-inhabiting fungi has been reported 
by Persiani et al. (2016). Regarding microclimate, which 
is highly related to canopy cover, there is inconsistency on 
how it affects fungal diversity. Some studies reported that 
wood-inhabiting fungal diversity is negatively correlated 
with canopy openness and that fungal community composi-
tion changes in response to changes in canopy cover (Bässler 
et al. 2010; Horák et al. 2016). But another study reported no 
effect of canopy openness on fungal diversity (Bässler et al. 
2016). The relationship between canopy cover and fungal 
diversity seems to be influenced by other factors too. For 
example, Brazee et al. (2014) did not find an effect of canopy 
openness on fungal abundance and diversity alone, but found 
a positive effect when testing the effect of canopy openness 
in combination with the addition of coarse woody debris in 
the forest on fungal diversity.

Anthropogenic disturbances, particularly intense forest 
management, can affect microclimatic conditions (Aussenac 
2000) and modifies the amount, availability, and variety of 
woody debris on the forest floor (Abrego and Salcedo 2013). 
In particular, in Nothofagus pumilio forests, the volume of 
coarse woody debris in managed forests can be more than 
double than in unmanaged forests, because local forest com-
panies only harvest adequate wood for sawn wood (Klein 
et al. 2008). Forest management may affect decomposer 
biodiversity because of its effects on forest microclimate 
and woody debris and also because it changes the structure, 
tree cover, and plant community composition of the forest 
(Chen et al. 1999; Edmonds et al. 2000; Tomao et al. 2020). 
In their meta-analysis based on 120 comparisons of species 
richness between unmanaged and managed forests through-
out Europe, Paillet et  al. (2010) reported that different 
taxonomic groups displayed contrasting responses to forest 
management; particularly for fungi, they found that species 
richness was higher in unmanaged than in managed forests. 

Accordingly, other authors reported that fungal community 
diversity is influenced by forest management (Dvořák et al. 
2017; Tomao et al. 2020 and references therein), but the 
direction of this influence depends on different factors such 
as canopy openness, percentage of tree retention, remain-
ing dead wood and stumps, and complexity of forest struc-
ture after management. Intensive forestry with high canopy 
openness (> 50%), high basal area extraction, and high dead 
wood extraction decreases fungal diversity. Nevertheless, 
a forestry management where canopy cover remains high 
(≥ 50%), or with low basal area extracted (< 30%), or where 
dead wood is left in the forest floor, has fungal diversity 
shows low or no impact on fungal diversity. Moreover, forest 
managements that retain woody debris in the forests increase 
structural complexity and microhabitat availability may 
result in the improvement of fungal diversity. Besides the 
direction of forest management influence on fungal commu-
nities, it is worth noticing that, if forest changes caused by 
forest management affect the fungal community, they might 
also impact on the decomposition process.

The diversity and structure of the fungal community are 
known to affect decomposition (Hättenschwiler et al. 2011), 
but no clear relationships between decomposition rates and 
decomposer diversity in natural conditions have been dem-
onstrated so far (Parisi et al. 2018). It is a standard view 
of ecology that increased microbial diversity will result 
in enhanced nutrient cycling because of functional niche 
complementarity (additive effect) or a greater intensity of 
resource exploitation (synergistic activities) (van der Wal 
et al. 2013). This view is supported by previous studies that 
showed a positive relationship between wood-inhabiting fun-
gal richness and wood mass loss (Rajala et al. 2012; van der 
Wal et al. 2015; Tarvainen et al. 2020). However, in vitro 
and field-based manipulative studies have shown that the 
diversity-decomposition relationship was saturated at rather 
low species levels (up to 10 species) (Setälä and McLean 
2004; Dang et al. 2005; Gessner et al. 2010) and that the 
idiosyncratic relationship (where one species has a greater 
influence on ecosystem processes than others) is most fre-
quently observed in communities with more than 10 species 
(Nielsen et al. 2011). In other words, intermediate levels of 
fungal diversity accelerate decomposition in soil (Setälä and 
McLean 2004) and wood (Toljander et al. 2006), but higher 
levels of fungal diversity are associated with slow decom-
position (Dang et al. 2005; Deacon et al. 2006; Toljander 
et al. 2006; Fukami et al. 2010; Gessner et al. 2010; Nielsen 
et al. 2011).

Nothofagus pumilio (lenga) forests, the main native forest 
resource in Patagonia, have historically been managed (Mar-
tínez Pastur et al. 2003; Bava and Rechene 2004). Previous 
studies in shelterwood systems in these forests have reported 
lower humidity and greater radiation and wind speed in 
managed than in unmanaged forests (Caldentey et al. 1999; 
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Promis et al. 2010). Effects of management on biodiversity 
have been widely studied for different taxa (plants, bryo-
phytes, insects, and birds) in Tierra del Fuego (Deferrari 
et al. 2001; Spagarino et al. 2001; Lencinas et al. 2008, 2009, 
2011, 2014; Peri et al. 2016) and for plants in Chubut (Silva 
et al. 2016). The results of these studies show that the effects 
of forest management on biodiversity differ according to the 
management system, time elapsed since forest intervention, 
and the taxonomic group considered. Also, litter and wood 
decomposition in these forests has been documented in sev-
eral studies (Frangi et al. 1997; Decker and Boerner 2006; 
Ibarra et al. 2011; Mansilla 2012; Moretto and Martínez 
Pastur 2014; Gallo 2017; Gallo et al. 2019) that determined 
mass loss of different kinds of forest debris. Diversity of 
aphyllophoroid fungi growing on N. pumilio trees and fallen 
wood has also been reported (Greslebin 2002; Greslebin and 
Rajchenberg 2003; Rajchenberg 2006; Gorjón et al. 2012). 
However, no studies have assessed whether aphyllopho-
roid fungal diversity changes with forest management and 
whether wood decomposition changes with forest manage-
ment and/or with changes in fungal diversity.

Given the importance of understanding the relationship 
between the Funga and wood decomposition in Patagon-
ian Andes forests under management, we addressed some 
relevant knowledge gaps. Our objective was to determine 
whether there were changes in the aphyllophoroid fungal 
community and in wood decomposition in managed N. 
pumilio forests, in comparison with the surrounding unman-
aged forests. Specifically, we assessed whether fungal diver-
sity and mass loss of fine woody debris differed between 
managed and unmanaged forests. Moreover, we evaluated 
the contribution of some key factors, such as the amount and 
physicochemical traits of woody debris and some environ-
mental variables, to the fungal diversity and mass loss values 
observed in managed and unmanaged forest.

Materials and methods

Study area

The study was conducted in pure N. pumilio stands in three 
sites in Chubut province, Argentina. The sites were located 
in a north–south gradient along N. pumilio distribution. Site 
1 was the northernmost site (S 42°46′ W 71°28′), site 2 was 
at an intermediate gradient (S 43°49′ W 71°28′), and site 3 
was southwards (S 44°50′ W 71°43′) (Online Resources, 
Fig. 1). In each site, two stands corresponding to two treat-
ments were selected: one in a managed forest (hereafter, MF) 
and the other in an unmanaged (unlogged) forest, i.e. control 
(hereafter, C). The MF stands had been logged 16–18 years 
before this study, with low to medium intensity (Online 
Resources, Table 1). Unmanaged neighbor stands (less than 

1000 m apart from MF) were selected as control stands to 
represent the previous situation of managed forests. No pre-
vious management was recorded for these areas, but some 
individual tree extraction could have occurred. In each stand, 
a study plot of ¼ hectare was defined. A full characterization 
of each plot based on the measurement of different variables 
is shown in Online Resources, Table 2.

Structural and climatic stand characterization

On each plot, all trees (diameter > 10 cm) were counted and 
the diameter at breast height (DBH) was measured. The 
basal area was determined as the sum of all cross-sections of 
the stems at 1.3-m height of the trees within the plot. Inside 
the plot, 15 circular subplots of 0.8-m radius were regularly 
established (Online Resources, Fig. 2). Tree cover (measured 
as the percentage of canopy cover from a skyward-oriented 
photograph of canopy taken from the forest floor) and the 
number and height of saplings (trees with diameter < 10 cm) 
were measured in each subplot.

In addition, temperature and relative humidity were 
recorded on each plot with a data logger (EL-USB-2 Lascar, 
UK) every 3 h during the study period (from May 2012 to 
April 2015) to characterize the microclimatic conditions of 
the stands. Precipitation was inferred from the interpolated 
climate surfaces developed by Hijmans et al. (2005), with 
records from the 1950–2000 period. This surface has a 30 
arc min spatial resolution (0.86  km2).

The geographical location and altitude of each plot were 
recorded with a Garmin global positioning system unit and 
the aspect was evaluated in the center of the plot with a 
compass.

Fungal sampling

Fungal sampling was conducted in the fall and the spring of 
2012 and 2013 (4 samplings). To avoid sampling bias due to 
climatic conditions that affect fruiting body production, the 
MF and C plots of each site were surveyed at the same time, 
and all sites were surveyed within 10–15 days. Ten circular 
subplots of 4-m radius (50  m2) were randomly established 
within each study plot in each sampling; hence, subplots 
were different in each sampling (Online Resources, Fig. 2). 
The total surface sampled in the 4 samplings was 2000  m2. 
In the subplots, all woody debris > 1-cm diameter and liv-
ing trees were inspected for the presence of aphyllophoroid 
fungi (Corticiaceae and Polyporaceae s.l.). All basidiomata 
were recorded or collected when it was not possible to 
identify them in the field. Basidiomata growing on woody 
debris < 1 cm in diameter were sampled in a sub-subplot of 
1.3-m radius located in the center of the 4-m radius subplot. 
The collected basidiomata were taken to the lab, air-dried, 
and kept for further identification. To determine abundance, 
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only the basidiomata recorded on different woody debris 
were considered different “individuals.”

Measurements of fungal diversity

To evaluate the effectiveness of our sampling, accumulation 
curves of the observed species richness and of several differ-
ent estimators (Chao 1, Chao 2, ACE, ICE, and bootstrap) 
were calculated per each subplot unit for each dataset (MF 
and C). Accumulation curves were calculated using ESTI-
MATES V. 9.1.0 (Colwell 2013) using 1000 random itera-
tions of the survey periods without replacement.

Alpha diversity was evaluated on each plot using abun-
dance and richness of the 40 subplots; diversity was deter-
mined with the Shannon–Wiener (H′) index.

The variation in species composition among sites (beta 
diversity) was evaluated by analyzing the similarity between 
MF and C fungal communities, using the Bray–Curtis dis-
similarity index (Bray and Curtis 1957):

where  Cij is the sum of the lesser values only for those spe-
cies in common between both sites, and  Si and  Sj are the 
total number of specimens counted at both sites. Index 
value = 0 indicates identical species assemblage, while index 
value = 1 indicates totally different species assemblage. This 
index was chosen because it includes not only the presence 
but also the abundance of species. A cluster analysis was 
conducted based on the Bray–Curtis index and using Ward 
distance as a clustering method.

Measurements of number and volume of coarse 
and fine woody debris

The number and the volume of coarse (CWD: ≥ 10 cm in 
diameter) and fine (FWD: from 1 to < 10 cm in diameter) 
woody debris were measured. Measurements of CWD were 
performed in the entire plot (2500  m2), while those of FWD 
were performed in the same 15 subplots of 0.8-m radius used 
for saplings and canopy cover measurement. In both cases, 
the largest and smallest diameter and length of all woody 
debris found on the forest floor were measured. Height and 
diameter of all stumps were also measured, but only in MF 
plots because no stumps were found in C plots. Each woody 
debris was assigned to one of three decay stages: incipi-
ent, intermediate, or advanced. Decay stages were defined 
according to the natural process observed in the forests, 
and were assigned to each woody debris mainly according 
to its wood hardness and shape, and the presence of bark. 
The incipient decay stage represented the beginning of the 
decomposition process and included woody debris with 
almost intact bark and sound wood with high resistance to 

BCij = 1 −
((

2Cij

)

∕
(

Si + Sj
))

knife penetration (up to 0.5 cm); this decay stage conserved 
the shape and wood hardness. The intermediate decay stage 
included altered wood, mostly decorticated and with vis-
ible changes in color and other physical characteristics; the 
shape was conserved or slightly altered, and wood hardness 
was altered but still partially conserved (knife penetrates 
more than 0.5 cm but cannot cross the woody debris). The 
advanced decay stage included much decayed wood, with 
evident changes in their physical properties; shape and wood 
hardness were totally altered, knife penetrated deeply in the 
woody debris, and wood could be disaggregated by hand.

Woody debris volume was determined as Volume = 1/3 
* π* h (R2 + r2 * r), where h is the height, R is the largest 
radius, and r is the smallest radius. Stump volume was deter-
mined as Volume = π * (r)2 * h.

Decomposition assay

To determine whether mass loss of branches and twigs dif-
fered between MF and C, a decomposition assay with FWD 
in two diameter categories: B = branches (> 1 cm in diam-
eter) and T = twigs (< 1 cm in diameter), and in two decay 
classes: 1 (incipient decay stage) and 2 (intermediate decay 
stage) was installed on each study plot (Online Resources, 
Fig. 2). Two decay classes (hereafter, DC) were defined 
within the decay stages previously mentioned: DC1 corre-
sponded to the most intact woody debris in the incipient 
decay stage, and DC2 corresponded to those woody debris 
in the intermediate decay stage that were decorticated with 
a reduced resistance to knife penetration (> 0.5 cm up to 
1 cm), but maintaining its shape. We defined this narrower 
DC1 and DC2 classes within the incipient and intermediate 
decay stages previously defined in order to diminish results 
variance caused by the variability of the woody debris at 
the beginning of the assay. Woody debris in the advanced 
decay stage was not included because they easily disaggre-
gate leading to unreliable results due to material loss. The 
materials for the assay were obtained from the same stand 
where the assay was installed: FWD in DC1 was obtained 
from recently fallen crowns, and FWD in DC2 was collected 
from the forest floor. Hereafter, the four types of woody 
debris will be named as 1B (branches in DC1), 1 T (twigs 
in DC1), 2B (branches in DC2), and 2 T (twigs in DC2).

Branch portions of 25 cm in length were cut and pro-
cessed as follows: 5-cm portions (hereafter, subsamples) 
were taken for physicochemical analyses, and the remaining 
20-cm portions (hereafter, samples) were used to determine 
mass loss in the field assay. Twigs from the same stand and 
the same DC were cut into 10-cm-long portions and mixed 
to obtain a composite sample. The composite sample of each 
stand and each DC was then divided into 10-g portions (sam-
ples); five of them were separated for chemical analyses and 
the rest were used to determine mass loss in the field assay.
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The decomposition field assay was conducted using the 
in situ litterbag method. Litterbags were made of fiberglass 
mesh (2 mm). Branch litterbags contained 4 branches from 
the same DC and twig litterbags contained 10 g of the com-
posite sample from the same DC.

To determine mass loss over time, in March 2012, 10 
branch litterbags from each DC and 10 twig litterbags from 
each DC were placed on the forest floor of each study plot. 
Two branch litterbags and 2 twig litterbags (1 for each DC) 
were randomly placed on the forest floor in 10 subplots, 
regularly arranged within the plot. The material was har-
vested after 3 and 2 years for branches and twigs, respec-
tively. The retrieved material was wrapped in plastic bags 
and transported from the forests to the laboratory, where it 
was cleaned and oven-dried at 60 °C until constant weight. 
Mass loss was determined as a percentage of the original 
dry mass. Then, the mass loss of the 4 branches from each 
litterbag was averaged.

Measurements of branch and twig chemical traits

Branches were ground with a drill, and twigs were ground 
in a laboratory mill. Carbon content was determined by dry 
combustion at 430 °C. Nitrogen (N) content was measured 
using the standard semi-micro Kjeldahl procedure (Bremner 
and Mulvaney 1983) and phosphorus (P) content by spectro-
photometry with ICP-OES Shimadzu simultaneous high res-
olution (model 9000). Cell wall components (hemicellulose, 
cellulose, lignin) and extractive contents were determined 
by successive extractions with neutral detergent (extrac-
tives) and acid detergent (hemicellulose), hydrolysis with 
72%  H2SO4 (cellulose) and ignition at 500 °C (lignin) (van 
Soest 1963). Carbon, cell wall components, and extractive 
contents were assessed in 12 branch subsamples and 5 twig 
samples from each plot. Nitrogen content was assessed in 
6 branch subsamples and 5 twig samples from each plot. 
Phosphorus was assessed in 3 branch subsamples and 3 twig 
samples from each plot.

Density of woody debris

Density of branches at the beginning of the decomposi-
tion assay was assessed in 12 subsamples in each DC from 
each plot and determined as δ = dry mass/saturated volume, 
according to Gayoso (2013).

Data analyses

Fungal richness, abundance, and Shannon diversity index 
were analyzed using generalized linear mixed-effects mod-
els (GLMM) (Zuur et al. 2009). Collinearity was checked 
between predictors, and variables with magnitudes greater 
than the pre-selected threshold were removed (r =  ± 0.5). 

The models included the predictor management (two 
classes: MF and C) and the following covariates: canopy 
cover, mean temperature, mean humidity, CWD volume, 
and FWD volume as fixed effects; the random effect of the 
factor site (with three levels, sites 1, 2, and 3) was included 
as a random intercept to model between site variations. An 
automatic backward stepwise approach was applied for 
model selection using the command “drop1”, and the best-
fitting model did not include any of the covariates. However, 
because the model that included CWD volume as covariate 
showed that this variable seems to be associated with fungal 
variables, generalized linear models (GLM) that included 
CWD volume as a fixed effect were also performed for fun-
gal richness, abundance, and diversity to explore this pos-
sible association. The fungal richness response variable was 
modeled assuming a Poisson distribution of errors and log 
link function, while fungal abundance was modeled with a 
Gamma family distribution and log link function. A Gauss-
ian family distribution and log link function were used for 
Shannon diversity. Residual plots were examined for model 
validation following the protocol described by Zuur et al. 
(2009): (i) residuals versus fitted values, (ii) residuals versus 
each explanatory variable included and not included in the 
model, using the packages lattice (Sarkar 2008) and ggplot2 
(Wickham 2016).

To analyze beta diversity, the dissimilarity matrix (con-
structed with the Bray–Curtis index) was submitted to 
cluster analysis, with clusters built using the Ward linkage 
method because it minimizes the total error sum of squares 
in the dendrogram (Legendre and Legendre 1998).

Woody debris mass loss was also analyzed using GLMM. 
Collinearity was checked between predictors, and environ-
mental, fungal, and woody debris variables with magni-
tudes greater than the pre-selected threshold were removed 
(r =  ± 0.5). Different models that included the predictor 
treatment (two classes: MF and C), the woody debris type 
(four classes: 1B, 1 T, 2B, 2 T), their interaction, and the 
covariates mean humidity, mean temperature, canopy cover, 
fungal abundance, and percentage of hemicellulose were 
tested as fixed effects. To take into account the spatial struc-
ture of the data, the random effect of subplots nested within 
the factor site was included. Random intercepts that model 
between-site and between-subplot variation within the site 
were employed. The command “drop1” was used for model 
selection, and the best-fitting model did not include any of 
the covariates. The response variable was modeled assum-
ing a Gamma distribution of errors and log link function. 
Residual plots were examined as described above.

Although the contribution of the structural and microcli-
matic variables, as well as of the woody debris physicochem-
ical traits, to the different models was checked and discarded, 
paired t tests were also performed to analyze whether there 
were differences in structural and microclimatic variables 
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and in woody debris physicochemical traits between man-
aged and unmanaged forests. In addition, to assess the vari-
ation ranges of mean values and standard errors, descriptive 
summary measures of the structure and environmental char-
acteristics of each treatment were obtained.

Modeling was performed in R software, version 3.6.2 (R 
Core Team 2016) via the RStudio software, version 1.2.5033 
(RStudio Team 2016), using “glm” and “glmer” functions 
from lme4 package. The function “drop1” from the same 
package was used for model selection, and the function 
“lsmeans” from lsmeans package was used to perform the 
contrasts. Cluster analysis was conducted in InfoStat soft-
ware (Di Rienzo et al. 2013). To create the artworks, Infostat 
software and Corel DRAW X7 were used.

Results

Funga

A total of 2777 specimens of aphyllophoroid fungi corre-
sponding to 49 species were recorded in MF plots, and a 
total of 2291 specimens of aphyllophoroid fungi correspond-
ing to 43 species were recorded in C plots.

The species accumulation curve of observed richness 
(Fig. 1) did not reach asymptote in any of the two treatments, 
but the slope of the curve was not steep, especially in MF. In 
the MF treatment, by the end of the randomized accumula-
tion curves, only Chao 1 and Chao 2 estimators reached an 
asymptote; other estimators were still increasing (Fig. 1A). 
The estimations of species richness for the MF treatment 
were 54 and 55 for abundance-based indexes (Chao 1 and 
ACE respectively), 56 and 59 for incidence-based indexes 
(ICE and Chao 2 respectively), and 54 for bootstrap. In the 
C treatment, Chao 1 and Chao 2 estimators had negative 

slopes at the end of the accumulation curve; meanwhile, the 
curves of the other estimators were still increasing (Fig. 1B). 
The estimations of species richness for the C treatment were 
51 and 56 for abundance-based indexes (ACE and Chao 1 
respectively), 53 and 54 for incidence-based indexes (Chao 
2 and ICE respectively), and 48 for bootstrap. According 
with these estimators, representativeness ranged from 83 to 
92% in the MF treatment and 77 to 90% in the C treatment. 
Species accumulation curves in each study plot are shown 
in Online Resources, Fig. 3.

The mean fungal richness of MF plots was 35.67 
(± 1.67) and of C plots was 30.67 (± 3.71). The mean 
fungal abundance of MF plots was 926 (± 41.3) and of 
C plots was 764 (± 40.3). The mean fungal diversity (H′) 
was 2.09 (± 0.12) in MF plots and 1.94 (± 0.10) in C plots. 
According to the best-fitting models, which only included 
treatment (managed vs. control forests) as a fixed effect, 
fungal richness, abundance, and diversity were similar in 
both treatments (p value = 0.305, 0.111, and 0.869 respec-
tively). The volume of CWD had a significantly positive 
effect on fungal richness, but not on fungal abundance or 
diversity (Table 1).

The species assemblage was also similar between treat-
ments. Cluster analysis using the Bray–Curtis dissimi-
larity index showed that MF and C stands of each site 
were more similar between them than between stands of 
the same treatment from different sites. This indicates 
that geographical location has a greater influence than 
treatments on fungal diversity (Fig. 2). Site 1 showed the 
maximum dissimilarity between treatments (0.20), while 
sites 2 and 3 showed very low dissimilarity (0.14 and 0.11 
respectively).

MF and C indicate managed forest and control, respec-
tively. Each stand is labeled with the treatment and site 
number.

Fig. 1  Species accumulation curves in managed forest (A) and control (B)
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Woody debris, structural, and microclimatic 
variables.

Coarse woody debris volume was significantly greater in 
MF than in C, but no differences were found in fine woody 
debris volume. Structural and climatic variables, as well as 
sapling density and average height of the highest saplings, 

showed similar mean values in MF and C, except for the 
basal area of the forest, which was significantly greater in C 
than in MF (Table 2).

Structural and environmental variables showed more dis-
similar values between sites than between treatments (Online 
Resources, Table 2).

Table 1  Generalized linear 
models for the effect of volume 
of CWD on fungal richness, 
abundance, and diversity

Explanatory variables, parameter estimates (β) ± standard error, z, t, and p values are shown
Bold values indicate significant differences (p < 0.05)

Model Explanatory variables β ± SE z value p value

Fungal_richness Intercept 1.517 ± 0.085 17.751  < 2e-16
CWD_volume 0.001 ± 0.0002 2.908 0.0036

t value
Fungal_abundance Intercept 18.642 ± 5.508 3.385 0.0009

CWD_volume 0.0245 ± 0.016 1.512 0.1321
Fungal_diversity Intercept 1.100 ± 0.134 8.236 2.82e-14

CWD_volume 0.0001 ± 0.0004 0.255 0.7990

Fig. 2  Hierarchical dendrogram 
of the cluster analysis show-
ing dissimilarity (Bray–Curtis 
index) between fungal assem-
blages of the 6 stands

Table 2  Structural and microclimatic variables, and woody debris volume from different treatments (MF managed forest; C, control)

Mean values of each variable and standard error (in brackets), t parameter value, and p values are shown
Bold values indicate significant differences (p <0.05) 

Variable MF C t value p value

Mean temperature (°C) 5.7 (0.28) 5.5 (0.10) 0.96 0.4380
Maximum temperature (°C) 29.3 (0.93) 27.3 (0.73) 1.31 0.3206
Minimum temperature (°C)  − 13.5 (1.40)  − 12.8 (1.86)  − 0.92 0.4557
Mean humidity (%) 72.8 (1.53) 73.0 (2.77)  − 0.12 0.9162
Minimum humidity (%) 12.0 (1.44) 12.5 (1.04)  − 0.33 0.7745
Canopy cover (%) 55.3 (6.01) 69.3 (0.67)  − 2.59 0.1225
Basal area  (m2  ha−1) 25.5 (4.8) 55.9 (9.67)  − 5.99 0.0268
Average height of the highest sapling (cm) 133.2 (45.52) 30.67 (13.86) 2.65 0.1181
Sapling density (saplings  ha−1) 35,166.67 (17,253.82) 44,000.00 (19,495.73)  − 1.22 0.3472
CWD volume  (m3  ha−1) 418.3 (69.8) 239.8 (61.9) 5.33 0.0335
FWD volume  (m3  ha−1) 27.8 (6.6) 21.03 (5.0)  − 0.54 0.6445
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Decomposition assay

The best-fitting model to assess changes in decomposition 
across treatments included treatment, woody debris type, 
and their interaction as predictor variables. This model 
showed that there was a significant effect of the interac-
tion between treatment and woody debris type on mass loss 
(p value = 0.0145). According to this model, significantly 
greater values of mass loss for branches in DC2 were found 
in MF compared with C (Fig. 3; Table 3). In the other woody 
debris types, no significant differences were found between 
MF and C (Table 3).

Density of branches at the beginning of the decompo-
sition assay did not significantly differ between treatments 
(paired t tests: t =  − 0.08, p = 0.943 and t = 1.8, p = 0.214 
for DC1 and DC2 respectively). However, branches in DC2 
tended to be less dense in MF than in C, while branches in 
DC1 were almost equally dense in both treatments (Online 
Resources, Fig. 4). Values of components and nutrients of 
branches and twigs from MF and C were similar (Online 
Resources, Table 3).

Discussion

Based on previous findings that wood-inhabiting fungi are 
sensitive to forest structure and, thus, that forest management 
alters the fungal community (Juutilainen et al. 2014; Persiani 
et al. 2016; Tomao et al. 2020), we expected to find differ-
ences in fungal diversity, and possibly also in woody debris 
mass loss, between Nothofagus pumilio forests that had been 
subjected to forest management and those that had not. Con-
trary to our expectations, we found no significant differences 
in aphyllophoroid abundance or diversity between managed 
and control forests. In addition, none of the structural and/
or microclimatic variables of the forest significantly con-
tributed to the modeling of fungal diversity in relation to 
forest management. The only observed association was that 

aphyllophoroid fungal richness increased with the increase 
of CWD volume.

It is understandable that the structural and microclimatic 
variables in this study did no contribute to the modeling of 
the response variables because they did not show significant 
differences between MF and C, except for the basal area that, 
as could be expected, was significantly greater in unmanaged 
forests. The variables that we initially predicted to be associ-
ated with changes in fungal diversity (i.e., canopy cover and 
average humidity) showed similar mean values in MF and 
C. This result might indicate that approximately 20 years 
after the intervention, the crown expansion of the remaining 
trees filled the gaps, at least partially and, together with the 
growth of saplings, generated similar conditions of vegeta-
tion cover at the forest floor level. Thus, microclimatic vari-
ables, which are highly affected by tree cover, were similar 
in MF and C.

Dead wood, the other variable reported affecting wood-
inhabiting fungal species diversity, was more abundant in 
managed forests since logging of N. pumilio stands leaves 
a great amount of residues, because only sawn wood is 
extracted and rotten logs and crowns are left on the for-
est floor (Klein et al. 2008). This could have contributed to 
the slightly higher richness and abundance of aphylloporoid 
species in MF, as shown by the association between species 

Fig. 3  Mass loss of branches 
and twigs in different decay 
classes. A branches; B twigs. 
DC1, incipient decay class; 
DC2, intermediate decay 
class; MF, managed forests; C, 
control. Mass loss is presented 
as a percentage of initial mass. 
Mean values (± standard error). 
*indicates significant differ-
ences (p <0.05)

Table 3  Contrasts for the generalized linear mixed model for the 
effect of treatment, woody debris type, and their interaction

Mean mass loss in each treatment (MF, managed forest; C, control) 
for each woody debris type (B, branch; T, twig; 1, DC1; 2, DC2) 
and standard error, parameter estimates (β) and standard error (in 
bracket), and p value are shown
Bold values indicate significant differences (p < 0.05)

Contrast MF C β ± SE p value

MF_1B—C_1B 35.0 ± 1.9 32.2 ± 3.3 0.008 ± 0.004 0.5687
MF_1T—C_1T 25.8 ± 2.1 20.9 ± 0.9 0.013 ± 0.005 0.1695
MF_2B—C_2B 36.3 ± 2.4 23.4 ± 2.7 0.019 ± 0.005 0.0012
MF_2T—C_2T 24.4 ± 2.3 23.5 ± 3.3 0.006 ± 0.005 0.9193
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richness and CWD, similar to what has been observed in 
temperate and tropical forests (Tomao et al. 2020).

Surprisingly, mass loss showed significant differences 
between MF and C, although in only one of the woody 
debris types evaluated: branches in the intermediate decay 
stages. Branches and twigs with sound wood and intact bark, 
as well as twigs in the intermediate decay stages, showed 
similar mass losses. The lack of significant differences in 
decomposition in most of the woody debris types analyzed 
is a reasonable result because the key factors of this process 
(fungal diversity and environmental variables), which were 
expected to be affected by forest management, showed no 
significant differences between treatments. The other key 
factor that regulates wood decomposition, wood chemical 
traits, did not contribute to mass loss modeling and showed 
similar mean values between treatments (Online Resources, 
Table 3).

The question that remains to be answered is why mass 
loss of branches in DC2 was greater in MF than in C. A 
possible explanation could be that it was greater due to the 
interaction of forest management with some physical char-
acteristics of DC2, but in that case the same response could 
be expected for mass loss of twigs, which did not differ 
between treatments. We did not find any substantial differ-
ences in physicochemical traits of woody debris between 
MF and C, although at the beginning of the decomposition 
assay, the wood density of woody debris in DC2 showed 
a pattern of lower values in MF stands than in C stands 
(Online Resources, Fig. 4). This led to the formulation of 
another hypothesis to explain why we only observed dif-
ferences in branches in DC2: the greater mass loss of this 
woody debris type in managed forest may have been the 
result of factors occurring in the past and no longer taking 
place at the present. Branches in DC2 have been on the forest 
floor for many years, as opposed to branches in DC1 which 
belonged to recently fallen trees; hence, the slightly lower 
density of branches in DC2 in MF forest could be related to 
factors that accelerated decomposition or produced faster 
degradation of some component in the first years after inter-
vention but are no longer operating. The reason mass loss 
of twigs in DC2 did not differ between treatments could be 
that, because of their very small diameter, the twigs reaching 
the forest floor at the same time as branches in DC2 should 
have been almost totally decomposed by the beginning of 
the study (Gallo et al. 2019); thus, the twigs in DC2 used in 
the experiment must have reached the forest floor later than 
the branches in DC2.

Alternatively, the greater mass loss of branches in DC2 
in managed forest could have been due to the interaction 
of forest management with some key group of decomposer 
organisms. Previous studies have shown that the type of 
interactions between fungal species determines the rela-
tionship between fungal diversity and decomposition rate 

(van der Wal et al. 2013) and that changes in community 
composition, are more important than richness for carbon 
dynamics (Nielsen et al. 2011). In our study, we did not 
find substantial changes in community composition, and the 
most abundant species were almost the same in MF and C 
(Online Resources, Table 4). However, as woody debris in 
the intermediate decay stage were the substrate of most of 
the recorded basidiomata (51% in MF and 48% in C) (Online 
Resources, Table 5), it is possible that small changes in spe-
cies abundance associated with this decay stage could have 
led to the observed mass loss changes. As mentioned by 
Nielsen et al. (2011), some species have a greater influence 
than others on ecosystem processes. The Friedman non-
parametric analysis of variance (Online Resource, Table 6) 
showed significant differences between MF and C in the 
abundance of basidiomata of only four species: Amyloathe-
lia aspera (more abundant in C than in MF), and Botry-
obasidium vagum, Phanerochaete velutina, and Sistotrema 
brinkmanii (more abundant in MF than in C). Among these 
species, P. velutina is the most important wood decomposer. 
This white-rot fungus has high efficiency to produce extra-
cellular enzymes capable of completely degrading lignocel-
lulose (Lee et al. 2014), and it was most frequently recorded 
(almost 60% of basidiomata) on woody debris in the inter-
mediate decay stage (Online Resources, Table 5). It should 
be noted that we assessed aphyllophoroid fungal diversity 
through the presence of basidiomata, which need specific 
conditions to develop. This implies an underestimation of 
fungal diversity. However, as fungal sampling was done at 
the same time in all sites, the variability in fruiting body 
formation due to climatic conditions was minimized; hence, 
the data from MF and C plots are comparable.

The greatest effects of N. pumilio forest management 
(shelterwood method) on biodiversity are usually observed 
in the first years after cutting and these effects diminish sub-
stantially when the forest canopy closes during the initial 
growth phase of the forest, returning to values similar to 
the one of the unlogged forest when the mature phase is 
reached (Deferrari et al. 2001; Martínez Pastur et al. 2002; 
Pérez Flores et al. 2019). Our study sites were in the initial 
growth phase and, possibly, the relatively low harvest inten-
sity contributed to rapid tree cover recovery. Also, a positive 
effect of forest management on aphyllophoroid fungi is plau-
sible because traditional silvicultural practices in N. pumilio 
forests create great amounts of woody debris immediately 
after logging (Klein et al. 2008) that enhance diversity of 
woof-inhabiting fungi (Tomao et al. 2020). This highlights 
the need to perform studies to understand how fungal diver-
sity responds to the different phases the forest goes through 
after logging.

On the other hand, Lencinas et al. 2017 showed that har-
vesting impacts on plants and beetles were not uniform in N. 
pumilio forests along a regional gradient in Tierra del Fuego, 
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and that the differences seem to be related with the composi-
tion of original assemblages of species of each site and the 
influx of species from surrounding environments. Thus, the 
wide geographical range of our study sites, even though con-
tributed to N. pumilio forest representativeness, could have 
diminished the possibility of detecting differences between 
treatments due to the variations along the geographical gra-
dient. This is in accordance with Tarvainen et al. (2020) who 
found an effect of geographic factors, especially climate, on 
decomposition and fungal community composition along a 
gradient of forestry induced disturbance but could not detect 
any effect of forestry.

Finally, regarding forest management in a landscape 
context, traditional forest use in Chubut province consisted 
in the selective cut of the better timber trees, which gener-
ally did not exceed 10% of forest trees (López Bernal et al. 
2012). The application of forest management systems, which 
ranged from a group selection system up to a variation of 
shelterwood-cut systems, started in Chubut province after 
1980 (López Bernal et al. 2012). However, as in other forests 
of Patagonia, these theoretical forest management methods 
were not fully applied and only the first cuts were imple-
mented, without the final shelterwood removal and any inter-
mediate treatments (Gea-Izquierdo et al. 2004). Moreover, 
as harvesting has been focused in the most accessible and 
highest site quality forests (Gea-Izquierdo et al. 2004), they 
were usually applied to small and scattered areas, result-
ing in discontinued managed patches in a matrix of no or 
slightly logged forests. This was the case of the MF areas of 
this study, which had been subject of the first cut of a shel-
terwood-cut system applied to a total area of < 10 ha, where 
the surrounding forest remained unlogged or with scattered 
extraction of selected individuals. This situation contributes 
to mitigate the effects of harvest on fungal diversity because 
even if some species were negatively affected by harvest, the 
surrounding unlogged forest constituted a source of inocu-
lum from which the original biodiversity of logged areas 
could have been restored through recolonization.

Conclusions

This study is the first to conjointly analyze the diversity of 
wood-inhabiting fungi and wood decomposition in managed 
vs. unmanaged forests. It is also the first study on fungal 
diversity in relation to wood decomposition in South American 
temperate forests. It describes wood decomposition and their 
main control variables in managed vs. unmanaged forest 
stands. Our aim was to find a pattern that could be associated 
with forest management. We found a greater mass loss of 
branches in the intermediate decay stage in managed stands, 
but we did not find differences in any of the assumed key 
variables. In particular, fungal diversity and fungal community 

composition were similar between managed and unmanaged 
forests, although some fungal species were more abundant in 
one of the two treatments. The scope of this study does not 
allow us to explain the difference in decomposition between 
MF and C, but we hypothesize that it could be related to 
effects of forest management that occurred in the past but 
that no longer take place. Further experiments are needed to 
disentangle the complex interactions between environmental 
and woody debris characteristics driving the differences in 
mass loss in DC2. These studies should focus on forests that 
were managed at different times in the past so that the changes 
in decomposition and its control factors can be analyzed after 
disturbance. Such studies should analyze variation over time in 
canopy cover, microclimate and fungal community, including 
potential key species as Phanerochaete velutina.
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