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Abstract: Spent grains from microbreweries are mostly formed by malting barley (or malt) and are
suitable for a further valorization process. Transforming spent grains from waste to raw materials,
for instance, in the production of nontraditional flour, requires a previous drying process. A natural
convection solar dryer (NCSD) was evaluated as an alternative to a conventional electric convec-
tive dryer (CECD) for the dehydration process of local microbrewers’ spent grains. Two types of
brewer’s spent grains (BSG; Golden ale and Red ale) were dried with both systems, and sustainability
indices, specific energy consumption (eC), and CO2 emissions were calculated and used to assess
the environmental advantages and disadvantages of the NCSD. Then, suitable models (empirical,
neural networks, and computational fluid dynamics) were used to simulate both types of drying
processes under different conditions. The drying times were 30–85 min (depending on the drying
temperature, 363.15 K and 333.15 K) and 345–430 min (depending on the starting daytime hour
at which the drying process began) for the CECD and the NCSD, respectively. However, eC and
CO2 emissions for the CECD were 1.68–1.88 · 10−3 (kW h)/kg and 294.80–410.73 kg/(kW h) for the
different drying temperatures. Using the NCSD, both indicators were null, considering this aspect as
an environmental benefit.

Keywords: natural convection solar dryer; electric convective dryer; brewer’s spent grains; waste
valorization; artificial neural networks; computational fluid dynamics

1. Introduction

The beer production market has been a highly concentrated one worldwide for a long
time, with a substantial market share held by a few brewing companies which produce
the most consumed industrial lager type of beer. Starting a decade ago, however, local
microbreweries have been increasingly capturing the consumer’s interest with a wide range
of different types of beer. The Argentinian beer industry does not escape this reality, and
the craft beer market was growing 30% annually (pre-pandemic) [1]. Beer in all its variants
is one of the most popular alcoholic beverages in the world. In Argentina in particular, its
consumption began to grow steadily, reaching 2 · 1010 L/a [2].

Beer is made from sugars acquired from cereals and other grains (mainly barley and
wheat), flavored and aromatized mostly with hops, but also with other herbs and additives,
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which are fermented in water with yeasts of the Saccharomyces type. In this process, large
amounts of a solid fraction residue are produced, called brewer’s spent grains (BSG) [3],
which form the most abundant byproduct of the brewing process, representing 85 % of
the total residue and, on average, 31 % of the original weight of the malt spent in the
process [4,5].

As a consequence of the appearance of microbreweries scattered around the country,
large amounts of spent grains have been made available locally. The disposal of this residue
is a serious environmental problem for communities and breweries because the volume
of BSG generated is around 0.60 kg/L of beer brewed (as reported by the establishment
which provided the samples and [6]). BSG are mainly used for animal feed; also, in a low
fraction, for biogas generation; or are eliminated in landfills [7]. However, those byproducts
potentially have several applications because of their year-round availability, low cost, and
valuable chemical composition. The chemical composition is influenced by diverse factors
like the grain used (barley, wheat, rice, corn, among others), processing method, harvesting
time, and brewing conditions (i.e., the recipe used) [8]. Spent grains mainly consist of
15–26% protein and 70% fiber. The fiber consist of 16–25% cellulose, 28–35% hemicellulose,
and 7–28% lignin [5].

Bolwig et al. [7] and Kavalopoulos et al. [9] studied the valorization of BSG as animal
feed and biofuel, respectively, in the framework of biorefining and circular bioeconomy.
Additionally, Fabani et al. [10] proposed a byproduct development process for watermelon
rind in which rinds are transformed into nontraditional flour. Similarly, BSG are materials
suitable for further valorization through such a process. For instance, BSG are added as an
ingredient to enhance the fiber contents in recipes for pasta [11], bread, and snacks [3,12,13].
Recently, the potential use of BSG as fuel and food in Africa and its global warming capacity
were studied by Maqhuzu et al. [14]. In addition, BSG can be used to directly recover fibers
and antioxidant compounds [15].

Because of its high initial moisture (60–80%), transforming BSG from waste to raw
materials requires a prior drying process. High moisture makes the product vulnerable to
fast deterioration and spoilage within a few hours after brewing is over [16], and BSG at a
disposal site like a landfill show an emission (expressed in CO2 equivalents (CO2, eqv)) of
513 kg/t [9]. Currently, several devices are used for food dehydration, like hot air oven
dryers and natural convection solar dryers (NCSD) [17,18]. The latter are economic to
fabricate, reliable, environmentally friendly, and have lower operational costs than the
former while being more efficient than direct sun dryers. In addition, solar drying reduces
the CO2, eqv, for instance, by reducing the use of conventional energy by as much as 80 % if
forced convection is used [19]. Its working principle is based on sunrays directly heating
the inlet air, thus lowering its humidity. Such an effect makes the air flow toward the
dryer’s exhaust naturally. The passing air removes the moisture from the product on the
trays and releases it into the outer atmosphere. An example can be found in [20] where
a mixed-type solar dryer was successfully used for the dehydration of pear slices (Pyrus
communis L.).

There is little information about BSG drying in the literature. Mallen and Najdanovic-
Visak [21] studied the BSG drying kinetics at four temperatures (333.15 K, 343.15 K, 353.15 K,
and 363.15 K) to extract biodiesel, while Kavalopoulos et al. [9] dehydrated BSG and milled
them at the same time with a rotary drum food waste dryer at 378.15 K to produce biodiesel,
bioethanol, and/or biogas.

The conventional modeling procedure for predicting the drying characteristic of a
foodstuff is to use an existing empirical correlation based on a large number of experiments,
like the Midilli model [10]. However, these correlations are frequently not sufficiently
general to cover all particularities of the specific drying system [22]. One of the main
problems that these models share is that their parameters have no physical meaning,
and the only independent variable is the drying time. Consequently, there is no explicit
relationship between the other operational variables (inputs) and the output. On the other
hand, more complex models require the use of computational fluid dynamics (CFD). For
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instance, Sanghi et al. [23] developed a CFD model to simulate the corn drying process in
an NCSD. Such a model successfully predicted the internal temperature, humidity, and
air velocity profiles of the dryer. It was validated by using experimental information.
Although the authors did not detail the simulation times needed to generate results, long
computational times are a very important limitation because simulating even a few seconds
of the drying process requires high computing power and time [24]. Instead, artificial
neural networks (ANN) present an interesting alternative option. The training process of
the ANN requires a relatively low number of datasets obtained from experiments, making
it very efficient. The prediction of a new drying curve with a trained network is completed
in seconds, thus avoiding time-consuming new experiments. Furthermore, expanding the
neural model with new inputs and/or outputs is a very straightforward procedure. The
most significant drawback of ANNs is that they can present poor results when attempting to
perform extrapolations if limited data are available. Of course, these modeling approaches
are not mutually exclusive and can be used together in order to achieve a synergetic effect
between the local and global phenomena modeling and simulation.

One particular application of process models is the development of soft sensors,
which are instruments capable of measuring difficult process variables indirectly [25], like
moisture ratio (MR). Ryniecki et al. [26] used a soft sensor based on a correlation for the
determination of malting barley moisture ratio inside a fixed bed dryer. The purpose of
the sensor was to allow the automation of the process through the prediction of the drying
endpoint.

Objectives of This Work

This work aimed mainly to evaluate the NCSD as an alternative to electric convective
dryers for the dehydration of local microbrewers’ spent grains. Two kinds of BSGGolden
ale (GA) and Red ale (RA) were dried at different daytime hours in an NCSD. Furthermore,
BSG were also dried in a conventional electric convectivedryer (CECD) at 333.15 K, 338.15 K,
343.15 K, 348.15 K, 353.15 K, 358.15 K, 363.15 K, and 368.15 K. Kinetic studies were com-
pleted for both drying methods. The measured dimensionless MR values were modeled
with eleven semitheoretical and empirical models for the CECD and, in turn, using CFD
and ANNs for the NCSD. Finally, sustainability indices, specific energy consumption (eC),
and CO2, eqv were calculated and used to consider the environmental impact of the NCSD
with both its benefits and drawbacks.

2. Materials and Methods
2.1. Samples

The samples were provided by Cervecería Cumbre, San Juan Province, Argentina.
They were collected after being removed from the maceration process of two types of beer:
Golden ale (GA) and Red ale (RA) (Figure 1). Then, the samples were stored at 277.15 K in
the dark until needed (no more than 1 or 2 days after sampling).

Figure 1. Brewer’s spent grains (BSG) of both (a) Golden ale and (b) Red ale varieties used.
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2.2. Analysis of the Samples

The moisture content, pH, and titratable acidity (citric acid content) were analyzed in
the collected BSG (both raw and dried, i.e., initial and final values after drying) following
the methodology of the AOAC (Official Methods of Analysis, 2010). All the analyses in
fresh and dried BSG were repeated three times (N = 3) and the data gathered from them
were expressed as the means ± standard deviation.

2.3. Drying Equipment and Experimental Procedure

In this subsection, first, both types of dryers are presented; second, the experimental
procedures used with each one of them are described. In addition, the most important
instrumentation equipment is described.

2.3.1. Conventional Electric Convective Dryer (CECD)

The convective BSG drying experiments were performed without pretreatment at eight
different temperatures: 333.15 K, 338.15 K, 343.15 K, 348.15 K, 353.15 K, 358.15 K, 363.15 K,
and 368.15 K, in an electric oven with a stainless-steel tube (0.12 m internal diameter and
1 m height), heated by the electrical resistance of 850 W. A complete description of this
device was reported by Baldan et al. [27]. The air velocity was constant at 1 m/s during all
the drying trials which were carried out until the average moisture content was lower than
10% according to the Codex Standard for wheat flour used for bakery and confectionery
products (Codex Alimentarius, 1985 [28]) so as to prevent any degradation of the flour.

2.3.2. Natural Convection Solar Dryer (NCSD)

A solar dehydrator with natural airflow (Figure 2) was used for the BSG drying
experiments which lasted until the moisture content was lower than 10% [28]. The product
was placed on trays inside the solar dryer in layers of 0.5 cm thickness (Figure 2a). The
drying experiments were carried out on two consecutive summertime days, each one in
triplicate, with three full trays per trial. The weight of BSG used in each experiment was
0.265 kg per tray. Furthermore, each day, the experiments started at two different hours (8:30
and 11:00 in the morning) to analyze the influence of irradiance and ambient temperature
on the drying process of the samples. The morning time was selected considering that
at 8:30 a.m. the irradiance value is minimal while at 11:00 a.m. a steady increase in
irradiance (slope) begins and is sustained over time. Weight loss data was registered at
different time intervals during the drying process until a constant weight was obtained. The
measurements were performed by taking the trays from the chamber in regular intervals
to be weighted with a balance Compass CR621 (OHAUS, Parsippany, United States).
The drying chamber was 1.32 m in height, 0.56 m in width, and 0.33 m in depth. The
collector was 1.24 m in length, 0.56 m in width, and 0.15 m in depth (Figure 2b). The
cover of the collector (upper part) was transparent and made of a material that allowed
the passage of solar energy, minimal loss of sunlight waves, and was resistant to inclement
weather. In this case, 150 µm polyethylene was used. The drying system was classified as a
natural convection indirect type, and the angle of inclination of the collector was set to 10◦

(Figure 2C). Although the Sun’s position could have allowed an optimum inclination of
between 30◦ and 50◦ [29], a very conservative value of 10◦ was selected to not overheat BSG
according to the values of irradiance obtained in San Juan Province where the experiments
were performed. The maximum and minimum temperatures achievable by the solar dryer
were, approximately, between 318.55 K and 291.85 K, respectively.
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Figure 2. (a) Placement of the biomass on trays inside the solar drying chamber. (b) Natural
convection solar dryer (NCSD) dimensions. (c) Heating and air circulation inside the NCSD.

The final moisture content of samples was determined using a PMR50 analyzer (Rad-
wag, Radom, Poland) at 378.15 K [30]. The dried samples were stored at a temperature of
around 293.15 K in a dark room until needed for analysis within 14 d after drying. All the
analyses were performed in triplicates, and the data gathered from them were expressed as
the means ± standard deviation. The irradiance values were measured with a solar power
meter model TM-206 (TENMARS, Taipei, Taiwan).

2.4. Mathematical Modeling of Drying Curves

MR was calculated with the experimental results obtained from the drying trials [31].
The drying curves of BSG (MR(t)) were modeled using 11 different empirical models
taken from the literature [32]. To assess the goodness of fit of the applied models with
the experimental data, the statistical indicators chi-squared (χ2), sum of squared errors
(SSE), and root-mean-square error (µRSE) were used. The models with lower values of
χ2, SSE, and µRSE have a better fitting performance, while a value of R2 closer to unity is
more desirable.

2.5. Specific Energy Consumption and CO2 Emissions

The high energy consumption of dryers also influences greenhouse gas emissions and
has environmental consequences, which is very important [33]. Nowadays, scientists are
looking for solutions that reduce energy consumption and CO2 emissions using different
pretreatment methods or adjusting the methods and parameters of drying to obtain the best
results [34]. For that, eC and CO2, eqv were used to compare the CECD and the NCSD. Firstly,
for eC, with Equation (1), the energy needed to dry 1 kg of fresh BSG was calculated [35].
Secondly, since in Argentina the electric energy supply for the CECD is provided by a
mixture of nonrenewable and renewable sources (natural gas, thermal power, hydropower,
and wind, among others) the electricity CO2, eqv is 0.358 3 kg/(kW h) according to Cli-
mate Transparency 2019 [36]. Thus, to calculate the CO2, eqv (expressed in kg/(kW h))
needed to dry 1 kg of BSG, the calculated eC values have to be multiplied by this constant
(Equation (2)).
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eC = (c p,a+cp,vha

) qt(T in − Tam)

mvVh
(1)

CO2, eqv = 0.358 3 · eC (2)

2.6. Modeling and Simulation of the Solar Drying Process

The main reason for developing computational models of the solar drying process
is to be able to predict the behavior of MR evolution based on the main independent
variables of the process like irradiance, initial moisture content (wIM), and others under
different conditions without the need for so much experimental work. Needless to say,
the conventional electric drying process is less subject to upsets in independent variables
because it is carried out in an indoor controlled environment/system, whereas the solar
drying process is carried out in an outdoor environment, without control of the main
independent variables. The conventional electric drying process modeling is covered in
Section 2.4.

2.6.1. CFD–ANN Complementary Modeling Approach

Two complementary techniques were applied to model and simulate the behavior
of the solar dryer under different conditions: computational fluid dynamics (CFD) and
artificial neural networks (ANN). This is because neither of them can singlehandedly model
and simulate both the local and global phenomena of solar dryers efficiently. CFD can
accurately and efficiently predict the temperature gradient, air velocity, and other variables
inside the solar dryer, whereas it is very costly computationally to model and simulate the
global drying phenomenon (i.e., MR evolution). The latter is easily modeled and simulated
by an ANN based on a handful of experimental data, whereas the former would need
plenty of experiments to generate sufficient data to train a good ANN model.

Further complementation could also be achieved because the CFD model can generate
the irradiance values of each day of the year for any particular latitude and longitude. These
data could be applied as training data and simulation input for the ANN model without
the need for hourly and daily actual measurements. This kind of complementation would
be useful in a future expansion of the ANN model to cover daily and seasonal changes
in solar drying curves. Such a project would need more drying experiments distributed
around the year.

2.6.2. CFD Modeling

The analysis was performed by solving basic fluid governing equations (continuity,
momentum, and energy) by using the finite volume method (FVM). The simulations were
carried out with ANSYS Fluent®18.1 (ANSYS, Canonsburg, PA, USA) using a ray-tracing
analysis. With this technique, we simulated the interaction between solar rays and the solar
collector to quantify the amount of energy that impinges on the receiver at a particular
daytime. The governing equations are summarized, for instance, in the work of Sanghi
et al. [23]. The solar dryer’s geometrical setup and boundary conditions adopted are shown
in Figure 3.

A polyhedral mesh was applied with 77,090 cells. Mesh validation with experimental
results showed that no significant improvement was obtained by adding more cells to the
mesh. A k-epsilon turbulence model was used. All the simulations were performed in the
steady state and the reverse flow in the outlet was disabled.
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Figure 3. Boundary conditions and mesh employed in the solar dryer simulations.

2.6.3. ANN Modeling

Since San Juan Province has a very dry climate with low humidity, the main drivers of
the drying process are the irradiance values and wIM of the lot. A solar drying chamber
does not have a fairly constant controlled internal temperature as a conventional electric
convective dryer. Instead, it presents a temperature gradient that is subject to the Sun’s
irradiance variations (as shown in the CFD simulations). These particularities set the
ANN’s input/output design as shown in Figure 4.

Figure 4. Artificial neural networks (ANN) model with four inputs and one output.

Once the number of inputs and outputs is established based on the experimental data
available, the design of the ANN model involves the selection of the network type, the
activation functions, the number of hidden layers, and the number of neurons in each
one. Regarding the choice of network and neuron types, the universal approximation
theorem (Pinkus [37]) establishes that multilayer perceptron networks with at least one
hidden layer and a nonlinear activation function are universal approximators that can fit
any given polynomial. In addition, for some models, deeper networks can work better than
single-hidden-layer networks (no more than two hidden layers, most likely).
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The process of selecting the number of hidden layers and the number of neurons in
each one was carried out by trial-and-error. First, single-hidden-layer networks with as
few as three neurons showed good performance (R2 > 0.999). Increasing the number of
hidden neurons to amounts of more than seven proved to show signs of overfitting when
prediction tests of drying curves were performed. These prediction tests involved drying
curves with different values of wIM, batch starting hour, and batch times. Particularly,
adding a second hidden layer helped in fitting the batch times better. The final model
selection was performed according to the algorithm presented by Fabani et al. [10]. The
complete set of ANN parameters is shown in Table 1. Finally, the MATLAB® (MathWorks®,
Natick, MA, USA) release 2016a, Neural Fitting Tool was used to design, train weights and
biases, test and implement the ANN model.

Table 1. Complete set of Artificial neural networks (ANN) parameters.

Parameter Value

Network type Multilayer feedforward (MLFF)
Neuron type Perceptron

Inputs 4
Output 1 (moisture ratio)

Normalization type Min–Max
Activation function Sigmoid (hidden) and linear (output)
Training algorithm Bayesian regularization backpropagation *

Training sets 264
Number of hidden layers 2

Number of neurons per layer 4 and 1
Train ratio 97%

Validation ratio N/A **
Test ratio 3%

* This particular training algorithm’s stop condition is the maximum number of epochs. ** N/A: not applicable.

2.6.4. ANN Simulations

One of the main independent variables which directly affect the batch time is the
average wIM of the sample. Additionally, the starting daytime hour (SDTH) of the drying
process directly affects the drying rate (vD) because the amount of power the Sun provides
is not constant. These two factors can shorten or extend the drying batch duration so it is
paramount to determine how they can affect the total yield. The consequences of variations
in these two variables were determined using ANN simulations which, in turn, were used
to calculate the indicators in Equations (3) and (4): the average first batch time duration
(tB1) and the average second batch duration (tB2), both for any given starting daytime hour.

tB1SDTH = 10−1 ·
74

∑
wIM=64

tB1wIM (3)

tB1SDTH = 10−1 ·
74

∑
wIM=64

tB1wIM (4)

The simulations were performed considering that the first batch can start as early as
08:30 in the morning and that the second batch starts a half-hour after the first one finishes.
The batch stop condition is MR lower than 0.1. Finally, due to the experimental results,
only two full batches are expected. It is important to mention that since the ANN model
is data-based, the validity of its results is limited to the day the drying experiments were
carried out. On the other hand, the CFD model can produce simulation results of any day
of the year.



Processes 2022, 10, 339 9 of 18

2.7. Statistical Performance Indicators

Firstly, the goodness of fit between the empirical models and the experimental data
was assessed based on the chi-squared (χ2) statistical indicator, the sum of squared errors
(SSE), and the mean squared error (µSE):

χ2 =
N

∑
i=1

(M R pre,i − MR exp,i)
2

MR exp,i
(5)

SSE =
N

∑
i=1

(M R pre,i − MR exp,i
)2 (6)

µSE =
1
N

·
N

∑
i=1

(M R pre,i − MR exp,i
)2 (7)

Secondly, the evaluation of the ANNs performance was based on two statistical
indicators: µSE (Equation (7)) and the coefficient of determination R2:

R2 = 1 −

 ∑N
i=1
(

MR pre,i − MR exp,i
)2

∑N
i=1

(
MR pre,i − MR exp,i

)2

 (8)

Unlike χ2 and µSE, R2 values closer to unity are more desirable, show better fitting
performance. Additionally, the R2 indicator is more commonly associated with the software
applications used to train ANNs.

Finally, in this work, units and quantities were mentioned according to the Interna-
tional System of units (SI) and compatible units as reported by Glavič [38].

3. Results
3.1. Raw and Dried Moisture, pH and Titratable Acidity of the Samples

The fresh samples of BSG presented high wIM values, which were 64.3 ± 0.2% for
BSG-GA and 74.2 ± 0.5% for BSG-RA, all within the previously reported range of 60–90%
mass [18]. Secondly, the fresh samples presented pH values of 5.63 ± 0.08 for the GA
variety and 6.06 ± 0.05 for the RA variety, while the titratable acidity values (expressed in
% citric acid) were 0.40 ± 0.02% and 0.37 ± 0.02%, respectively.

The samples dried in the CECD presented the final moisture content values of less
than 7 % and final pH and acidity values which varied according to the temperature value
used, ranging from 5.4 to 5.8 and from 0.65% to 1.10%, respectively. On the other hand,
the final moisture content of the sun-dried BSG was less than 6–7%, pH was 5.49 ± 0.06
for the GA variety and 5.62 ± 0.02 for the RA variety, and, finally, the titratable acidity
values (expressed in % citric acid) were 0.56 ± 0.05% and 0.52 ± 0.01% for GA and RA,
respectively.

In Table 2, a summary of the analytical results is shown. Both driers presented
similar values for moisture content and pH of the dried samples, while the NCSD
presented improved values of titratable acidity compared to the CECD. The titratable
acidity values of the samples dried in the NCSD were lower, closer to those of the fresh
samples. This particular indicator is important because it is related to the flavor of a
foodstuff. The NCSD samples had lower values (improved organoleptic quality indices)
than the CECD ones at all the temperatures assessed. Dzelagha et al. [39] obtained
similar results when studying different drying technologies and the effect on bean
quality parameters. These could be related to the significant increment of free fatty acid
and acetic acid levels with the rising temperature which, in turn, was proportional to
the corresponding decrease in pH, suggesting the optimal oven temperature of 318.15 K.
Moreover, certain vitamins are broken down at high temperatures, such as vitamin C,
thus diminishing their content [32].
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Table 2. Summary of the analytical results.

Fresh Samples Dried Samples: CECD Dried Samples: NCSD

Variety wM (%) pH
Titratable
Acidity (%

Citric
Acid)

wM (%) pH
Titratable
Acidity (%

Citric
Acid)

wM (%) pH
Titratable
Acidity (%

Citric
Acid)

Golden ale 64.3 ± 0.2 5.63 ± 0.08 0.40 ± 0.02 6.52 ± 0.16 5.42 ± 0.08 0.86 ± 0.18 6.42 ± 0.21 5.49 ± 0.06 0.56 ± 0.05
Red ale 74.2 ± 0.5 6.06 ± 0.05 0.37 ± 0.02 6.78 ± 0.13 5.71 ± 0.24 0.55 ± 0.05 6.30 ± 0.27 5.62 ± 0.02 0.52 ± 0.01

3.2. Drying Characteristics of BSG

The drying curves of BSG, GA and RA varieties, in the CECD and the NCSD were
modeled with empirical and ANN models, respectively. The CECD experimental drying
curves showed an exponential decay with the first phase where the moisture is rapidly
lost (high drying rates) and the second phase that presented low drying rates until the
samples reached low moisture contents (Figure 5a). In addition, the drying rates increased
with temperature due to the increased heat transfer between the circulating air and the
BSG, favoring water evaporation. The drying models which fitted the experimental data
best were, first, the Midilli model (SSE = 4.1 · 10−5; µRSE = 6.2 · 10−3, and χ2 = 4.3 · 10−5),
and, second, the two-term model (SSE = 6.6 · 10−5; µRSE = 7.9 · 10−3, and χ2 = 6.9 · 10−5).
Therefore, based on the statistical indicators presented, the Midilli model is more accurate
to predict the MR evolution for the CECD.

The NCSD showed greater efficiency when the drying process was started at 11:00
in the morning, achieving a decrease in moisture content in a shorter time interval for the
two varieties studied (Figure 5b). The experiments that started at 11:00 achieved a reduced
drying time (MR lower than 0.1) from 420 min to 345 min for the GA variety and from
430 min to 390 min for the RA variety when compared with those that started at 08:00.
The ANN model’s fitting performance had R2 > 0.999 and µRSE = 4.25 · 10−3. In the solar
bagasse drying, a greater variation in the drying rate (more peaks) was observed compared
to the convection bagasse drying.

Figure 5. Experimental drying curves. (a) Conventional electric convective dryer CECD RA variety;
(b) NCSD (continuous lines, MR(t); dotted lines, drying rates).

3.3. Comparative Analysis of the CECD and the NCSD

In Tables 3 and 4, the results of the CECD process of the raw product are presented.
Both varieties of the BSG were dried at eight different temperatures, from 333.15 K to
368.15 K. As expected, from the environmental impact indicators’ point of view, there
were no significant differences. Both ales presented similar values for eC and CO2, eqv,
averaging 346.92 (kW h)/kg and 124.30 kg/(kW h) for eC and CO2, eqv, respectively.
Similar values of the operational indicators are also shown for both varieties, averaging
51.23 min of batch time and 0.86 USD of electricity per kilogram of raw product. In
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conclusion, from that single perspective only, higher drying temperatures are more
efficient.

Table 3. Results of the conventional convective drying process of the raw matter: Golden ale.

Drying
Temperature

(K)

Batch Time
(min)

wM
(%)

Total Energy
Consump-

tion
(kW h)

Removed
Water

(g)

eC
((kW h)/kg)

CO2, eqv
(kg/(kW h))

Electricity
Cost

(USD/kg)

333.15 ± 0.20 84.33 ± 5.48 6.79 ± 0.21 0.29 ± 0.02 1.68 ± 0.03 407.58 ± 26.76 158.14 ± 10.38 1.02 ± 0.07
338.15 ± 0.20 64.50 ± 1.32 6.70 ± 0.11 0.24 ± 0.01 1.60 ± 0.03 376.13 ± 15.34 145.94 ± 5.95 0.94 ± 0.04
343.15 ± 0.20 54.33 ± 1.26 6.60 ± 0.09 0.22 ± 0.01 1.61 ± 0.06 352.48 ± 7.46 136.76 ± 2.89 0.88 ± 0.02
348.15 ± 0.20 50.81 ± 3.01 6.52 ± 0.12 0.22 ± 0.01 1.66 ± 0.02 356.47 ± 16.33 138.31 ± 6.33 0.89 ± 0.04
353.15 ± 0.20 46.17 ± 3.55 6.45 ± 0.08 0.21 ± 0.02 1.73 ± 0.08 341.80 ± 10.81 132.62 ± 4.19 0.85 ± 0.03
358.15 ± 0.20 40.17 ± 2.08 6.40 ± 0.05 0.19 ± 0.01 1.64 ± 0.04 341.72 ± 12.27 132.59 ± 4.76 0.85 ± 0.03
363.15 ± 0.20 35.5 ± 1.04 6.38 ± 0.12 0.18 ± 0.01 1.68 ± 0.01 320.86 ± 7.13 124.49 ± 2.77 0.80 ± 0.05
368.15 ± 0.20 34.17 ± 2.02 6.34 ± 0.09 0.18 ± 0.01 1.88 ± 0.06 296.44 ± 18.89 115.02 ± 7.33 0.74 ± 0.05

Table 4. Results of the conventional convective drying process of the raw matter: Red ale.

Drying
Temperature

(K)

Batch Time
(min)

wM
(%)

Total Energy
Consump-

tion
(kW h)

Removed
Water

(g)

eC
((kW h)/kg)

CO2, eqv
(kg/(kW h))

Electricity
Cost

(USD/kg)

333.15 ± 0.20 71.50 ± 3.91 6.94 ± 0.14 0.24 ± 0.01 1.49 ± 0.09 391.95 ± 39.39 152.08 ± 15.28 0.98 ± 0.10
338.15 ± 0.20 69.83 ± 4.25 6.91 ± 0.16 0.26 ± 0.02 1.80 ± 0.01 360.22 ± 23.97 139.76 ± 9.30 0.90 ± 0.06
343.15 ± 0.20 59.50 ± 0.90 6.87 ± 0.13 0.24 ± 0.01 1.89 ± 0.03 331.83 ± 5.12 128.75 ± 1.99 0.83 ± 0.01
348.15 ± 0.20 58.17 ± 0.58 6.82 ± 0.14 0.25 ± 0.01 1.94 ± 0.08 350.23 ± 17.69 135.89 ± 6.86 0.88 ± 0.04
353.15 ± 0.20 45.17 ± 1.89 6.77 ± 0.20 0.20 ± 0.01 1.65 ± 0.20 353.12 ± 29.74 137.01 ± 11.54 0.88 ± 0.07
358.15 ± 0.20 43.00 ± 0.50 6.71 ± 0.12 0.21 ± 0.01 1.69 ± 0.04 354.41 ± 10.63 137.51 ± 4.12 0.89 ± 0.03
363.15 ± 0.20 36.00 ± 3.28 6.67 ± 0.09 0.18 ± 0.02 1.64 ± 0.01 330.27 ± 27.89 128.14 ± 10.82 0.83 ± 0.07
368.15 ± 0.20 33.17 ± 2.75 6.54 ± 0.10 0.17 ± 0.01 1.57 ± 0.03 328.80 ± 17.77 127.57 ± 6.89 0.82 ± 0.04

In Table 5, the solar dryer’s results of the drying process of the raw product are
shown. The experiments were conducted during the austral summer at two different
daytime hours, 08:00 and 11:00, for each type of the BSG. The results showed an
average batch time of 396 min, with the RA type exhibiting slightly longer drying times
due to its higher wIM compared to the GA variety. Additionally, the NCSD has null
operating costs because solar energy is freely available and there is no forced airflow.
Consequently, both environmental impact indicators have null values, too. In Table 6,
a summary of the most important environmental and process indicators previously
explained is presented.

Table 5. Results of the solar drying process of the raw matter for Golden ale and Red ale.

BSG Daytime
Hour

Batch Time
(min)

eC
((kW h)/kg)

CO2, eqv
(kg/(kW h))

Electricity
Cost

(USD/kg)

Golden ale 08:30 420 0.00 0.00 0.00
Golden ale 11:00 345 0.00 0.00 0.00

Red ale 08:30 430 0.00 0.00 0.00
Red ale 11:00 390 0.00 0.00 0.00
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Table 6. Summary of indicators.

Conventional Electric
Convective Dryer (CECD)

Natural Convection Solar
Dryer (NCSD)

Average drying temperature (K) 350.65 319.65
Average batch time (min) 51.23 396.00
Average eC ((kW h)/kg) 346.92 0.00

Average CO2, eqv (kg/(kW h)) 124.30 0.00
Average operating cost (USD/kg) 0.86 0.00

3.4. CFD Simulation Results

Aiming to validate the CFD computational model, temperature measurements were
performed inside the empty drying chamber under different irradiance conditions during
the springtime, before the experiments. Table 7 shows the temperature measurements
performed in the lower section of the chamber (point 1), in the middle section of the
chamber (point 2), and the upper section of the chamber near the exit (point 3) at three
different daytime hours. Additionally, the corresponding simulation results are shown,
indicating a good agreement between the simulated values and the measured ones (Table 7).
The minimal differences can be attributed to deviations in the model’s irradiance values,
and it is also important to consider that the lower wall of the dryer exchanges heat with the
surrounding environment (heat transfer coefficient adopted for simulations = 10 W/(m2

K)), rendering the temperature in the drying chamber lower than the temperature in the
solar heating section.

Table 7. CFD simulations’ results and experimental validations.

Temperature (K)

Daytime
Hour

Ambient
Temperature (K)

Solar Irradiance
(W/m2) Point 1 Point 2 Point 3

EXP CFD EXP CFD EXP CFD EXP CFD EXP CFD

12:30 299.65 299.15 1005 944.63 305.75 309.28 307.95 309.07 309.65 308.87

14:00 302.75 299.15 1040 945.46 312.65 312.48 313.15 312.15 314.45 311.84

15:30 303.75 299.15 860 928.91 312.75 316.12 312.85 315.82 312.85 315.54

Once the CFD model was validated, simulations were performed to assess how
both seasonal changes and daytime hour changes affect the temperature gradient inside
the drying chamber. In Figure 6, four longitudinal cutaways of the drying chamber
are presented, also under four different irradiance conditions. The calculated mean
temperatures were as follows: 309.55 K for a summer morning (11:00); 312.58 K for a
summer afternoon (15:00); 306.81 K for a winter morning (11:00); and 309.23 K for a
winter afternoon (15:00).

3.5. ANN Simulation Results 1: The Effect of Irradiance and wIM in the Drying Rates

The drying rate of the sample inside the drying chamber is controlled by the rate at
which heat is applied to it (i.e., power applied), the rate at which the sample’s internal mois-
ture is released from its surface, and the rate at which moist air is removed from the drying
chamber. Regarding the power applied, in a conventional electric dryer, once the chamber’s
internal temperature is constant, the power consumption is constant, too, whereas in the
solar dryer, the available power per square meter (irradiance) varies throughout the day
and is only controlled by the Earth’s rotation. Therefore, the drying rates during the several
known stages of the process vary if the same sample starts drying early in the morning or
early in the afternoon, for instance.
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Figure 6. Four cutaways of the drying chamber showing the temperature gradients inside it under
different irradiance conditions: (a) summer morning, 11:00; (b) summer afternoon, 15:00; (c) winter
morning, 11:00; and (d) winter afternoon, 15:00.

It can be seen from the experimental curves (Figure 5b) that the slope of those
samples that started drying at 08:30 was less steep than the slope of those that started
drying at 11:00 during the constant drying rate stage. Additionally, the ANN predictions
in Figure 7 show that the samples which start drying later in the afternoon show an even
steeper slope during the constant drying rate stage as the irradiance values continue to
rise. This is because the bulk of the water is easier to remove and because the irradiance
values are very high. Then, the drying rate slows down because both the remaining water
is harder to remove and the irradiance values rapidly start to fall. In comparison, the
drying rate of the samples which started at 08:30 is pretty constant throughout because
when the irradiance values start to climb, the remaining water is harder to remove, and
vice versa.

Finally, the ANN predictions also show the effect of wIM of the samples. In Figure 7,
it can be seen that a sample with a wIM of 70% (a value which is in between the GA and
the RA) had a batch time that was shorter than the RA but longer than the GA for both the
curves which started early in the morning and later in the afternoon. Other curves with
wIM values within that same range showed a similar behavior.



Processes 2022, 10, 339 14 of 18

Figure 7. The drying curves of three lots with different wIM. The black dotted vertical lines indicate
major changes in the Sun’s irradiance slope associated with changes in the drying rates.

3.6. ANN Simulation Results 2: Average Batch Durations

As the experimental results suggest, only two full batches can be completed per day
with the measured irradiance values and wIM. Therefore, simulations were performed
to determine how wIM and the starting daytime hour affect batch times. This is another
indicator of how the irradiance controls the drying process and its potential total yield.

Applying all the simulation results to Equations (3) and (4), the plots of Figure 8 were
obtained. The results show that both average batch duration curves—which depend on the
starting daytime hour—have the opposite slope of the irradiance curve, meaning that as
long as the irradiance rises, the batch durations fall, and vice versa. The total batch time
curve (batch 1 plus batch 2) also presents a similar shape. The results also show that the
first batch can start as late as 11:30 in the morning to complete two full batches in the same
day. Finally, simulations were used to calculate the mean batch time for every wIM in the
64–74% range and for every SDTH. The result was a mean batch time of 366 min as shown
in Table 4, 30 min slower than the obtained experimental value. This difference could be
because many more curves were used from the simulation to calculate these indicators.

Figure 8. Batch curves calculated based on the simulation results. All of them show a similar shape,
opposite to the shape of the irradiance curve.
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4. Discussion and Conclusions

A natural convection solar dryer (NCSD) was evaluated as an alternative to a con-
ventional electric convective drying system (CECD) for the dehydration process of local
microbrewers’ spent grains. For the different drying temperatures (333.15–363.15 K), eC and
CO2, eqv for the CECD varied between 1.68 · 10−3 (kW h)/kg and 1.88 · 10−3 (kW h)/kg
and between 294.80 kg/(kW h) and 410.73 kg/(kW h); however, using the NCSD, both
indicators were null. From the environmental management perspective, the NCSD does
not need any grid energy to function and eliminates 100% of the CO2, eqv. Thus, if labor
costs are not considered, the overall operating costs are greatly reduced. Secondly, the
NCSD produces a dried product with a comparatively better quality, as shown by the lower
titratable acidity values. Lastly, another important aspect is the cost of the equipment itself
(initial investment). The NCSD is about 40–45% cheaper than the CECD.

On the other hand, the most important disadvantage of the NCSD is the fact that batch
times (345–430 min, depending on the starting daytime hour at which the drying process
begins) are much longer, consequently reducing the total yield. In light of this, it is of
paramount importance to find tools that help operators find the optimal conditions in which
to work to make the NCSD more appealing. Through simulations, the importance of the
Sun’s irradiance was measured under conditions different from those of the experiments.
It was established with the ANN model how the irradiance values directly govern the
drying rates and the average batch times. Moreover, the developed CFD model can
produce irradiance values via simulations for any location on the planet where the same
solar dryer could be placed regardless of the day and time of the year. The internal
temperature gradients were obtained under several conditions. This information can be
used to determine the optimal operating conditions for the solar dryer to get the highest
possible yield of dried BSG. These results further show the contrast between both drying
methods. In an electric convective dryer, the operating variables adapt themselves to the
operator’s needs and, on the other hand, in the NCSD, the operator has to adapt to the
operating conditions. Consequently, these simulation tools can further assist the solar
drying process by using them to develop soft sensors, which are instruments that can, for
instance, determine the drying endpoint.

Future work should include, as the first step, the optimization of the drying process
based on the technofunctional properties of the flour obtained by milling dried BSG using
the response surface methodology.
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Nomenclature

CO2: eqv CO2 emission expressed as equivalence, kg/(kW h) or kg/t when necessary
cp,a Specific heat capacity of air, (kW h)/(kg K)
cp,v Specific heat capacity of vapor, (kW h)/(kg K)
eC Specific energy consumption, (kW h)/kg
ha Absolute air humidity, 1
MR Moisture ratio, 1
mv Mass of removed water, kg
Q Flow rate of inlet air, m3/min
R2 Coefficient of determination, 1
SSE Sum of squared errors, 1
t Time, s
tB1 First batch duration, min
tB2 Second batch duration, min
Tam Ambient air temperature, K
Tin Inlet air temperature, K
vD Drying rate, min−1

Vh Specific air volume, m3/kg
wM Moisture content expressed as mass fraction of water (%)
wIM Initial moisture content expressed as mass fraction of water (%)
µSE Mean squared error, 1
µRSE Root-mean-square error, 1
χ2 Chi-squared, 1
Abbreviations
ANN Artificial neural network
BSG Brewer’s spent grains
CECD Conventional electric convective dryer
CFD Computational fluid dynamics
EXP Experimental values (Table 7)
FVM Finite volume method
GA Golden ale
NCSD Natural convection solar dryer
RA Red ale
SDTH Starting daytime hour
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38. Glavič, P. Review of the International Systems of Quantities and Units Usage. Standards 2021, 1, 2–16. [CrossRef]
39. Dzelagha, B.F.; Ngwa, N.M.; Nde Bup, D. A Review of Cocoa Drying Technologies and the Effect on Bean Quality Parameters.

Int. J. Food Sci. 2020, 2020, 8830127. [CrossRef] [PubMed]

http://doi.org/10.1017/S0962492900002919
http://doi.org/10.3390/standards1010002
http://doi.org/10.1155/2020/8830127
http://www.ncbi.nlm.nih.gov/pubmed/33344630

	Introduction 
	Materials and Methods 
	Samples 
	Analysis of the Samples 
	Drying Equipment and Experimental Procedure 
	Conventional Electric Convective Dryer (CECD) 
	Natural Convection Solar Dryer (NCSD) 

	Mathematical Modeling of Drying Curves 
	Specific Energy Consumption and CO2 Emissions 
	Modeling and Simulation of the Solar Drying Process 
	CFD–ANN Complementary Modeling Approach 
	CFD Modeling 
	ANN Modeling 
	ANN Simulations 

	Statistical Performance Indicators 

	Results 
	Raw and Dried Moisture, pH and Titratable Acidity of the Samples 
	Drying Characteristics of BSG 
	Comparative Analysis of the CECD and the NCSD 
	CFD Simulation Results 
	ANN Simulation Results 1: The Effect of Irradiance and wIM in the Drying Rates 
	ANN Simulation Results 2: Average Batch Durations 

	Discussion and Conclusions 
	References

