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We analyze whether a black hole can exist and survive in a universe that goes through a cosmological
bounce. To this end, we investigate a central inhomogeneity embedded in a bouncing cosmological
background modeled by the comoving generalized McVittie metric. Contrary to other dynamical metrics
available in the literature, this solution allows for the interaction of the central object with the cosmological
fluid. We show that the horizons associated with this metric change with cosmic time because they are
coupled to the cosmic evolution as the mass of the central object is always proportional to the scale factor: it
decreases during contraction and increases during expansion phases. After a full analysis of the causal
structure of this spacetime, we determine that a dynamical black hole persists during the contraction,
bounce, and expansion of the universe. This result implies that there is a class of bouncing models
that admits black holes at all cosmological epochs. If these models are a correct approximation to the
real universe, then black holes surviving a cosmic collapse could play some role in the subsequent
expanding phase.
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I. INTRODUCTION

The standard model of cosmology is based on Einstein
field equations with a cosmological constant term, the
validity of the standard model of quantum field theory, a
hot and dense phase at the beginning of the cosmic
expansion, and the hypothesis that the content of the
universe is a perfect fluid plus a dominant cold dark matter
(CDM) component that only manifests itself gravitation-
ally. An initial exponentially expanding phase is usually
added to explain the existence of primordial inhomogene-
ities and other observational features. This model, called
ΛCDM, works very well to explain the available data [1,2].
It is, nonetheless, not free of problems.
One of the important tensions of the ΛCDMmodel is the

incompatibility of the current model of particle physics
with the existence of dark matter. Extensions of the model
must be implemented to predict candidates for dark matter,
and such extensions are not unique. Moreover, all experi-
ments attempting at detecting dark matter particles have
failed so far. Another problem of the standard cosmology is
the lack of understanding of the inflaton, the presumed
scalar field responsible for the initial cosmic inflation.
Additionally, there is a 4σ to 6σ disagreement between

the locally measured expansion rate of the universe,

quantified by the Hubble constant, and the value inferred
from the cosmic microwave background measurements by
Planck satellite in the context of the ΛCDM model. This
problem is known in cosmology as “the Hubble tension,”
and might be a strong indication of the inadequacy of the
ΛCDM model (for a recent and comprehensive review on
this problem see [3]).
A major problem is that the ΛCDM model is singular.

A singularity is an undesirable feature of any physical
description of nature because it implies the incompleteness
of the background theory [4], in this case general relativity.
One approach frequently adopted to avoid the singularity
problem is to invoke a quantum theory of gravity that
presumably would lack the undesirable features and would
rule at the Planck scale. But there is no clear picture of
quantum gravity yet. Much less a consistent theory of it.
A different approach is to avoid the singularity through a
classical cosmological bounce from a previous contracting
phase. During the contraction, the density and temperature
of the cosmic fluid increases in such a way that all structure
is expected to be erased. It is not clear, however, whether
black holes formed before the bounce would survive to it.
If black holes get through the bounce, they can produce

perturbations that would give rise to structure and early
galaxy formation in the expanding phase [5]. Persistent
black holes might also form the dark matter without need of
invoking new particle physics [6,7]. Black holes from the
bounce can even help to explain recently observed LIGO/
VIRGO events with inferred black hole masses well inside
the pair-instability gap [8].
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The survival of black holes to a cosmological bounce,
however, is unclear. Carr and Cooley [9] presented a first
semiqualitative discussion of the problem. They noticed
that accretion might play an important role for black holes
getting through the bounce. Clifton et al. [10] investigated
the behavior of a lattice of black holes in a universe whose
energy density is dominated by a scalar field and goes from
a big crunch to a big bang. They obtained some exact
solutions for time-evolving models in which multiple
distinct black holes persist through the bounce. More
recently, Gorkavyi and Tyul’bashev [11] investigated the
effects of multiple bounces on a population of nondynam-
ical black holes.
Since black holes are essentially regions of spacetime,

the global evolution of the universe should affect their
horizons, especially close to a bounce. In a previous paper
we considered the evolution of the McVittie metric before,
during, and after a cosmic bounce [12]. We showed that
although the metric describes a black hole in the past of the
bounce, the trapping horizon disappears close to it, when it
merges with the cosmic horizon. This result remains valid
even when the bounce is not symmetric [13]. If the black
hole interacts with the cosmic fluid, however, the McVittie
metric is not an adequate description of the situation
because in such metric the central mass remains constant.
In the present paper we deal with this problem and we
investigate a black hole described by a generalized
McVittie metric. These black holes interact with the cosmic
fluid and evolve with the universe.

II. SCALE FACTOR BOUNCING
COSMOLOGICAL MODEL

In a bouncing cosmology the universe contracts from a
very diluted phase. The contraction then smoothly evolves
into a bounce that leads to the current phase of expansion as
described by the ΛCDM model. By construction, the
cosmological singularity is absent in such bouncing models.
There are many mechanisms that could generate a

cosmological bounce, either by classical [14–16] or quan-
tum [17–20] effects. The reader is referred to the review by
Novello and Bergliaffa [21] for further details about these
mechanisms.
We choose a scale factor that provides a bounce, has a

simple analytical form, and describes a realistic cosmo-
logical model [22,23]:

aðTÞ ¼ ab

�
1þ

�
T
Tb

�
2
�
1=3

: ð1Þ

This scale factor was obtained by Peter and collaborators
[23] considering quantum corrections to the classical
evolution of the scale factor. The corrections were obtained
by solving the Wheeler-de Witt equation in the presence of
a single perfect fluid, within the framework of the de
Broglie-Bohm quantum theory [24].

In this model, the bounce occurs due to quantum
cosmological effects when the curvature of spacetime
becomes very large. There is no phantom field that causes
the bounce.
The lower limit on Tb, given by Tb > 103tPlanck, is set to

ensure the validity of the Wheeler-de Witt equation, which
was employed to derive the scale factor (1) [22].
The upper bound is set in order for the bounce to

occur before the big bang nucleosynthesis, as explained
in [22]. Thus, 103 tPlanck<Tb < 1040 tPlanck, i.e., 10−41 s<
Tb < 10−4 s. We adopt a value close to the upper
limit (Tb ¼ 10−4 s).
We see from Eq. (1) that for T ≫ Tb the scale factor

reduces to that of dust. Near the bounce the evolution is
driven by an effective fluid with negative energy density that
scales as a−6, as can be seen from Friedman’s equation [25].
The violation of the energy conditions around Tb assures the
non-applicability of the singularity theorems [26].

III. GENERALIZED MCVITTIE SPACETIME:
COMOVING CASE

The generalized McVittie spacetime, originally proposed
by Faraoni and Jacques [27], has the following line element
written in isotropic coordinates ðT; r; θ;ϕÞ [27,28]

ds2 ¼ −
½1 − GmðTÞ

2c2r �
2

½1þ GmðTÞ
2c2r �

2
c2dT2

þ aðTÞ2
�
1þ GmðTÞ

2c2r

�
4

½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�:

ð2Þ

In this expression, aðTÞ is the scale factor of the cosmo-
logical background model and mðTÞ is a function that
depends on the cosmic time T. The only nonvanishing
mixed components of the Einstein tensor are [27,28]

GT
T ¼ −3

AðT; rÞ2
BðT; rÞ2 CðT; rÞ

2; ð3Þ

Gr
T ¼ 2GmðTÞ

c2r2aðTÞ2BðT; rÞAðT; rÞ5
� _aðTÞ
aðTÞ þ

_mðTÞ
mðTÞ

�
; ð4Þ

Gr
r ¼ Gθ

θ ¼ Gϕ
ϕ ¼ −

AðT; rÞ2
BðT; rÞ2 DðT; rÞ; ð5Þ

where

AðT; rÞ ¼
�
1þ GmðTÞ

2c2r

�
; ð6Þ

BðT; rÞ ¼
�
1 −

GmðTÞ
2c2r

�
; ð7Þ
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CðT; rÞ ¼
� _aðTÞ
aðTÞ þ

G
c2r

_mðTÞ
AðT; rÞ

�
; ð8Þ

DðT;rÞ¼ 2 _CðT;rÞ

þCðT;rÞ
�
3CðT;rÞþ 2G _mðTÞ

c2rAðT;rÞBðT;rÞ
�
: ð9Þ

When solving the Einstein field equations with an
energy-momentum tensor of a perfect fluid, the only
possible solutions are the Schwarzschild-de Sitter metric
or the McVittie metric (see, for instance, [29]). Thus, we
consider an imperfect fluid with energy-momentum tensor
given by

Tab ¼
�
p
c2

þ ρ

�
uaub þ pgab þ qaub þ qbua: ð10Þ

Here, ρ is the density, p is the pressure, ua is the four-
velocity of the fluid, and qa is a spatial vector field that
represents the current density of heat. If we assume that

uμ ¼
�
AðT;rÞ
BðT;rÞ ;0;0;0

�
; qα ¼ð0;q;0;0Þ; ubqb ¼ 0;

then Einstein field equations reduce to

_aðTÞ
aðTÞ þ

_mðTÞ
mðTÞ ¼ −

4πr2a2ðTÞ
mðTÞ B2ðT; rÞA4ðT; rÞq; ð11Þ

ρðT; rÞ ¼ 3c2

8πG
AðT; rÞ2
BðT; rÞ2 CðT; rÞ

2; ð12Þ

pðT; rÞ ¼ −
c4

8πG
AðT; rÞ2
BðT; rÞ2DðT; rÞ: ð13Þ

This is an underdetermined system with 3 equations for 5
unknown functions: aðTÞ, mðTÞ, ρðT; rÞ, pðT; rÞ, and q. A
possible way of arriving at a particular solution is by
specifying the functions aðtÞ and mðTÞ, and then solving
the equations for ρðT; rÞ, pðT; rÞ, and q [29]. We shall
follow this path.
Notice that if q ¼ 0, the energy-momentum tensor given

by (10) corresponds to a perfect fluid and Eq. (11) becomes

_aðTÞ
aðTÞ þ

_mðTÞ
mðTÞ ¼ 0: ð14Þ

The solution is

mðTÞ ¼ m0

aðTÞ ; ð15Þ

where m0 is a non-negative constant. If we substitute
expression (15) into the line element (2) we arrive at the

McVittie metric. The constant m0 can be interpreted, in the
Newtonian limit, as the mass of the central object [30].
In spherically symmetric spacetimes, the Misner-Sharp-

Hernandez (MSH) energy [32] provides a good measure of
the local mass-energy of the system. It is defined in terms of
the Riemann curvature which allows a decomposition into a
sum of two terms corresponding to the Ricci and Weyl
curvature, respectively. The Ricci part locally relates to the
energy-momentum tensor while the Weyl part identifies the
gravitational energy of the central object.
Carrera and Giulini [29] computed the Weyl part of the

MSH energy for the generalized McVittie metric

EW ¼ aðTÞmðTÞ: ð16Þ

McVittie spacetime (mðtÞ ¼ m0=aðTÞ) leads to EW ¼ m0,
that is, the gravitational energy of the central object remains
constant. On the contrary, in the generalized case, the Weyl
part becomes dependent on time suggesting a connection
with cosmic dynamics.
In what follows, we focus on a particular class of

generalized McVittie solutions that corresponds to the
choice

mðTÞ ¼ m0; ð17Þ

where m0 is a constant, and the corresponding Weyl part of
the MSH mass is [see (16)]

EW ¼ m0aðtÞ: ð18Þ

Thus, we see that the central object is coupled with the
cosmic evolution.
If we substitute Eq. (17) into the line element (2), we

obtain

ds2 ¼ −
½1 − Gm0

2c2r�2
½1þ Gm0

2c2r�2
c2dT2

þ aðTÞ2
�
1þ Gm0

2c2r

�
4

½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�:

ð19Þ

In the limit aðTÞ → 1, the Schwarzschild metric in isotropic
coordinates is recovered, and if m0 → 0, we obtain the
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmo-
logical spacetime.
The expressions of the Kretschmann (K), Weyl (W), and

Ricci (R) scalars of the comoving generalized McVittie
(CGMcV) metric are

K ¼ 4
K1 þ K2

K3

; ð20Þ

where
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K1 ¼ −1024c14G2m0
2r4a0ðTÞ2ð2c2rþ Gm0Þ8

þ 3a0ðTÞ4ð2c2rþ Gm0Þ16; ð21Þ

K2 ¼ 3aðTÞ2a00ðTÞ2ð2c2rþGm0Þ16
þ 49152c24G2m0

2r6ðGm0 − 2c2rÞ4; ð22Þ

K3 ¼ c4aðTÞ4ðGm0 − 2c2rÞ4ð2c2rþGm0Þ12; ð23Þ

W ¼ 196608c20G2m0
2r6

aðTÞ4ð2c2rþ Gm0Þ12
; ð24Þ

and

R ¼ 6ða0ðTÞ2 þ aðTÞa00ðTÞÞð2c2rþGm0Þ2
c2aðTÞ2ð2c2r −Gm0Þ2

: ð25Þ

Both the Kretschmann and Ricci scalar are singular at
r ¼ Gm0=2c2 while the Weyl scalar is perfectly defined
everywhere. The Ricci scalar is associated with the behav-
ior of the matter since R ¼ −8πG=c4T, where T ≡ Tμ

μ is
the trace of the energy-momentum tensor [33]. Because
the Weyl scalar is smooth and continuous through
r ¼ Gm0=2c2, this surface does not constitute an essential
singularity of the spacetime. The divergence in the Ricci
scalar is thus pointing out some anomaly in the matter
properties in that particular region as we show below.
Under the choice mðTÞ ¼ m0, the energy density and

pressure [see Eqs. (12) and Eqs. (13)] are

ρðT; rÞ ¼ 3c2

8πG

½1þ Gm0

2c2r�2
½1 − Gm0

2c2r�2
H2ðTÞ; ð26Þ

pðT; rÞ ¼ −
c4

8πG

½1þ Gm0

2c2r�2
½1 − Gm0

2c2r�2
½2 _HðTÞ þ 3H2ðTÞ�: ð27Þ

In the limit m0 → 0, we recover the expressions for the
energy density and pressure in FLRW spacetime. In terms
of the scale factor (1), expressions (26) and (27) take the
form

ρðT; rÞ ¼ c2

6πG

½1þ Gm0

2c2r�2
½1 − Gm0

2c2r�2
1

T2
b

�
T
Tb

�
2 1

½1þ ð TTb
Þ2�2 ; ð28Þ

pðT; rÞ ¼ −
c4

6πG

½1þ Gm0

2c2r�2
½1 − Gm0

2c2r�2
1

T2
b

1

½1þ ð TTb
Þ2�2 : ð29Þ

The energy density is always positive, except at r ¼
Gm0=2c2 where it is not defined [34]. The pressure is also
divergent on this surface. Since the Weyl scalar is perfectly
defined on the surface, the presence of pathologies in the
Kretschmann and Ricci scalars might not necessarily imply

geodesic incompleteness but the inadequacy of the matter
model adopted.
The pressure of the fluid is always negative, with a

minimum value at the bounce. For large positive and
negative values of the cosmic time, it goes to zero, that
is, the equation of state is that of dustlike matter, which is in
accordance with the scale factor (1) for T ≫ Tb.
The violation of the strong energy condition in the

context of general relativity ensures the existence of a
cosmological bounce, as discussed in [21]. In the present
model, there is a time interval for which ρc2 þ p ≤ 0:

ρc2þp≤ 0⇒

�
T
Tb

�
2

−1< 0; ∀ T; T ∈ ½−Tb;Tb�:

ð30Þ

Thus, the constant Tb provides the timescale where the
strong energy condition is violated.
In terms of the Weyl part of the MSH energy, Eq. (11)

yields

q ¼ −
_EW

4πr2a3ðTÞB2ðT; rÞA4ðT; rÞ : ð31Þ

If q > 0 (q < 0), for heat flowing in an outward (inward)
pointing radial direction, then the Weyl part decreases
(increases). In the contracting phase previous to the bounce,
the scale factor diminishes and q > 0, while in the
expanding phase q < 0 and the Weyl part grows along
with the scale factor.
If the solution (19) describes a black hole, as we prove in

Sec. III A, the coupling of the black hole with the cosmic
dynamics implies that the black hole loses mass until the
bounce. Afterwards, in the expanding phase, there is a heat
flux toward the black hole and its mass increases. This
behavior is imposed by the coupling between the central
object and the cosmological evolution in the present model,
but it is does not take into account the accretion process on
local scale, that can change the mass change rate.
For the upcoming analysis, it is convenient to express

(19) in terms of the radius coordinate r̃, that is related to the
isotropic radius r by

r̃≡ r

�
1þ Gm0

2c2r

�
2

; ð32Þ

or equivalently

r ¼ r̃
2

�
1 −

Gm0

c2r̃
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Gm0

c2r̃

r �
: ð33Þ

The latter relation makes apparent that r ¼ rðr̃Þ is not a
bijective function; the isotropic radius r maps twice the
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spacetime region r̃ > 2Gm0=c2, and does not cover the
range 0 < r̃ < 2Gm0=c2.
By making the coordinate transformation ðT; r; θ;ϕÞ →

ðT; r̃; θ;ϕÞ, the line element (19) takes the form

ds2¼−c2
�
1−

2Gm0

c2r̃

�
dT2

þa2ðTÞ
�
1−

2Gm0

c2r̃

�
−1
dr̃2þa2r̃2ðdθ2þ sin2 θdϕ2Þ:

ð34Þ

The CGMcV metric has been previously analyzed
[28,35] in terms of the areal radius coordinate R ¼
aðTÞr̃. Under the coordinate transformation ðT; r̃; θ;ϕÞ →
ðT; R; θ;ϕÞ Eq. (34) yields

ds2 ¼ −c2
�
fðT; RÞ − HðTÞ2R2

c2fðT; RÞ
�
dT2 þ dR2

fðT; RÞ

− 2
HðTÞR
fðT; RÞ dTdRþ R2ðdθ2 þ sin2 θdϕ2Þ; ð35Þ

where,

fðT; RÞ ¼ 1 −
2Gm0aðTÞ

c2R
; ð36Þ

and HðTÞ≡ _a=a is the Hubble factor. In what follows, we
argue that these coordinates are not adequate to unveil
certain important features of this metric; instead, we present
an alternative set of coordinates that are more suitable to
our purpose.
We first compute the trapping horizons. Theses are

defined as the surfaces where null geodesics change their
focusing properties [36]. Mathematically, these horizons
are determined by the condition

θinθout ¼ 0; ð37Þ

where θin stands for the expansion of ingoing radial null
geodesics with tangent field na, whereas θout denotes the
expansion of outgoing radial null geodesics with tangent
field la, respectively. Spacetime regions can be classi-
fied as:

(i) Regular if θinθout < 0.
(ii) Antitrapped if θinθout > 0, where θin > 0 and

θout > 0.
(iii) Trapped if θinθout > 0, where θin < 0 and θout < 0.

Trapped regions are a key feature that allow to identify the
presence of a black hole [36]: in the trapped region of a
black hole ingoing and outgoing null rays are converging
and remain confined and enclosed by a horizon.
The expansion of the null vector la when the geodesic to

which it is tangent is not necessarily affinely-parametrized
can be computed using the expression [28]

θout ¼
�
gab þ lanb þ nalb

ð−ncldgcdÞ
�
∇alb: ð38Þ

In the same way, the expansion of the null vector na can be
determined using the relation

θin ¼
�
gab þ lanb þ nalb

ð−ncldgcdÞ
�
∇anb: ð39Þ

Though both θout and θin are scalar quantities, they depend
on the choice of the vectors la and na. Each pair of these
vectors defines a set of spacelike surfaces normal to them.
In other words, trapping horizons depends on the election
of the spacetime foliation, i.e., on the time coordinate [37].
Because of the spherical symmetry, the equation for the

ingoing and outgoing radial null geodesics can be derived
by setting dθ ¼ dϕ ¼ 0 in ds2 ¼ 0, thus obtaining

dR
dT

����
�
¼ HðTÞR� cfðT; RÞ; ð40Þ

where the “−” (“þ”) corresponds to the ingoing (outgoing)
case. The tangent vector fields la and na have the form

nμ ¼ ð1;−cfðT; RÞ þHðTÞR; 0; 0Þ; ð41Þ

lμ ¼ ð1; cfðT; RÞ þHðTÞR; 0; 0Þ: ð42Þ

Finally, the expansions θout and θin yield:

θout ¼
2c
R

�
1 −

2Gm0aðTÞ
c2R

þ RHðTÞ
c

�
; ð43Þ

θin ¼
2c
R

�
−1þ 2Gm0aðTÞ

c2R
þ RHðTÞ

c

�
: ð44Þ

We show in Fig. 1 a plot of the trapping horizons and the
different spacetime regions for the scale factor given by
Eq. (1). The blue line corresponds to θout ¼ 0 whereas the
red curve represents θin ¼ 0. The dashed green line draws
R ¼ 2rgaðTÞ, where rg ≡Gm0=c2 is the gravitational
radius. The antitrapped region is painted in light pink,
the trapped region is in light blue, and the regular zones of
the spacetime are in white.
As expected, in the limit aðTÞ → 1 (HðTÞ → 0), the line

element (35) reduces to the Schwarzschild line element

ds2 ¼ −c2
�
1 −

2Gm0

c2R

�
dT2 þ dR2

ð1 − 2Gm0

c2R Þ
þ R2ðdθ2 þ sin2θdϕ2Þ: ð45Þ

In Schwarzschild spacetime the coordinate T is the proper
time measured by an observer at rest in infinity, and R is
still the areal radius coordinate. The expressions for θout
and θin become
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θout ¼
2c
R

�
1 −

2Gm0

c2R

�
; ð46Þ

θin ¼
−2c
R

�
1 −

2Gm0

c2R

�
: ð47Þ

We see that both θout ¼ θin ¼ 0 at R ¼ 2rg, the event
horizon of the black hole. The regions interior and exterior
to the horizon are both regular:

(i) If R > 2rg, θout > 0 and θin < 0 ⇒ θoutθin < 0.
(ii) If R < 2rg, θout < 0 and θin > 0 ⇒ θoutθin < 0.

This result seems contrary to what we would expect for a
Schwarzschild black hole; the region R < 2rg should be
trapped and not regular as we have just found [38].
Since in the Schwarzschild limit (aðTÞ → 1), the coor-

dinates ðT; R; θ;ϕÞ, and thus the corresponding spacetime
foliation, are inappropriate to reveal the existence of a
trapped region, we conclude that these same coordinates
might not be adequate to analyze a much more complex
spacetime such as the comoving generalized McVittie
spacetime. Instead, Painlevé-Gullstrand coordinates are
much better suited to our task, as we show next.

A. Comoving generalized McVittie in
Painlevé-Gullstrand coordinates

The CGMcV line element in coordinates ðT; r̃; θ;ϕÞ can
be rewritten as

ds2 ¼ a2ðTÞ eds2; ð48Þ

where

eds2 ¼ −
c2

a2ðTÞ
�
1 −

2Gm0

c2r̃

�
dT2

þ
�
1 −

2Gm0

c2r̃

�
−1
dr̃2 þ r̃2ðdθ2 þ sin2 θdϕ2Þ: ð49Þ

The line element eds2 can be cast in a “Schwarzschild-
like form” by defining a new coordinate τ

dτ ¼ 1

aðTÞ dT: ð50Þ

Then, Eq. (49) takes the form

eds2 ¼ −c2
�
1 −

2Gm0

c2r̃

�
dτ2

þ
�
1 −

2Gm0

c2r̃

�
−1
dr̃2 þ r̃2ðdθ2 þ sin2 θdϕ2Þ: ð51Þ

Though Schwarzschild coordinates are useful to describe
certain properties of static black holes, they are not con-
venient to analyse the trapping horizons of a dynamical
black hole. Instead, Painlevé-Gullstrand coordinates are
well behaved at the horizons and as we will later show,
essential to understand the casual structure of this spacetime.
So, we perform a new coordinate transformation from

ðτ; r̃; θ;ϕÞ to ðt̃; r̃; θ;ϕÞ where the coordinate t̃ is the
Painlevé-Gullstrand (PG) time [39,40]:

dt̃ ¼ ∂ t̃
∂τ dτ þ

∂ t̃
∂r̃ dr̃ ¼ dτ þ 1

cfðr̃Þ dr̃; ð52Þ

t̃ ¼ τ þ
Z

1

cfðr̃Þ dr̃; ð53Þ

where

fðr̃Þ ¼ ð1 − 2Gm0

c2 r̃ Þffiffiffiffiffiffiffiffiffi
2Gm0

c2 r̃

q : ð54Þ

Substitution of Eq. (52) into Eqs. (51) yields

eds2 ¼ −c2
�
1 −

2Gm0

c2r̃

�
dt̃2 þ 2c

ffiffiffiffiffiffiffiffiffiffiffiffi
2Gm0

c2r̃

r
dt̃dr̃þ dr̃2

þ r̃2ðdθ2 þ sin2 θdϕ2Þ: ð55Þ

Notice that under the change of variables T → τ → t̃, the
scale factor in the line element (48) is now a function of
both t̃ and r̃, that is

0 10 20 30 40 50
−30

−20

−10

0

10

20

30

x = R/rg

T

T0

FIG. 1. The blue and red lines indicates the conditions θout ¼ 0
and θin ¼ 0, respectively. The white zones point out the regular
regions of the spacetime (θinθout < 0), the light pink zone the
antitrapped region (θinθout > 0, with θout > 0 and θin > 0), and
the light blue zone marks the trapped region (θinθout > 0, with
θout < 0 and θin < 0). The dashed green line denotes the surface
R ¼ 2rgaðTÞ. Here, Tb ¼ 10−4 s and m0 ¼ 10 M⊙.
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aðTÞ → aðTðτðt̃; r̃ÞÞÞ: ð56Þ

In what follows, we denote the CGMcV metric g̃ab and
the metric given by (55) gab. Both metrics are expressed in
terms of the PG coordinates ðt̃; r̃; θ;ϕÞ

g̃ab ¼ a2ðt̃; r̃Þgab: ð57Þ

Our next step is to compute the trapping horizons and
determine the trajectories of the radial null geodesics of this
spacetime. This is done in the following lines.

1. Trapping horizons

The outgoing (ingoing) radial null geodesic congruence
of the metric gab have tangent fields [39]:

lμ ¼
�
1

c
; 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
2Gm0

c2r̃

r
; 0; 0

�
; ð58Þ

nμ ¼
�
1

c
;−1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
2Gm0

c2r̃

r
; 0; 0

�
: ð59Þ

We use these two vectors to calculate θout and θin following
the definitions given by Eqs. (38) and (39). We obtain

θl ¼
2

rgx

�
f1ðxÞ þ

rgx

c
_aðt̃; xÞ
aðt̃; xÞ þ f1ðxÞrgx

a0ðt̃; xÞ
aðt̃; xÞ

�
;

θn ¼
−2
rgx

�
f2ðxÞ −

rgx

c
_aðt̃; xÞ
aðt̃; xÞ þ f2ðxÞrgx

a0ðt̃; xÞ
aðt̃; xÞ

�
;

f1ðxÞ ¼ 1 −
ffiffiffi
2

x

r
;

f2ðxÞ ¼ 1þ
ffiffiffi
2

x

r
:

The overdot indicates the derivative with respect to t̃ and
the prime represents the derivative with respect to x≡ r̃=rg.
In the limit a → 1, we recover the expressions for the
expansions in Schwarzschild spacetime. In terms of the
scale factor given by (1) and the dimensionless cosmic time
T̄ ¼ T=Tb, θl, and θn take the form

θl ¼
2

rgx

�
f1ðxÞ þ gðT̄; xÞ

�
1þ

ffiffi
2
x

q
f2ðxÞ

��
; ð60Þ

θn ¼
−2
rgx

�
f2ðxÞ þ gðT̄; xÞ

�
−1þ

ffiffi
2
x

q
f1ðxÞ

��
; ð61Þ

gðT̄; xÞ ¼ 2rgx

3c
T̄
Tb

1

ð1þ T̄2Þ4=3 : ð62Þ

The equations θout ¼ 0 (blue line) and θin ¼ 0 (red line) in
terms of the coordinates x andT=Tb are plotted in Fig. 2. The
dashed green line denotes the surface r̃ ¼ 2rg. In Fig. 3 we
show the trapped, antitrapped and regular regions of the
spacetime.

2. Radial null geodesics, light cones,
and Penrose diagrams

We derive the equation for the outgoing and ingoing
radial null geodesics by setting eds2 ¼ 0 and dθ ¼ dϕ ¼ 0

dx
dT̄

����
�
¼ cTb

aðT̄Þrg

�
�1 −

ffiffiffi
2

x

r �
; ð63Þ

where the “þ” (“−”) corresponds to the outgoing (ingoing)
case. The trajectories of the radial null geodesics are
determined by integrating the latter equation. The result is
shown in Fig. 4. The dotted curves represent the null ingoing
geodesics while the dashed curves the null outgoing ones.
The grey shadow regions show some light cones and the
black arrow indicates the local future direction.
The trajectories of ingoing radial null geodesics have a

negative slope for all values of the cosmic time and for all
values of the radial coordinate

dx
dT̄

����
−
¼ −

cTb

aðT̄Þrg

�
1þ

ffiffiffi
2

x

r �
< 0: ð64Þ

0 5 10 15 20 25

−4

−2

0

2

4

x = r /rg
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FIG. 2. The blue and red lines indicates the conditions θout ¼ 0
and θin ¼ 0, respectively. The dashed green line denotes the
surface r̃ ¼ 2rg. Here, Tb ¼ 10−4 s and m0 ¼ 10 M⊙.
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We can see that some of the ingoing null rays go through
the surface x ¼ 2 and end up at the singular surface x ¼ 0.
Eventually, all ingoing null rays terminate in the singu-
larity. These geodesics can cross the surface x ¼ 2 in only
one way: from x > 2 to x < 2 since the region enclosed by
x ¼ 2 is trapped.
Outgoing null geodesics are expanding in the region

x > 2 for all values of the cosmic time. As they get closer to
x ¼ 2, the slope of the trajectories becomes smaller and in
the limit x → 2

lim
x→2

dx
dT̄

����
þ
¼ lim

x→2

cTb

aðT̄Þrg

�
1 −

ffiffiffi
2

x

r �
→ 0: ð65Þ

In the trapped region (x < 2), the slope of outgoing null
rays is negative and these geodesics are interrupted at the
singularity.
In Fig. 5, we offer a zoom into the region near the bounce

close to x ¼ 2. We see that all those particles that cross the
surface x ¼ 2 have in their local future the singularity at
x ¼ 0. The light cone structure makes evident that the
surface x ¼ 2 acts as a one way membrane behaving like an
event horizon that is present in all the cosmological epochs
of the universe (contraction, bounce and expansion). Thus,
we conclude that the comoving generalized McVittie
spacetime in a bouncing cosmological model includes a
dynamical black hole at all times.
To conclude our analysis, we show in Figs. 6 and 7

qualitative Penrose diagrams of the CGMcV spacetime in
the expanding and contracting phase, respectively. The
dotted lines represent the trajectories of ingoing null
geodesics and the dashed lines the trajectories of outgoing
null geodesics. In Fig. 6, the red curve displays the inner
(X−) and outer (Xþ) trapping horizons, while in Fig. 7

trapping horizons are shown by a blue curve. In both
diagrams, the dashed green line corresponds to the surface
x ¼ 2, and the grey shadow region corresponds to the black
hole interior. As usual, J þ (J −) denotes the future (past)
null infinity.
In the both the expanding and contracting phase, all

ingoing geodesics, regardless of the initial conditions, reach
the surface x ¼ 2 and end up in the singularity. Outgoing
null geodesics in the contracting phase and outside the

0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

x = r /rg

T

T0

5 10 15 20 25
−4
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3

x = r /rg

T

T0

FIG. 3. The blue and red lines indicates the conditions θout ¼ 0 and θin ¼ 0, respectively. The dashed green line denotes the surface
r̃ ¼ 2rg. The trapped regions are painted in light blue, the antitrapped are colored in light pink and the regular zones are in white. Here,
T0 ¼ 10−4 s and m0 ¼ 10 M⊙.

FIG. 4. The dotted (dashed) curves represent the null ingoing
(outgoing) radial geodesics. The grey shadow regions show some
light cones and the black arrow indicates the future direction.
Here, Tb ¼ 10−4 s and m0 ¼ 10 M⊙.
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trapped region (0 < x < 2, t finite) cross the bounce and
propagate reaching J þ, the future null infinity. All the
outgoing null geodesics in the trapped region finish in the
singular surface x ¼ 0. The Penrose diagrams make clear
that no null geodesic in the region 0 < x < 2, t finite can
cross the surface x ¼ 2 and escape to the future null
infinity. The surface x ¼ 2 is the boundary between two
causally disconnected spacetime regions during the phases
of contraction, bounce and expansion of the universe.
In terms of the areal radius coordinate R ¼ aðTÞr̃, the

radius of the surface that encloses the black hole is

RðTÞ ¼ 2
Gm0

c2
aðTÞ; ð66Þ

and the corresponding Weyl part of the MSH energy is

MðTÞ ¼ M0aðTÞ: ð67Þ

We thus see that size of the black hole diminishes or grows
according to the cosmic evolution of the universe.

IV. DISCUSSION AND CONCLUSIONS

In this work we have analyzed the causal structure of the
comoving generalized McVittie spacetime in a bouncing
cosmological model. We have computed the trapping
horizons, the trajectories of radial ingoing and outgoing
null geodesics, and constructed the corresponding Penrose
diagram. Our main result is that the solution represents a
dynamical black hole that exists at all epochs of the
bouncing cosmological model.
In the contracting phase, the area of the black hole

horizon decreases reaching its minimum value at the
bounce. Once in the expanding phase, its size begins to
increase proportionally to the square of the scale factor.
This is not the case in the McVittie spacetime [12,13],
where the black hole horizon merges with the cosmological
horizon in the contracting phase before reaching the
bounce. Such a solution, however, does not take into
account the coupling of the black hole with the cosmic
dynamics, as in the present work. Thus, we think that the
results here presented correspond to a much more realistic
scenario.
If black holes survive through a cosmological bounce,

they might play an important role in the subsequent
expanding phase of the universe. For instance, these
surviving black holes might contribute to a fraction of
the total dark matter component or provide the seeds for the
formation of galaxies [5,6].
On the other hand, supermassive black holes (SMBHs)

are usually considered as the seeds for galaxy formation,
but their origin remains an unsolved problem. Recent
observations have revealed the existence of a population

FIG. 5. Light cone structure close to the surface x ¼ 2. The
dotted (dashed) curves represent the null ingoing (outgoing)
radial geodesics. The grey shadow regions show some light cones
and the black arrow indicates the future direction. Here, Tb ¼
10−4 s and m0 ¼ 10 M⊙.

FIG. 6. Qualitative Penrose diagram of the CGMcV spacetime
for a bouncing cosmological model in the expanding region
(t > 0). The dotted lines represent null ingoing geodesics while
the dashed lines null outgoing geodesics. The gray shadow region
corresponds to the black hole interior. Here, J þ represents the
future null infinity.

FIG. 7. Qualitative Penrose diagram of the CGMcV spacetime
for a bouncing cosmological model in the contracting region
(t < 0). The dotted lines represent null ingoing geodesics while
the dashed lines null outgoing geodesics. The gray shadow region
corresponds to the black hole interior. Here, J − represents the
past null infinity.
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of SMBHs with masses of 108–1010 M⊙ powering lumi-
nous quasars at z > 6, when the universe was less than one
billion years old [41–43]. There is no established mecha-
nism that could explain how these black holes acquired
such hulking masses at an early stage of the cosmic
evolution.
In the context of the model presented in this work, if we

assume that at the time of the bounce T ¼ 0, the surviving
black hole has a mass [44] ofM0 ¼ 104 M⊙ [5,6], then one
billion years after the bounce only the expansion of the
universe would increase the gravitational mass of the black
hole [see Eq. (67)] up to 109 M⊙, reaching the values
observed in the most distant quasars [45].
The results here presented open the possibility for further

investigations. These include the construction of a cosmo-
logical model where a black hole population survives the
bounce and produce perturbations in the distribution of

cosmological fluid in the expanding phase, the interaction
of black holes during the bounce, and the gravitational
waves produced by these black holes. We shall explore
some of these issues in future works.
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