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Abstract

In the last decades, most works in the literature have been devoted to study argumentation

formalisms that focus on a defeat relation among arguments. Recently, the study of a support

relation between arguments regained attention among researchers; the bulk of the research has

been centered on the study of support within the context of abstract argumentation by considering

support as an explicit interaction between arguments. However, there exist other approaches that

take support into account in a different setting. This article surveys several interpretations of the

notion of support as proposed in the literature, such as deductive support, necessary support,

evidential support, subargument, and backing, among others. The aim is to provide a compre-

hensive study where similarities and differences among these interpretations are highlighted, as

well as discuss how they are addressed by different argumentation formalisms.

1 Introduction

Argumentation is a form of reasoning where a claim is accepted or rejected according to the

analysis of the arguments for and against it. The way in which arguments and justifications for a

claim are considered allows for an automatic reasoning mechanism where contradictory, incom-

plete and uncertain information may appear. In the last decades, argumentation has evolved as an

attractive paradigm for conceptualizing common sense reasoning (Prakken & Vreeswijk, 2002;

Besnard & Hunter, 2008; Rahwan & Simari, 2009). Moreover, the study of argumentation within

the field of artificial intelligence has grown lately (Bench-Capon & Dunne, 2007). Several

approaches were proposed to model argumentation on an abstract basis (Dung, 1995), using

classical logics (Besnard & Hunter, 2001), or using logic programming (Garcı́a & Simari, 2004).

In addition, the argumentation process has been applied in various domains and applications such

as decision making and negotiation (Amgoud et al., 2000; Black & Hunter, 2009), and multi-agent

systems (Parsons et al., 1998; Amgoud et al., 2002).

The foundations for the study of argumentation reside on areas like legal reasoning and

philosophy (Toulmin, 1958; Pollock, 1987). One of the most influential works is the book The Uses

of Argument (Toulmin, 1958). There, Toulmin put forward the idea that arguments needed to be

analyzed using a richer format than the dichotomy of premises and conclusion used in formal logic

analysis. He proposed a model for the layout of arguments that, in addition to data and claim,

distinguishes between warrant, backing, rebuttal and qualifier.

For clarity purposes, it is interesting to include in this introduction a brief presentation of

Toulmin’s ideas. According to Toulmin, the claim is the original assertion that we are committed



to and must justify when challenged. The data is the ground which we produce as support for the

original assertion; it represents information on which the claim is based. The warrant is a general

rule-like statement that authorizes the sort of step to which our particular argument commits us; it

is an inference license that provides the connection between data and claim. The qualifier repre-

sents the degree of force that our data confers on our claim in virtue of our warrant. In defending a

claim we may be asked why the warrant should be accepted as having authority; thus, challenging

a particular claim in this way may lead to question, more generally, the legitimacy of a whole range

of arguments. Standing behind the warrant that is subject of discussion is the backing, which

shows why a warrant holds. Finally, a rebuttal can indicate exceptional conditions which might be

capable of defeating the warranted conclusion. A graphical representation of Toulmin’s scheme is

included below.

Given the scheme proposed by Toulmin, we can distinguish two kinds of interactions among its

elements. First, in addition to the data supporting the claim, the backing provides support for the

warrant. Second, the presence of a rebuttal leads to the rejection of the claim through the defeat of

the argument. Later studies on argumentation put aside the notion of support to focus on the

notion of defeat, which is a key element in the acceptability calculus of arguments. Dung’s (1995)

seminal work provided a basis for the representation of arguments and their interactions. He

proposed an Abstract Argumentation Framework (AF) in which a set of arguments and a defeat

relation1 among them are considered to determine the acceptable arguments of the framework.

Following Dung’s approach, most works in the literature have been devoted to argumentation

formalisms that focus on a defeat relation. Notwithstanding this, in the last decade, the study of

the notion of support regained attention among the researchers. Recently, several interpretations

of support have been addressed in the literature. Cayrol and Lagasquie-Schiex (2005) consider a

general support relation among arguments as a positive interaction, without giving additional

constraints. Another interpretation consists of evidential support (Oren & Norman, 2008), which

enables to distinguish between prima facie and standard arguments. Prima facie arguments

represent the notion of evidence and do not require support from other arguments to stand, while

standard arguments cannot be accepted unless they are supported by evidence. Boella et al. (2010)

provide a deductive interpretation of support. Deductive support is intended to capture the following

intuition: if argument A supports argument B then the acceptance of A implies the acceptance of B
and, as a consequence, the non-acceptance of B implies the non-acceptance of A. In addition, a

necessity support relation among arguments was first introduced in Nouioua and Risch (2010).

Necessary support enforces the following constraint: if argumentA supports argument B it means that

A is necessary for B. Thus, the acceptance of B implies the acceptance of A and, conversely, the non-

acceptance of A implies the non-acceptance of B. Then, Cohen et al. (2012) introduce a backing

relation which encodes the support that Toulmin’s backings provide for their associated warrants.

As can be noted above, the literature mostly addresses the study of support within the context

of abstract argumentation, by explicitly considering a support relation among arguments. How-

ever, other approaches (Verheij, 2003; Martı́nez et al., 2006; Cohen et al., 2011) take support into

account in a different setting. In particular, DEFLOG (Verheij, 2002, 2003) constitutes an approach

to dialectical argumentation that allows for the representation of the elements in Toulmin’s

scheme, as well as the support links among them (Verheij, 2005, 2009). Martı́nez et al. (2006)

1 Dung originally used the terminology ‘attack’ relation; however, to avoid confusions, we will refer to it as

the ‘defeat’ relation since it encodes successful attacks.
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provide arguments with enough internal structure so as to explicitly define a subargument relation

among arguments. In that way, the subargument relation represents the support that an argument

provides for its super arguments. On the other hand, the formalism proposed by Cohen et al.

(2011) introduces special kind of rules to represent the support relation between backings and

warrants of Toulmin’s scheme in the context of Defeasible Logic Programming (DELP).

A first step toward a better understanding of the notion of support in argumentation was taken

by Cayrol and Lagasquie-Schiex (2011), who consider some interpretations of support proposed

in the literature. This work reviews different interpretations for the notion of support in argu-

mentation, and discusses how they are addressed in several formalisms. The aim is to provide a

comprehensive study where similarities and differences among these interpretations are high-

lighted. To conclude this section, let us consider a motivating example inspired on Prakken and

Vreeswijk (2002) and Cayrol and Lagasquie-Schiex (2009).

EXAMPLE 1 Consider the following arguments exchanged during the meeting of the editorial board of

a newspaper:

I : information I concerning person P should be published.

P: information I is private so, P denies publication.

S: I is an important information concerning P’s son.

M: P is the new prime minister so, everything related to P is public.

It is clear that some conflicts appear during the above discussion. That is the case of the conflict

between arguments P and I , and between argumentsM and P. On the other hand, there is a relation

between arguments P and S, which is clearly not a conflict. Moreover, S provides a new piece of

information enforcing argument P.

If we want to represent the scenario depicted in Example 1 as an AF, we need to find a way to

express the relation between arguments P and S. Given that Dung’s approach only considers one

kind of interaction among arguments (the defeat relation), the support that argument S provides

for argument P is represented through the notion of reinstatement2. However, the fact that S
reinstates P by defeating I orM is counterintuitive since there are no reasons to find argument S
in conflict with I orM. Finally, taking S into account leads to either modify P or to find a more

intuitive solution for representing the interaction between S and P. An alternative is to consider a

new and independent relation among arguments, a support relation, since the idea is not to revise

already existing arguments but to represent as much as possible all the kinds of interactions

between them. Following this intuition, several works in the literature addressed this issue, which

will be reviewed next.

The rest of this work is organized as follows. Section 2 introduces the work on Bipolar

Argumentation Frameworks (Amgoud et al., 2004; Cayrol & Lagasquie-Schiex, 2005, 2007, 2009,

2010, 2011), an extension of Dung’s argumentation frameworks that accounts for a general

support relation among arguments. Section 3 presents the meta-argumentation approach (Boella

et al., 2010), where deductive support among arguments is represented. In Section 4 a necessity

interpretation of support is introduced in the Argumentation Frameworks with Necessities

(Nouioua & Risch, 2010, 2011; Boudhar et al., 2012). Section 5 presents the Evidential Argu-

mentation Systems (Oren & Norman, 2008), in which the acceptability of arguments is highly

dependent on being supported by the environment. In Section 6 the argumentation frameworks

of Martı́nez et al. (2006) are introduced, where a subargument relation among arguments is

proposed. Section 7 discusses the Backing-Undercutting Argumentation Frameworks (Cohen

et al., 2012), where a support relation expressing the support that Toulmin’s backings provide for

their associated warrants is considered. Then, in Section 8, we comment on other approaches that

2 Briefly, an argument A is said to reinstate or defend an argument C if there exists an argument B such that

B defeats C, and A defeats B.
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are related to the research topic covered in this survey, including the Abstract Dialectical

Frameworks (Brewka & Woltran, 2010), a reconstruction of Toulmin’s ideas using DEFLOG

(Verheij, 2002, 2003, 2005, 2009), and an extension of DELP, where Toulmin’s form of support

between backings and warrants is considered (Cohen et al., 2011). Finally, in Section 9, some

conclusions regarding support in argumentation systems are presented.

The reader should note that the definitions in this survey are taken from the original

publications. However, for uniformity purposes that will become clear in the following sections,

the notation in some cases has been slightly changed or adapted.

2 Bipolar Argumentation Frameworks

The notion of bipolarity has been widely studied in different domains such as knowledge and

preference representation (Benferhat et al., 2002; Dubois & Prade, 2005), and decision making

(Amgoud et al., 2005; Dubois et al., 2008). Amgoud et al. (2004) discuss the use of bipolarity in

argumentation, analyzing how it appears under different forms in each step of the argumentation

process. Then, they present a first approach to Bipolar Argumentation Frameworks, an extension

of Dung’s AFs that accounts for two independent interactions between arguments with diametrically

opposed nature: a defeat relation and a support relation. A further formalization of Bipolar

Argumentation Frameworks was developed (Cayrol & Lagasquie-Schiex, 2005), where the

acceptability of arguments is analyzed by taking the support relation into consideration.

DEFINITION 1 (Bipolar Argumentation Framework) A Bipolar Argumentation Framework (BAF)

is a tuple hA;Rd ;Rsi, where A is a finite and non-empty set of arguments,

Rd � A � A is a defeat relation between arguments, and Rs � A � A is a support

relation between arguments.

Note that the relation Rd of BAFs is the same as in Dung’s argumentation frameworks; thus, as

mentioned before, we will refer to it as the defeat relation. A BAF can be graphically represented

by a directed graph called the bipolar interaction graph, where nodes are arguments and edges

could be of two kinds. Cayrol and Lagasquie-Schiex (2005) use Q and - to respectively denote

defeat and support among arguments. Notwithstanding, to provide a unified setting in this survey

we will follow the usual notation for Dung’s argumentation frameworks in which the single arrow

- denotes the defeat relation. The support relation among arguments will be denoted using a

double arrow ) ; from here on we will use this notation to distinguish between the defeat and

support relations. Furthermore, we will incorporate a label over the double arrow ) to identify

the interpretation given to the support relation. Since the support relation of a BAF is just a

positive interaction among arguments, with no particular interpretation, we will use the label ‘s’ to

denote that it is a general support relation. Hence, the support relation of a BAF will be denoted

using)s . As will be shown later, other formalizations provide particular interpretations of support

and thus, different labels will be used to distinguish them.

EXAMPLE 2 The discussion in Example 1 can be represented by BAF2 ¼ hA2;Rd2 ;Rs2i; where

A2 ¼ fI ;P;S;Mg Rd2
¼ fðP; IÞ; ðI ;PÞ; ðM;PÞg Rs2 ¼ fðS;PÞg

The bipolar interaction graph associated to BAF2 is depicted below, where S provides support for P,
M defeats P, P defeats I and vice versa.
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In order to consider the interaction between supporting and defeating arguments, Cayrol and

Lagasquie-Schiex (2005) introduce the notions of supported and secondary3 defeat which combine

a sequence of supports with a direct defeat.

DEFINITION 2 (Supported and Secondary Defeat) Let hA;Rd ;Rsi be a Bipolar Argumentation

Framework and A;B 2 A.

> A supported defeat from A to B is a sequence A1R1 . . . Rn� 1An; n � 3, where A1 ¼ A,An ¼ B,
s.t. 8i ¼ 1 . . . n� 2, Ri ¼ Rs and Rn� 1 ¼ Rd .

> A secondary defeat from A to B is a sequence A1R1 . . . Rn� 1An; n � 3, where A1 ¼ A,
An ¼ B, s.t. R1 ¼ Rd and 8i ¼ 2 . . . n� 1, Ri ¼ Rs.

Cayrol and Lagasquie-Schiex (2005) state that, by extension, a sequence reduced to two

arguments ARdB (i.e., a direct defeat A ! B) is also considered as a supported defeat from A to

B. Hence, given a BAF hA;Rd ;Rsi and arguments A1; . . . ;Ak;B 2 A, a path A1)
s
� � � )

s
Ak !

B in the bipolar interaction graph leads to k supported defeats from Ai to B, respectively,

ð1 � i � kÞ. Similarly, a path B ! A1)
s
. . . )

s
Ak in the bipolar interaction graph leads to

k2 1 secondary defeats from B to Aj, respectively, ð2 � j � kÞ. For instance, in the BAF2 of

Example 2 there is a supported defeat from S to I determined by the path S)s P ! I in the

bipolar interaction graph. On the other hand, the direct defeatsM ! P, P ! I and I ! P are

also supported defeats.

EXAMPLE 3 Let us consider the Bipolar Argumentation Framework BAF3 characterized by the

bipolar interaction graph depicted below on the left.

The direct defeats of BAF3 are depicted above on the right using solid arrows, while the secondary

defeats and the supported defeats (which are not also direct defeats) are depicted using dashed

arrows. For instance, since A defeats B, B supports C, and C supports both D and E, there are

secondary defeats from A to C;D and E. Moreover, since E defeats F there are supported defeats

from B and C to F . Finally, observe that, since F defeats G and G supports F , there exists a supported
defeat from G to itself and a secondary defeat from F to itself.

As shown in Example 3, note that if A)
s
B and B ! A, then A and B are self-defeating

arguments since there exists a supported defeat from A to itself and a secondary defeat from B to

itself. This occurs because no restriction in the Bipolar Argumentation Frameworks prevents

arguments from defeating and supporting each other. However, some restrictions regarding

defeating and supporting arguments in a BAF are introduced, as explained below.

Following Dung’s semantics, Cayrol and Lagasquie-Schiex (2005) determine the characteristics

that an acceptable set of arguments in a Bipolar Argumentation Framework must satisfy. On the

one hand, they consider that an acceptable set of arguments must be internally coherent (in the

sense that no arguments in the set should defeat each other); to achieve this, they extend the notion

of conflict-freeness proposed by Dung (1995) into 1conflict-freeness to consider the supported and

secondary defeats. On the other hand, given that BAFs allow for the representation of support

among arguments as well as defeat, they consider that an acceptable set of arguments must also be

3 Cayrol and Lagasquie-Schiex (2005) the authors use the terminology ‘indirect’ defeat; however, in later

works they adopted the terminology ‘secondary’ defeat.
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externally coherent (a set of arguments that defeats and supports the same argument cannot be

acceptable). This notion of external coherence is captured in the BAFs by the notion of safety as

defined below.

DEFINITION 3 (Conflict-Freeness and Safety) Let hA;Rd ;Rsi be a Bipolar Argumentation Framework

and S � A.

> S is 1conflict-free iff =9A;B 2 S s.t. there is a supported defeat or a secondary defeat from A to B.
> S is safe iff =9A 2 A, =9B; C 2 S s.t. there is a supported or a secondary defeat from B to A, and

either there is a sequence of support from C to A, or A 2 S.

The ‘1’ in the above definition expresses that checking whether a set is 1conflict-free requires

to take supported and secondary defeats into account, in addition to the direct defeats considered

by the classical notion of conflict-freeness. In that way, the notion of 1conflict-freeness is more

restrictive than the notion of conflict-freeness proposed by Dung. To illustrate this, let us consider

the BAF3 of Example 3. The set fA;Fg is both 1conflict-free and conflict-free. On the contrary,

the set fA; Cg is conflict-free but not 1conflict-free since there exists a secondary defeat from A to

C. Similarly, the set fGg is conflict-free but not 1conflict-free since G defeats itself through a

supported defeat. Finally, the set fB; C;D; E;Hg is 1conflict-free but not safe since E defeats F
and H supports F . Thus, if we consider arguments E and H separately, the sets fB; C;D; Eg and
fB; C;D;Hg are safe. Cayrol and Lagasquie-Schiex (2005) show that the notion of safety is

powerful enough to encompass the notion of 1conflict-freeness (i.e., if a set is safe then it is also

1conflict-free). That the converse does not hold is shown in the above example. However, they

also show that if a set S is 1conflict-free and closed for Rs (i.e., if ARsB and A 2 S, then B 2 S),

then S is also safe.

Following Dung’s approach, acceptability of an argument A with respect to a set of arguments

S is defined by Cayrol and Lagasquie-Schiex (2005) by requiring direct defeaters of A to be

directly defeated by S. Then, preferred extensions of a BAF are defined as maximal (for D)

admissible sets. However, aiming to reinforce the coherence of admissible sets, three definitions for

the notion of admissibility are proposed by Cayrol and Lagasquie-Schiex (2005), from the most

general to the most specific one. First, by requiring admissible sets to be 1conflict-free and to have

the property of defending all its elements they introduce d-admissibility (‘d ’ means ‘in the sense of

Dung’). Second, s(afe)-admissibility enforces d-admissibility by requiring safety for admissible

sets. Finally, they strengthen external coherence by requiring admissible sets to be closed for Rs,

thus leading to c(losed)-admissibility.

Different notions of admissibility may lead to different extensions of a BAF. For instance,

given the BAF3 of Example 3, the set fB; C;D; E;Hg is not d-admissible since, although it is

1conflict-free, it does not defend B against the direct defeat from A. In that way, the d-preferred

extensions of BAF3 are fA;Hg and fC;D; E;Hg. However, given that fC;D; E;Hg is not safe since
E ! F and H)

s
F , the s-preferred extensions of BAF3 are fA;Hg, fC;D; Eg and fC;D;Hg.

Finally, the sets fA;Hg and fC;D;Hg are not c-admissible since H)
s
F and F does not belong to

the sets. Thus, the c-preferred extensions of BAF3 are fAg and fC;D; Eg.
Observe that, since the notion of acceptability only considers direct defeats when requiring

defense for an argument, target arguments of supported and secondary defeats may belong to a BAF’s

extensions. Such is the case of arguments C;D and E, which belong to the preferred extensions of

BAF3. If the notion of acceptability was reinforced to take supported and secondary defeats into

account, arguments C,D and E would no longer belong to the preferred extensions of BAF3 since there

is a secondary defeat from A to each one of them. Therefore, the only d-preferred and s-preferred

extension of BAF3 would be fA;Hg, while the only c-preferred extension would be fAg.
Cayrol and Lagasquie-Schiex (2007, 2010) present an alternative approach for handling

bipolarity in argumentation frameworks. The idea is to transform a BAF into a Dung-like

argumentation framework that consists of a set of coalitions and a defeat relation between them.

The defeat relation of the initial BAF will appear only at the coalition level. As a consequence,
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a coalition will gather non-conflicting arguments. Thus, the support relation of the initial BAF will not

appear at the coalition level, but will be used to gather arguments into coalitions. As mentioned by

Cayrol and Lagasquie-Schiex (2010) the two fundamental principles governing the definition of a

coalition are the coherence principle (coalitions must be conflict-free) and the support principle

(arguments in a coalition must be directly or indirectly related by the support relation).

Let BAF ¼ hA;Rd ;Rsi be a Bipolar Argumentation Framework represented by the bipolar

interaction graph GBAF. The graph representing the partial framework hA;Rsi (i.e., a framework

composed by the set of arguments and the support relation of BAF) is denoted by Gs. Similarly,

AFBAF denotes the AF hA;Rdi associated to BAF (i.e., the abstract argumentation framework

composed by the set of arguments and the defeat relation of BAF).

DEFINITION 4 (Coalition) Let BAF ¼ hA;Rd ;Rsi be a Bipolar Argumentation Framework. C � A

is a coalition of BAF iff it is a maximal conflict-free set for AFBAF such that the

subgraph of Gs induced by C is connected.

Briefly, the subgraph of Gs induced by C consists of the arguments in C and the edges in Gs such
that they link two arguments in C. In addition, this induced subgraph is said to be connected iff

there exists a directed or undirected path of support between every pair of arguments in the

subgraph4. For instance, given the BAF3 of Example 3 we obtain the coalitions C1 ¼ fAg,
C2 ¼ fB; C;D; E;Gg and C3 ¼ fF ;Hg.

Definition 4 requires coalitions to be conflict-free for AFBAF. This means that there exist no

arguments A;B in a coalition C such that A directly defeats B, thus referring to conflict-freeness in

Dung’s sense. In general, this prevents conflicting arguments from belonging to the same coalition.

However, if supported and secondary defeats were taken into consideration, the resulting coalitions

might not be 1conflict-free. Such is the case of coalitions C2 and C3 obtained from Example 3,

which are not 1conflict-free since G and F are self-defeating arguments.

Let BAF ¼ hA;Rd ;Rsi be a Bipolar Argumentation Framework and CðAÞ the set of coalitions
of BAF. Cayrol and Lagasquie-Schiex (2007) define conflicting coalitions as follows. Two coalitions

C1 and C2 are conflicting, denoted C1 c-defeats C2, if 9A1 2 C1;9A2 2 C2 such that A1RdA2.

Then, given the set of coalitions CðAÞ and the c-defeat relation, they define an argumentation

framework CAF ¼ hCðAÞ; c-defeati referred to as the coalition framework (CAF) associated with

BAF. Finally, Cayrol and Lagasquie-Schiex (2007) propose an approach for computing the

extensions of a BAF in terms of the extensions of its associated CAF. First, the extensions of a

CAF are obtained following Dung’s approach. Then, the different coalitions in an extension of the

CAF are merged to obtain the corresponding extension of the BAF. In that way, for instance,

by gathering all arguments belonging to the coalitions of a preferred extension of CAF they obtain a

cp-extension (coalition-preferred extension) of BAF.

EXAMPLE 4 Given the BAF3 of Example 3 we obtain the associated coalition framework CAF4. The

coalitions of BAF3 are depicted below on the left, and the resulting CAF4 is on the right.

The only preferred extension of CAF4 is fC1;C3g. Thus, the cp-extension of BAF3 is fA;F ;Hg.

Observe that the cp-extension of BAF3 in Example 4 differs from the d/s/c-preferred extensions

obtained directly from BAF3. Since the c-defeat relation of a CAF does not take into consideration

the supported and secondary defeats of the associated BAF, the resulting extensions of the CAF

4 For additional background on graph theory see Berge (2001).
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might contain arguments that otherwise would be self-defeating. Such is the case of argument F in

BAF3, which belongs to the preferred extension of CAF4 (and correspondingly the cp-extension of

BAF3). However, as shown in Example 3, F is a self-defeating argument. In contrast, if supported

and secondary defeats were considered when computing the c-defeat relation, self-defeating

arguments would lead to self-defeating coalitions, thus preventing those arguments from

appearing in the framework’s extensions.

Cayrol and Lagasquie-Schiex (2007, 2010) remark that some properties of Dung’s argu-

mentation frameworks are preserved for CAFs. Notwithstanding, they also mention that other

properties valid for Dung’s frameworks are lost. For instance, as shown in the following example,

a cp-extension of a BAF might not always be admissible.

EXAMPLE 5 Let BAF5 be represented by the bipolar interaction graph depicted below on the left.

Here, we obtain the coalitions C1 ¼ fIg;C2 ¼ fJ ;K;Lg;C3 ¼ fMg. The associated coalition

framework is CAF5 ¼ hfC1;C2;C3g; fðC1;C2Þ; ðC2;C3Þgi and is depicted above on the right. The

only preferred extension of CAF5 is fC1;C3g. Therefore, the cp-extension of BAF5 is fI ;Mg.
However, we have L ! M but I does not defendM against L (neither by a direct defeat nor by a

supported or a secondary defeat). Instead, argument I defeats argument J that belongs to the

coalition that defeatsM and therefore fI ;Mg is not admissible in Dung’s sense.

Cayrol and Lagasquie-Schiex (2007, 2010) state that coalitions must be considered as a whole

and thus cannot be used separately in the defeat process. Thus, they say that the loss of admis-

sibility as mentioned in Example 5 is not a problem since it takes the defeats from individual

arguments into consideration. At any case, they say that admissibility would be lost in Example 5

due to the size of coalition C2 ¼ fJ ;K;Lg (which does not take the direction of support paths

into account). Then, they proposed the elementary coalitions in terms of conflict-free maximal

support paths. In that way, given the BAF5 of Example 5 we would obtain two independent

coalitions fJ ;Kg and fK;Lg instead of the original coalition fJ ;K;Lg. However, as remarked by

the authors themselves and shown in the following example, elementary coalitions do not always

enable to recover Dung’s properties.

EXAMPLE 6 Let BAF6 be characterized by the bipolar interaction graph depicted below on the left.

The elementary coalitions obtained from BAF6 are EC1 ¼ fIg, EC2 ¼ fJ ;K;Lg and EC3 ¼ fMg.
The associated coalition framework is CAF6 ¼ hfEC1;EC2;EC3g; fðEC1;EC2Þ; ðEC2;EC3Þgi;
depicted above on the right. The preferred extension of CAF6 is fEC1;EC3g, so the cp-extension of BAF6
is fI ;Mg. However, fI ;Mg is not admissible since I does not defendM against the defeat from L.

Finally, the authors argue that the loss of admissibility as shown in Examples 5 and 6 is not

problematic. As mentioned before, they justify this claim by stating that Dung’s notion of

admissibility takes into account ‘individual’ defeat and defense, whereas in their coalition-

approach ‘collective’ defeat and defense should be considered. As will be shown below, these issues

have been addressed and criticized by other approaches to support in argumentation.

3 Meta-argumentation frameworks with deductive and defeasible support

Boella et al. (2010) introduce a meta-argumentation approach that allows for the consideration of

support among arguments. Unlike the support relation of the Bipolar Argumentation Frameworks,
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they introduce deductive support which constitutes a particular interpretation of support. Briefly,

deductive support establishes the following constraints on the acceptability of arguments: if A sup-

ports B and A is accepted, then B must be accepted too; and if B is not accepted, then A must not be

accepted either.

Boella et al. (2010) address two drawbacks of the meta-argumentation approach to Bipolar

Argumentation Frameworks presented in Section 2. First, they mention the loss of admissibility in

Dung’s sense, and second, the definition of the notions of defeat in the context of a support

relation. In addition, they claim that a support relation among arguments can be introduced

without extending Dung’s theory. In that way, they propose to use meta-argumentation to

instantiate an AF in order to represent deductive support among arguments.

As mentioned in Section 2, Cayrol and Lagasquie-Schiex (2007, 2010) claim that the loss of

admissibility, as occurred in Examples 5 and 6, is not problematic since it takes into account

‘individual’ defeats whereas, with their meta-argumentation approach, they want to consider

‘collective’ defeats. In contrast, Boella et al. (2010) state that the aim of using meta-argumentation

is to preserve all Dung’s properties and principles, and they do not agree that it makes sense for

meta-arguments to group arguments that are somehow related by the support relation.

Following the notation introduced in the previous section, A ! B will denote that A defeats B.
Like in BAFs, the defeat relation in the approach of Boella et al. (2010) corresponds to the defeat

relation of Dung’s AFs. Then, since they provide a particular interpretation of support, we will use

A)
d
B to denote that A deductively supports B. Here, the label ‘d ’ over the double arrow indicates

that the support relation among arguments is deductive.

Given the coexistence of supporting and defeating arguments, additional defeats are considered

by Boella et al. (2010) by combining a sequence of supports and a direct defeat. In particular,

they propose the mediated defeats which enforce the constraints of deductive support. Briefly,

if A)d B and C ! B, then a mediated defeat from C to A occurs. In the following, we will use

d-BAF to denote a Bipolar Argumentation Framework in which the support relation has a

deductive interpretation.

DEFINITION 5 (Mediated Defeat) Let hA; !; )
d
i be a d-BAF and A;B 2 A. A mediated defeat

fromA to B is a sequenceA1)
d
� � � )

d
An� 1 andAn ! An� 1 ðn � 3Þ, whereA1 ¼ B

and An ¼ A.

The following example illustrates how the mediated defeats allow to recover from the loss of

admissibility occurred in Example 6.

EXAMPLE 7 Let BAF6 be the Bipolar Argumentation Framework of Example 6. Given a deductive

interpretation for the support relation of BAF6, we obtain the d-BAF7 depicted below.

Here, there is a mediated defeat from I to K since I defeats J , which is supported by K. Moreover,

there is also a mediated defeat from I to L. Mediated defeats of d-BAF7 are depicted above using

dashed arrows. As shown in Example 6, the cp-extension of BAF6 is fI ;Mg and it is not an

admissible set. However, when considering d-BAF7, the set fI ;Mg is admissible. This is because,

given the mediated defeat from I to L, argumentM is now defended against the defeat from L.

The other drawback of the meta-argumentation approach presented in Section 2 that Boella

et al. (2010) mention is that secondary defeats may lead to undesired results. To illustrate this

issue, let us consider the following example adapted from Boella et al. (2010).

EXAMPLE 8 Consider a scenario where two soccer teams, Liverpool ðLÞ and Manchester United

ðMUÞ, are on the final race to win the Premier League ðPLÞ. Suppose that Liverpool
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wins the Premiere League ðLPLÞ if it wins its last match ðLWÞ or Manchester United

does not win its own ðMUNWÞ. Note that Liverpool and Manchester United are not

playing against each other and thus, the results of their matches are independent. Then

we have that ‘Liverpool wins its last match’ supports ‘Liverpool wins the Premier

League’ ðLW)d LPLÞ, and ‘Manchester United does not win its last match’ also

supports ‘Liverpool wins the Premier League’ ðMUNW)
d
LPLÞ. Suppose now that

Liverpool loses its last match ðLLÞ and Manchester United does not win its own

ðMUNWÞ. We have that ‘Liverpool loses its last match’ defeats ‘Liverpool wins its last

match’ ðLL ! LWÞ. Therefore, taking secondary defeats into consideration we have

that ‘Liverpool loses its last match’ defeats ‘Liverpool wins the Premier League’

ðLL ! LPLÞ. A graphical representation of this situation is included below, where the

secondary defeat is depicted using a dashed arrow.

In this case, LPL (which expresses that ‘Liverpool wins the Premier League’) will not be an accepted

argument since there is no reinstatement for it against the defeat from LL.

The result obtained in Example 8 is counterintuitive because LPL is also supported by argu-

ment MUNW, which is undefeated. Therefore, to avoid counterintuitive results, Boella et al.

(2010) propose to dismiss the secondary defeats on their meta-argumentation approach and

consider the mediated defeats instead. Although secondary defeats may lead to counterintuitive

results when considering a deductive interpretation of support, as will be shown in Section 4, they

prove to be useful in contexts where other interpretations of support are considered.

As mentioned before, deductive support is expected to comply with the following constraints: if

A supports B and A is accepted, then B must be accepted too; and if A supports B, and B is not

accepted, then A must not be accepted either. Unlike the meta-argumentation approach presented

in Section 2, Boella et al. (2010) do not group arguments together in meta-arguments, but they add

meta-arguments. In brief, the idea is to represent the deductive support from an argument A to an

argument B through the defeat from argument B to an auxiliary argument called ZA;B, together
with the defeat from argument ZA;B to argument A.

Given a set U called the universe of arguments, for each argument A 2 U they introduce the

meta-argument accðAÞ that expresses ‘A is accepted’. In addition, they incorporate meta-

arguments XA;B and YA;B for each defeat A ! B. The meta-argument XA;B expresses that ‘the

defeat from A to B is not active’ and the meta-argument YA;B expresses that ‘the defeat from A to B
is active’. For each arguments C;D 2 U such that C)

d
D they introduce a meta-argument ZC;D,

which expresses that ‘C does not support D’. Then, they characterize the universe of meta-

arguments as UM ¼ faccðAÞ j A 2 Ug [ fXA;B; YA;B;ZA;B j A;B 2 Ug: Finally, they define a

meta-defeat relation / that expresses the conflicts among the original arguments in a meta level.

The following definition characterizes the meta-argumentation framework EAF that enables to

encode deductive support among arguments. Given a d-BAF, an argument A will belong to an

extension of d-BAF iff its meta-argument accðAÞ belongs to the corresponding extension of EAF.

DEFINITION 6 Let d-BAF ¼ hA;!;)
d
i be a Bipolar Argumentation Framework with deductive

support. The associated meta-argumentation framework is EAF ¼ hMA; 7!i, where
MA � UM is faccðAÞ j A 2 Ag [ fXA;B;YA;B;ZA;B j A;B 2 Ag and 7! �
MA � MA is a meta-defeat relation such that:

> If A ! B, then accðAÞ 7!XA;B;XA;B 7!YA;B and YA;B 7! accðBÞ.
> If A)

d
B, then accðBÞ 7!ZA;B and ZA;B 7! accðAÞ.
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EXAMPLE 9 Let us consider the d-BAF9 characterized by the following interaction graph.

The coalition framework CAF9 associated with d-BAF9 is depicted below on the left, and the cor-

responding meta-argumentation framework EAF9 is on the right.

The preferred extension of CAF9 is fC1g, so the cp-extension of d-BAF9 would be fP; Q; Sg. In
contrast, the preferred extension of EAF9 is faccðSÞ;YS;R;ZQ;R;ZP;Qg, leading to the preferred

extension of d-BAF9 being fSg.

Observe that the approaches of Cayrol and Lagasquie-Schiex (2007, 2010) and Boella et al.

(2010) lead to different results in Example 9. Since Boella et al. (2010) considers deductive support

among arguments, if A)
d
B and B is not accepted, then A cannot be accepted either. Thus, in

Example 9, given that S ! R and Q)d R, Q cannot be accepted since R is not accepted.

Similarly, P is not accepted either since it deductively supports Q.
In addition, note that the meta-defeat relation / in Definition 6 does not take mediated and

supported defeats into consideration. As mentioned by Boella et al. (2010), given A)
d
B, they

condense all defeats involving arguments A and B using only the meta-argument ZA;B. In that

way, ZA;B allows to capture the behavior modeled by the mediated and supported defeats.

Therefore, they simplify the representation of the meta-argumentation frameworks in which

supported and mediated defeats occur. To illustrate this, let us consider the following example.

EXAMPLE 10 Let us consider the d-BAF10 depicted below, where mediated and supported defeats are

denoted using dashed arrows.

Suppose that the mediated and supported defeats of d-BAF10 are included on the associated EAF10.

The defeat graph of EAF10 is shown on the left below.

The mediated defeat from T toN expresses that if T is accepted, then N should not be accepted; this

is captured by two paths in the defeat graph of EAF10. In particular, since one of these paths includes

the meta-argument ZN ;O, we could disregard the other without losing the effect of the mediated
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defeat. On the other hand, the supported defeat from N to V can also be captured by looking into

different paths in the defeat graph of EAF10. First we have the path from accðN Þ to accðVÞ, which
corresponds to the supported defeat itself. However, we can also capture the behavior modeled by the

supported defeat by combining two other paths in the defeat graph. The supported defeat fromN to V
expresses that if N is accepted, then V should not be accepted. Then, if the meta-argument accðN Þ is
accepted, it implies that the meta-argument ZN ;O is not accepted. Moreover, since the only defeater

of ZN ;O is accðOÞ, it also implies that accðOÞ is accepted, leading to accðVÞ being not accepted. Note

that, as for the mediated defeat, this alternative considers a path involving the meta-argument ZN ;O,

thus making it possible to disregard the path from accðN Þ to accðVÞ. Finally, the preferred extension

of EAF10 is faccðT Þ;YT ;O;YT ;N ;ZN ;O;XO;V ;XN ;V ; accðVÞg and thus, the preferred extension of

d-BAF10 is fT ;Vg.
Suppose now that the mediated and supported defeats are not considered in EAF10. Then, we obtain a

simplified version of the defeat graph, which is depicted above on the right. Despite the simplified

representation we can note that the preferred extension of EAF10 is faccðT Þ;YT ;O;ZN ;O;XO;V ; accðVÞg,
while the preferred extension of d-BAF10 is still fT ;Vg.

The simplified representation shown in Example 10 is possible since Boella et al. (2010) prove

that the incorporation of supported and mediated defeats does not change the extensions of the

meta-argumentation framework using Dung’s semantics, as it can be seen in Example 10.

Boella et al. (2010) present an extended approach that considers two kinds of second-order

defeats. First, they consider defeats from an argument or a defeat relation to another defeat

relation and second, defeats from an argument to a support relation. There exist in the literature

other approaches that address the first kind of second-order defeats (e.g., Modgil, 2009; Baroni

et al., 2011). However, Boella et al. (2010) remark that the difference between other approaches

and theirs is that they also consider the case in which a defeat relation defeats another defeat

relation. On the other hand, the second kind of second-order defeat they propose allows for the

modeling of what they call defeasible support, which overrides the constraints imposed by the

deductive support interpretation.

Regarding the second kind of second-order defeats proposed in Boella et al. (2010), the work of

Pollock (1987) provided the basis for further research on this topic. He stated that defeasible

reasons (which can be assembled into arguments) have defeaters and that there are two kinds of

defeaters: rebutting defeaters and undercutting defeaters. The former defeat the conclusion of an

inference by supporting the opposite one, while the latter defeats the connection between the

premises and conclusion without defeating the conclusion directly. The work by Boella et al. (2010)

was the first to consider this issue in the context of Bipolar Argumentation Frameworks. However,

as will be shown in Section 7, recent work by Cohen et al. (2012) also addresses rebutting and

undercutting defeaters in abstract argumentation frameworks with an explicit support relation.

The following definition provides an instantiation of an AF as a bipolar second-order argu-

mentation framework using meta-argumentation, as introduced by Boella et al. (2010). As stated

before, the sets U and UM, respectively, represent the universe of arguments and meta-arguments.

In addition, d-EBAF represents a Bipolar Argumentation Framework with second-order defeats,

where the support relation among arguments has a deductive interpretation.

DEFINITION 7 Let d-EBAF ¼ hA;!;)
d
;!2i be an Extended Bipolar Argumentation Framework

with deductive support, where A � U is a set of arguments,!� A � A is a defeat

relation, )
d
� A � A is a deductive support relation and !2 � ðA [ !Þ � ð!

[)
d
Þ is a second-order defeat relation. The associated extended meta-argumentation

framework is EAFþ ¼ hMA; 7!i, where MA � UM is faccðAÞ j A 2 Ag[
fXA;B;YA;B;ZA;B j A;B 2 Ag [ fXA;B!C;YA;B!C;XC;ZA;B ;YC;ZA;B j A;B; C 2 Ag
and 7! � MA � MA is a meta-defeat relation such that:

> If A ! B, then accðAÞ 7!XA;B, XA;B 7!YA;B and YA;B 7! accðBÞ.
> If A)d B, then accðBÞ 7!ZA;B and ZA;B 7! accðAÞ.
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> If A!2 ðB ! CÞ, then accðAÞ 7!XA;B!C, XA;B!C 7!YA;B!C and YA;B!C 7!YB;C.
> If ðA ! BÞ!2 ðC ! DÞ, then YA;B 7!YC;D.
> If C!2 ðA)

d
BÞ, then accðCÞ 7!XC;ZA;B , XC;ZA;B 7!YC;ZA;B and YC;ZA;B 7!ZA;B.

EXAMPLE 11 Let us consider the d-BAF10 of Example 10 and suppose we add the second-order defeat

W!2 ðT ! OÞ. The resulting Extended Bipolar Argumentation Framework d-EBAF11
is depicted below, where the second-order defeat is represented using a dashed arrow.

The extended meta-argumentation framework EAFþ11 associated with d-EBAF11 is depicted below.

The preferred extension of EAFþ11 is faccðT Þ; accðWÞ; YW;T !O; accðOÞ; accðN Þ; YO;Vg. There-
fore, the preferred extension of d-EBAF11 is fT ;W;O;Ng since the defeat from T to O is made

ineffective byW. Thus, given that O is no longer defeated and can be accepted, it defeats V. Finally,
argument N , which deductively supports O, is also accepted.

According to Definition 7, a second-order defeat on a support relation leads to an override on

the constraints imposed by deductive support. When C!2 ðA)
d
BÞ, the meta-defeat relation is

such that accðCÞ 7!XC;ZA;B 7!YC;ZA;B 7!ZA;B. Hence, if accðCÞ is accepted, then ZA;B is defeated. As

a result, since the deductive support from A to B has been made ineffective by C, if B is not

accepted then A can be accepted and, conversely, if A is accepted then it can be the case that B is

not accepted. To illustrate this, let us consider the following example.

EXAMPLE 12 Suppose now we extend the Bipolar Argumentation Framework d-BAF10 of Example 10

with the second-order defeat W!2 ðN )
d
OÞ. In this case, we obtain the Extended

Bipolar Argumentation Framework d-EBAF12 depicted below, where the dashed arrow

represents the second-order defeat.

The extended meta-argumentation framework EAFþ12 associated with d-EBAF12 is depicted below.
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Here, argument O is defeated by argument T and therefore it is not accepted. However, argument N is

accepted because the support from N to O has been made ineffective by the defeat from argument W. In

that way, the preferred extension of EAFþ12 is faccðT Þ; YT ;O; accðWÞ; YW;ZN ;O ; accðN Þ; XO;V ; accðVÞg,
and the preferred extension of d-EBAF12 is fT ;W;N ;Vg.

Finally, as remarked by Boella et al. (2010), the model of defeasible support they

propose allows for the representation of both rebutting and undercutting defeaters. Rebutting

defeat is modeled when A)
d
B and C ! B, while undercutting defeat is modeled when

C!2 ðA)
d
BÞ.

4 Argumentation Frameworks with Necessities

Nouioua and Risch (2010) first presented the Argumentation Frameworks with Necessities

(AFNs), an extension of Dung’s AFs that incorporates a specialized kind of support relation

between arguments: the necessity relation. Briefly, the necessity relation establishes that if an

argument A supports another argument B, then A is necessary to obtain B. In that way, if B is

accepted then A is also accepted, and if A is not accepted then B cannot be accepted either. They

argue that, unlike a general support relation, the necessity relation has the advantage to ensure

that its interaction with the defeat relation generates new defeats having exactly the same nature

as the direct ones. In addition, they contend that this specialization of the support relation allows

to generalize the acceptability semantics in a natural way that ensures admissibility.

DEFINITION 8 (Argumentation Framework with Necessities) An Argumentation Framework with

Necessities (AFN) is a tuple hA;R;Ni, whereA is a set of arguments, R � A � A is

a defeat relation and N � A � A is an irreflexive and transitive necessity

relation.

The definition of AFN presented here corresponds to the one introduced by Boudhar et al.

(2012), where the necessity relation N is transitive. The relation R is the same as in Dung’s

argumentation frameworks; thus, following the adopted convention, we refer to it as the defeat

relation. From the original defeats and the necessity relation new defeats can be obtained in

two cases: if A defeats C and C is necessary for B, then A defeats B; and if C defeats B and C
is necessary for A, then A defeats B. These extended notions are formalized in the following

definition.

DEFINITION 9 (Extended Defeat) Let hA;R;Ni be an Argumentation Framework with Necessities

and A;B 2 A. There is an extended defeat from A to B, noted as ARþB, iff 9C 2 A

s.t. either ARC and CNB, or CRB and CNA. The direct defeat ARB is considered as a

particular case of extended defeat.

Nouioua and Risch (2010) originally introduced the first kind of extended defeat, which

coincides with the secondary defeat proposed by Cayrol and Lagasquie-Schiex (2005). Then,

Nouioua and Risch (2011) further developed the AFNs introducing, among other things, the other

kind of extended defeat.

An AFN can be graphically represented by a directed graph where nodes are arguments

and there are two kinds of edges denoting the defeat and support relations. Nouioua and Risch

(2010) use - and to, respectively, denote defeat and support among arguments. However, as

mentioned before, to maintain uniformity in this survey we will use A ! B to denote that

ARB (defeat), and A)
n
B to denote that ANB (necessity). In this case, the label ‘n’ over the double

arrow indicates that the support relation is interpreted as necessity. To simplify the representation,

we will only include the ‘direct’ necessities on the graph. Therefore, the necessities obtained by

transitivity on the support relation can be visualized by following the support paths on the graph.

Next, we introduce an example that illustrates the above definitions.

526 A . COHEN ET AL .



EXAMPLE 13 Consider the AFN13 depicted below on the left.

There is a necessity from A to C, and from D to F . The graph above on the right summarizes the

extended defeats obtained from AFN13, which are depicted using dashed arrows, except for those that

are also direct defeats. Given that D defeats A and A supports B and C (respectively, directly and

indirectly), there are extended defeats from D to B and C. In addition, since D defeats A and supports

E and F , there are also extended defeats from E and F to A.

Acceptability in AFNs is addressed by adopting an extensional approach. In presence of a

necessity relation, a main requirement when defining acceptable sets of arguments is to avoid

cycles of necessities because such cycles reflect a form of deadlock that can be seen as an instance

of the fallacy known as begging the question5. First, Nouioua and Risch (2010) addressed this issue

by assuming that the necessity relation of an AFN is acyclic. Then, a formal characterization of

necessity-cycle-freeness was provided in Nouioua and Risch (2011). Finally, Boudhar et al. (2012)

provide a new characterization of AFNs by requiring the necessity relation to be irreflexive and

transitive, and thus avoiding any risk of having a cycle of necessities. As mentioned before,

Definition 8 takes into account the constraints for the necessity relation introduced in Boudhar

et al. (2012). Then, the notions of coherent set and strongly coherent set are introduced as follows.

DEFINITION 10 (Coherent and Strongly Coherent Sets) Let hA;R;Ni be an argumentation frame-

work with necessities and S � A.

> S is coherent iff it is closed under N�1ði:e:; 8A 2 S; 8B 2 A; if BNA then B 2 SÞ.
> S is strongly coherent iff it is coherent and conflict-free w.r.t. R.

The coherence requirement ensures that a set of arguments S provides all the necessary argu-

ments to each of its members. Hence, since it concerns only the necessity relation N, if N ¼ 0,

then strong coherence is reduced to classical conflict-freeness. For instance, given the AFN13 of

Example 13, some coherent sets are fAg, fA;B; C;Dg and fD; E;Fg. In contrast, the set fB; Cg is
not coherent since ANB and A does not belong to the set. From the coherent sets mentioned

before, only fAg and fD; E;Fg are strongly coherent; the set fA;B; C;Dg is not strongly coherent

since DRA and therefore, it is not conflict-free.

Acceptability semantics for AFNs follow the same principles as Dung’s AFs and uses the

notion of strong coherence instead of conflict-freeness. Then, admissible sets and preferred

extensions of an AFN are characterized as follows.

DEFINITION 11 (Admissible Sets and Preferred Extensions) Let AFN ¼ hA;R;Ni be an argu-

mentation framework with necessities and S � A.

> S is an admissible set of AFN iff it is strongly coherent and if 9B 2 A;9A 2 S s.t. BRA, then for

each coherent set S0 � A nS s.t. B 2 S0 it holds that SRS0ði:e:; 9C 2 S; 9D 2 S0s:t: CRDÞ.
> S is a preferred extension of AFN iff it is a maximal (w.r.t. �) admissible set.

Given the AFN13 of Example 13 some admissible sets are fDg and fD; E;Fg. The set fDg is
trivially admissible since it is strongly coherent and no argument in AFN13 defeats D. In addition,

the set fD; E;Fg is strongly coherent and is defended against the defeat from C because D defeats

A and A is a member of fA;B; Cg, the only coherent set to which C belongs. On the contrary, the

set fA;B; Cg is not admissible since D defeats A and the set does not provide defense against it.

Finally, the only preferred extension of AFN13 is fD; E;Fg.

5 Begging the question is a type of logical fallacy that refers to its own assertion to prove the assertion.
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Nouioua and Risch (2011) remark that the notion of admissibility they propose can be seen as

an extension of Dung’s admissibility where conflict-freeness is replaced by strong coherence and

self-defense concerns extended defeats in addition to the direct ones. They show that a set of

arguments S is admissible iff it is strongly coherent and for every argument A such that

ARSð9B 2 S s:t: ARBÞ, it holds that SRþB. In addition, they introduce several properties

regarding the extensions of AFNs, such as the preservation of properties of preferred extensions

w.r.t. those for Dung’s argumentation frameworks.

The authors remark that their results also hold for deductive support by simply replacing the

necessity relation N by a deductive support relation D, and using closeness under D instead of

N�1. They postulate that the deductive and necessary interpretations of support are dual. This

duality, also remarked in Cayrol and Lagasquie-Schiex (2011), establishes that A)
n
B is equivalent

to B)d A. Thus, by inverting the direction of the deductive support relation in Boella et al. (2010),

the mediated and supported defeats correspond to the extended defeats of Nouioua and Risch

(2011). Analogously, by inverting the direction of necessary support in Nouioua and Risch (2011)

the extended defeats correspond to the mediated and supported defeats of Boella et al. (2010).

Next, we will provide a series of examples that illustrate this duality closely.

EXAMPLE 14 Let us consider the scenario presented in Example 8, where Liverpool ðLÞ or Man-

chester United ðMUÞ is about to become the champion of the Premier League ðPLÞ.
Liverpool wins the Premier League ðLPLÞ if it wins its last match ðLWÞ or Man-

chester United does not win its own one ðMUNWÞ. Recall that, as mentioned in

Example 8, Liverpool and Manchester United are not playing against each other. In

addition, Liverpool loses its last match ðLLÞ and Manchester United does not win its

own. Suppose we want to represent this situation by adopting a necessity interpretation

of the support relation. The resulting representation is depicted below.

We have that ‘Liverpool loses its last match’ defeats ‘Liverpool wins its last match’ ðLL ! LWÞ. In
addition, given the necessity interpretation of support, there is an extended defeat from LL to LPL,
depicted above using a dashed arrow. As a result, the outcome of the system would be that Liverpool

is not the Premier League’s champion. Clearly, this is an undesired result because Manchester United

did not win its last match, turning Liverpool into champion. The unexpected outcome in this case

arises from the mistaken interpretation of support. Recall that a necessity interpretation determines

that an argument is accepted iff all its necessary arguments are also accepted. Thus, by not having

LW accepted, LPL is not accepted either.

Let us suppose now that instead of a necessity interpretation we give the support relation a deductive

interpretation. The new representation of the described situation is depicted below.

Here, since there is a deductive interpretation of support, the defeat from LL to LPL no longer

exists. This is because the only additional defeats that make sense under a deductive interpretation are

the supported and mediated defeats. As a result, the outcome of the system is, as expected, that

Liverpool is the Premier League champion.

The previous example shows that different interpretations of support may lead to different

results. Thus, not every interpretation of support allows for the correct modeling of each scenario.

In contrast, the following example shows that an interpretation that seems to be appropriate for a

given situation might lead to incorrect results later.
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EXAMPLE 15 Let us consider a scenario similar to the one described in Example 14 with the following

difference: Manchester United wins its last match ðMUWÞ instead of losing it. In this

new scenario there is no reason to adopt a different interpretation of support than the

deductive interpretation used in Example 14. Therefore, given the deductive support

among arguments we obtain the representation depicted below.

Here, in addition to the defeat from LL to LW, there is a defeat from MUW to MUNW. Fur-

thermore, given the deductive interpretation of support, there are no additional defeats. This repre-

sentation leads to the incorrect result that LPL is accepted, meaning that Liverpool wins the Premier

League even though it lost its last match and Manchester United won its own. If we adopt a necessity

interpretation of support, the outcome is, as expected, that Liverpool is not the Premier League’s

champion. The associated representation for this situation using necessary support is depicted below.

In this case, there are extended defeats from LL to LPL and fromMUW toMUNW leading to the

non-acceptance of LPL as expected.

As preceding examples illustrate, choosing an appropriate interpretation for expressing support

among arguments is not easy. Although it is necessary to analyze the support relation for each

particular scenario, this is not enough. According to Example 14 a deductive interpretation of

support was adequate. However, Example 15 presented a similar scenario where, without chan-

ging the support relation among arguments (and thus, maintaining the adopted interpretation),

the addition of new information led to unintended results. Consequently, including a direct defeat

resulted in the need for changing the interpretation of support, which is clearly an undesired

feature for an argumentation system.

One issue behind this problem is that, since we are dealing with abstract argumentation systems,

there are no knowledge representation guidelines to follow. In that way, given the adopted

knowledge representation of a scenario, some interpretations of support become more suitable

than others. To illustrate this, let us consider the following example.

EXAMPLE 16 Consider the scenario introduced in Example 14. Suppose now that we adopt the

following knowledge representation. Instead of having a single argument ‘Liverpool

wins the Premier League’ ðLPLÞ supported by both ‘Liverpool wins its last match’

ðLWÞ and ‘Manchester United does not win its last match’ ðMUNWÞ, let us consider
two arguments representing that Liverpool might win the Premier League in two dif-

ferent ways. The former is ‘Liverpool wins the Premier League due to winning its last

match’ ðLPL1Þ, which is supported by LW. The latter expresses that ‘Liverpool wins

the Premier League provided that Manchester United does not win its last match’

ðLPL2Þ, which is in turn supported byMUNW. In this case, we can adopt a necessity

interpretation of support, as depicted below.
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Here, there is an extended defeat from LL to LPL1, which is depicted using a dashed arrow. Then,

the outcome of the system in this case is, as expected, that Liverpool is the Premier League champion

because argument LPL2 is accepted. Furthermore, the non-acceptance of argument LPL1 reflects the

fact that Liverpool won the Premier League not by winning its last match, but because Manchester

United did not win its own.

Finally, Nouioua and Risch (2011) propose an extension of the AFNs in which the necessity

relation expresses the fact that an argument requires at least one element from a set of arguments.

The resulting framework is called Generalized Argumentation Framework with Necessities

(GAFN). Then, Boudhar et al. (2012) present an approach to turn an AFN into a Dung meta-

argumentation framework so that the usual acceptability semantics may be applied. Similarly to

Cayrol and Lagasquie-Schiex (2007, 2010), the main idea is to build coalitions of arguments that

are called clusters. Intuitively, each argument gives rise to a cluster that contains all arguments that

are necessary for it. They state that, unlike the original coalitions of Cayrol and Lagasquie-Schiex

(2010), the definition of clusters considers the direction of the necessity relation and it is not

required that a cluster is conflict-free since internally conflicting clusters lead to self-defeating

meta-arguments that do not belong to any extension.

5 Evidential Argumentation Systems

Arguments are pieces of reasoning that enable to conclude a claim from a set of premises. In

argumentation theory it is usually assumed that these premises (thus, the arguments they belong

to) always hold since argumentation frameworks represent a snapshot of the arguments and

relations involved on the reasoning process. However, alternative approaches like (Oren and

Norman, 2008) consider that arguments should be backed up by evidence. Evidential reasoning

involves determining which arguments are applicable based on some evidence. In that way,

the approach to evidential support proposed by Oren and Norman (2008) intends to capture a

particular notion: an argument cannot be accepted unless it is supported by evidence.

Oren and Norman (2008) introduce the Evidential Argumentation Systems that extend Dung’s

AFs by incorporating a specialized support relation to capture the notion of evidential support.

This support relation enables distinguishing between prima facie and standard arguments. Prima

facie arguments do not require support from other arguments to stand, while standard arguments

must be linked to at least one prima facie argument through a support chain. In addition, the

system proposed by Oren and Norman (2008), inspired on work by Nielsen and Parsons (2006),

in which multiple arguments can attack one another, allows for defeat and support by sets

of arguments.

As mentioned before, an argument will be accepted only if it is supported through a chain

of arguments, each of them is itself supported. At the beginning of this chain of supporting

arguments there is a special argument h that represents support from the environment (i.e., the

existence of supporting evidence). To represent this notion Oren and Norman (2008) define an

Evidential Argumentation System as follows.

DEFINITION 12 (Evidential Argumentation System) An Evidential Argumentation System (EAS) is

a tuple hA;Rd ;Rei, where A is a set of arguments, Rd � ð2AnfgÞ � A is a defeat

relation, and Re � 2A � A is a support relation, such that within the argumentation

system =9X 2 2A, Y 2 A such that XRdY and XReY. The existence of a ‘special’

argument Z =2A is assumed.

An element of the support relation of the form fZgReA represents support by the environment

for A, which is called a prima facie argument. Since the environment requires no support, h cannot

appear as the second element of a member of Re. In addition, since any argument defeated by the

environment will be unconditionally defeated it makes no sense to include such arguments,

therefore prohibiting the environment from appearing in the defeat relation. Note that the relation
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Rd is the same as in Dung’s AFs. Therefore, we refer to it as the defeat relation of the Evidential

Argumentation Systems.

Oren and Norman (2008) use S A and S ! A to denote that the set S, respectively, defeats

and supports argument A; notwithstanding this, we will use the unified notation presented in the

previous sections in which SRdA will be noted as S ! A and SReA will be noted as S)
e
A. In

this case, the label ‘e’ over the double arrow indicates that the support relation has an evidential

interpretation.

EXAMPLE 17 Let EAS17 ¼ hA17;Rd17;Re17i be the following Evidential Argumentation System.

A17 ¼ fG; H; I ; J ; K; L; Mg
Rd17 ¼ fð Lf g; J Þ; ð Kf g; IÞg
Re17 ¼ fðfZg; GÞ; ðfZg; J Þ; ðfZg; KÞ; ðfJ g; HÞ; ðfG; Hg; IÞ; ðfMg; IÞg

A graphical representation of EAS17 is included below.

The support relation of an Evidential Argumentation System does not fully capture the

intuition that arguments should be backed up by evidence, but expresses that one set of arguments

supports another argument. To capture this constraint, Oren and Norman (2008) define the

notion of evidential support as follows.

DEFINITION 13 (Evidential Support) Let hA;Rd ;Rei be an Evidential Argumentation System. An

argument A 2 A is evidence-supported (e-supported) by a set S iff one of the

following conditions holds:

> SReA, where S ¼ fZg or
> 9T � S s.t. TReA and 8B 2 T ; B is e-supported by SnfBg.

S minimally e-supports A iff there is no S0 C S such that A is e-supported by S0.

The notion of evidential support for an argument A requires evidence (the special argument h)

at the start of a chain of support, which leads through various arguments toA. Then, based on this

notion of evidential support, the evidence-supported defeats are defined in order to model defeats

that are be backed up by evidence or facts.

DEFINITION 14 (Evidence-Supported Defeat) Let hA;Rd ;Rei be an Evidential Argumentation System

and A 2 A. A set S carries out an evidence-supported defeat (e-supported defeat)

on A iff the following conditions hold:

> TRdA, where T � S and
> 8B 2 T , B is e-supported by S.

An e-supported defeat from S to A is minimal iff there is no S0 C S such that S0 carries out an

e-supported defeat on A.

Given the EAS17 of Example 17, argument I is e-supported by the set fZ;G;H;J g, and there is

an e-supported defeat from fZ;Kg to I . Observe that I is not e-supported by fMg, sinceM is not

in turn e-supported. Similarly, although fLg ! J , it is not an e-supported defeat since L is not

e-supported.

Following Dung’s approach, an argumentA is acceptable with respect to a set of arguments S if

the set defends A against every defeat it receives. However, Oren and Norman (2008) state that,

since evidence is taken into consideration, only e-supported defeats should be considered when
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computing the acceptability of arguments in an Evidential Argumentation System. They allow an

argument to be defended from an e-supported defeat by having the defeat itself defeated. In that

way, minimal e-supported defeats are considered and thus, they are broken by defeating any

argument belonging to the defeating set. In addition, an essential requirement for acceptable

arguments is that they should be backed up by evidence.

DEFINITION 15 (Acceptability) Let hA;Rd ;Rei be an Evidential Argumentation System and A 2 A.

A is acceptable w.r.t. a set of arguments S iff

> S e-supports A and
> Given a minimal e-supported defeat from X � 2A against A, 9T � S s.t. TRdX , where X 2 X

so that X n fXg no longer carries out an e-supported defeat on A.

Then, Oren and Norman (2008) follow Dung’s approach to define an admissible set S as a

conflict-free (w.r.t. Rd) set of arguments such that every argument in S is acceptable with respect

to S. Similarly, an evidential preferred (e-preferred) extension of an Evidential Argumentation

System is characterized as a maximal (w.r.t. �) admissible set. In addition, they remark that

Dung’s preferred extensions can be captured in an Evidential Argumentation System by having

support existing only between the environment (h) and all other arguments in the system.

Given the Evidential Argumentation System EAS17 depicted in Example 17, argument H is accep-

table w.r.t. fZ;J g since it is e-supported by the set and there is no e-supported defeat against it. On the

contrary, argument I is not acceptable w.r.t. fZ;G;H;J g since the set does not defend I against the

e-supported defeat fromK. Notwithstanding, the set fZ;G;H;J g is admissible since it is conflict-free, all

arguments in the set are e-supported by the set, and there are no e-supported defeats to any argument in

the set. In contrast, the set fZ;G;H;J ;Mg is not admissible since, although it is conflict-free and there

exist no e-supported defeats against the arguments of the set,M is not acceptable with respect to the set

since it is not e-supported by it. As a result, the only e-preferred extension of EAS17 is fZ;G;H;J ;Kg.
In the following we will discuss the relation between evidential support and other interpretations of

support. A clear difference between the notion of evidential support proposed by Oren and Norman

(2008) and the approaches of Cayrol and Lagasquie-Schiex (2005), Boella et al. (2010) and Nouioua

and Risch (2010) presented in Sections 2, 3 and 4, respectively, is that the former expresses the support

that a set of arguments provides for another argument, while the others only relate pairs of arguments.

Taken this into consideration, it is possible to analyze the relation in the context of an Evidential

Argumentation System where arguments are defeated and supported by unary sets of arguments6.

In order to do so, let us consider the following example inspired on Nouioua and Risch (2010).

EXAMPLE 18 Let us consider a scenario where a student is analyzing whether he is able to obtain a

scholarship in a particular university. The university statutes dictate that a student will get a

scholarship ðSÞ if he has a bachelor degree with honors ðBHÞ or he has a low budget ðLBÞ.
Let us assume that the student has obtained a bachelor with honors and has a low budget due

to having a part-time job ðPJ Þ. In addition, suppose that the student won a million dollar

prize in the lottery ðWLÞ a few days before applying for the scholarship. This situation can

be represented by the Evidential Argumentation System EAS18 depicted below.

6 For the sake of clarity, a unary set of arguments fAg will be referred to as A.
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In this context it is expected that the student obtains the scholarship since he has a bachelor’s degree

with honors. This is captured by the outcome of the system since fZ;WL;PJ ;BH;Sg is an

e-preferred extension of EAS18.

Suppose now that we want to represent the situation described in Example 18 using necessary

support instead of evidential support. Therefore, we can characterize the situation through the

AFN18 depicted below.

Observe that the new representation does not include the special argument h. This is because, since

all argument in EAS18 are either directly or indirectly supported by the environment, in an argu-

mentation framework with necessities we can omit the representation of h. In this case, given that the

support relation has a necessity interpretation, an extended defeat from WL to S occurs (denoted

using a dashed arrow), leading to S not belonging to the preferred extension fWL;PJ ;BHg of

AFN18. This is clearly an undesired result, and it follows from the interpretation given to the support

relation and its associated representation. Recall that, under a necessity interpretation, if B)
n
A and

C)
n
A, then both B and C must be accepted in order for A to be accepted. This is not the case of the

scenario described by Example 18, because the student can obtain the scholarship either by having a

bachelor degree with honors or by having a low budget.

Let us suppose now that we want to represent the situation described in Example 18 using a

deductive interpretation of support. Then, we can characterize the d-BAF18 depicted below.

As explained for the AFN, the special argument h is not included here either. Since supported

and mediated defeats must be taken into account in the context of deductive support, a mediated

defeat from WL to PJ occurs. However, this defeat does not affect the membership of S to the

preferred extension fWL;BH;Sg of d-BAF18. Although the deductive support approach leads to

the expected outcome in this situation, it does not allow to correctly represent some scenarios

where evidential support is expressed. To illustrate this, let us consider the following example.

EXAMPLE 19 Suppose a similar scenario as the one presented in Example 18, where the only way to

obtain a scholarship is to have a low budget. The student applying to the scholarship has

a part-time job, and has won the lottery. This new situation can be represented by the

Evidential Argumentation System EAS19 depicted below.

In this case, it is expected that the student does not obtain the scholarship, since by winning the lottery

he no longer has a low budget. This is denoted by the e-supported defeat from WL to LB, which
prevents S from being e-supported. In that way, argument S expressing that the student obtains the

scholarship does not belong to the e-preferred extension fZ;WL;PJg of EAS19.
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Suppose we want to model the situation illustrated in Example 19 using deductive support.

Then, we obtain the following d-BAF19.

Here there is a mediated defeat from WL to PJ . In addition, LB is not accepted in d-BAF19

because it is defeated by WL. However, given this new representation argument S belongs to the

preferred extension fWL;Sg of d-BAF19, which is clearly an undesired outcome. Recall that,

given A)
d
B, it holds that if A is accepted then B is also accepted, and if B is not accepted thenA is

not accepted either. Then, argument B can be accepted even if argument A is not accepted.

Therefore, it is not correct to use a deductive interpretation of support in scenarios like the one

presented in Example 19. On the other hand, modeling evidential support using the general

support relation of the Bipolar Argumentation Frameworks might also lead to undesired results.

For instance, if we represent the situation described in Example 18 using a BAF, a secondary

defeat from WL to S occurs, leading to the non-acceptance of argument S.
Finally, there is another characteristic that differentiates the evidential approach of Oren and

Norman (2008) from the work by Cayrol and Lagasquie-Schiex (2005), Boella et al. (2010) and

Nouioua and Risch (2010). As explained in Definition 15, an argument in an Evidential Argu-

mentation System is acceptable with respect to a set of arguments if it is defended against

e-supported defeats. However, there is an additional requirement that the acceptable arguments

must satisfy: they should be supported by evidence (i.e., they must be directly or indirectly sup-

ported by the special argument h). This implies that, given an Evidential Argumentation System

with no defeats among arguments (Rd ¼ 0), it can be the case that some arguments are not

accepted. Namely, arguments that are not backed up by evidence will not be justified in the

system. For instance, argument R in Example 17 is not accepted since it is not supported by

evidence. A similar approach to the Evidential Argumentation Systems was proposed by Rotstein

et al. (2008, 2010), where active and potential (inactive) arguments are distinguished depending on

whether they are supported by evidence or not. On the contrary, in the approaches by Cayrol and

Lagasquie-Schiex (2005), Boella et al. (2010) and Nouioua and Risch (2010) if there exist no

defeats among arguments, then all arguments in the system will be accepted.

6 Subargument as support

Several approaches in the literature have addressed the notion of subargument, including

approaches by Simari and Loui (1992), Prakken and Sartor (1997), Garcı́a and Simari (2004),

Martı́nez et al. (2006) and Prakken (2009). In the context of a given argument, intermediate

conclusions might need to be sustained. When this is the case, a subargument can be constructed;

thus, a premise in one argument becomes the conclusion in another argument. In that way, a

subargument is a subordinate argument that sustains a premise, and is a component of a larger

argument. In other words, a subargument constitutes a line of reasoning contributing to some

conclusion, hence providing some kind of support for its superarguments.

Although the above mentioned approaches do not explicitly consider subargument as a support

relation in the sense we are considering in this survey, it is clear that they regard subarguments as

providing support for their superarguments. In particular, Martı́nez et al. (2006) proposed an

abstract argumentation framework with an explicit subargument relation. It is important to

remark that the main focus of that work and subsequent works by Martı́nez et al. (2007, 2008a,

2008b) concerns the strength of arguments and how that affects the arguments acceptability.

In this section, we will present the subargument relation of Martı́nez et al. (2006). Then, we will

discuss its relation with a particular interpretation of support among arguments: the necessary support

presented in Section 4. Martı́nez et al. (2006) introduce a new abstract argumentation framework that
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extends Dung’s approach by incorporating a subargument relation and a preference relation among

arguments. In addition, instead of Dung’s defeat relation, they propose a symmetric conflict relation,

which is then combined to the preference relation to obtain the defeats among arguments.

DEFINITION 16 (Abstract Argumentation Framework with Subarguments) AnAbstract Argumentation

Framework with Subarguments (AFS)7 is a tuple hA; L; C;Ri, whereA is a finite set

of arguments, L� A � A is a transitive subargument relation, C � A � A is a

symmetric and anti-reflexive conflict relation and R � A � A is a preference relation.

An element ALB in the subargument relation expresses that ‘A is a subargument of B’, and
every argument is considered a superargument and a subargument of itself. The conflict relation

between two arguments A and B denotes the fact that these arguments cannot be simultaneously

accepted since they contradict each other. Because of this interpretation the conflict relation C of

an AFS is symmetric. In addition, the conflict relation should also exhibit a rational behavior

regarding subarguments. Thus, Martı́nez et al. (2006) propose that the conflict relation must

satisfy the property of conflict inheritance.

DEFINITION 17 (Conflict Inheritance) Let hA;L;C;Ri be an AFS and A;B 2 A. If ðA;BÞ 2 C,

then ðA;B1Þ 2 C, ðA1;BÞ 2 C, ðA1;B1Þ 2 C, for any arguments A1;B1 such that

ALA1, BLB1.

Hence, if an argument A is in conflict with an argument B, then the conflict is still present when

considering superarguments of A and B.

EXAMPLE 20 Let us consider the AFS20 ¼ hA20;L20;C20;R20i and two arguments N ;O 2 A20

such that ðN ;OÞ 2 C20, N L20N 1 and OL20O1. Since C20 is symmetric and

satisfies the conflict inheritance property, we have the following conflicts involving

arguments N , O and their superarguments N 1, O1:

ðc1Þ ðN ;OÞ 2 C20 ðc3Þ ðN ;O1Þ 2 C20 ðc5Þ ðO;N 1Þ 2 C20 ðc7Þ ðN 1;O1Þ 2 C20

ðc2Þ ðO;NÞ 2 C20 ðc4Þ ðO1;NÞ 2 C20 ðc6Þ ðN 1;OÞ 2 C20 ðc8Þ ðO1;N 1Þ 2 C20

Regarding the preference relation, Martı́nez et al. (2006) introduced the following notation: if

ARB but not BRA, then A is preferred to B, noted as A	B; if ARB and BRA, then A and B are

arguments with equal relative preference, noted as A 
 B; and if neither ARB nor BRA, then
A and B are incomparable, noted as A./B. As mentioned before, defeats among arguments in their

approach are obtained as a result of applying preferences to the conflicting arguments. Given two

arguments A and B such that ðA;BÞ 2 C, the preference relation R is considered. If A	B or B	A
then the preferred argument is a proper defeater of the other, and if A./B or A 
 B then A and B
are blocking defeaters. Note that if R ¼ 0, then for every arguments A;B 2 A it holds that A./B.

In the following we will discuss the similarities between the subargument relation of Martı́nez

et al. (2006) and the necessary support relation presented in Section 4. Some constraints that a

subargument relation should satisfy have been proposed in the literature. In particular, the

compositionality principle (Prakken & Vreeswijk, 2002) captures the intuition that an argument

cannot be accepted unless all its subarguments are accepted. This implies that (i) if an argument is

accepted then all its subarguments are also accepted, and (ii) if an argument is not accepted then

all its superarguments are not accepted either.

Given the necessity interpretation of support, it can be noted that the constraints imposed by

the compositionality principle correspond to those characterized by necessary support. Recall

that, given A)
n
A1, if A1 is accepted then A is also accepted (which corresponds to the first

7 Martı́nez et al. (2006) call it an Abstract Argumentation Framework. However, to avoid confusions with

the Abstract Argumentation Framework defined in Dung (1995), we have renamed it to Abstract Argu-

mentation Framework with Subarguments.
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constraint of the compositionality principle) and, if A is not accepted, then A1 cannot be accepted

either (second constraint of the compositionality principle). Similarly, the conflict inheritance

property for AFS proposed by Martı́nez et al. (2006) captures this constraint by propagating the

conflicts between arguments through their superarguments.

Since the AFNs do not originally take preferences into account, we will first analyze the case where

the AFS of Martı́nez et al. (2006) have an empty preference relation R. Note that in such a case, if

ðA;BÞ 2 C, then A defeats B and vice versa, noted as A ! B and B ! A, respectively. For
instance, consider the AFS20 of Example 20 and suppose that C20 ¼ 0. Given that there are no

preferences among arguments, conflicts ðc1Þ� ðc8Þ result in the defeats ðd1Þ� ðd8Þ indicated below.

ðd1Þ N ! O ðd3Þ N ! O1 ðd5Þ O ! N 1 ðd7Þ N 1 ! O1

ðd2Þ O ! N ðd4Þ O1 ! N ðd6Þ N 1 ! O ðd8Þ O1 ! N 1

Let us now consider an AFN that describes this situation. The corresponding AFN20 is depicted

below, where the support relation is the subargument relation of AFS20, and the defeat relation is

determined by defeats ðd1Þ� ðd8Þ.

Next, we will analyze whether the extended defeats of AFN20 introduce unintended behavior or

not. According to Definition 9, we obtain the following extended defeats of the first kind:

N ! O1, O ! N 1, N 1 ! O1 and O1 ! N 1. Similarly, we obtain the following extended

defeats of the second kind: N 1 ! O, O1 ! N , N 1 ! O1 and O1 ! N 1. Note that all the

extended defeats are in particular direct defeats and therefore, they do not modify the acceptability

status of arguments with respect to the original defeat relation of AFN20.

The preceding analysis concerns a subset of the AFS proposed by Martı́nez et al. (2006), namely,

those frameworks in which no preferences among arguments are considered. Let us now discuss the

case of the AFS that have a non-empty preference relation. For instance, let us consider again the

AFS20 of Example 20 and suppose now that C20 6¼ 0. Then, we will analyze how conflicts ðc1Þ� ðc8Þ
are resolved by using preferences to obtain a set of defeats. In particular, the resulting defeats will be a

subset of the defeats ðd1Þ� ðd8Þ. Therefore, we will analyze these defeats in the context of an AFN

and observe whether the extended defeats we obtain lead to unintended or counterintuitive behavior.

Recall that an extended defeat in an AFN originates from the combination of a direct defeat

and the support relation among arguments. Hence, we can analyze the defeats ðd1Þ� ðd8Þ inde-
pendently since the extended defeats they generate do not lead to further extended defeats. Below

we show a graphical representation of the AFNs associated with AFS20, where the necessary

support relation corresponds to the subargument relation of AFS20 and the defeat relation,

respectively, considers defeats ðd1Þ� ðd8Þ. In each case, the extended defeats obtained from the

combination of the support and defeat relations are depicted using dashed arrows.
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A detailed analysis of each case follows.

(d1) N ! O.
In this case we obtain the extended defeats N ! O1 and N 1 ! O. The extended defeat

N ! O1 encodes the following behavior: ifN is accepted thenO1 is not accepted. This defeat

corresponds to the first kind of extended defeat and is related to the second constraint of the

compositionality principle since N ! O and O)
n
O1 (which corresponds to OLO1); if N is

accepted, then O will not be accepted and thus, O1 will not be accepted either. On the other

hand, the extended defeat N 1 ! O expresses that if N 1 is accepted, then O is not accepted.

In this case, the defeat corresponds to the second kind of extended defeat and is related to the

first constraint of the compositionality principle: given that N )
n
N 1 (which corresponds to

N LN 1), if N 1 is accepted, then N is also accepted. Hence, since N ! O we have that O
will not be accepted.

(d2) O ! N .

The analysis in this case is analogous to the analysis performed for ðd1Þ.
(d3) N ! O1.

Here, the only extended defeat we obtain is N 1 ! O1. This defeat corresponds to the second

kind of extended defeat and it expresses that if N 1 is accepted then O1 is not accepted. In this

case, the extended defeat is associated to the first constraint of the compositionality principle:

since N )
n
N 1 (respectively, N LN 1), if N 1 is accepted, then N is also accepted and thus,

given that N ! O1, argument O1 will not be accepted.

(d4) O1 ! N .

The extended defeat obtained in this case is O1 ! N , which corresponds to the first case of

extended defeat and is related to the second constraint of the compositionality principle since

O1 ! N ; if O1 is accepted, then N will not be accepted. Therefore, given that

N )n N 1 ðN LN 1Þ, argument N 1 will not be accepted either.

(d5) O ! N 1.

The analysis in this case is analogous to the analysis performed for (d3).

(d6) N 1 ! O.
The analysis in this case is analogous to the analysis performed for (d4).

(d7) N 1 ! O1.

In this case there are no extended defeats.

(d8) O1 ! N 1.

As for (d7), no extended defeats are obtained in this case.

Although the preceding analysis is made for the particular case of the abstract argu-

mentation framework with subarguments AFS20 and its associated argumentation framework

with necessities AFN20, the obtained results can be generalized to any AFS. On the one hand,

since the subargument relation of an AFS is transitive, the relation N LN 1 (respectively, OLO1)

could have been obtained through the transitivity of the subargument relation in the presence of

other arguments. On the other hand, as mentioned above, the extended defeats of an AFN cannot

be used to obtain other extended defeats. Therefore, the case-by-case analysis performed for AFS20
and AFN20 holds for any AFS and its corresponding associated AFN.

There exist several approaches in the literature that address the issue of preferences in argu-

mentation, such as Amgoud and Cayrol (2002), Bench-Capon (2003), Modgil (2009) and Amgoud

and Vesic (2011). However, it is important to remark that, although the approach of Martı́nez

et al. (2006) uses preferences to resolve conflicts among arguments, in this work we focus on the

subargument relation.

Finally, the preceding analysis shows that there exists a close relation between the subargument

relation of Martı́nez et al. (2006) and the necessity relation of the AFNs presented in Section 4.

The subargument relation suggests that subarguments are necessary for their superarguments, and

there is a relation between the constraints imposed by the necessary support and the constraints

imposed by the compositionality principle. In that way, it is possible to establish some form of
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correspondence between the subargument relation of Martı́nez et al. (2006) and the necessary

support of the AFNs.

7 Backing-Undercutting Argumentation Frameworks

Cohen et al. (2012) introduce the Backing-Undercutting Argumentation Framework (BUAF), an

extension of Dung’s AF that incorporates a specialized support relation and a preference relation

among arguments, also distinguishing between different types of attacks. In particular, the support

relation corresponds to the support that Toulmin’s backings provide for their associated warrants

(see Section 1). On the other hand, the attack relation of a BUAF allows to distinguish between

three different types of attacks: rebutting attacks, undercutting attacks and undermining attacks;

the first two being related to rebutting and undercutting defeaters, as proposed by Pollock (1987).

The remaining type of attack is related to undermining defeaters, which are widely considered

in the literature (see e.g., Prakken, 2009) and originates from attacks to an argument’s premise.

Thus, the BUAFs provide the means for representing both attack and support for an argument’s

inference, allowing to capture Pollock’s undercutting defeaters and Toulmin’s backings.

DEFINITION 18 (Backing-Undercutting Argumentation Framework) A Backing-Undercutting

Argumentation Framework (BUAF) is a tuple hA;D;B;�i, where

> A is a set of arguments,
> D � A � A is an attack relation,
> B � A � A is a backing relation and
> �� A � A is a partial order denoting a preference relation.

The formalism distinguishes between three different types of attack within the attack relation

D: the rebutting, undercutting and undermining attacks, respectively denoted as Rb, Uc and Um

(i.e., D ¼ Rb [ Uc [ Um). The subsets of the attack relation are pairwise disjoint, since an

argument cannot attack another argument in more than one way (otherwise the attacking argument

would be considered as having multiple conclusions).

Similarly to the notation for preferences presented in Section 6, when two arguments A and B
are related by the preference relation (i.e., ðA;BÞ 2�) it means that B is at least as preferred as

argument A, noted as A�B. Following the usual convention, A � B means that A�B and

BIA. Similarly, if A�B and B�A, arguments A and B are considered equivalent, noted as

A 
 B; and if AIB, BIA arguments A and B are considered incomparable, noted as A ffl B.
Cohen et al. (2012) use the notation A ) B and A B to, respectively, denote thatA supports

or attacks B. Following the notation introduced in this work, we will use A)
b
B to denote that A

supports B. In this case, the label ‘b’ over the double arrow indicates that the support relation of a

BUAF corresponds to the support relation that Toulmin’s backings provide for their associated

warrants. On the other hand, since we have used the dashed arrow with a different notation

purpose in this paper, we will use A ) B to denote that A attacks B in a BUAF.

EXAMPLE 21 Let us consider the following arguments discussing whether a room in a building is

illuminated at night.

I : Room R in building B is illuminated because it has lamps that light up automatically at night.

F : There is a power failure in the neighborhood where building B is located in.

E: Building B is connected to the electricity grid.

G: Building B has emergency electrical generators.

These arguments and their interactions can be characterized by the Backing-Undercutting

Argumentation Framework BUAF21 ¼ hA21; D21; B21; �21i, where

A21 ¼ fI ; F ; E; Gg B21 ¼ fðE; IÞ; ðG; IÞg
Uc21 ¼ ðF ; IÞg �21 ¼ fðE;FÞ; ðF ;GÞg
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A graphical representation of BUAF21 is included below.

Here, there is an undercutting attack from F to I . In addition, E and G are backing arguments for I .
Finally, the preference relation establishes that F is preferred to E and G is preferred to F .

Rebutting and undermining attacks are resolved directly by applying preferences to the

conflicting arguments. In contrast, backings need to be taken into consideration to determine the

success of undercutting attacks. In that way, in the absence of backings, undercutting attacks will

always succeed; otherwise, it is necessary to compare the backing and undercutting arguments. As

the following definition shows, these defeats are known as primary defeats.

DEFINITION 19 (Primary Defeat) Let hA;D;B;�i be a BUAF and A; C 2 A. A primarily defeats C
iff one of the following conditions hold

> ðA; CÞ 2 ðRb [ UmÞ and AE C; or
> ðA; CÞ 2 Uc and =9B 2 A s.t. ðB; CÞ 2 B; or
> ðA; CÞ 2 Uc and 9B 2 A s.t. ðB; CÞ 2 B and AEB.

Observe that in the above definition rebutting and undermining attacks are grouped together.

Cohen et al. (2012) remark that this is because, given the level of abstraction on the arguments

structure, it is not possible to distinguish an attack to an argument’s premise from an attack to its

conclusion. Note that, in the case of undercutting attacks, the attacking argument is compared to the

backing argument instead of the attacked argument. This is due to the role that the authors assign to

backing and undercutting arguments. They state that Pollock’s undercutting defeaters can be regarded

as attacking Toulmin’s warrants. Thus, Toulmin’s backings are considered as aiming to defend their

associated warrants against undercutting attacks, by providing support for them.

The preceding definition determines how conflicts expressed in the attack relation of a BUAF

are resolved to obtain their corresponding defeats. However, given the coexistence of support and

attack relations among arguments, additional conflicts arise. It is clear that backing and under-

cutting arguments are conflicting: while the latter attacks the connection between premises and

conclusion of an argument, the former provides support for it; therefore, they should not be jointly

accepted. Moreover, given that the conflict between backing and undercutting arguments might not be

explicitly included on the attack relation of a BUAF, it is necessary to ensure this acceptability

constraint. To achieve this, Cohen et al. (2012) introduce the notion of implicit defeat.

DEFINITION 20 (Implicit Defeat) Let hA;D;B; �i be a BUAF and A;B; C 2 A. If ðB; CÞ 2 B,

ðA; CÞ 2 Uc and AEB, then:

> A implicitly defeats B; and
> B implicitly defeats A iff BEA.

Since A is an undercutting argument for C and the preference relation is such that A is not less

preferred than the backing argument B of C, we have thatA primarily defeats C (see Definition 19).

Then, in order to propagate this defeat to the backing argument B of A we need to analyze the

preference between A and B. As mentioned before, AEB leading us to the following alternatives:

(a) B � A, (b) B 
 A or (c) B ffl A. Hence, in all cases we will have that A implicitly defeats B.
This result is sound since the primary defeat from A to C involved a comparison between argument

A and the backing argument B of C. On the other hand, the implicit defeat from B to A will only

occur in alternatives (b) and (c), where arguments A and B are considered equivalent or incom-

parable according to te preference relation. To summarize, given the conditions in Definition 20, if
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B � A then A implicitly defeats B, and B does not implicitly defeat A; whereas if B 
 A or

B ffl A we have that A implicitly defeats B and vice versa.

In the above definition, conflicts originated from the coexistence of backing and undercutting

arguments are considered. As mentioned before, in the presence of supporting arguments

additional considerations must be taken into account. Cohen et al. (2012) state that, according to

Toulmin’s characterization of backings, a backing for an argument establishes the conditions

justifying the connection between its premises and its conclusion (i.e., its associated warrant).

Hence, given a backing B for an argument A, if B is not accepted, then the conditions for argument

A’s warrant to hold are not satisfied. Thus, argument A should not be accepted either since its

associated warrant no longer has the required support, which was provided by argument B. In order to

capture this constraint within the BUAFs, the authors introduce the indirect defeats among arguments

which propagate defeats from backing arguments to the arguments they support.

DEFINITION 21 (Indirect Defeat) Let hA;D;B; �i be a BUAF and A; C 2 A. A indirectly defeats C
iff 9B 2 A such that ðB; CÞ 2 B, and A primarily defeats, implicitly defeats or

indirectly defeats B.

The recursion in Definition 21 is required to capture the conflicts arising from chaining backing

arguments. For instance, let us consider a BUAF where D supports C, C supports B and there is a

primary defeat from A to D. Since A primarily defeats D, which in turn supports C, there is an

indirect defeat from A to C. Furthermore, from this indirect defeat we obtain that A indirectly

defeats B, since A indirectly defeats C which supports B. This makes sense because, if argument C
loses the support provided by its backing D, then it no longer has the basis to provide support for

argument B.
Previously, we have introduced the graphical representation for a BUAF. Now, we will

introduce a graphical representation for the defeats presented in Definitions 19, 20 and 21. Cohen

et al. (2012) use A*B to denote that A defeats B (either primarily, implicitly or indirectly).

However, for uniformity purposes, we will follow the notation introduced in this work and use

A ! B to denote that A defeats B in a BUAF.

EXAMPLE 22 Let us consider the BUAF21 of Example 21, which is depicted below on the left. The

graph included below on the right depicts the defeats obtained from BUAF21.

Given that the undercutting argument F and the backing argument E of I are such that E � F (since

E �F and F I E), there is a primary defeat from F to I . Consequently, there is also an implicit

defeat from F to E. In contrast, there is an implicit defeat from G to F since G is a backing argument

of I such that F � G (since F�G and GIF ). Finally, the implicit defeat from F to E leads to an

indirect defeat from F to I which, as mentioned before, is also a primary defeat.

Acceptability of arguments in a BUAF is computed by following an extensional approach.

Thus, Cohen et al. (2012) use the definitions in Dung (1995) to obtain the accepted arguments of

the framework. Based on Definitions 19, 20 and 21, they establish a defeat relation among

arguments. Then, a Dung AF is obtained by considering the arguments of the BUAF and the

defeat relation to finally compute the extensions of the BUAF by applying any semantics proposed

in the literature. For instance, given the BUAF21 of Example 21, whose defeats are shown in

Example 22, the preferred extension of BUAF21 is fG; I ; Eg.
In the following we will discuss the similarities between the backing relation of Cohen et al.

(2012) and other interpretations of support presented in the previous sections. In particular, since

they take the backing relation into account, we will focus on the indirect and implicit defeats.
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As shown before, the former are obtained from the combination of other defeats and the support

relation of a BUAF; whereas the latter capture the conflicts between backing and undercutting

arguments, given a successful undercutting attack (i.e., a primary defeat). Therefore, we will

initially abstract from the preference relation in the analysis. Let us first consider the indirect

defeats characterized in Definition 21. A graphical representation is included below, where the

indirect defeat is denoted using a dashed arrow.

Observe that this defeat corresponds to the secondary defeat of the BAFs presented in Section 2,

and also to the first kind of extended defeat of the AFNs presented in Section 4. This corre-

spondence is expected since, as mentioned before, one of the responsibilities that a backing

argument has with respect to the argument it supports is to determine the circumstances under

which the connection between its premises and conclusion (i.e., the associated warrant) holds. In

that way, backing arguments can be regarded as necessary for the arguments they support.

The first kind of implicit defeat characterized in Definition 20 is depicted below, where the

implicit defeat is denoted using a dashed arrow.

In this case, the implicit defeat corresponds to the mediated defeat of the approach to deductive

support presented in Section 3. This defeat makes sense in the context of a BUAF, since the

undercutting defeat from A to C involves a preference comparison between arguments A and B.
Hence, it is expected that if C is not accepted then B is not accepted either, which corresponds to

one of the constraints imposed by the deductive interpretation of support.

The second kind of implicit defeat is depicted below, where the implicit defeat is denoted using a

dashed arrow.

Unlike the other, this implicit defeat requires a deeper analysis. Given that it originates from the

consideration of a (successful) undercutting attack, the support relation and some preference

between arguments, it is not possible to directly compare this defeat with other kinds of defeat

from other approaches. Moreover, even if the preference relation was not taken into account, this

implicit defeat does not correspond to any of the defeats proposed in the other approaches. This is

because the implicit defeats are highly connected to the interpretation of support in a BUAF. That

is, in the context of a successful undercutting attack, implicit defeats are intended to prevent

backing and undercutting arguments from being simultaneously accepted.

Next, we will focus on the remaining defeats proposed by the approaches introduced in the

previous sections. Regarding the AFNs, let us consider the second kind of extended defeat which

establishes that if B ! C and B)
n
A, then A ! C. This defeat is not explicitly considered in

the BUAFs; notwithstanding, Cohen et al. (2012) introduce a property establishing that if an

argument is accepted, then all its backing arguments are also accepted. For instance, given the

preferred extension of BUAF21 from Example 21, argument I is accepted, as well as its backing

arguments G and E. Clearly, if a backing argument is in turn supported by another argument, then

that argument will also be accepted. Therefore, the behavior modeled by this property of BUAFs

corresponds to the second kind of extended defeat of the AFNs in the following sense: given

B ! C and B)b A, if A is accepted then B is also accepted and therefore C will not be accepted

because of being defeated by B.
The analysis of the supported defeats considered by the approaches presented in Sections 2 and

3 is different. A supported defeat establishes that if A supports C (respectively, A)
s
C and A)

d
C)

either by a direct support or by a chain of supports and C ! B, then A ! B. The supported
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defeats are not considered in the BUAFs. This is because, given the adopted interpretation of

support, if A)
b
C and C ! B, the fact that the backing argument A is accepted does not imply

that C will be accepted, thus allowing for B to be accepted. For instance, it can be the case that the

backing argument A of C is accepted, but C is not accepted because it is defeated by a successful

rebutting attacker D that is in turn accepted. Thus, since D makes C not accepted, it reinstates B
making it accepted.

Regarding the mediated defeats presented in Section 3, note that, although the first kind of

implicit defeat in a BUAF corresponds to a mediated defeat, these are not equivalent. This is

because the implicit defeat only takes into account the primary defeats originated from successful

unercutting attacks, which are then combined to the support relation to obtain the implicit defeats.

Thus, if, for instance, we have an argument A, which is a rebutting defeater for C, and there exists

a backing argument B for C, then there is no implicit defeat from A to B.
The preceding analysis shows that the BUAF does not provide the means for representing the

supported defeats from Sections 2 and 3. Similarly, the mediated defeats from Section 3 are

captured in the BUAF only when considering primary defeats that are the result of successful

undercutting attacks. However, it was shown that BUAFs encode (whether explicitly or implicitly)

the behavior modeled by the extended defeats presented in Section 4. Thus, since it was shown in

Section 4 that the necessity and deductive interpretations of support are dual, we could say that

the behavior modeled by the supported and mediated defeats is captured on the BUAFs.

As a result, we can conclude that some aspects of the backing relation of Cohen et al. (2012)

correspond to some aspects of other interpretations of support proposed in the literature. In

particular, the constraints imposed by the necessary support presented in Section 4 (respectively,

the deductive support presented in Section 3) are modeled by the BUAFs, since backing arguments

are necessary for the arguments they support. However, as discussed above, the backing relation

imposes additional restrictions on the acceptability of arguments that take undercutting argu-

ments into specific consideration. Hence, we cannot establish a total correspondence between the

necessary (respectively, deductive) support and the backing relation.

8 Other approaches to support in argumentation

In this section we will describe other approaches existing in the literature that are related to the

research topic covered in this survey. The approaches presented in the previous sections correspond

to abstract argumentation formalisms that address the notion of support among arguments, most of

them by providing a specific interpretation of support. In contrast, next we will present other

approaches that either do not explicitly consider the notion of support or do not correspond to an

abstract argumentation formalism. First, we will consider the Abstract Dialectical Frameworks

(ADFs) (Brewka & Woltran, 2010), a generalization of Dung-style argumentation frameworks.

Although the authors do not formally define a notion of support, a support relation between

arguments could be encoded in their formalism. Then, we will introduce DEFLOG (Verheij, 2002,

2003), a sentence-based theory of dialectical argumentation, which constitutes one of the first

approaches in the literature of argumentation that addressed the notion of support. Finally, we will

present Extended Defeasible Logic Programming (E-DELP) (Cohen et al., 2011), a rule-based

argumentation system based on Defeasible Logic Programming that captures the notion of Toulmin’s

backing by allowing support for defeasible rules.

In Brewka and Woltran (2010) the authors mention the relevance of proof standards in legal

reasoning as well as in everyday reasoning8. Thus, they introduced the ADFs as an attempt to add

proof standards to Dung frameworks. An ADF is a directed graph, whose nodes represent

arguments which can be accepted or not, and the links between the nodes represent dependencies.

Each argument X in the graph is associated with an acceptance condition CðXÞ, which is some

8 For an overview on formal treatments of proof standards in argumentation see Atkinson and Bench-

Capon (2007).
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propositional function whose truth status is determined by the corresponding values of the

acceptance conditions for those arguments Y such that ðY;XÞ is a link in the ADF (i.e., Y is a

parent of X ). Thus, the influence a node may have on another node is entirely specified through

the acceptance conditions.

In contrast to Dung frameworks where links represent one particular type of relationship, namely

defeat, and where arguments are accepted unless defeated, ADFs allow for the representation of

different dependencies. For instance, there can be nodes which are rejected unless supported by some

accepted nodes (leading to supporting links); also, there can be links of different strength, and even

links which support or defeat a node depending on the context. Thus, the concept of associating

individual acceptance conditions with arguments provides ADFs with a rich expressive capacity. As

the authors in Brewka and Woltran (2010) show, Dung-style AFs can be represented by an ADF by

setting as acceptance condition CðXÞ ¼ :Y for each argument X such that ðY;XÞ is a link in the

ADF; that is, that the argument X is accepted if none of its parents is accepted.

As noted by Brewka and Woltran (2010), an important aspect of their work is the generalization

of the standard Dung semantics. They state that grounded semantics can be generalized to arbitrary

ADFs. On the other hand, they state that for stable and preferred semantics a notion of support

and defeat is needed, which is present in a sub-class of ADFs called Bipolar Abstract Dialectical

Frameworks (BADFs). In that way, the authors adapt techniques from Gelfond and Lifschitz (1988)

to avoid support cycles. Regarding the support cycles, the AFNs presented in Section 4 initially

addressed this issue by assuming an acyclic necessity relation (Nouioua & Risch, 2010). Then, a

formal characterization of necessity-cycle-freeness was provided in Nouioua and Risch (2011);

finally, in Boudhar et al. (2012) the authors provide a new characterization of AFNs by requiring the

necessity relation to be irreflexive, therefore avoiding any risk of having a cycle of necessities.

Regarding the other approaches presented in the previous sections, Brewka and Woltran (2010)

state that their approach goes further since rather than adding a second type of links they allow for

a whole variety of link and node types. In particular, they state that the acceptance conditions in

the ADFs are more flexible than the constraints described by specific interpretations of support

such as deductive, necessary or evidential support. For instance, if C depends on A and B, the
following constraint can be taken into account in an ADF: the acceptance of B and the non-

acceptance of A imply the acceptance of C.
In spite of the flexibility provided by the acceptance conditions, since the status of a node in the

graph only depends on the status of its parents, ADFs might not be able to capture the acceptability

constraints imposed by a particular interpretation of support. To illustrate this, let us consider the

deductive interpretation of support. If A)d B and C ! B, then there exists a mediated defeat

C ! A, which corresponds to the constraint that if B is not accepted then A should not be accepted

either. An ADF that depicts this situation would have the nodesA, B and C, and the links ðA;BÞ and
ðC;BÞ. However, no acceptance condition in the ADF will be capable to ensure thatA is not accepted

when C is accepted, since there is no link betweenA and C in the ADF. A similar situation arises when

considering the support relation of the Bipolar Argumentation Frameworks presented in Section 2.

However, in that case Brewka and Woltran (2010) claim that it is due to the difference between what

is considered a conflict in BAFs and ADFs. To illustrate this, they introduce the following example.

EXAMPLE 23 Assume you plan to go swimming in the afternoon ðSÞ, and suppose there are clouds ðCÞ
indicating it might rain ðRÞ. However; the (reliable) weather report says that winds

ðWÞ will blow away the clouds so that there will be no rain. In this context we have that

C supports R, R defeats S, and W defeats R. This scenario can be represented by the

BAF depicted below
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Using appropriate acceptance conditions, and assuming that W’s defeat on R is stronger than C’s
support, fC;W;Sg would be the set of accepted arguments in the ADF by the preferred semantics. On

the other hand, when considering the BAF, the set fC;W;Sg is not 1conflict-free since there is a

supported defeat from C to S, and the preferred extension would be fC;Wg. However, Brewka and

Woltran (2010) state that it is expected to have the argument S in the extension, since by having the

wind blowing away the clouds it will not rain, thus supporting the plan to go swimming.

The main difference between the ADFs and the BAFs is that, as mentioned before, ADFs

impose acceptability constraints through the acceptance conditions, which can only make refer-

ence to a node’s parents. Therefore, ADFs do not consider conflicts between arguments that are

not directly linked. On the other hand, the BAFs define the supported and secondary defeats that

link two arguments that were not directly linked by either the defeat or the support relations.

Moreover, as shown before, the behavior modeled by the mediated defeats of the approach to

deductive support by Boella et al. (2010) cannot be captured by the ADFs. Analogously, the same

occurs when considering the extended defeats of the AFNs presented in Section 4.

Finally, Brewka and Woltran (2010) state that to model the notion of 1conflict-freenes in the

ADFs (which takes the supported and secondary defeats into account) the following links have to

be added: (i) a defeat link from A to C whenever C is defeated by a node B, and B is either directly

or indirectly supported by A (suppoted defeat); and (ii) a defeat link from A to C whenever C is

either directly or indirectly supported by a node B, and B is defeated by A (secondary defeat).

However, they claim that the above example suggests this might not always be desired.

Verheij (2005, 2009) performed a reconstruction of Toulmin’s ideas, starting from a theory of

dialectical argumentation called DEFLOG (Verheij, 2002, 2003). Verheij (2003) characterizes

DEFLOG as a sentence-based theory instead of as an argument-based theory. He argues that this is

because DEFLOG focuses on prima facie justified assumptions instead of on the arguments

obtained in terms of them. Briefly, DEFLOG’s logical language has two connectives 3 (dialectical

negation) and * (primitive implication). The dialectical negation �S of a statement S expresses

that the statement S is defeated. Dialectical negation is inherently ‘directed’ in the following sense:

if �S is justified, then S is defeated; however, it is not the case that if S is justified, then �S is

defeated. Primitive implication is, in contrast with the material implication of classical logic,

intended to express elementary conditional relations that exist contingently in the world. This

binary connective is used to express that one statement supports another, and allows to obtain

other statements through the use of modus ponens. Finally, it is possible to combine and nest the

connectives 3 and * to obtain more complex statements such as A* ðB* CÞ and A* � B.
The central definition in DEFLOG is the notion dialectical interpretation (or extension) of a set of

prima facie justified assumptions. In the dialectical interpretation of a set of assumptions not all

sentences need to be given a positive evaluation: an assumption can be either positively evaluated as

justified, or negatively evaluated as defeated. This corresponds to the idea of taking the assumptions as

prima facie justified, instead of definitively true: some of the prima facie justified assumptions turn out

to be actually justified, while others result as defeated in the dialectical interpretation.

As in the Bipolar Argumentation Frameworks presented in Section 2, in DEFLOG the notions of

sequence of supports and of supported defeat can be retrieved but at the language level (between

sentences). On the other hand, the notion of conflict-freeness proposed by Verheij (2003) corresponds

to the notion of safe set proposed by Cayrol and Lagasquie-Schiex (2005) (no sentence can be at the

same time supported and defeated by the set). In addition, extensions in DEFLOG correspond to

Dung’s stable extensions for DEFLOG theories that do not go beyond the expressiveness of Dung’s

argumentation frameworks.

Verheij (2005) presented a formal elaboration of Toulmin’s ideas. The author argued that the

main reason for this formalization was to repair an omission in Toulmin’s work. He stated that

Toulmin (1958) only discussed the structure of arguments but did not pay attention to the

evaluation of arguments. For that extent, Verheij (2005) provided a representation of Toulmin’s

scheme using DEFLOG . The connection between the data ðDÞ and claim ðCÞ is expressed through
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the primitive implication D* C. The warrant ðWÞ acts as a bridge between data and claim. Thus,

the primitive implication W* ðD* CÞ expresses that it follows from the warrant that the claim

follows from the data. As introduced by Toulmin (1958), backings ðBÞ provide support for warrants,
and they become relevant when warrants are challenged. In Verheij (2005) the relation between

backing and warrant is defined exactly as the relation between data and claim, and is expressed by the

primitive implication B*W. Finally, the role of rebuttals is taken into specific consideration, since a

rebuttal can clearly influence the evaluation of an argument for a particular claim.

As introduced by Toulmin (1958), rebuttals involve conditions of exception for an argument.

However, since Toulmin did not elaborate much on the nature of rebuttals, Verheij (2005) identified

five statements that can be argued against: the data D, the claim C, the warrantW, the conditional

D* C and the conditional W* ðD* CÞ. In that way, a rebuttal R can be of any of these five

kinds, expressed asR* � S, where S is one of the five statements enumerated before. To illustrate

these notions let us consider Toulmin’s famous example about Harry’s citizenship, where a rebuttal

of the fifth kind is considered. In this case, we have the following prima facie justified assumptions:

D1: ‘Harry was born in Bermuda’

W1: ‘A man born in Bermuda will generally be British subject’

B1: ‘The following statutes and other legal provisionsy’

R1: ‘Harry has become a naturalized American’

It is at issue that Harry is a British subject (C1). Therefore, we can assume the following logical

connections: B1 *W1,W1 * ðD1 * C1Þ andR1 * � ðW1 * ðD1 * C1ÞÞ. The set of assumptions

contains a conflict: the nested conditional W1 * ðD1 * C1Þ is both supported (as an assumption)

and defeated (its defeat follows by modus ponens from R1 and R1 * � ðW1 * ðD1 * C1ÞÞ).
Which assumptions are finally justified or defeated is essentially constrained as follows: an

assumption is defeated if and only if the assumption’s dialectical negation follows from the

assumptions that are justified. In that way, the dialectical interpretation of a set of statements S is

(Supp(J), Def(J)), where (J,D) is a partition of S such that J is conflict-free and defeats all the

statements in D. Supp(J) denotes the set of sentences supported by J, and Def(J) denotes the set of

sentences defeated by J. Thus, the statements in Supp(J) are the justified statements of the dia-

lectical interpretation, while the sentences in Def(J) are the defeated statements. Given the above

example, in the unique dialectical interpretation the only defeated assumption isW1 * ðD1 * C1Þ,
while the other six assumptions are justified. As a result, the statements D1 * C1 and C1 are

unevaluated since there is neither a justifying reason nor a defeating reason against them.

Next, we will present Extended Defeasible Logic Programming (E-DELP), a formalism that

allows for the representation of the elements in Toulmin’s scheme. After that, a brief comparison

between DEFLOG and E-DELP is provided.

Cohen et al. (2011) introduce E-DELP, an extension of Defeasible Logic Programming (DELP)

(Garcı́a & Simari, 2004) that incorporates some reasoning patterns that constitute important con-

tributions to the argumentation community. In particular, the authors extend DELP to capture Pollock’s

undercutting defeaters and Toulmin’s backings, allowing for the construction of arguments that provide

reasons for or against defeasible rules. The representational language of E-DELP is defined in terms of

five disjoint sets: a set of facts, a set of strict rules, a set of defeasible rules, a set of backing rules and a

set of undercutting rules. Facts and strict rules express non-defeasible or indisputable information,

whereas the other three types of rules express tentative information that may be used if nothing could be

posed against it. The elements incorporated into the representational language of E-DELP are the

backing and undercutting rules, which respectively express support and attack for defeasible rules. In

that way, the addition of these rules allows for the discussion about the defeasible rules application.

Toulmin’s warrants are represented by Cohen et al. (2011) through defeasible rules. Thus, since

undercutting defeaters attack an inference, they can be thought as reasons against using defeasible

rules. Similarly, since Toulmin’s backings provide support for their associated warrants, they can

be regarded as reasons in favor of using defeasible rules. The existence of backing and undercutting

rules for a defeasible rule in E-DELP is not mandatory. Hence, a defeasible rule without backing
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rules is applicable, since there are not explicit requirements for its use. On the other hand, the

presence or absence of undercutting rules for a defeasible rule R depends on the existence of

conditions of exception for the application of the warrant expressed by R.

The notion of defeasible derivation is extended by Cohen et al. (2011) to consider backing rules.

Briefly, for a defeasible rule to be applicable in the derivation process, the conditions established

by one of its backing rules, if existing, must be satisfied. In that way, three kinds of arguments can be

constructed: claim, backing and undercutting arguments. Claim arguments provide reasons for or

against literals, while backing and undercutting arguments, respectively, provide reasons for or against

using a defeasible rule.

Finally, the authors define the attacks between arguments, distinguishing between rebutting,

undercutting and undermining attacks. Then, these notions are combined with a preference criterion

to determine the defeats among arguments. Backing arguments are intended to prevent undercutting

attacks from succeeding. In that way, backing arguments pay an essential role when computing the

arguments acceptability. Once all defeats are obtained, E-DELP uses a dialectical process to compute

the warranted literals, which correspond to the finally accepted claim arguments.

A significant difference between the approaches of Cohen et al. (2011) and Verheij (2003) is that

DEFLOG is a sentence-based approach whereas E-DELP is an argumentative approach based on

logic programming. In addition, arguments in DEFLOG are sets of statements, while in E-DELP

arguments are sets of specific rules. As mentioned before, in DEFLOG it is possible to combine

and nest the connectives 3 and *, allowing for the representation of both Pollock’s undercutting

defeaters and Toulmin’s backings. However, since dialectical negation expresses defeat, a fixed

criterion for arguments comparison is used in DEFLOG: an argument for a statement �S will always be

preferred to an argument for a statement S. Thus, in Verheij’s approach it is not possible to express

attack without defeat. On the contrary, in E-DELP the arguments comparison criterion is modular and

thus, the most appropriate criterion for the domain that is being represented can be selected.

Therefore, given the comparison criterion, attacks in E-DELP will not always succeed as defeats.

9 Conclusion

In this work we have studied the notion of support between arguments in argumentation systems.

Toulmin’s seminal work (Toulmin, 1958) provided a basis for the study of support within the

argumentation community. He put forward the idea that arguments needed to be analyzed using a

richer format than the dichotomy of premises and conclusion used in formal logic analysis. Then,

he proposed a model for the layout of arguments that, in addition to data and claim, distinguishes

between warrant, backing, rebuttal and qualifier. Given Toulmin’s model, we can distinguish two

kinds of interactions between its elements. In particular, in addition to the data supporting the

claim, the backing provides support for the warrant.

Most studies on argumentation systems put aside the notion of support to focus on the notion

of defeat; notwithstanding this, recently, the study support between arguments regained attention

among the researchers. A first step toward the study of support was given by Verheij (2002, 2003),

where a theory of dialectical argumentation called DEFLOG was presented. Then, using DEFLOG as

a starting point, a reconstruction of Toulmin’s ideas was provided (Verheij, 2005, 2009), where the

support and defeat links between the elements of Toulmin’s scheme were represented.

In the last decade, several interpretations of support have been addressed by different argu-

mentation formalisms. The Bipolar Argumentation Frameworks (Amgoud et al., 2004; Cayrol &

Lagasquie-Schiex, 2005, 2007, 2009, 2010, 2011), presented in Section 2, constitute a general approach

to support in abstract argumentation frameworks where the support relation between arguments is left

general. The research line on Bipolar Argumentation Frameworks clearly motivated later works on

the study of the notion of support. In particular, several approaches where different interpretations of

support such as deductive support (Boella et al., 2010), necessary support (Nouioua & Risch, 2010,

2011; Boudhar et al., 2012) and evidential support (Oren & Norman, 2008) were proposed (see

Sections 3, 4 and 5).
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Following the spirit of Verheij (2005, 2009), Cohen et al. (2011, 2012) addressed the notion of

support based on Toulmin’s model for the layout of arguments. Specifically, they consider the

support that Toulmin’s backings provide to their associated warrants both in the context of

abstract argumentation frameworks and defeasible logic programming (see Sections 7 and 8). On

the other hand, there exist some interactions between arguments that can be considered as a form

of support between arguments, which have not been explicitly analyzed as a support relation so

far. Such is the case of the subargument relation of Martı́nez et al. (2006) presented in Section 6.

It is also interesting to note that the Argument Interchange Format (AIF) allows for the

representation of support between arguments through the use of rule of inference application nodes.

In particular, it was shown by Chesñevar et al. (2006) that Toulmin’s scheme can be represented

using an AIF argument network. On the other hand, the notion of argument accrual (Pollock,

1991; Verheij, 1996; Prakken, 2005; Gómez Lucero et al., 2009) could be related to the notion of

support among arguments. Briefly, accrual is based on the intuitive idea that having more reasons

for a given conclusion makes such a conclusion more credible. However, accrual has not been

addressed in this survey because we believe that a comparison between the notion of argument

accrual and the notion of support requires an analysis of a different nature than those analyses

employed in comparing different interpretations of support.

It was shown that each interpretation of support establishes some constraints on the accept-

ability of arguments. In most cases, these constraints led to considering new defeats between

arguments, which are somehow inferred from the already existing defeats and the support relation.

In particular, it was also shown that these defeats make sense depending on the chosen inter-

pretation given to the support relation, since they enforce the constraints established by it. Thus,

given a particular interpretation of support, we need to consider one set of ‘inferred’ defeats or

another. In that way, it is not possible to provide a formal mechanism that computes these defeats

without considering the particular interpretation given to the support relation of an argumentation

system. Otherwise, mistaken results could be obtained from the consideration of some defeats that

were not expected to exist within the context of a specific interpretation.

From the analysis of the similarities and differences among these interpretations, we can

conclude that most of them are closely related. The deductive and necessity interpretations

presented in Sections 3 and 4 are shown to be dual in the following sense: an argument A
deductively supports another argument B if and only if B is necessary for A. Similarly, it was

shown that there exists a direct correspondence between the subargument relation presented in

Section 6 and the necessity relation. Then, it was also shown that there exists a correspondence

between the backing support relation presented in Section 7 and the necessary support, in the sense

that backing arguments are necessary for the arguments they support. However, since the backing

relation imposes additional constraints on the acceptability of arguments, this correspondence is

partial. On the other hand, there is an essential feature that differentiates the evidential support

presented in Section 5 from the other approaches: an acceptable argument in an Evidential

Argumentation System must be supported by evidence. Hence, it can be the case that an undefeated

argument in the system is rejected for not being backed up by evidence.

Finally, we are certain that the study of a support relation among arguments is a promising

research line within the argumentation community. Although several research works focus on the

study of Dung-like argumentation frameworks where only defeats between arguments are con-

sidered, by incorporating a support relation the representational capabilities of argumentation

systems is augmented. We can also note that most works in the literature address the study of

support within the context of abstract argumentation; however, recent approaches began to study

the notion of support in a more concrete setting. Particularly note that, as mentioned in Section 4,

the use of abstract systems might lead to some knowledge representation problems, which could be

resolved by using more concrete systems. On the other hand, there are several interpretations of

support left to be studied, in addition to those already considered in literature. Moreover, this

study will probably lead to the exploration of other relations between arguments that have not

been considered in the argumentation formalisms developed so far.
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