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ABSTRACT

The main goal of this work was to conduct an intraseasonal climate variability analysis using wavelet and

principal component analysis over a southeastern South American daily maximum and minimum tempera-

ture series from the end of the nineteenth until the beginning of the twenty-first century. The analysis showed

that there is a definite and coherent signal in the intraseasonal maximum and minimum temperatures. The

most noticeable signal was observed during the winter months. The frequency of the intraseasonal signal was

more complex for the maximum temperature, and in some stations, it displayed a bimodal distribution. A

defined pattern that described a coherent variability between 30 and 60 days throughout the entire region was

observed. This pattern potentially allows classification of the regional variability and adjustments to the

temperature forecasting models on a daily basis.

1. Introduction

Processes or phenomena that evolve over time can

generally be described by differential equations. If the

solution of a dynamic system is not periodic, small un-

certainties in the initial conditions can become so great as

to make the forecast no better than a random prediction

for the system. Current numerical weather forecasts have

a predictability that is relatively accurate up to a period of

approximately three weeks (Simmons and Hollingsworth

2002). Even if the predictability beyond three weeks is

low, it is still of great interest, particularly when certain

spatial or temporal structures are highly predictable over

periods longer than three weeks.

Detecting these structures is difficult owing to the

existence of unpredictable superimposed structures that

dominate the effects (DelSole and Tippet 2007). For ex-

ample, the evolution of a variable within a particular time

window (a period of less than a season) can be highly

predictable beyond three weeks, but this predictability

can be difficult to detect in an analysis that takes the

entire series into account (all seasons together). The same

problem can occur for a particular region where the local

predictability cannot be detected within a larger-scale

analysis. Additionally, predictable components with pe-

riods longer than three weeks can be persistent and can

therefore explain a large part of the variability in the

monthly median values, even if the components only ex-

plain a small part of the daily variability (Shukla 1981a).

Following this line of reasoning, Lorenz (1969), Shukla

(1981b, 1984), Dirmeyer and Shukla (1993), and Goddard

et al. (2001) have hypothesized that large-scale structures

tend to be more persistent and, therefore, can be more

predictable than smaller-scale processes. The charac-

teristics of atmosphere–ocean systems that favor longer-

term fluctuations are, by their very nature, limited to

slower variations.

Therefore, there must be conditioning factors (both

internal and external to the weather system) that, under

certain conditions, can cause persistent physical processes

that appear in the series as quasi cycles. This predictability,

which exceeds three weeks, can be identified using the

Corresponding author address: Gustavo Naumann, Climate Risk

Management Unit, Institute for Environment & Sustainability (IES),

Joint Research Centre - European Commission, Via E. Fermi, 2749 -

TP 280, I-21027 Ispra (VA), Italy.

E-mail: gustavo.naumann@jrc.ec.europa.eu

5892 J O U R N A L O F C L I M A T E VOLUME 25

DOI: 10.1175/JCLI-D-11-00482.1

� 2012 American Meteorological Society



appropriate space and time filters. Several techniques have

been used to identify predictable structures in atmospheric

datasets. Barnett and Preisendorfer (1987) used a canoni-

cal correlation analysis to identify the relations between

sea and air surface temperatures, and Lorenz (1965) used

the singular value decomposition to identify the initial

conditions that maximize the growth of the error. Deque

(1988) and Renwick and Wallace (1995) used a principal

component analysis to identify the most predictable pat-

terns in operational forecast models. Venzke et al. (1999)

used the relation between signal and noise in a multivari-

ate analysis to identify predictable variables in a climate

change scenario. Using a discriminant analysis, Schneider

and Griffies (1999) identified the components that maxi-

mize the predictive power.

This work explores the structures that provide events

with enhanced predictability at the intraseasonal time

scale. An attempt is made to detect the intraseasonal signal

by performing joint wavelet and principal component

analyses. Long-term (from the end of the nineteenth cen-

tury to the first decade of the twenty-first century) series

of daily maximum and minimum temperatures obtained

from reference stations in southeastern South America

were used to obtain robust estimates. In particular, it is

shown that the detection and discrimination of the intra-

seasonal variability modes can be used to construct moni-

toring tools and objective forecasting models. This method

is particularly effective for time intervals in which the an-

alyzed variable exhibits a substantial number of quasi pe-

riodicities (Mo 2001). The different modes that define the

temporal evolution of temperature can also be used to

improve the forecast by fitting time series models at each

mode (Mann and Park 1999).

This work is organized as follows. The data and methods

used are described in section 2. Section 3 discusses the

wavelet spectral approximation over the temperature se-

ries. The interannual variation of the intraseasonal signal

is described in section 4. Section 5 details the main oscil-

lation trends within the intraseasonal scale. Finally, the

main results are detailed in section 6.

2. Data and methods

a. Regional database

Series of daily maximum and minimum temperatures

from 57 stations were provided by the Claris Project

(Boulanger et al. 2010) and the National Weather Service

of Argentina (Fig. 1 and Table 1). These series ensured a

large quantity of reliable data for producing stable es-

timates and diagnostics of the transient oscillations over

the reference series. A representative geographic dis-

tribution of stations was selected to include as many of the

climatic regions of southern South America as possible

and to cover a wide latitudinal range (238–558S). Eight of

these stations (boldface in Table 1) have daily records

ranging from the end of the nineteenth century to the

first decade of the twenty-first century. These stations

were used as the reference stations, and the main fea-

tures of the present analysis are related to these stations.

The National Centers for Environmental Prediction

(NCEP)–Department of Energy (DOE) monthly mean

reanalysis (Kanamitsu et al. 2002) was also used, including

sea surface temperature (SST) and 850-hPa vector wind

and air temperature anomalies.

b. Wavelet analysis

Wavelet analysis is a tool that allows the analysis of

spectral power variations within a time series. In general

terms, this method allows the deconstruction of a time

series in space–time frequency. In other words, the method

determines the principal modes of variability and detects

how these modes vary with time (Percival and Walden

2000). A complete description of wavelet analysis theory

is found in Daubechies (1990, 1992), and complete de-

scriptions of the application can be found in the studies by

Foufoula-Georgiu and Kumar (1995) and Torrence and

Compo (1998).

The wavelet transform can be used to analyze a series

that has nonstationary spectral power for different fre-

quencies. Assume that the time series Xn has the same

time step for all t (i.e., constant Dt) and that there are n 5

0, . . . , N 2 1 observations. A wavelet function c0(h) that

depends on a dimensionless time parameter h is used

to begin the analysis. For a function to be suitable as

FIG. 1. Sampling stations used in this study (reference stations

according to Table 1).
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a wavelet, it must have a mean equal to zero and be

located within the time and frequency ranges (Farge

1992). The Morlet wavelet function consists of a planar

wave modulated by a Gaussian function:

c0(h) 5 p21/4eiv
0
he2h2/2, (1)

where v0 is a dimensionless frequency.

The continuous wavelet transform of a discrete data

sequence (Xn) is defined as the convolution of Xn with

respect to c0(h):

Wn(s) 5 �
N21

n950

X9nc*

�
(n9 2 n)Dt

s

�
, (2)

where the asterisk indicates the complex conjugate. Start-

ing with variations in the wavelet scale s and translating the

index h in time, it is possible to build a two-dimensional

diagram that shows the spectral power for different fre-

quencies and the variation of this power with respect to

time. More details regarding the approximation of the

continuous wavelet transform can be found in Kaiser

(1994).

Within the continuity limits and by the convolution

theorem, the wavelet transform is the inverse of the

Fourier transform of the product:

Wn(s) 5 �
N21

k50

X̂nĉ*(svk)eiv
k
nDt, (3)

where

X̂k 5
1

N
�

N21

n50

Xne22pikn/N (4)

and k 5 0, . . . , N 2 1 is the frequency index.

A wavelet analysis can be used to examine spectral

power fluctuations over a range of scales (bands). For

this purpose, the average spectral power can be defined

as a function of the scale as the weighted sum of the

wavelet spectral power between scales s1 and s2:

W
2
n 5

DjDt

cD
�
j2

j5j1

jWn(sj)j
2

sj

. (5)

A time series is obtained as a result of (5) that represents

the median variance for the bandwidth in question.

Therefore, the spectral power averaged by scale can be

used to examine the modulation of one series by another

or one frequency by another within the same time series.

Using this method, it is possible to identify the periods in

which more persistent phenomena appear. These periods

TABLE 1. The descriptions, geographical locations, and obser-

vation periods for the sampling stations in the regional database.

The reference stations are highlighted in bold type.

Country Region Lat Lon Start End

Chile Arica 218.12 269.52 1967 2005

Brazil Campinas 223 247.12 1890 2003

Chile Antofagasta 223.15 269.55 1967 2005

Brazil Sao Paulo 223.37 245.61 1951 1997

Paraguay M. Estigarribia 223.49 260.22 1950 1999

Brazil Santos 223.56 245.82 1951 2000

Argentina Jujuy 224.23 265.5 1967 2006

Argentina Las Lomitas 224.42 260.35 1956 2006

Argentina Salta 224.51 265.29 1956 2006

Brazil Curitiba 225.31 248.89 1951 1997

Argentina Iguazu aero 225.44 254.28 1961 2004

Argentina Formosa 226.12 258.14 1962 2006

Paraguay Villarica 226.15 256.43 1956 1999

Argentina Tucumán 226.8 265.2 1891 2007
Argentina Posadas 227.22 255.58 1956 2006

Argentina Corrientes 227.43 258.74 1894 2007

Argentina Sgo. Del Estero 227.46 264.18 1956 2006

Argentina La Rioja 229.23 266.49 1956 2006

Argentina P de los libres 229.41 257.09 1956 2006

Brazil Santa Maria 229.43 252.58 1961 1996

Argentina Ceres 229.53 261.57 1956 2006

Brazil Porto Alegre 230 250.89 1951 1996

Argentina Monte Caseros 230.16 257.39 1959 2006

Uruguay Artigas 230.23 256.3 1960 2002

Argentina Concordia 231.18 258.01 1962 2006

Brazil Bague 231.23 253.3 1961 1997

Argentina Sauce Viejo 231.42 260.49 1958 2006

Argentina Paraná 231.47 260.29 1956 2006

Argentina Pilar 231.64 263.85 1931 2007
Argentina Marcos Juarez 232.42 262.09 1956 2006

Argentina Mendoza 232.5 268.47 1959 2006

Argentina Rosario 232.55 260.47 1950 2006

Argentina Gualeguaychu 233 258.37 1956 2006

Chile Qta Normal 233.15 269.64 1968 2005

Argentina Villa Reynolds 233.44 265.23 1956 2006

Argentina San Martin 233.5 268.52 1956 2006

Argentina Pergamino 233.9 260.53 1931 2007
Argentina Laboulaye 234.08 262.62 1950 2006

Uruguay La Estanzuela 234.27 257.5 1960 2002

Uruguay Rocha 234.29 254.18 1960 2002

Argentina Junin 234.33 260.55 1958 2006

Argentina Palomar 234.36 258.36 1956 2006

Argentina Ezeiza 234.49 258.32 1956 2006

Argentina Buenos Aires 234.57 258.42 1906 2007
Argentina Nueve de julio 235.27 260.53 1950 2006

Argentina Malargue 235.3 269.35 1956 2006

Argentina Dolores 236.21 257.44 1956 2006

Argentina Santa Rosa 236.54 264.26 1937 2007
Argentina Cnel. Suarez 237.26 261.53 1956 2006

Argentina Mar del Plata 237.56 257.35 1956 2006

Argentina Bahia Blanca 238.44 262.1 1956 2006

Argentina Neuquen 238.57 268.08 1959 2006

Chile Pto Montt 241.15 272.43 1967 2005

Argentina Esquel 242.56 271.09 1961 2006

Argentina Trelew 243.12 265.16 1956 2006

Argentina Rı́o Gallegos 251.99 269.45 1896 2007

Chile Pta. Arenas 253 269.7 1967 2005

5894 J O U R N A L O F C L I M A T E VOLUME 25



are identified in the time series by the presence of quasi

cycles. Therefore, if there is a recurring periodicity, it is

possible to investigate the time intervals over which this

periodicity had a greater influence by monitoring the

spectral densities associated with the individual periods.

3. Estimation of the intraseasonal variation over
the reference series

Several works have studied intraseasonal variation in

southern South America, especially the variation in pre-

cipitation (Liebmann et al. 2004; Gonzalez et al. 2008).

Additionally, Minetti and Vargas (1997), Cerne and Vera

(2010), and Naumann and Vargas (2010) have demon-

strated the existence of a modulation in the intraseasonal

fluctuations of temperature anomalies in the Argentinean

tropics and extratropics due to the different phases of

the El Niño–Southern Oscillation (ENSO), the South

Atlantic convergence zone (SACZ), and the Madden–

Julian oscillation (MJO). A wavelet spectral analysis of

the daily maximum and minimum temperature series

was performed to detect the thermal structures that

produced persistent phenomena. From this analysis, the

main spectral characteristics of the preferential band-

widths were determined within the intraseasonal scale.

Figure 2 shows an example of a wavelet spectrum for

the 1976 Tucumán minimum temperature series that

uses the Morlet basis. This spectrum exhibits peaks re-

lated to the synoptic variability and significant spectral

densities for the quasi cycles of periods between 25 and

50 days, indicating that cold/hot surges are favored

during winter. This concept is related to the appearance

of physical processes or circulation patterns that tend to

modulate the meridional heat transport with a particular

frequency within the intraseasonal spectrum (Ghil and

Mo 1991a,b; Higgins and Mo 1997).

Given that the wavelet transform is also a band filter

with a known response function (i.e., the wavelet func-

tion), it is possible to reconstruct the original time series

or, simply, the characteristic of the series for the desired

bandwidth. In this case, the reconstructed time series is

the sum of the real part of the wavelet transform over

the desired scales:

x9n 5
djd

1/2
t

c
d
c0(0)

�
j2

j5j1

RfWn(sj)g
s1/2

j

. (6)

This filter has a response function given by the sum of

the wavelet functions between scales j1 and j2.

Figure 2b shows the anomalies of the 1976 minimum

temperatures and the reconstruction of the series in the

bandwidth with periods between 30 and 60 days accord-

ing to Eq. (6). This reconstruction can be interpreted as

the contribution to the amplitude of the daily anomalies

from the variability with periods between 30 and 60 days.

The figure shows that during the winter (the season

that displays the greatest spectral density), the ampli-

tude of the reconstructed anomalies in the intra-

seasonal range begins to increase stepwise and in phase

with the total anomalies. In this case, the reconstructed

FIG. 2. (a) The estimated wavelet spectrum (8C2) for the minimum temperature in S. M. de Tucumán in 1976. The

white contours represent the 5% significance level with respect to an autoregressive model. (b) The minimum

temperature anomalies (thin line) and a reconstruction of the anomalies in the bandwidth between 30 and 60 days

(bold line).
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amplitude increases significantly between the months of

May and September, displaying an amplitude near 18C.

This observation indicates that, in some cases, intra-

seasonal variability represents more than 40% of the total

variability. Following this line of reasoning, Naumann

et al. (2011) showed the existence of fluctuations with

periods between 20 and 90 days over the series of daily

temperatures, with a greater frequency observed in fluc-

tuations with periods between 30 and 60 days. Similar

results for the region have been found by Ghil and Mo

(1991b), Minetti (1991), and Minetti and Vargas (2005).

Therefore, the diagnosis and identification of the

processes in which the intraseasonal variations tend to

become evident will play an important role when used as

inputs to stochastic or dynamic forecasting models

(Straus and Shukla 1981; Lau and Chang 1992; Doblas-

Reyes et al. 1998).

Figure 2 shows that the variability in the 30- and 60-day

bands for 1976 displays greater spectral energy during

winter months. This result raises the question of whether

this type of linear or nonlinear effect tends to be observed

in a particular season. Figure 3 shows the distribution of

the occurrence of significant spectral densities in the

bandwidth between 30 and 60 days as a function of the

month of the year. Significance was assessed using a red

noise (autoregressive lag 1) background spectrum. For

most of the reference stations, including the maximum

and minimum temperatures, it is clear that the winter

months display the greatest frequency for this variability.

For the maximum temperature, the frequency of this in-

traseasonal signal appears to be slightly more complex; in

some sampling stations (Campinas, Tucumán, Perga-

mino, Pilar, and Santa Rosa), this characteristic tends to

have a bimodal distribution. Here, the maxima tend to

occur at the beginning and end of winter. In locations

where this pattern is observed, the maxima are especially

associated with the beginning and end of a dry season

(Vargas et al. 2011).

From a regional perspective, Fig. 4 shows the spatial

distribution of the day of the year with the greatest number

of significant spectral densities in the 30- to 60-day band-

width using the regional database. Again, the frequency of

significant densities was calculated using a red noise

background spectrum for each day. Indeed, the largest

signal in this bandwidth is seen over the maximum tem-

perature between the end of autumn and the start of

winter in central Argentina and southern Brazil, while the

greatest amplitude for Patagonia is recorded in the spring

(October–November). The behavior of this signal is more

homogeneous for the minimum temperature, with the

greatest frequency of days with a signal occurring within

a 15-day range centered on 1 July (the approximate day

when the annual temperature minimum is recorded). The

spatial heterogeneity observed in the maximum temper-

ature may be directly associated with the influence that

cloud cover has on the maximum temperature (Karl et al.

1993), while the minimum temperature appears to be

independent of this effect.

FIG. 3. The annual distribution of the frequency of significant maximum (black bold line) and minimum temperature

(gray line) spectral densities in the bandwidth between 30 and 60 days.
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4. Interannual variation of the intraseasonal
spectral estimation

The main mode of intraseasonal oscillation (30–90

days) is seen in the periods between 30 and 60 days (Ghil

and Mo 1991b; Madden and Julian 1994). This mode,

which is seen over different weather system variables, is

forced by different persistent circulation patterns that re-

spond to changes in the boundary conditions of the system.

In addition, in the region Naumann and Vargas (2010)

found that the temperatures in tropical/subtropical south-

eastern South America are modulated by the Madden–

Julian oscillation. However, this type of oscillation has a

transient effect on seasonal and interannual variations.

In other words, a phenomenon of this kind does not have

the same impact on each variable (in magnitude or in

duration) every year.

This phenomenon is not observed in all years and has

a probability of occurrence between 30% and 50%,

depending on the location. Given this variability, some

periods in which this intraseasonal perturbation occurs

more frequently and displays greater amplitude are ob-

served (results not shown). During the 1950s and 1970s

and at the end of the 1980s, the maximum amplitude of

this oscillation was greater than 38C.

In contrast, a regional coherence is observed in the

circulation patterns that are associated with this kind of

variability. To support this statement, the monthly mean

composite of wind and temperature anomalies (Figs. 5a–c)

was calculated for seasons that exhibited intraseasonal

variability at six or more of the eight reference stations

for both maximum and minimum temperatures. For these

seasons, a predominance of southern winds during May is

observed, mainly conducted by a blocking high pressure

system located near the western coasts of southern South

America and adjacent to a low pressure system positioned

in the South Atlantic. This pattern leads to below-normal

temperatures across the southern part of the continent

(Fig. 5a). For June (Fig. 5b) the warm advection ob-

served over the eastern part of the continent is mainly due

to the intensification of the South Atlantic semipermanent

anticyclone. This effect is not observed over Patagonia,

a region that shows negative temperature anomalies.

During July the whole continent is again covered with

negative temperature anomalies conducted by a cyclonic

system located in the southern Atlantic Ocean (Fig. 5c).

This observation leads to the inference that the processes

that modulate this variability are largely attributable to

surges of polar air traveling toward the tropics or, con-

versely, to the persistence of tropical air (heat waves). It

is also noted that the SST anomalies (Fig. 5d) related to

these events are associated with cold anomalies in the

western equatorial Pacific (La Niña events) and with

warm SST anomalies near the coasts of southern Brazil

and Uruguay. This statement agrees with the findings by

Sinclair et al. (1997), who documented links between

FIG. 4. The spatial distribution of the day of the year with the greatest number of significant reference station (a) maximum temperature

and (b) minimum temperature spectral densities in the bandwidth between 30 and 60 days.
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ENSO and weather system tracks characterized by

a coherent cyclone response to ENSO, especially during

austral winter. During El Niño winters a 20% increase in

cyclones occur in a broad band extending southeastward

from the subtropical Pacific toward South America,

while during La Niña these patterns are almost exactly

reversed. Grimm et al. (2000) state the circulation

anomalies during ENSO events are the near equivalent

of barotropic dipolelike circulation anomalies over the

Pacific and Atlantic Oceans, with reversed polarity.

However, the centers of the anomalies undergo some

changes of magnitude and shifts in position.

Regarding the interdecadal variability of these circu-

lation patterns, Silvestri and Vera (2009) found changes

in the typical hemispheric circulation pattern associated

with the southern annular mode (SAM), particularly over

South America and Australia, between the 1960s–1970s

and the 1980s–1990s. During the first decades, the SAM

positive phase is associated with an anomalous anticy-

clonic circulation that developed in the southwestern

subtropical Atlantic. During the latter decades, how-

ever, the anticyclonic anomaly induced by the SAM

positive phase covers most of southern South America

and the adjacent Atlantic, producing weakened mois-

ture convergence and a positive temperature anomaly

advection over southern South America.

An interdecadal variability is also observed in the

intraseasonal variability studied. Figure 6 shows the fields

associated with the maximum amplitudes [reconstructed

according to Eq. (6)] of the waves with periods between

30 and 60 days. The figure shows a distribution charac-

terized by a meridional gradient with few spatial varia-

tions and by temperature anomaly amplitudes between 2

and 38C over nearly the entire region. The regions that

FIG. 5. The composite vector of wind (m s21) and temperature anomalies (8C) at 850 hPa for the seasons with intraseasonal temperature

signals in at least six of the eight reference stations during (a) May, (b) June, and (c) July, and (d) the May–July sea surface temperature-

mean composite.
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show the greatest differences are northeast Argentina

and southern Brazil, where maximum amplitudes near

58C are observed.

Considering the years during which these maxima

occur, Fig. 7 shows the isochrones relative to the oc-

currence of the maximum oscillation amplitude (i.e., the

maximum intraseasonal signal) between 30 and 60 days

over the maximum and minimum temperatures. It can

be seen that the greatest intraseasonal signals in north-

ern and central Argentina occurred during the 1970s,

while the maxima for northeastern Argentina and

southern Brazil were recorded during the 1990s. These

results support the hypothesis of a consistent signal in

the occurrence pattern of the intraseasonal mode. In

addition, the difference between the behavior patterns

in northwestern Argentina and southern Brazil is high-

lighted, with the latter being the region where the ENSO

and MJO had greater impacts on precipitation and

temperature (Barros and Silvestri 2002; Penalba and

Vargas 2004; Naumann and Vargas 2010).

5. Main modes of oscillation at the intraseasonal
scale

Recognizing patterns or, in this case, oscillation

modes depends on the selection and extraction of char-

acteristics from the analyzed information. The main goal

of the classification technique is to obtain a reduction in

the spatial dimensions associated with the original data.

The following sections detail the results of classifying the

intraseasonal oscillation modes of the daily temperatures

using principal component analysis. This method was

applied over the series of temperature anomalies recon-

structed using Eq. (7) in the 30- to 60-day bandwidth for

the years that recorded a significant spectral density for

that region of the spectrum.

The principal component analysis was performed by

computing the eigenvectors and eigenvalues of a corre-

lation matrix computed from the original groups in the

intraseasonal signal reconstructed from the maximum

and minimum daily temperature series. It was then

possible to extract the coherent variations from the

original groups and create new groups using the original

time series data and the eigenvectors. Figure 8 shows the

variance explained by each principal component (PC)

over the reconstruction of the maximum and minimum

temperature anomalies in the bandwidth between 30

and 60 days. A homogeneous regional behavior can be

seen for both variables. Generally, the first component

explains 14%–18% of the total variance, with the min-

imum temperature having the most identifiable intra-

seasonal oscillation patterns. In addition, the first three

PCs explain more than 40% of the variance in the re-

gion. Accounting for the transient characteristics of

these waves, this degree of explained variance suggests

the existence of a stable pattern. This stable pattern will

FIG. 6. The spatial distribution of the maximum amplitude (8C) of the oscillations between 30 and 60 days for the (a) maximum and

(b) minimum temperatures.
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in turn allow identification of a conceptual model for the

general characteristics of this type of oscillation.

Figure 9a shows the first PC for the reference stations.

A strong regional coherence can again be seen, and the

pattern appears to be the same for all reference stations.

This mode is characterized by an increase in the intra-

seasonal signal for both maximum and minimum tem-

peratures during winter. Generally, the beginning of this

FIG. 7. The isochrones (years) of the maximum amplitude of the oscillations between 30 and 60 days for the (a) maximum and

(b) minimum temperatures.

FIG. 8. The variance explained by each principal component (PC) of the filtered (a) maximum and (b) minimum temperature anomalies

for the bandwidth between 30 and 60 days.
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signal for the two variables is associated with an intense

warm (cold) surge of air followed 30 days later by a cold

(warm) surge of great intensity. A warm (cold) surge is

observed in July, and another intense cold (warm) surge

is recorded approximately 30 days later. Before and af-

ter this period, the intraseasonal signal tends to be in-

coherent and to have negligible amplitude.

The model previously described is the main mode

observed, and it results from modulation in the intra-

seasonal temperature band. This result allows identifi-

cation of the seasons of the year in which the regional

maximum warm and cold surges are expected and the

extent of the surges’ magnitudes. This description is

valid for most tropical stations and Campinas and Cor-

rientes, with a 15-day lag; the first warm surge is ob-

served in the first days of June.

By analyzing the second PC (Fig. 9b), it can be seen

that the regional coherence for the maximum tempera-

ture is not as strong as that seen with the first PC.

However, a cold (warm) surge is seen in the middle of

June followed 30 days later by a warm (cold) surge. Fi-

nally, another cold (warm) surge is observed during the

middle of August. However, the minimum temperature

displays a more homogeneous signal for the second PC.

Here, the regional model can be described as having

intense cold surges during the months of April, June,

and August and warm surges in May and July.

The information contained in the first two principal

components describes the effect of large-scale circulation

patterns on the thermal properties of surface air in the

region. These generally large-scale processes tend, under

certain conditions, to favor the meridional heat transport

in the form of intraseasonal quasiperiodicities that could

persist for a period of one to three seasons.

6. Conclusions

This study is an empirical analysis using historical

daily data, not a test of a specific dynamical hypothesis.

For this reason, the conclusions drawn must be tentative.

Nevertheless, we can make several observations on the

basis of this analysis.

The identification of spectral structures in time that

result from transient physical phenomena allows the

detection of periods in which the predictability of the

system increases, thus improving objective forecasts.

For the maximum and minimum temperatures, the

winter months displayed the greatest intraseasonal vari-

ability signal. The intraseasonal signal pattern was slightly

more complex for the maximum temperature. For some

stations (Campinas, Tucumán, Pergamino, Pilar, and Santa

Rosa), the pattern tended to have a bimodal distribution

with maxima at the beginning and end of winter.

The coherent spatiotemporal patterns of intraseasonal

temperature variation revealed by this analysis may have

more than one possible explanation. Nevertheless, the co-

incidence of significant ENSO, MJO, and SAM variabil-

ity with these oscillation modes in temperature suggests

FIG. 9. PC1 of the (a) maximum and (b) minimum temperatures and PC2 of the (c) maximum and (d) minimum temperatures, for the

reference stations listed in bold font in Table 1.
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possible dynamic linkages that could be investigated in

coupled ocean–atmosphere model experiments.

In the classification based on the principal component

analysis, there was a main mode characterized by an

increase in the intraseasonal signal during winter for

both maximum and minimum temperatures. Generally,

the beginning of this signal was associated with an in-

tense warm (cold) surge of air followed 30 days later by

an intense cold (warm) surge. Then, a warm (cold) surge

was observed in July. Finally, approximately 30 days

later, another intense cold (warm) outbreak was recor-

ded. The intraseasonal signal tended to be incoherent

and to have negligible amplitude before and after this

period.

The combination of wavelet analysis with PCA makes

it possible to apply the spectral methods discussed herein

to seasonal temperature prediction. The key idea is that

each significant oscillation mode obtained from analysis

is a narrowband time series; the mode can therefore

be predicted fairly robustly by computing a low-order

autoregressive process that fits this mode over the time

interval available (Naumann et al. 2011). The separate

reconstructed mode predictions can then be combined to

form a partial reconstruction of the future evolution of

the entire time series (Keppenne and Ghil 1993; Vautard

et al. 1992). The accuracy of the prediction depends, in

either case, on the extent to which the available data from

the past determine the regular, that is, periodic and

multiple periodic, behavior of the time series (Mann and

Park 1999).
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