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This article discusses high performance numerical simulations of electrokinetic flow and transport phe-
nomena in microfluidic chips. Modeling grounds on conservation equations of mass, momentum and
electric charge in the framework of continuum mechanics. Two examples of interest in microfluidics
are considered as study cases. Three dimension effects and whole chip geometries are taking into
account. All numerical simulations presented are performed with PETSc-FEM within a Python program-
ming environment employing parallel computing. Computation time and parallel efficiency are measured
in order to study additive Schwarz method performance as domain decomposition technique in solving
common ill-conditioned microfluidics problems.
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1. Background

Micro-total analysis systems (l-TAS) perform the functions of
large analytical devices in small units [1]. They are used in a variety
of chemical, biological and medical applications. The benefits of l-
TAS are a reduction of consumption of samples and reagents, short-
er analysis times, greater sensitivity, portability and disposability.
There has been a huge interest in these devices in the past decade
that led to a commercial range of products.

Most microfluidic systems have been successfully fabricated in
glass or silica [2]. Microscopic channels are defined in these sub-
strates using photolithography and micromachining, whose
materials and fabrication methods were adopted from the micro-
electronics industry. However, for the purposes of rapid prototyp-
ing and testing of new concepts, the fabrication processes are slow
and expensive.

Numerical simulations of on-chip processes can serve to reduce
the time from concept to chip [3]. The most interesting aspect of
computational simulation of microfluidic chips is the multiphysics
nature which combines fluidics, transport, thermal, mechanics,
electronics and optics with chemical, biological thermodynamics
and reaction kinetics. Additionally, studying theses effects is a
challenging problem from the numerical point of view. They com-
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prise geometrical scales that span six orders of magnitude: from
the millimetric size of reservoirs, through the micrometric width
of channels, to the nanometric thickness of the electric double
layer at interfaces.

Some of the first numerical simulations of fluid flow and species
transport for microfluidic chips were addressed to electrokinetic
focusing and sample dispensing techniques [4–6], and they em-
ployed an algorithm based on finite volume method in a structured
grid. Bianchi et al. [7] performed 2D finite element simulations
artificially increasing the EDL thickness. Chatterjee [8] developed
a 3D finite volume model to study several applications in micro-
fluidics. More recently, Kler et al. [9] developed a 3D FEM model
to describe the transport of non-charged species by electroosmotic
flow (EOF), and Barz and Ehrhard [10] developed a fully-coupled
modeling for electrokinetic flow in microfluidic devices employing
2D finite elements.

Parallel computations and domain decomposition techniques in
electrokinetic flow and transport have not been extensively ex-
plored. Tsai et al. [11] presented a 2D parallel finite volume scheme
to solve electroosmotic flow in L-shaped microchannels and Kler
et al. [12] presented 3D FEM simulations for electrokinetic flow
in complex microgeometries. Simulations of electrophoretic pro-
cesses employing this techniques were performed by Chau et al.
[13,14] using finite difference method and Kler et al. [15] using
FEM, both in 3D.

In this paper a high performance 3D finite element model for
the simulation of electrokinetic flow and transport in microfluidic
chips is presented. Parallel computing and classical domain
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decomposition techniques are employed in order to solve the prob-
lems. Wall-clock time and parallel efficiency are measured in order
to study additive Schwarz method performance as domain decom-
position technique in solving ill-conditioned problems in micro-
fluidics applications.
2. Theoretical modeling

In this section a mathematical model to simulate 3D and time-
dependent electrokinetic flow and transport phenomena in micro-
channels is presented. First the fluid mechanics and the basis of
electroosmotic flow is discussed, then the species transport equa-
tion is presented. We considered the case of microchannel net-
works filled with an aqueous strong electrolyte solution.

2.1. Governing equations

Electrokinetic effects arise when the mobile portion of the dif-
fuse double layer (see Section 2.2.1) and an electric field interact
in the viscous shear layer [16]. Depending on the nature of this
electric field, different electrokinetic phenomena will appear.
When there exists a movement of the liquid caused by the migra-
tion of ions under the effects of an external electric field, in relation
to some charged solid wall, we are in presence of electroosmotic
flow. In the framework of continuum fluid mechanics, fluid veloc-
ity u, pressure p, and electric E fields are governed by the following
set of coupled equations [17–19]:

r � u ¼ 0; ð1Þ

q
ou
ot
þ u � ru

� �
¼ r � rþ qeE; ð2Þ

r � ð�EÞ ¼ qe: ð3Þ

Eq. (1) expresses the conservation of mass for incompressible flu-
ids. Eq. (2) (Navier–Stokes equation) expresses the conservation
of momentum for Newtonian fluids of density q, viscosity l,
and stress tensor r ¼ �pIþ lðruþruTÞ, subjected to electric
field E. The last term on the right hand side of Eq. (2) represents
the contribution of electrical forces to the momentum balance,
where qe ¼ F

P
zjcj is the electric charge density of the electro-

lyte solution, obtained as the summation over all type-j ions,
with valence zj and molar concentration cj, and F is the Faraday
constant.

Eq. (3) (Poisson equation) establishes the relation between elec-
tric field and charge distributions in the fluid of permittivity � that,
in the present work, is considered constant due to its usually weak
dependency on ion’s concentration [10]. Here it is relevant to men-
tion that the ion distributions ck (to be included in Eqs. (2) and (3))
through qe must be derived from Nernst–Planck equation, which
accounts for the flux of type-j ions due to electrical forces, fluid
convection and Brownian diffusion [16].

The transport of sample species and buffer electrolyte constitu-
ents can be modeled by a linear superposition of migrative, con-
vective and diffusive transport mechanisms and a reactive term.
Considering only strong electrolytes, reactive term vanishes. Thus
in a non-stationary mode, for the j-type specie, the present work
considers the following transport equation:

ocj

ot
þ u � rcj ¼ Djr2cj �r � ðmjzjcjFEÞ; ð4Þ

which governs the molar concentration cj of species in the electro-
lyte solution. In Eq. (4), Dj is the diffusion coefficient, mj is the mobil-
ity, and F is the Faraday constant. The resulting system (Eqs. (1)–(4))
is strongly coupled, but with certain assumptions, this coupling can
be avoided (see Section 2.2).
2.2. Electrokinetic phenomena

Generally, most substrates will acquire a surface electric charge
when brought into contact with an aqueous medium. Some of the
charging mechanisms include ionization, ion adsorption, and ion
dissolution. The effect of any charged surface in an electrolyte solu-
tion will be to influence the distribution of nearby ions in the solu-
tion. Ions of opposite charge to that of the surface (counterions) are
attracted towards the surface while ions of like charge (coions) are
repelled from the surface. This attraction and repulsion, when
combined with the mixing tendency resulting from the random
thermal motions of the ions, leads to the formation of an electric
double layer.

The electric double layer is a region close to the charged surface
in which there is an excess of counterions over coions to neutralize
the surface charge, and these ions are spatially distributed in a ‘‘dif-
fuse” manner. Evidently there is no charge neutrality within the
double layer because the number of counterions will be large com-
pared with the number of coions.When moving away from the sur-
face, the potential progressively decreases, and then vanishes in
the liquid phase.

2.2.1. Electric double layer theory
Consider a simple fully dissociated symmetrical salt in solution

for which the number of positive and negative ions are equal, so

zþ ¼ �z� ¼ z: ð5Þ

When this electrolyte solution is brought into contact with a solid
such that the surface of contact becomes electrically charged, at
the stationary state, the concentrations of positive and negative
ions can be modeled with the following Boltzmann distribution
[20,21]

c� ¼ c0 exp
�zF
RT

/

� �
; ð6Þ

where / is the electric potential, c0 is the bulk salt concentration, R
is the ideal gas constant and T is the absolute temperature and the �
signs are in a such way that Eq. (6) models the situation of a posi-
tively charged wall. In the case of a negatively charged wall, the
� sign inverts at the right hand side of Eq. (6). Clearly, the ion con-
centrations far from the surface c� ! c0 as /! 0.

Under the above assumptions, the electric charge density is

qe ¼ F
X

k

zkck ¼ F þzc0 exp
�zF
RT

/

� �
� zc0 exp

þzF
RT

/

� �� �

¼ 2zc0F sinh � zF
RT

/

� �
; ð7Þ

and the electric field E is related to the electric potential / through

E ¼ �r/: ð8Þ

Eqs. (7) and (8) can be inserted in the Poisson equation (3) to finally
obtain

�r2/ ¼ 2zc0F
�

sinh � zF
RT

/

� �
: ð9Þ

The electric potential / obtained through solving the Poisson–
Boltzmann equation (9) can then be employed for determining
the electric field E (Eq. (8)) and the electric charge density qe

(Eq. (7)). The electrical forces can then be computed and entered
in the momentum equation (2).

2.2.2. Electric double layer thickness
The electric double layer thickness may be approximately quan-

tified through the Debye length [10,22],



2362 P.A. Kler et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2360–2367
kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�RT

2Ic0F2

s
; ð10Þ

where I is the dimensionless ionic strength calculated as

I ¼ 1
2

X
j

z2
j

cj;bulk

c0
: ð11Þ

The Debye length represents the position where the electrical poten-
tial energy is approximately equal to the thermal energy of the
counterions. It is obtained by neglecting the presence of coions
and solving a simplified Poisson problem, employing a linearization
known as Debye–Hückel approximation, which is valid for electroki-
netic potentials less than 2RT=F [23].

For the ionic concentrations normally used in practice, kD is on
the order of 10 nm. Away from the interface, at distances beyond
kD, the bulk of the fluid is electrically neutral.

2.2.3. Electroosmotic flow and slip velocity approximation
Electroosmotic flow in microchannels grounds on the existence

excess of ions in the fluid near solid walls. When an external elec-
tric field is applied in the axial direction of a channel, the electrical
forces acting on excess ions drag the surrounding liquid and then
electroosmotic flow develops.

For thin electric double layer in relation to the channel width,
electroosmotic phenomena is confined to regions close to channel
walls. Under these conditions, the electroosmotically driven flow
can be regarded as the result of an electrically-induced slip velocity;
its magnitude can be approximated by [16,22]

uEO ¼ �
�f
l

E; ð12Þ

where f is the electrokinetic potential.
Further, uEO can be used as a boundary value at the channel

walls. This possibility greatly simplifies calculations since ion dis-
tributions are decoupled from Navier–Stokes and Poisson equa-
tions. In fact, if ion concentrations are assumed to be uniform for
the buffer components (except in the close vicinity of the charged
interface), and sufficiently low, for the sample components, in or-
der to not affect the charge density nor the permittivity, the right
hand side of Eq. (3) vanishes, as well as the last term of Eq. (2). This
assumptions enable us to solve independently Eqs. (1)–(4).

Moreover the restriction mentioned above, the slip velocity
approximation is valid when the Debye–Hückel approximation is
valid [24], and for small values of kD=h (where h is the channel
width), which is usually the case in micro-scale channels at mod-
erate ionic concentrations ð� 10�3 MÞ. Nevertheless, at very low io-
nic concentrations ð� 10�6 MÞ, or in case of nanoscale channels,
kD=h approaches one, indicating that the electric double layer from
opposing surfaces overlap. In that case, approximation (12) does
not apply and the full problem must be solved.

Other aspects of this approximation deserve consideration, like
wall rugosity and the influence of the applied potential in the EDL
distribution, for more details about the physics of the problem and
the validity of different assumptions, see [25].

2.3. Classical domain decomposition methods

Domain decomposition methods (DDM) [26] are divide and con-
quer techniques for solving boundary value problem by splitting
it into smaller boundary value problems on subdomains and iterat-
ing to coordinate the solution between them. The problems on the
subdomains are independent, which makes domain decomposition
methods suitable for parallel computing on distributed memory
architectures. Domain decomposition methods are typically used
as preconditioners for Krylov space iterative methods, such as
the conjugate gradients (CG) method or generalized minimal resid-
ual (GMRES) method.

In non-overlapping methods (also called iterative substructur-
ing methods), the subdomains overlap only on their interface. In
primal methods, such as balancing domain decomposition (BDD)
and the enhanced version BDDC [27], the continuity of the solution
across subdomain interfaces is enforced by representing the value
of the solution on all neighboring subdomains by the same un-
known. In dual methods, such as finite elements tearing and inter-
connecting (FETI), the continuity of the solution across the
subdomain interface is enforced by Lagrange multipliers. An en-
hanced, simplified and better performing version of FETI, known
as FETI-DP [28], is hybrid between a dual and a primal method;
its performance is essentially the same as the BDDC method.
BDD and FETI methods were primarily developed for solving of
elliptic boundary value problems.

In overlapping domain decomposition methods, the subdo-
mains overlap by more than the interface. Overlapping domain
decomposition methods include the classical Schwarz alternating
procedure and the additive Schwarz method (ASM) [29]. Schwarz
methods can be easily applied to a variety of problems [30,31]
and can be implemented in a fully-algebraic manner (i.e. without
knowledge of the underlying discrete grids).

2.3.1. Additive Schwarz preconditioning
The original alternating procedure described by Schwarz [32] in

1870 is an iterative method to find the solution of a partial differ-
ential equations on a domain which is the union of two overlap-
ping subdomains, by solving the equation on each of the two
subdomains in turn, taking always the latest values of the approx-
imate solution as the boundary conditions.

The procedure described above is called the multiplicative Sch-
warz procedure. In matrix terms, this is very reminiscent of a block
Gauß–Seidel iteration. The multiplicative Schwarz procedure is not
fully parallel at the highest level: some processors have to wait
others in order to perform the local work. The analogue of the
block Jacobi procedure is known as the additive Schwarz procedure.
The additive procedure is fully parallel; however, the convergence
rate is usually lower.

The application of the additive Schwarz procedure as a precon-
ditioning method for the solution of systems of linear equations
can be summarized as follows:

� The support mesh/grid is decomposed into Ns (possibly overlap-
ping) subdomains Xi; i ¼ 1; . . . ;Ns.

� Each subdomain Xi is associated to a local space Vi with the help
of a restriction operator Ri. The restriction operator Ri extract
from the global vector the unknowns associated with Xi, while
the extension operators RT

i extends by zeros unknowns from
Xi to the global vector. The preconditioner operator can then
be easily written in matrix terms as

P�1 ¼
XNs

i¼1

RT
i A�1

i Ri; ð13Þ

where Ai ¼ RT
i ARi are the local matrices associated with the sub-

domains Xi; they are related to the global matrix A through the
restriction operators Ri. In the special case of zero overlap, the
matrices Ai have entries from contributions originated in the sub-
domain Xi; if the overlap is greater than zero, the matrices Ai

have additional entries contributed by neighboring subdomains.
� Any Krylov-based iterative method can then be employed for

solving the (left) preconditioned linear system P�1Ax ¼ P�1b.

Many factors impact the performance of additive Schwarz pre-
conditioning in the context of parallel iterative methods for the



Table 1
Physical constants and properties.
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solution of systems of linear equations. The main ones are summa-
rized in the following list:

� Additive Schwarz methods are normally implemented in such a
way that the number of subdomains Ns and the restriction oper-
ators Ri are inherited from the previous partitioning of the
underlying discrete grid or mesh. The local problems (involving
matrix Ai in Eq. (13)) are usually solved by variants of incom-
plete factorization methods (e.g. ILU(0)). For well-conditioned
problems, incomplete factorization methods are the faster alter-
native regarding to overall wall-clock computing time.

� Iterative methods frequently stagnate when then global prob-
lem is ill-conditioned and the local problems are treated with
incomplete factorizations. In such cases, the local problems have
to be solved either with and inner iterative method or a full
direct method (i.e. LU factorization). In either case, as the size
of the local subdomain increases, also do the time required for
obtaining the local solution. This is specially true when the local
solver is based on a LU factorization. In order to employ a direct
method and maintaining the size of local problems manageable,
local subdomains can be further partitioned at each processor in
sub-subdomains. This strategy degrades convergence, but can
improve the overall solution time.

� As the overlap increases, convergence rate improves; but com-
puting, communication and memory requirements increase.
Ghost vector values have to be gathered from and scattered to
neighboring processors at each iteration; matrix values have to
be gathered from neighboring processors in a setup phase, and
the local problems to solve are larger (in the setup-phase factor-
ization as well as in the backward/forward solves at each itera-
tion). Then, as overlap increases, actual improvements in the
total wall-clock time for obtaining the final solution will depend
upon the balance between better convergence rates versus the
extra costs.

� Finally, for global problems of medium to large scale, as the
number of processors assigned to its solution increases, the par-
allel efficiency decreases. Actually, this behavior is shared for
any non-embarrassingly parallel algorithm. As a rule of thumb,
each processor have to be in charge of 50,000–100,000
unknowns (depending on computing and network hardware)
to achieve parallel speedup.

3. Materials and methods

3.1. Hardware

Simulations were carried out using a Beowulf cluster Aquiles
[33]. Its hardware consists of 82 disk-less single processor comput-
ing nodes with Intel Pentium 4 Prescott 3.0 GHz 2 MB cache pro-
cessors, Intel Desktop Board D915PGN motherboards, Kingston
Value RAM 2 GB DDR2 400 MHz memory, and 3Com 2000ct Giga-
bit LAN network cards, interconnected with a 3Com SuperStack 3
Switch 3870 48-ports Gigabit Ethernet.
Property/constant Symbol Value Unit

Density q 1000 kg/m3

Viscosity l 10�3 kg/m s
Ionic valence z 1 –
Electrokinetic potential f �4 � 10�2 V
Temperature T 300 K
Gas constant R 8.31 J/mol K
Faraday constant F 96485 C/mol
Permittivity � 80� 8:85 � 10�12 F/m
Sodium diffusivity DNa 1:34 � 10�9 m2/s
Sodium mobility mNa 5:18 � 10�8 m2/V s
Potassium diffusivity DK 1:96 � 10�9 m2/s
Potassium mobility mK 7:58 � 10�8 m2/V s
3.2. Software

All numerical simulations presented were performed within a
Python programming environment built upon MPI for Python
[34–36], PETSc for Python [37], and PETSc-FEM [38,39]. PETSc-FEM
is a parallel multiphysics code primarily targeted to 2D and 3D fi-
nite elements computations on general unstructured grids. PETSc-
FEM is based on MPI and PETSc [40–42], it is being developed since
1999 at the International Center for Numerical Methods in Engineer-
ing (CIMEC), Argentina. PETSc-FEM provides a core library in
charge of managing parallel data distribution and assembly of
residual vectors and Jacobian matrices, as well as facilities for gen-
eral tensor algebra computations at the level of problem-specific fi-
nite element routines. Additionally, PETSc-FEM provides a suite of
specialized application programs built on top of the core library
but targeted to a variety of problems (e.g. compressible/incom-
pressible Navier–Stokes and compressible Euler equations, general
advective–diffusive systems, weak/strong fluid–structure interac-
tion). In particular fluid flow computations presented in this article
are carried out within the Navier–Stokes module available in
PETSc-FEM. This module provides the required capabilities for sim-
ulating mass transport and incompressible fluid flow through a
monolithic SUPG/PSPG [43,44] stabilized formulation for linear fi-
nite elements. Electric computations are carried out with Laplace’s
and the Poisson–Boltzmann modules.

4. Numerical simulations

This section presents the results of numerical simulation per-
formed on two study cases. The first case is an example of capillary
zone electrophoresis (CZE) in a whole (l-TAS) geometry including
electrodes and reservoirs. The second case deals with electroos-
motic flow in nanoscale channels. The values of the relevant phys-
ical properties and constants employed in both cases are
summarized in Table 1.

4.1. Capillary zone electrophoresis

Previous works related to numerical simulation of electroos-
motic flow and electrophoresis have restricted the problem do-
main to the microchannels by supposing appropriate conditions
for the electric potential, velocity field, and concentrations at inlet
and outlet regions. In this example, results from numerical simula-
tions performed on a whole microfluidic system domain are
presented.

The simulation domain is a cross-shaped microchannel network
with vertical wire electrodes at reservoirs. The aim of the example
is to show the capability of the numerical method for simulate 3D
high aspects ratio geometries, simulating a common situation in
practical microfluidics. A more complete analysis of the effects of
reservoirs in microfluidics networks can be found in [45]. The
channel sections are trapezoidal, with shape and dimensions as
shown in Fig. 1.

Electrophoretic injection and separation processes are simu-
lated in order to determine potassium and sodium ion concentra-
tions. During the injection stage, potentials at the electrodes are
selected in such a way that the intersection region is filled with a
precise sample volume to be analyzed. In the separation stage,
potentials at the electrodes are appropriately selected in order to



Fig. 1. Geometry of the microchannel network.
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achieve different relative velocities for each specie, avoiding leak-
ages at the injection channels.

The complete simulations requires the solution of three subsidi-
ary problems involving charge, mass, momentum and species con-
servation equations described in Section 1. In order to solve this
example some assumptions were made. We have considered
strong electrolytes for buffer and sample components, buffer ions
concentration is constant in the whole domain, and the sample
concentration is adequately low in order to not affect the electric
properties of electrolyte solution nor the electric double layer char-
acteristics. Also we have considered that the relation between the
channel width and the Debye length ðk ¼ 10 nmÞ is large enough to
use the Helmholtz–Smoluchowsky slip velocity approximation.

A tetrahedral mesh with 941,056 elements was generated in or-
der to solve the problem, the channel’s flow section contains
approximately 60 elements. The electric fields are obtained
Table 2
Applied potential for different processes in ECZ.

Process Potentials (V)

UI UII UIII UIV

Injection 500.0 250.0 0.0 250.0
Separation 530.0 750.0 530.0 0.0

Fig. 2. Sample concentration (mol/m3) after the inje
through solving Poisson equation (Eq. (3), with qe ¼ 0) for the po-
tential, and employing Dirichlet boundary conditions at electrodes
and homogeneous Neumann boundary conditions at channels and
reservoirs walls. Applied potentials for different processes are
shown in Table 2. The influence of the applied potentials over
the EDL distribution is neglected. The validity of this assumption
is evaluated measuring the magnitude of the two different electric
fields. Then, the electric field applied is approximately 39 kV/m
and the EDL associated electric field is in the order of 4000 kV/m,
so the assumption is correct. To solve this equation conjugate gra-
dients method was employed as iterative solver, and HYPRE
BoomerAMG [46] was chosen as preconditioner.

Fluid velocity was obtained by solving mass conservation equa-
tion (1) and Navier–Stokes equation (2) in stationary mode. At the
top of the reservoirs, boundary conditions for pressure and velocity
were set; for the pressure, Dirichlet boundary conditions with a
reference value of zero were imposed, and the velocity direction
was constrained to be parallel to the reservoir axis. At the channel
walls, the slip velocity approximation (Eq. (12)) was employed as
Dirichlet boundary condition. In this example the fact that external
pressure gradients were set to zero and zeta potential has a uni-
form value at channel’s surfaces, causes driving force reduces only
to its electroosmotic component. Then the velocity profile is
merely plane an its average magnitude equal to the slip velocity
calculated by Eq. (12), i.e. 1.1 mm/s.

Finally, transport equation (4) was solved for the concentrations
of Naþ and Kþ ions by employing the electric field and fluid velocity
previously obtained. This problem is transient; initial concentra-
tions (at t ¼ 0 s) were set to zero everywhere except at one of
the reservoirs.

In solving Eqs. (2) and (4) for this problem, additive Schwartz
method was used as a left preconditioner, with one layer of over-
lapping between subdomains, with a maximum size of 2000 un-
knowns in each subdomain. GMRES was employed as iterative
solver, and LU factorization was used in each subdomain.

Fig. 2 shows sample distribution in the central region of the
cross-network, previous to the separation process, and mesh de-
tails in the region near the electrode. Fig. 3 shows concentration
distributions of Naþ and Kþ ions at some moment ðt ¼ 5 sÞ during
the separation stage.
ction stage and mesh detail in electrode zone.



Fig. 3. Naþ and Kþ ions concentrations (mol/m3) after separation stage.

Fig. 4. Model problem for ASM. (a) Geometry; (b) Poisson–Boltzmann potential (V); (c) total potential (V); (d) velocity magnitude (m/s).
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Fig. 5. Additive Schwarz preconditioning.
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4.2. A model problem for additive Schwarz methods

This example explores the applicability of additive Schwarz
methods to a model problem of interest in nanoscale fluid dynam-
ics applications. The interest in solving this problem grounds on
testing numerical performance of the method, enabling us to mea-
sure computation times and parallel efficiency.

Consider an aqueous solution of a simple fully dissociated sym-
metrical salt which flows on a channel driven by the action of elec-
trical forces originated from external electric fields. The channel
has an L-shaped geometry with an horizontal and vertical lengths
of 3 lm and a cross-section of 0.4 lm � 1 lm. As the electric dou-
ble layer thickness (estimated through the Debye length, Eq. (10))
is around 0.1 lm, the slip velocity approximation (Eq. (12)) cannot
be employed.

A Laplace potential was computed by solving Eq. (3) with
qe ¼ 0, Dirichlet boundary conditions of 0.5 V at the inlet and
0 V at the outlet, and homogeneous Neumann boundary condi-
tions at the channel walls. A Poisson–Boltzmann potential was
computed by solving the nonlinear equation (9) with Dirichlet
boundary conditions of 20 mV (the electrokinetic potential) at
the channel walls and homogeneous Neumann boundary condi-
tions at the channel inlet and outlet. The solution for Poisson–
Boltzmann potential is shown in Fig. 4b. The Laplace and Pois-
son–Boltzmann potentials were added-up in order to determine
a total potential. Isolines of the total potential are shown in
Fig. 4c.

Finally, Navier–Stokes equations are solved by entering the
electrical forces as shown in Eq. (2). Electrical forces are deter-
mined from the total potential and Poisson–Boltzmann potential
through Eqs. (7) and (8). Non-slip velocity boundary conditions
are imposed at channel walls, and homogeneous Dirichlet bound-
ary conditions are employed for pressure at the inlet and outlet.
The computed velocity magnitude is shown in Fig. 4d.

The L-shaped channel domain was discretized with a tetrahe-
dral mesh with 569,791 nodes, 3,483,613 elements and
20,025,163 degrees of freedom. The rest of this subsection explores
the issues commented previously by applying the additive Schwarz
preconditioner to the model problem.

Although the problem at hand is essentially linear, it was solved
as a full nonlinear one employing two iteration of a standard New-
ton method. In all the cases, the final (outer, nonlinear) residual
norm was reduced by a factor of around 10�6.

The linear systems at each nonlinear step were solved with
GMRES(300) (i.e. GMRES restarted at 300 iterations) by defining
a fixed relative tolerance of 10�4 for the reduction of the initial (in-
ner, linear) residual norm.

The additive Schwarz method was employed as a left precondi-
tioner within GMRES iterations. Being the global linear systems of
saddle-point nature, they are ill-conditioned. Incomplete factoriza-
tions methods cannot be practically employed for the local prob-
lems, as this leads to GMRES stagnation. Thus, the local problems
were solved by employing full direct methods and aggressive sub-
domain sub-partitioning at each processor. The sub-partitioning
was performed on the adjacency graph obtained from the local,
diagonal part of the global sparse matrix with the help of METIS
[47] library.

In all test cases, wall-clock time measurements do not account
for the time required for evaluating and assembling residual vec-
tors and Jacobian matrices, but only for the time spent in solving
the linear systems. Parallel efficiency was computed by taking as
reference the timings of the runs performed on the smaller number
of processes, i.e. Ep ¼ ðPminTPmin Þ=ðpTpÞ, where p ¼ fPmin; . . . ; Pmaxg is
the set of number of processes employed and Tp is the wall-clock
time measurement with p processes.
The problem at hand was solved on 15, 20, 25, 35 and 45 pro-
cessors. Fig. 5 shows wall-clock time measurements and parallel
efficiency for the additive Schwarz preconditioner with overlap
zero. The optimal subdomain size seems to be around 1500 un-
knowns. Clearly, as the number of processors increase beyond
some limit, the required wall-clock time for obtaining the solution
does not decrease but stagnates.
5. Conclusions

A 3D finite element model for the simulation of electrokinetic
flow and transport phenomena in microfluidic chips was pre-
sented. Two examples of interest were considered. Electrophoretic
separation of ions was modeled and solved in a complete chip
geometry. A nanofluidics model problem was solved in order to
confirm the applicability and good performance of additive
Schwarz preconditioners in these kind of problems. Measured
wall-clock time and parallel efficiency are comparable with results
reported on related works in the area [13,14].

From a practical point of view, the considered computational
approach seems to be a suitable way to solve medium to large scale
problems arising in the modeling and design l-TAS and others
applications involving electrokinetic flow and transport phenom-
ena in microfluidics.
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