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Abstract

Gene expression measurements represent the most important source of biological data used to unveil the interaction and
functionality of genes. In this regard, several data mining and machine learning algorithms have been proposed that
require, in a number of cases, some kind of data discretization to perform the inference. Selection of an appropriate discret-
ization process has a major impact on the design and outcome of the inference algorithms, as there are a number of
relevant issues that need to be considered. This study presents a revision of the current state-of-the-art discretization tech-
niques, together with the key subjects that need to be considered when designing or selecting a discretization approach for
gene expression data.
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Introduction

Recent developments in mRNA quantification techniques en-
able the simultaneous measurement of the expression level of a
large number of genes for a given experimental condition. Both
microarray and RNA-seq technologies are providing an unpre-
cedented amount of meaningful biological data. In this regard,
numerous machine learning methods have been extensively
used in the analysis of gene expression data (GED) obtained
from these experiments [1–7]. The input data are required to be
discrete in several cases, as with any modeling algorithm using
discrete-state models [3, 7, 8].

Data discretization is a technique used in computer science
and statistics, frequently applied as a preprocessing step in the
analysis of biological data. In general, the aim of GED discret-
ization is to allow the application of algorithms for the inference

of biological knowledge that requires discrete data as an input,
by mapping the real data into a typically small number of finite
values. The biological problems that can be addressed by discre-
tizing the GED are roughly the same as those addressed in the
continuous domain. The main difference lies in the final model-
ing of the extracted knowledge, in which the discrete states
favor the inference of qualitative models, whereas the continu-
ous values allow the inference of quantitative models [3].
However, knowledge inference from discrete data has several
advantages when data-driven analysis is performed. The
learning process from discrete data is more efficient and effect-
ive [9–11], requiring a reduced amount of data as compared with
other methods that use continuous values [3]. Also, the reduc-
tion and simplification of the data make the learning process
faster, hence yielding more compact and shorter results [12],
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and allowing the inference of large-size models with a higher
speed of analysis [3]. For researchers, discrete values are easier
to understand, use and explain [3, 12]. Another advantage is the
homogenization of different data sets in terms of interpretabil-
ity; if the same semantics is used for discretization into states
of heterogeneous data sets, it is easier to contrast the discre-
tized values, which can be analyzed beyond the discretization
thresholds used for each data set [13].

There are other specific advantages related to data discret-
ization itself, as well as the benefits of performing the inference
process in the discrete domain. By using discrete states, a sig-
nificant portion of the biological and technical noise presented
in the raw data is absorbed [7]. For time series data, Dimitrova
et al. [14] demonstrate how discretization algorithms perform in
the presence of typical levels of noise in the experimental data.
They found that the discretization of the data showed more ro-
bustness in the presence of noise the higher the variance of a
time series when compared with the continuous values.
Moreover, discretization of GED may also lead to better predic-
tion accuracy [15]. Ding and Peng [15] carried out experiments
using five data sets of gene expression profiles, including two of
leukemia data [16] and colon cancer data [17] and they showed
that the best continuous features lead to more errors when
compared with the best discretized features. They also
demonstrate that discretization of the gene expressions leads to
better classification accuracy than the original continuous data
[15].

Nevertheless, the choice of an appropriate discretization
method is not a trivial task. In general, any discretization pro-
cess implies loss of information [12]. Discretization represents
the transition from the continuous to the discrete data world
and plays a crucial step in the construction of discrete models.
Thus, if the transition is not done well, all subsequent steps are
defective [14]. The qualitative nature of the discrete data entails
that different discretization strategies may yield to distinct dis-
crete-state models. Therefore, the biological semantic and inter-
pretation of the resulting models might differ, even when the
subjacent real-valued data are the same [8]. Consequently,
the selected discretization procedure determines the success of
the posterior inference task in accuracy and/or simplicity of the
model [12]. By this means, the discretization approach for GED
should consider the intrinsic nature of the biological data in
addition to the technology involved in the measurements, to
provide the most accurate representation of the data with a
reduced loss of information. It is also important to consider the
particular features of the computational method that will be
applied to the discretized data, as it will determine the scheme
used by the discretization approach.

Over the past years, several approaches have been proposed
in the literature to deal with the discretization of GED. In this re-
gard, there are already a few studies that revised some of the
discretization approaches for GED in the literature [8, 18, 19].
Madeira and Oliveira [8] were the first to revise this subject, re-
viewing and assessing simple unsupervised techniques, and
proposing a classification for the methods regarding the sample
type of the GED. Li et al. [18] also revised simple unsupervised
approaches and they include more complex clustering tech-
niques, proposing a method that performs better than the re-
viewed ones. Finally, Mahanta et al. [19] reviewed and assessed
some of the discretization approaches revised by Madeira and
Oliveira [8] and Li et al. [18], proposing an extended classification
of those unsupervised methods.

A complete understanding of the semantics of discretization
approaches for GED is always required to choose the method

that best suits a particular case of interest. In this review, a fur-
ther revision of the classical and state-of-the-art approaches for
discretization of GED is proposed, reviewing the most recent re-
search in the field and including supervised discretization for
GED that has not been addressed previously. Additionally, an
in-depth analysis of the main features of the discretization of
GED is also presented, providing a valuable tool for guidance in
the selection of an appropriate discretization approach. Finally,
a software package that implements most of the GED discret-
ization methods is also provided.

In the following section, the problem definition will be intro-
duced followed by the key issues to be considered when dealing
with the discretization of GED. Next, the state-of-the-art
approaches used for GED will be summarized. Finally, a discus-
sion is elaborated.

Discretization problem in gene expression
analysis

The discretization process transforms quantitative data into
qualitative data, i.e. mRNA concentrations into a finite number
of intervals, obtaining a nonoverlapping partition of the con-
tinuous domain as a result. An association between each inter-
val with a discrete value is then established. In practice, the
discretization can be viewed as a data reduction technique be-
cause it maps data from a vast spectrum of numeric gene ex-
pression values to a greatly reduced subset of discrete state
values. Once the discretization is performed, the data can be
used in any inference process that requires a discrete represen-
tation. Many existing inference algorithms for GED are designed
only to learn from this kind of discrete state data, whereas real-
world measurements of gene expression involve continuous
values. So, these numerical features have to be discretized be-
fore using such algorithms.

In this regard, let us begin with a stricter formulation of the
problem. Let A’ be a GED matrix of N rows and M columns,
where a’ij represents the expression level of the gene gi under
the condition j. The matrix A’ is defined by its set of rows, I, and
its set of columns, J. A discretized matrix A results from the ap-
plication of a discretization function, fD, on A’, that maps each
element a’ij in A’ to one of the elements of an alphabet

P
. Here

the alphabet
P

consists of a set of k symbols that may represent
a distinct gene activation level, with 1< k�M. Now assume,
without loss of generality, that the discretization algorithm con-
siders the values of each gene gi of the GED A’ independently. In
this way, the discretization algorithm (fD(A’, gi)) transforms the
continuous gene expression values of gi in the data set A’, into k
intervals D¼ {[p0, p1], (p1, p2], . . . , (pk-1, pk]}, where p0 and pk are
the minimal and maximal values in the gene expression profile
of gi, respectively, and pr< prþ1, for r¼ 0, 1,., k� 1. The set of
intervals D is called a discretization scheme for the gene gi, and
P¼ {p1, p2, . . . , pk-1} is the set of cut points for gi in A’. Then, all
the values on each interval pr – prþ1 for gi are mapped to the r-th
symbol of

P
, thus transforming the matrix A’ into a matrix A,

where aiq represents the discretized value of the expression
level of gi under the q experimental conditions, q 2 J, that satis-
fies pr< a’iq� prþ1. Figure 1 shows an example of the workflow
involved in the discretization process when dealing with two
discrete gene states.

Obtaining the optimal discretization is an NP-complete prob-
lem [10, 12]. Thereby, several discretization techniques have
been developed for expression data analysis. According to pre-
vious studies [8, 18, 19], there are some well-established
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features that characterize these approaches. In the next section,
a further in-depth analysis of those features will be performed,
together with the presentation of other remarkable issues asso-
ciated with new approaches that are currently emerging.

Main features of gene expression
discretization

In this section, the main features of the gene expression discret-
ization will be presented and analyzed as follows:

Supervision

The two high-level features of the discretization of GED, namely
‘supervised’ and ‘unsupervised’, define whether the particular
approach relies on class label information to perform the dis-
cretization. So, in the ‘supervised’ discretization, the values of gi

are assigned regarding the class label information of a specific
knowledge domain. The manner in which the discretization
method considers the class information depends on the relation
between the data and the class labels, and on the heuristic
measure used to determine the best cut points. However, most
discretization approaches proposed in the literature for GED are
‘unsupervised’ and follow the problem definition explained in
the previous section.

Level of discretization

Another characteristic to consider about the discretization of
GED is the ‘level of discretization’. In the simplest case, the al-
phabet

P
may contain only two symbols (see Figure 1), where

one symbol is used for ‘upregulation’ (or ‘activation’) and the
other symbol is used for ‘downregulation’ (or ‘inhibition’).
Thereby, the expression matrix is usually transformed into a
binary matrix, where 1 means ‘upregulation’ and 0 means
‘downregulation’. Another widely used scheme is to consider a
ternary set of discretization symbols, {�1, 1, 0}, meaning ‘down-
regulated’, ‘upregulated’ or ‘no-change’. Nevertheless, the val-
ues in matrix A’ may be discretized in a multilevel manner to an

arbitrary number of symbols. The ‘level of discretization’ mostly
depends on the inference algorithm that will rely on the discre-
tized data. However, the trade-off between the loss of informa-
tion and the computational complexity may also play an
important role in the determination of the ‘level of discret-
ization’ because, as k increases in value, the loss of information
decreases at the cost of increasing the computational complex-
ity of the inference algorithm [3].

Data technology type

This feature may also influence the selection of a discretization
approach. In general, almost all discretization methods were
developed for microarray GED [8, 18, 19], without taking into
consideration the particular characteristic of the data that is
being discretized. This allows the application of the methods for
both microarray and RNA-seq GED. However, RNA-seq technol-
ogy offers many advantages over conventional microarrays,
such as a low background signal and an increased dynamic
range of measurements [20, 21]. Thus, the consideration of the
particular characteristics of the technology involved in the ex-
traction of the biological data may lead to the development of
more reliable discretization approaches [22], although it may
compromise the application to other platforms.

Sample type

The ‘sample type’ is related to the previous feature, i.e. the type
of experiment that determines the meaning of the columns in
the data matrix. There are basically two types of samples, the
equilibrium (steady state) expression levels that correspond to a
static situation, and the time series expression levels that are
gathered during a phenotypic phase, such as in the cell cycle
[23]. Generally, in the steady state expression data, different ex-
perimental conditions refer to different tissues, temperatures,
chemical compounds or any other condition that may produce
different regulatory behavior among the sampled genes. Each
element a’ij of A’ contains the expression value of gene gi in the
sample or experimental condition j. On the other hand, the time

Figure 1. Workflow of the discretization process with two discrete states (R¼ {0, 1}) for the gene gi. In the example, the GED A’ and the discretized GED A are composed

by N genes and four experimental conditions. The discretization algorithm fd takes A’ and gi and infers the cut point P¼ {7} and the discretization scheme D¼ {[0.4, 7],

(7, 10]} to obtain the discretized expression profile of gi in the GED A. Then, the discretized GED A is the input of an inference algorithm that will extract some kind of in-

formation of interest.
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series data are also represented by means of a GED matrix A’,
except that the rows and columns represent genes and time
points, respectively. That is, the different columns represent
the expression values of each sampled gene at different times
under the same experimental condition, during some pheno-
typic phase. The sampling intervals at which the genes are
sampled are determined by the researcher in regard to the na-
ture of the study, and they are not necessarily defined at the
same equidistant interval. Taking the sample type into consid-
eration may lead to the selection of a specific discretization
method, e.g. in the case of time series GED, it is not unusual to
compute the discretization using expression variations between
time points, but this approach is clearly not applicable to steady
state GED. On the other hand, in general, any discretization ap-
proach for steady state data can be applied to time series data,
without taking account of the time correlation between the
samples.

Data scope

Another common issue in the discretization of GED is related to
the ‘data scope’ used to compute the discretized values. In other
words, the discrete value of a’ij may be determined regarding
the gene profile, the experimental condition profile or the whole
matrix. Also, as stated previously, in the case of time series
data, it is possible to consider the expression variations be-
tween successive time points, thus leading, in general, to a
highly reduced scope for the computation of the discretized
value. The selection of a specific strategy is related to the kind
of biological information that the inference algorithm will try to
extract from the data, e.g. in the case of inference of gene regu-
latory networks based on association rules, the most common
approach is to use the gene expression profile to determine the
discrete states of a gene gi [24]. It is also important to consider
that the more reduced is the ‘data scope’ for the computation of
the discrete states, the discretization approach will be more
sensitive to noise, but it will also be more capable of capturing
small variations in the gene expression pattern than those with
greater ‘data scopes’.

Figure 2 resumes the abovementioned features for the char-
acterization of gene expression discretization. Other criteria
more related to general data mining approaches may also be
applied. For example, the ‘Static versus Dynamic’ characteristic
refers to the moment and independence at which the discret-
ization process operates in relation to the inference algorithm.
A dynamic discretization process acts when the learner is build-
ing the model, while a static discretization method proceeds be-
fore the inference task and it is independent of the learning
algorithm [12]. However, almost all known discretization proc-
esses applied over GED are static. For other features applied to

discretization in general data mining methodologies, please
refer to Garcia et al. [12].

Algorithms for discretization of GED

In this section, the classical and current state-of-the-art meth-
ods for discretization of GED will be briefly reviewed, starting
with the unsupervised approaches and followed by the super-
vised procedures.

Unsupervised discretization of GED

As was previously stated, the unsupervised discretization does
not rely on any class label information for the computation of
the discrete states of the genes. The discrete values are only cal-
culated from GED. The simplest approach uses some measure
to compute a threshold from which the state of a gene is deter-
mined. Madeira and Oliveira [8] proposed a classification for
these approaches based on the ‘sample type’ at which they are
aimed. The first one is the ‘discretization using absolute values’,
which can be used in all GED because they discretize the abso-
lute gene expression values directly using different techniques.
The second one is the ‘discretization using expression vari-
ations between time points’, which is only applicable to time
series expression data and computes variations between each
pair of consecutive time points.

For simplicity in the formulation of the measures used to de-
scribe the discretization approaches, some metrics need to be
introduced. Let a’IJ denote the average value in the expression
matrix A’, and let a’iJ and a’Ij represent the mean of row i and
column j, respectively. Let HIJ (UIJ) refer to the maximum (min-
imum) value in the expression matrix A’, and let HiJ (UiJ) and HIj

(UIj) be the maximum (minimum) value of row i and column j,
respectively. In the same way, let MIJ stand for the median value
in the expression matrix A’, and MiJ and MIj represent the me-
dian value of row i and column j, respectively.

Discretization using absolute values

This subsection describes those approaches that discretize the
absolute gene expression values directly using different tech-
niques. In this article, these methods will be further classified
into ‘discretization based on metrics’, ‘discretization based on
ranking’ and ‘discretization based on clustering’.

Discretization based on metrics
The approaches based on metrics use a measure to compute
the cut points P for the gene gi in A’ to determine the corres-
ponding discrete state. In general, the metric can be computed
with different ‘data scopes’, i.e. the discrete value aij might be
determined regarding the gene profile, the experimental

Figure 2. Main features of gene expression discretization with their multiple variants.
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condition profile or the whole matrix. When the goal is to dis-
cretize the matrix A’ with a ‘level of discretization’ of two, these
approaches follow the basic formulation given in Equation 1 to
determine aij, where d represents the metric used in the
computation:

aij ¼
1 if a’ij�d

0 otherwise

(
(1)

In other words, a binary matrix with two symbols, one for
‘activation’ and another one for ‘inhibition’ (for instance, 1 and
0 as in Equation 1) is constructed. The simplest approach is to
define d as the average expression value of a specific ‘data
scope’, i.e. averaging all the values in the matrix (a’IJ), the values
of the rows (a’iJ) or the values of the columns (a’Ij) [8, 24]. Some
examples of the application of this approach for gene expres-
sion profiles can be found in Soinov et al. [25], Li et al. [26] and
Ponzoni et al. [27]. These studies use the average value of the
gene expression profiles aiming at reconstructing gene regula-
tory networks, discretizing the target genes of such interactions
and inferring the relations by means of decision trees [25, 26] or
by combinatorial optimization [27].

Other variations of the previous approach were assessed in
Becquet et al. [28] and Pensa et al. [29]. For instance, d of the
Equation 1 can be defined as the median value M (known as
‘Mid-Range’), or as some sort of expression considering a fixed
proportion x regarding the max value H (known as Max -
X%Max) [8]. Also, as before, M and H can be computed in a
specific ‘data scope’, that is, with respect to the gene expression
profile (with MiJ and HiJ), the condition expression profile
(with MIj and HIj) or the whole expression matrix (with MIJ and
HIJ). Becquet et al. [28] used these approaches to perform
association rule mining on GED, whereas Pensa et al. [29] as-
sessed these methods in the context of hierarchical clustering
of GED.

When considering a ‘level of discretization’ of three, the
most common approach is given in the Equation 2:

aij ¼
�1 if a’ij < d

1 if a’ij > d

0 otherwise

8>><
>>: (2)

The GED A’ is discretized using three symbols (for instance,
�1, 0 and 1) meaning ‘downregulated’, ‘upregulated’ or ‘no-
change’. In this case, d is defined as the average expression
value combined with its standard deviation. Let a be a param-
eter used to tune the desired deviation from average and let rIJ,
riJ and rIj be the standard deviations regarding different ‘data
scopes’. Then, d can be defined as a’IJ 6 arIJ, a’iJ 6 ariJ or a’Ij 6 arIj,
i.e. by means of the values in the matrix, the values in the row i
or the values in the column j, respectively [8, 24].

Another possibility is to allow a multilevel discretization.
This can be achieved by the ‘Equal Width Discretization’ (EWD)
in which each cut point pr of P is calculated by means of
prþ1¼ prþ (H�U)/k, with p0¼U, assigning the corresponding r 2P

to the values a’ij that satisfy pr< a’ij� prþ1. In other words, the
EWD divides the difference between the maximum and min-
imum values H and U, respectively, into k intervals of equal
width, with k being the user-defined parameter that determines
the ‘level of discretization’. As before, this can be done regard-
ing different ‘data scopes’: the gene expression profile (with HiJ

and UiJ), the conditions expression profile (with HIj and UIj) or
the whole expression matrix (with HIJ and UIJ).

Examples of applications of these two approaches for the
biclustering of time series GED can be found in Madeira and
Oliveira [8] and Mahanta et al. [19].

Discretization based on ranking
Let us assume that the expression values are sorted in decreas-
ing order on a list L. A simple approach is to assign the first x%
values of L to 1, whereas the other values are assigned to 0. This
approach is known as Top %X [8, 12]. Another related approach
that allows a multilevel discretization is based on the equal fre-
quency principle. This method, known as ‘Equal Frequency
Discretization’ (EFD) [2], considers a given number k of symbols
into which the expression values will be discretized. Then L is
split in k segments of length jLj/k containing the same number
of data points per symbol, thus assigning the k discrete states
accordingly to the decreasing order of the segments. The ap-
proach based on the median value M, described earlier, corres-
ponds to the special case when only two symbols are
considered. As before, these methods can be applied using dif-
ferent ‘data scopes’. The studies of Madeira and Oliveira [8],
Mahanta et al. [19] and Lonardi et al. [30] contain examples of ap-
plications of these methods in the biclustering of GED.

Discretization based on clustering
Other approaches that deal with the discretization of GED are
based on clustering [7, 14, 18, 19, 24]. The way to achieve this is
to consider each value a’ij of the GED A’ as an element of a sin-
gle-dimensional space X. Then, a clustering algorithm is applied
to the S elements of X that corresponds to a specific ‘data scope’
(a gene profile, a column profile or a matrix profile) to obtain
groups of values, where the values belonging to the same group
are assigned to the same discrete state. The groups are calcu-
lated by maximizing the similarity within the elements of each
cluster, while minimizing this value among elements in differ-
ent clusters. A common quality metric for the clusters is the
WCSS (Within-Cluster Sum of Squares), defined as follows for a
given discretization scheme D:

WCSSðDÞ ¼
X

a’ij2½p0 ;p1 �

ja’ij � l0j2 þ
Xk�1

r¼1

X
a’ij2ðpr ;prþ1 �

ja’ij � lrj2 (3)

Where mr is the mean of the a’ij 2 (pr, prþ1]. Basically, the
WCSS is the sum of the squared Euclidean distance between the
elements within a cluster and the mean of that cluster, where
lower values mean higher similarities between the elements of
the clusters.

Regarding the ‘level of discretization’, it depends on the clus-
tering algorithm used in the task, although it is clear that mul-
tiple discrete states may be allowed with the appropriate
approach. However, let us first consider the simplest case of a
‘level of discretization’ of two. Because the elements of S are in a
single-dimensional space, there is a total ordering between them.
Therefore, when the number of cluster is two, a partition of S can
be optimally found with the following procedure [7]: first, let us
define L as a sorted list of the elements of S, with L(e) representing
the e-th element in the list, 0� e< jSj. Then, the optimal discret-
ization scheme D¼ {[L(0), L(p)], (L(p), L(jSj)]} for S is calculated by
finding the cut point L(p), with 0< p< jSj � 1, so that WCSS(D) has
the minimum value. Finally, the expression values a’ij in S that
satisfy a’ij� L(p) are discretized to 0 (inhibition), and the expression
values a’ij in S that satisfy a’ij> L(p) are discretized to 1 (activation).
In this approach, p varies between (not inclusive) 0 and jSj � 1 to
avoid the effect of outliers [7]. Figure 3 depicts an example of the
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previous procedure. This approach was applied in the work of
Gallo et al. [7] to discretize gene expression profiles in the infer-
ence of gene association rules.

In the case of a multilevel discretization, the previous pro-
cedure is not applicable and the problem of finding the optimal
partition becomes NP-Hard [31]. This means that the optimal
partition of S cannot always be determined in a useful time and
must be computed by algorithms that may not give the best so-
lution. A widely used algorithm for this task is the k-means clus-
tering [32]. The k-means uses the Squared Euclidean distance as a
similarity measure, trying to yield a partition of elements with
the least WCSS, as before. However, it follows a greedy approach
to simplify the computation owing to the NP-Hardness of the
problem. The main steps of the algorithm can be summarized
as follows: first, the algorithm takes a set of points S and a fixed
integer k as input. Then, it splits S into k subsets by choosing a
set of k initial centroid points, where the elements of S are
grouped regarding its nearest centroid to form the clusters. The
next step is the recalculation of the centroids from the elements
within the clusters. These two steps, i.e. cluster formation and
centroid recomputation, are iterated until some stopping criter-
ion is met (generally convergence). The choice of the initial cen-
troid points is a key aspect of this algorithm, because it may
influence the final structure of the partition. Given that a com-
mon approach is to start with random centroids, a different
clustering of S may result every time the algorithm is run [24].
When dealing with GED, the most common approach is to use
the k-means algorithm to discretize either the gene expression
profiles or the condition expression profiles [18, 19]. In both
cases, given a ‘level of discretization’ of k, the algorithm proc-
esses each expression profile independently, to discretize its
values to one of the k discrete states. This requires N runs of the
clustering algorithm to discretize the gene expression profiles,
or M runs in the case of the condition expression profiles, thus
increasing the computational complexity regarding the algo-
rithms described in the previous sections.

Another approach, known as ‘Bidirectional K-means
Discretization’ (Bikmeans) [18], uses both the clustering of gene
profiles and column profiles using the k-means algorithm. That
is, for a given ‘level of discretization’ of k, the algorithm com-
putes the (kþ1)-means clusters for the gene profiles, and for the
condition profiles, independently. This gives two possible dis-
crete states for each a’ij, one for the gene profile and one for the
condition profile, namely ag

ij and ac
ij, respectively, with 1�

ag
ij� kþ 1 and 1� ac

ij� kþ 1. Then, the discrete state aij, with
1� aij� k, is assigned to a’ij if (aij)

2� ag
ij ac

ij< (aijþ1)2. Table 1
shows an example of the possible discrete states for a’ij with
k¼ 3, regarding ag

ij and ac
ij. Note that in this case, for a given

GED A’, the k-means algorithm needs to be run NþM times be-
cause both the gene profiles and condition profiles are clus-
tered. This method was used by Li et al. [18] to discretize GED in
the inference of gene regulatory networks.

Graph-based clustering algorithms can also be applied to the
discretization of GED. In Dimitrova et al. [14], a method called
‘Short Series Discretization’ (SSD) was proposed for the multile-
vel discretization of short time series GED. SSD is a top down
hierarchical clustering algorithm of gene profiles that define the
distance between two clusters as the minimal distance between
any pair of objects that do not belong to the same cluster simul-
taneously [14]. These objects are the real-value a’ij entries of the
gene profile to be discretized, and the distance function that
measures the distance between two gene profile entries a’ij and
a’il is the one-dimensional Euclidean distance j a’ij – a’il j. As SSD
follows a top down approach, it starts from the entire gene pro-
file and iteratively splits it until either the degree of similarity
reaches a certain threshold or every group consists of only one
object. For the purpose of GED discretization, it is impractical to
let the clustering algorithm produce too many clusters contain-
ing only one element. Thereby, the iteration at which the algo-
rithm is terminated is crucial and determines the ‘level of
discretization’. The basic steps for the SSD algorithm are as fol-
lows: for each gene profile of M conditions, a completely

Figure 3. Simple clustering approach for a ‘level of discretization’ of two, where S represents the expression values to be discretized. After sorting the expression values

in a list L, the WCSS of all the discretization schemes Di such that 1<p<4 are calculated. Then, the best scheme is the one with lower WCSS, thus given the discretized

expression values of S as shown.

Table 1. An example of the Bikmeans discretization with k¼ 3 regarding the discretization obtained with the (kþ 1)-means algorithm in the gene
profile (ag

ij) and in the condition profile (ac
ij). The discrete state aij (bolded), with 1� aij� k, is assigned to a’ij if (aij)

2� ag
ij ac

ij< (aijþ1)2.

Discretized condition profile value ac
ij Discretized gene profile value ag

ij

1 2 3 4

1 1*1¼ 1! aij 5 1 1*2¼ 2! aij 5 1 1*3¼ 3! aij 5 1 1*4¼ 4! aij 5 2
2 2*1¼ 2! aij 5 1 2*2¼ 4! aij 5 2 2*3¼ 6! aij 5 2 2*4¼ 8! aij 5 3
3 3*1¼ 3! aij 5 1 3*2¼ 6! aij 5 2 3*3¼ 9! aij 5 3 3*4¼ 12! aij 5 3
4 4*1¼ 4! aij 5 2 4*2¼ 8! aij 5 3 4*3¼ 12! aij 5 3 4*4¼ 16! aij 5 3
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weighted graph on M vertices is constructed, where a vertex
represents an entry on the gene profile and each edge has a
weight of the Euclidean distance between its endpoints. The
discretization process starts by deleting the edge(s) of highest
weight until the graph becomes disconnected. If there is more
than one edge labeled with the current highest weight, then all
of the edges with this weight are deleted. The order in which
the edges are removed leads to components, in which the dis-
tance between any two vertices is smaller than the distance be-
tween any two components [14]. The output of the algorithm is
a discretization of the gene profile, in which each cluster corres-
ponds to a discrete state and the gene profile entries that belong
to one component are discretized into the same state. Owing to
the computational cost involved in the process of recalculating
the components of the graph on each edge deletion, this
method is only aimed at time series data with few samples [14].
Figure 4 shows an example for a gene profile gi with six experi-
mental conditions, discretized to an alphabet R¼ {0, 1, 2}. This
method was assessed in the context of gene regulatory network
inference from time series data [14].

So far, all the approaches described earlier were developed
with the discretization of microarray GED in mind, without taking
any special characteristic of the microarray data into consider-
ation. Thus, they are also applicable to RNA-seq data. However,
contemplating the particular characteristics of the GED that is
being analyzed may lead to the development of better
approaches. In Qu et al. [22], a new method for the discretization
of RNA-seq GED was developed that combines data fitting an ex-
ponential distribution with a hierarchical clustering, to obtain a
multilevel discretization with a matrix ‘data scope’. Let us as-
sume a given level of discretization of k. In essence, the algorithm
consists of three steps: first, the raw RNA-seq GED is fitted to an
exponential distribution, estimating the corresponding single
parameter m. The second step is the partition of the estimated dis-
tribution in k1 intervals of equal width, replacing the expression
values a’ij in a certain interval with the mean of the values of that
interval. Here k1 acts as a sampling rate for the estimated distri-
bution, where a large enough value allows for better robustness
of the hierarchical clustering procedure [22]. Finally, the k1 mean
values are merged with the k clusters by means of hierarchical
clustering. Figure 5 depicts the workflow of the algorithm. Qu
et al. [22] compared this method for discretization against k-means
[31] (for gene and conditions profiles), bikmeans [19] and EFD [2] in

the context of featured- and non-featured-based clustering of
GED, and the results were assessed with several measures. In
general, the method performs better than the other approaches,
showing the importance of considering the specific characteris-
tics of the data that are being discretized.

Discretization Using Expression Variations between
Time Points

A different approach for the discretization of GED is to consider
the variation between time points, instead of the absolute gene
expression values as was described previously. In this case, the
methods are only applicable to time series GED, as they rely on
the columns representing different time points in the same ex-
periment, thus computing how the expression profiles evolve
through time to perform the discretization. Therefore, the only
meaningful ‘data scopes’ for these methods are the gene ex-
pression profile or the data point scope depending on the ap-
proach involved. There are several proposed discretization
techniques based on the transitions in expression values be-
tween successive time points [8, 24]. Usually, these methods
only allow a ‘level of discretization’ of two or three discrete
states, depending on how they are formulated. In this case, the
discrete state indicates the change over time of the gene expres-
sion, i.e. the changing tendencies of the genes. Also, the discret-
ization of a GED matrix A’ using these approaches produces a
discretized matrix A with M� 1 conditions [8, 24].

The first and simplest approach applied to GED that follows
this idea is called ‘Transitional State Discrimination’ (TSD) [33],
which is a method that discretizes gene profiles of GED with a
‘level of discretization’ of two. The main steps of the algorithm
can be summarized as follows: first, the gene profiles of the GED
A’ are standardized using z-scores, scaling the expression val-
ues to a mean of zero and a unit of standard deviation. Then,
each gene expression profile is discretized using the following
scheme:

aij ¼
1 if a’ij � a’iðj�1Þ�0

0 otherwise

(
(4)

In this way, the GED matrix A’ is transformed to a discrete
matrix A of N genes and M� 1 conditions. This method was de-
veloped by Moller-Levet et al. [33] to perform GED clustering

Figure 4. An example of the discretization of a gene expression profile gi with six experimental conditions using the SSD algorithm. First, a complete weighted graph

for the gene gi is constructed, where each vertex is an expression value and each edge is the Euclidean distance between the vertexes. Then, the graph becomes discon-

nected until three components are obtained, discretizing the values according to the alphabet R¼ {0, 1, 2}.
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based on temporal variation. A related method was developed
by Erdal et al. [34], also applied to GED clustering, in which they
compute the absolute differences between successive time
points, and introduce a threshold t for the ‘upregulated’ discrete
state, as follows:

aij ¼
1 if ja’ij � a’iðj�1Þj�t

0 otherwise

(
(5)

Note that in both previous approaches the ‘data scope’
involved in the calculation of each discrete state consists of
only one point.

Now consider a ‘level of discretization’ of three. A simple ap-
proach to achieve this is to combine the mean discretization
with the variations between time points [25, 27]. In this case,
the first step is to discretize the GED matrix A’ using absolute
values, with the mean discretization approach for the gene pro-
file scope, as described earlier. This gives an intermediate dis-
crete matrix A’’. Then, each discrete state is calculated as
follows:

aij ¼ ða’’ij � a’’iðj�1ÞÞ (6)

This approach gives a discretized matrix A of N genes and
M� 1 conditions, in which each aij may have one of three dis-
crete states: 1,� 1 and 0, meaning ‘increase’, ‘decrease’ and ‘no-
change’ respectively. This method was used by Soinov et al. [25]
and Ponzoni et al. [27] to infer changed state rules in the recon-
struction of gene regulatory networks.

Another approach consists of analyzing variations between
successive time points as before, but considering that these
variations are significant whenever they exceed a given preset
threshold [8, 24, 35, 36]. Thus, the discretized matrix A can be
obtained after two steps: the first step transforms the GED ma-
trix A’ into a matrix A’’ of variations such that:

a’’ij ¼

a’ij � a’iðj�1Þ

ja’iðj�1Þj
if a’iðj�1Þ 6¼ 0

1 if a’iðj�1Þ ¼ 0 ^ a’ij > 0

�1 if a’iðj�1Þ ¼ 0 ^ a’ij < 0

0 if a’iðj�1Þ ¼ 0 ^ a’ij ¼ 0

8>>>>>>>><
>>>>>>>>:

(7)

In the second step, once the matrix A’’ is calculated, the final
discretized matrix A is obtained considering a threshold t> 0 as
follows:

aij ¼

1 if a’’ij�t

�1 if a’’ij�� t

0 otherwise

8>><
>>: (8)

There are several examples of this approach in the context
of clustering and biclustering of time series GED [8, 24, 35, 36].

All the methods described in this section discretize the GED
by only considering the expression values of the genes. In the
next section, another kind of approach will be described that
uses additional information besides the expression values to
perform the discretization.

Supervised discretization of GED

As it was aforementioned, most methods developed to deal
with the discretization of GED are unsupervised. Nonetheless,
there are some approaches that use supervised methods and, in
general, they consider prior biological knowledge for performing
the discretization. Given a GED matrix A’ of N genes and M con-
ditions, a set of classes C and a matrix C (of the same dimen-
sionality as A’), a supervised discretization approach will take
A’ and C as input, where C maps each a’ij of A’ into a target class
label c 2 C. Then, the supervised approach will try to obtain a
discretized matrix A that best fits the target class label informa-
tion of C with the continuous expression values of A’. In this
way, the level of discretization will be given by the number of
classes (i.e. jCj ¼ k).

Usually, the supervised approaches are aimed to discretize
GED in the context of sample classification of GED, i.e. given a
steady state GED A’, the set of samples J can be partitioned into
k classes, where each Jl ( J set, with 0< l� k, corresponds to an
experimental condition (i.e. class). Thus, the main goal is to
build a sample classifier to determine the corresponding class
of a given condition profile. The typical examples are those of
GED related to cancer, where a set of conditions corresponds to
healthy samples (control), and the other set of conditions cor-
responds to cancerous samples (typically of a specific type).
Here, the discretization of the GED allows the application of
classifiers that require discretized data as input. Although it is

Figure 5. Workflow of the RNA-seq discretization approach proposed by Qu et al. [22].
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clear that these GED can be discretized using unsupervised
approaches, the idea is to improve the outcomes of the discret-
ization by using the class label information available, leading to
better sample classifiers for the GED.

To describe some proposed supervised discretization
approaches, let us look at some useful definitions, extending
the concepts given previously. Let S be the list of N�M pairs of
elements, S¼ {S1,S2, . . . ,SN�M}, such that each element St repre-
sents the mapping function from the element a’ij of A’ to the
corresponding element cij of C. Consider that S is sorted in as-
cending order of the a’ij elements, which means that for all t
from 1 to N�M, if St-1¼ (a’ij,cij) and St¼ (a’i’j’,ci’j’) then a’ij� a’i’j’.
Let L[ef :el] be the sub-list of first elements from the ef-th pair to
the el-th pair in S, with 1� ef < el�N�M. That is, if Se ¼ ða’ij; cijÞ
and Se ¼ ða’

i’j’; ci’j’Þ, then L[ef:el] defines the expression values of
A’ going from a’ij to a’i’j’ in ascending order. In particular,
L[1:NxM] represents all the expression values of the GED A’
sorted in ascending order, and from now on they will be
referred to simply as L. Thus, a discretization scheme of
L can be represented by the set of k intervals:
Dek ¼ fL½1 : e1�; L½ðe1 þ 1Þ : e2�; . . . ; L½ðeðk�1Þ þ 1Þ : ek�g. For example,
a two-interval discretization of L¼ {0.5, 0.7, 0.9, 1.2, 1.6, 2}
isDe2 ¼ fL½1 : e1�; L½ðe1 þ 1Þ : e2�g. If e1¼ 3 and e2¼ 6, then
De2 ¼ D6 ¼ fL½1 : 3�; L½4 : 6�g¼ {{0.5, 0.7, 0.9}, {1.2, 1.6, 2}} is a pos-
sible discretization. The discretization schemeDek defines k� 1
cut points. In the previous example, D6defined a cut point be-
tween 0.9 and 1.2.

These concepts were used in a well-known supervised dis-
cretization approach developed by Fayyad and Irani [37], and
applied to GED in Lustgarten et al. [38]. The FI method [37] (for its
author’s initials) selects a cut point, p, in a given interval in a
greedy way and continues recursively in the subintervals
defined by p. The procedure is undertaken in two principal
steps:

i) Calculate the score of each interval in Dek as the entropy of the target
values (cij’s). For an interval L[ek-1 : ek] derived from the values
of a gene expression matrix A’, and a target class label c be-
longing to C, which can take k¼ jCj values, the entropy can be
defined as:

eðL½ek�1 : ek�Þ ¼
XjCj
j¼1

Pðc ¼ cjÞlog2ðPðc ¼ cjÞÞ (9)

Where P(c¼ cj) is the probability that an instance in the cur-
rent interval takes the value cj.

ii) Discretize each interval recursively into two new subintervals.
Given an interval L[ef : el] and its entropy e(L[ek-1 : ek]), a cut
point p can be greedily specified if we try to minimize the
joint entropy of the subintervals defined by p in L[ek-1 : ek]:

eðp;L½ek�1 : ek�Þ ¼
jL½ek�1 : ep�j
L½ek�1 : ek�

eðL½ek�1 : ep�Þþ
jL½epþ1 : ek�j
L½ek�1 : ek�

eðL½epþ1 : ek�Þ

(10)

Where L[ek-1 : ep] and L[epþ1 : ek] are the new two subintervals
defined by the cut point p in L[ek : ekþ1].
The FI method does not guarantee that the optimal cut point
will be discovered with minimum entropy because it does not
accomplish an exhaustive search. However, when only dealing
with two classes, the optimal cut point with minimum entropy
can be computed in a greedy manner [7, 27]. Gallo et al. [7] and
Ponzoni et al. [27] used this approach to compute the

discretization of the regulator genes in the inference of gene as-
sociation rules from time series GED.

Another supervised discretization approach for GED, called
Efficient Bayesian Discretization (EBD), was proposed by
Lustgarten et al. [38]. It is based on the method developed by
Boullé [39] that uses dynamic programming to search all the
possible discretizations and a Bayesian measure to score each
one of them, thus ensuring the optimal one is found. In the case
of EBD, it improves the method proposed by Boullé [39] by allow-
ing the incorporation of prior knowledge and decreasing the al-
gorithm time complexity [38]. The EBD algorithm consists of
two principal steps:

a) Evaluate each discretization by means of the score.

ScoreðMÞ ¼ PðMÞ � PðS=MÞ (11)

Which is the numerator of the ‘posterior probability’ given by
‘Bayes rules’, where M is the discretization model corresponding
to the discretization Dek and is defined as M : { j Dek j , Dek , H}.
In other words, the model is conformed by the number of inter-
vals in the discretizationDek , the discretization Dek itself and the
set of probabilistic parameters corresponding to a multinomial
distribution. In Equation 11, P(M) is the prior probability of M
and P(S/M) is the marginal likelihood of the data in S given the
model M. In Lustgarten et al. the authors use:

PðS=MÞ ¼
YI

i¼1

ð j C j � 1Þ!
ð j C j � 1þ niÞ!

Yj C j
j¼1

nij! (12)

Where I is the number of intervals in the discretization of the
model M, jCj is the number of possible values for the target vari-
able, ni is the number of instances in the interval I and nij is the
number of instances in the interval i that have taken the target
value j.
b) Search all the possible discretizations using dynamic programming.

This strategy allows reusing the previously computed optimal
solutions that have been obtained in a smaller instance of the
same problem.

In Lustgarten et al. [38], both the FI and EBD methods were used
to discretize GED obtained from high-throughput transcrip-
tomic and proteomic studies, to build classifiers of GED
samples.

The last supervised discretization approach that we will con-
sider was proposed by Wang et al. [40]. In this study, the authors
take advantage of gene expression information to locate the
interval’s cut points. Let the expression range of a gene be div-
ided into m left-side-half-open segments. Let li¼ 1, 2, . . . , m, be
the superior boundaries corresponding to each segment. Let
vi¼ (–1, li] be the i-th half open interval. Wang et al. defined the
‘Class Distribution Diversity’ (CDD) of vi, denoted CDD(vi), for a
binary classification problem as:

CDDðviÞ ¼
n1ðviÞ

N1
� n2ðviÞ

N2
(13)

Where n1(vi) and n2(vi) are the number of cases belonging to
class 1 and class 2 in the interval vi, and N1 and N2 are the total
number of samples of class 1 and class 2, respectively.
Depending on the gene expression values, the CDD allows the
presence of zero and one or two possible cut points in a gene ex-
pression range. Let us suppose that vmax (vmin) is the interval
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upper bounded by lmax (lmin) with maximum (minimum) CDD,
denoted by CDDmax (CDDmin). Then, given a gene expression pro-
file, its values of CDDmax and CDDmin could be in one of the next
cases: (i) CDDmax> 0, CDDmin¼ 0; (ii) CDDmax¼ 0, CDDmin< 0; and
(iii) CDDmax> 0 and CDDmin< 0. Thus, the authors defined the
‘discriminative power of a gene’ as the absolute value of the dif-
ference between CDDmax and CDDmin, and they used that value
to determine the number of cut points (zero, one or two) and
the cut points themselves to accomplish a possible discret-
ization. Wang et al. [40] assessed this method in the context of
binary classification scenarios, and showed that it performs bet-
ter in comparison with the FI and EBD methods described
earlier.

Discussion

Advances in microarray and RNA-seq technologies allow the
simultaneous measurement of the expression of thousands of
genes under different experimental conditions, enabling the un-
raveling and reverse-engineering of the interactions of the
genes in an organism. Several data mining and machine learn-
ing algorithms have been developed to discover those inter-
actions from the GED, and in several cases they require discrete
data as inputs to make the inference. In this regard, the discret-
ization of the data plays a key role in the outcomes of the gene
expression analysis.

A direct benefit of using a discrete view of the data is that it
emphasizes the inference of knowledge only on a relevant pat-
tern of the gene expression values. This may lead to better pre-
diction models because the inherent noise of the data
is removed. Also, the discretization improves the efficiency
of the inference algorithms owing to the reduced search
space in which the extraction of knowledge is performed.
Furthermore, it helps with the interpretation of the results be-
cause each discrete state has a direct meaning in its value.
Nonetheless, some of these asseverations depend mainly on
the capabilities of the discretization method to capture the real
pattern of gene expression. Even more, as every kind of discret-
ization implies loss of information, a careful evaluation must be
performed before proceeding with this preprocessing of the
data.

In this article, we presented the main features of the discret-
ization of GED and reviewed the classical and state-of-the-art
approaches that deal with this task. These methods vary from
simple formulations such as the average, to more complex
approaches involving clustering, distribution fitting and in
some cases class label information. Table 2 resumes all the
revised methods together with their main features, aimed at
helping the reader to further explore a particular approach of
interest. In this regard, and to the best of our knowledge, there
are no free software tools that provide a reasonable set of dis-
cretization methods for GED. The available free software for
GED analysis focuses on the knowledge inference stage and pro-
vides only one or two of the most common discretization meth-
ods (such as EFD, EWD, k-means and FI). Thereby, we provide a
free and open-source software called GEDPROTOOLS (http://
lidecc.cs.uns.edu.ar/files/gedprotools.zip) that allows visualiza-
tion and preprocessing of GED, providing most of the discret-
ization approaches revised in this article.

As the reader might notice, the selection of a discretization
method is not a trivial task. There are several topics to consider
to make the correct choice for a particular instance in the ad-
dressed biological problem. First of all, there is the issue related
to the ‘level of discretization’ used in the modeling, i.e. how

many discrete states will be used to represent the expression
levels of the genes. A discretization with two levels, ‘upregu-
lated’ and ‘downregulated’, gives the simplest case for represen-
tation and the easiest way of interpretation of the results [3],
although it does not allow any modeling of intermediate states.
This last asseveration greatly limits the possibility of dynamic
modeling given the case [3]. The important issue to consider
here is that as the level of discretization increases, so does
the complexity of the algorithms involved in the expression
analysis (discretization and inference algorithm) and, at
the same time, increasing the difficulties in interpreting the
results.

Another issue to consider is the inherent computational
complexity in the discretization approach, as this may add an
undesirable load in the computational time required to perform
the expression analysis. In general, a discretization performed
on the gene profiles (condition profiles) requires N (M) runs of
the discretization algorithm to discretize the entire GED. If the
GED has to be discretized as a whole (i.e. with a data matrix
scope), then the genome-wide context of some GED with thou-
sands of genes may impose an additional limit on the applic-
ability of the discretization algorithm. The simplest methods
based on metrics and ranking provide an efficient way of per-
forming the discretization, as little computation effort is
required. Nonetheless, these approaches may not be the
best suited for the task. More elaborate methods, such as those
based on clustering, tend to perform better in the discretization
of GED [7, 14, 18, 19, 22], although they also require a signifi-
cantly higher computational effort. Such is, for example,
the case of the SSD algorithm that it is only applicable to short
time series GED owing to its high computational complexity
[14].

The data type of the GED, and the kind of information in-
tended to infer from it, may also play an important role in the
determination of the discretization approach. For example, if
the goal is to study the change on the expression levels of the
genes in time series GED, the methods based on expression
variations between time points may represent an alternative
worth exploring. On the other hand the supervised approaches
may be more appropriate in the case of sample classification of
healthy and cancerous steady state data.

Finally, there are other issues to consider that may not be so
clear. For example, how are the results affected given a particu-
lar ‘data scope’ used in the discretization? Or how should the
most adequate approach between algorithms of similar features
be chosen? The difficulty lies in the fact that there may be
approaches that perform well in some instances of the same
biological problem and poorly in others, given the strong de-
pendence on the particularities of each case. Therefore, a meth-
odology for the selection of a discretization algorithm may be as
follows: first, the essential features of the biological problem in-
stance (level of discretization, data type, etc.) need to be deter-
mined. Then, the methods that satisfy those features are
selected. Finally, if some indecisions persist that cannot be
solved with an understanding of the chosen methods, the dis-
cretization approaches can be compared by analyzing the out-
comes of the inference algorithm in each case and selecting
the one that performs best. In this way, the ultimate impact of
a specific discretization approach will be based on the predict-
ive quality achieved by the inference algorithm responsible
of extracting the biological knowledge. Thus, the metrics
and validation procedures for predictive models will be ad-
equate to indirectly assess the impact of the chosen
discretization.
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Key Points

• In gene expression data analysis, the discretization of
the data is an important step when discrete states are
required in the inference of knowledge, and plays a
major role in the outcomes of the analysis.

• All types of discretization involve some degree of loss
of information, and therefore, different variants of dis-
cretization may lead to different knowledge extraction
(sometimes contradictory between them).

• The choice of a suitable discretization scheme may
improve the performance of predictive models by
reducing the noise inherent to the experimental data.

• There are several approaches to discretize gene ex-
pression data, each one requiring specific features of
the particular gene expression analysis problem.

• A straightforward way to choose a discretization
method is to determine the main characteristics of the
gene expression analysis problem by following the fea-
tures described in the article, and then selecting the
approach that best meets those requirements.
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