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Abstract
Understanding the hydrological functioning of the scarce freshwater bodies of semiarid regions is crucial, especially in those 
areas affected by anthropic activities involving land-use changes. In the dry western edge of the Argentina Pampean plains, 
a system of more than 100 shallow lakes of remarkable stability occurs. These lakes exhibit low salinity compared to those 
located in the more humid belt. This system has constituted the main water resource for humans from prehispanic times to 
the present. Stable isotopes were used to establish the seasonal surface-water/groundwater interactions and the hydrological 
conditions in a lake of the Dry Pampean Plain (DPP), i.e., Lake Los Pocitos, to understand the mechanism that guarantees 
such a resource. Results indicate that evaporation mainly controls the isotopic composition of lake water, overwhelming the 
effect of higher rainfall inputs during the wet (but also most evaporative) season. The δ18O mass balance model indicates 
greater groundwater inflow to the lake during the dry season (~0.4 m  month−1) compared to the wet season (~0.2 m  month−1). 
Lake level decreased in the wet season due to the lowest groundwater inflow and the greatest evaporation rate. Based on the 
proportion of water entering a lake that leaves through evaporation, Los Pocitos corresponds to a throughflow lake with a 
short water residence time (~0.47 years). These hydrologic conditions, along with freshwater inputs from a dune located at 
the western margin of the lake, determine the existence of this relatively stable and freshwater lake in the DPP where high 
evaporation rates are registered.

Keywords Groundwater/surface-water relations · Environmental tracers · Mass balance method · Water residence time · 
Argentina

Introduction

Lakes constitute one of the most sensitive ecosystems to 
anthropic impacts (Kidmose et al. 2013; Tao et al. 2013; 
Wetzel 2001). Often interactions with groundwater are cen-
tral to lake hydrology, biogeochemistry, and ecological func-
tioning, with natural and anthropic perturbations on aquifers 

relevant for lakes (Arnoux et al. 2017a; Shaw et al. 2013). 
This connection is crucial in dry sandy land regions where 
lakes are scarce and more reliant on groundwater supply 
and constitute important water resources for wildlife and 
humans (e.g., Bouchez et al. 2016; Harvey et al. 2007; Wil-
liams 1999). The estimation of groundwater inflow and out-
flow in lakes is often dismissed due to the difficulty of its 
quantification (e.g., Arnoux et al. 2017b). During the past 
decades, numerous studies have demonstrated that these 
interactions are of great importance not only for the water 
balance (e.g., Liao et al. 2018) but also for nutrient dynamics 
(Ala-aho et al. 2013; Brock et al. 1982; Lewandowski et al. 
2015; Meinikmann et al. 2015; Oliveira Ommen et al. 2012). 
Thus, the understanding of groundwater-lake interactions is 
important for the effective management of water resources 
and aquatic ecosystems (e.g., Winter et al. 1998).

Different methods have been used to quantify groundwa-
ter/surface-water interactions. Among them, dissolved con-
servative constituents such as chloride and stable isotopes in 
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the water molecule, have been widely used for this purpose 
(e.g., Bocanegra et al. 2013; Campodonico et al. 2019; Cao 
et al. 2018; Gibson et al. 2016; Gurrieri and Furniss 2004; 
Hofmann et al. 2008; Montalván et al. 2017; Petermann 
et al. 2018; Rosenberry et al. 2015; Shaw et al. 2017; Stets 
et al. 2010; Turner and Townley 2006). Stable isotopes are 
also valuable for estimating the water residence time (WRT) 
of lakes (Brock et al. 1982; Gat 2010; Gibson et al. 2016; 
Gibson et al. 2002; Gonfiantini 1986; Turner et al. 2010). 
Conceptually, based on the ratio of evaporation (E) to total 
water inputs (I), three hydrological conditions for lakes can 
be defined: desiccating ponds, terminal lakes, and through-
flow lakes (e.g., Gibson et al. 2016). In the first hydrological 
setting, inflow occurs once or sporadically, while conversely, 
in terminal lakes, inflow is continuous and long-term evapo-
ration balances inflow, thus no liquid outflow occurs. Finally, 
throughflow lakes are those with continuous inflow, which is 
balanced with the outflows represented by evaporation and 
lake water outflow. In this latter case, groundwater input 
is higher than lake surface evaporation (Gat 1995; Gibson 
et al. 2002).

The Pampean Plain (PP) in Argentina has gentle slopes 
and more than one hundred shallow lakes that developed 
on geomorphological depressions that originated mainly 
by wind deflation during the Quaternary (Tripaldi and For-
man 2007) and shallow water tables. Besides, during the 
last few decades, a water-table rise has been registered in 
this area due to land-use change related to the replacement 
of native vegetation by crops (e.g., Jobbágy et al. 2021). 
The hydrology of these lakes depends on rainfall, ground-
water discharge, potential evaporation, and the topographic 
position (e.g., Bocanegra et al. 2013; Drago and Quiros 
1996; Romanelli et al. 2014). This region of Argentina has 
a marked rainfall gradient from east to west, whereby in the 
east, the Humid Pampean Plain (HPP) has an annual rain-
fall >1,000 mm, and the west region of the Dry Pampean 
Plain (DPP) presents an annual rainfall <700 mm (Iriondo 
et al. 2009). In semiarid zones like the DPP, lakes are natural 
groundwater outcropping areas. Lakes located in the study 
area, known as “Mercedinas” due to their proximity to the 
city of Villa Mercedes (San Luis Province), constitute the 
only surface-water bodies in this area, where water is scarce, 
and they provide an essential habitat for aquatic fauna and 
flocks of water birds. They also offer crucial water sources 
for livestock and have shaped human displacement, roads 
and settlements throughout the Holocene until recent times 
(Heider et al. 2019). Currently, these lakes are exposed to 
several anthropic impacts such as recreational activities, 
including fishing, and the modification of their surrounding 
landscape through cattle grazing of native grasslands and 
cultivation.

In closed-basin lakes such as those located in the DPP, a 
modification in the land use of the surrounding landscape 

can lead to an increase in groundwater recharge and water 
level rise, as documented when dryland agriculture replaces 
native vegetation, or water degradation due to below-ground 
nutrient inputs from fertilized plots (e.g., Blarasin et al. 
2020; Nosetto et al. 2015; Santoni et al. 2010). Likewise, 
rise of the water table can generate salt leaching from soils 
into surface-water and groundwater systems (e.g., Jayawick-
reme et al. 2011). Furthermore, in the current environmental 
context, both climate and land-use change can lead to water-
table fluctuations, which influence the dynamic of these 
kinds of lakes (Córdoba et al. 2014; Guerra et al. 2015; Liu 
et al. 2013; Nosetto et al. 2015; Tao et al. 2013).

Several studies have shown that groundwater constitutes 
an important water source in shallow lakes of the HPP 
(Drago and Quiros 1996; Fernández Cirelli and Miretzky 
2004; Miretzky et al. 2001; Miretzky et al. 2000; Romanelli 
et al. 2014). However, this connectivity was not explored in 
the driest portion of the PP, and it may be particularly impor-
tant in sand dune landscapes where an installed drainage net-
work (permanent or ephemeral) does not exist. Moreover, in 
spite of the drier climate, lakes appear to be deeper and more 
stable than in the HPP, even during dry periods when most 
lakes across the plain desiccate (Vilanova et al. 2015). The 
main goal of this work is to establish surface-water/ground-
water interactions, by means of stable isotopes, in one of the 
lakes of the sand dune system of the DPP known as Lake 
Los Pocitos. For this purpose, the δ18O mass-balance model 
was applied to quantify the groundwater discharge flux into 
the lake and the E/I ratio was used to establish the hydro-
logical conditions of Lake Los Pocitos. Thus, this study will 
contribute to the understanding of the role of groundwater 
in sustaining the Lake Los Pocitos ecosystem, and provide 
an insight on the persistence of lakes with low total dis-
solved salts, particularly in an area of high evaporation rates. 
Furthermore, the information generated in this contribution 
will help to elucidate the hydrological functioning of water 
bodies located in other semiarid and arid regions such as the 
Nebraska Sand Hills in the USA (e.g., Rossman et al. 2019) 
and the Badain Jaran Desert in China (e.g., Liu et al. 2016).

Lake Los Pocitos region

Semiarid dune fields and sandy mantles of late Quaternary 
age cover most of the DPP, in west-central Argentina (Iri-
ondo and Kröhling 1995; Zárate and Tripaldi 2012). The 
regional topographic slope is northwest-southeast. Ceci and 
Coronado (1981) established, based on a few drilled wells 
and several vertical electrical soundings, that the crystal-
line basement is located at 200 m depth in the S and W 
from the city of Villa Mercedes. The thicknesses of the satu-
rated sedimentary aquifer formations and their hydrological 
parameters are mostly unknown. The groundwater regional 
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flow follows the same direction of the regional topographic 
slope (NW-SE). The hydraulic gradient in the western part 
of the basin is 28% and in the southeastern is 30% (Ceci and 
Coronado 1981).

The only major permanent surface drainage is the Quinto 
River. However, the water table reaches the topographic 
surface in the region and floods the topographically lower 
areas, filling blowout depressions. In this sense, more than 
200 seepage lakes are distributed over the sandy plain in 
deflation pans (Tripaldi et al. 2013; Vilanova et al. 2015). 
Lake Los Pocitos is one of these shallow inland water bod-
ies (Fig. 1).

Lake Los Pocitos (33°58′12.77″ S - 65°34′16.07″ W) 
is a lake located south of the Quinto River, about 45 km 
away from the city of Villa Mercedes (Fig. 1c). It is located 
in the northwestern portion of the lake system. Its surface 
area is ∼0.2  km2, the maximum water depth is about 11 m, 
with an average water depth of about 2 m. Since it has no 
surface-water drainage networks, it gains water mainly via 
rainfall and groundwater discharge, and loses water primar-
ily through evaporation and groundwater outflow. Ground-
water outflow was observed by means of the environmental 
tracer 222Rn (Echegoyen et al. 2021). Los Pocitos waters 
are alkaline (mean pH 9.1), with low salinity (mean TDS 
651 mg  L−1), and of the  HCO3

−-Na+-K+ type (Echegoyen 
et al. 2021).

The Lake Los Pocitos area is in the denominated West-
ern Pampean dunefields (Zarate and Tripaldi 2012). This 
region is characterized by a low relief plain that includes 
well vegetated and diverse stabilized dunes surrounded by 

discontinuous aeolian sands mantles (Tripaldi and Forman 
2007). The surrounding geology is dominated by aeolian 
sand deposits composed of lithic feldsarenites and felds-
pathic litharenites, where volcanic grains are by far the 
most common rock fragments (Tripaldi et al. 2010). Dunes 
show two main orientations in this area. Parabolic dunes 
(currently vegetated) suggest southeasterly paleowinds, 
whereas barchanoid ridges indicate a recent dune reac-
tivation with winds coming from the northeast (Tripaldi 
et al. 2013). The compound parabolic dune at Lake Los 
Pocitos is a 3.5 m thick exposure of well-sorted fine sand, 
subdivided into two units according to the sedimentary 
structures (Tripaldi et al. 2013). The lower unit (~1 m 
thick) exhibits horizontal laminated sand deposited by 
wind ripple migration, and is covered by the upper unit 
(~2 m thick) which corresponds to a cross-laminated bed-
set originated by dune migration (Tripaldi et al. 2013). 
Barchanoid ridges at the western margin of the lake evi-
dence an aeolian reactivation where the dunes migrate in 
a NE-SW direction. These sandy sediments have relatively 
weak pedogenesis (Colazo 2012).

Natural grasslands prevail in the area (Colazo 2012) 
with different degrees of alterations caused by cattle graz-
ing (Viglizzo and Jobbágy 2010). Native chañar (Geof-
froea decorticans) and caldén (Prosopis caldenia) trees 
have progressively encroached on the area and are particu-
larly abundant on the eastern (downslope) margin of the 
lake. The lake shoreline and shallow margins are occupied 
by marshes dominated by Cortaderia, Schoenoplectus, and 
Typha species.

Fig. 1  a Location map of the San Luis Province and PP in Argen-
tina. b Location of Mercedinas lakes and Lake Los Pocitos in the PP. 
c Mercedinas lakes, located south of the Quinto River and the city 
of Villa Mercedes (Lake Los Pocitos is located in the northwestern 

portion of the lake system). d Location of sampling points of surface 
water  (SW) and groundwater  (GW) during dry (September 2017) and 
wet (April 2019) seasons
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Climate in this region is semiarid, with marked seasons 
(Fig. 2). The mean annual rainfall is 679 mm (record period 
1968-2018, INTA Villa Mercedes gaging station), and the 
mean annual temperature is 15.7 °C. Rainfall occurs mainly 
during the austral spring and summer, between October and 
March (>50 mm/month for the same record period), whereas 
the austral winter has the lowest (<50 mm/month) rainfall 
inputs. Because of the highest temperatures, evaporation 
rates peak simultaneously with rainfall, and are maximum 
during the austral summer (Marchesini et al. 2020). Figure 2 
shows that evaporation exceeds rainfall all the year, with an 
annual evaporation rate measured from evaporated ponds of 
1,541 mm  year−1 (for the record period 2000-2005 at the city 
of Villa Mercedes). The average relative humidity is 66%.

Materials and methods

Lake evaporation estimation (E)

Evaporation was estimated for each season (September 2017 
and April 2019) by the Penman combination method (Rosen-
berry et al. 2007). Daily average air temperature, relative 
humidity, wind speed, and solar radiation data were obtained 
from the INTA Villa Mercedes gaging station. Water-surface 
temperature was measured directly in the field.

Sampling and analysis

Surface-water samples were collected from Lake Los Poci-
tos at a depth of about 0.3 m in both dry (n = 6, September 

2017) and wet (n = 10, April 2019) seasons. During the 
two sampling campaigns, groundwater samples (n = 5 
and n = 2, for dry and wet seasons, respectively) from the 
phreatic aquifer were obtained through hand-dug wells. 
The depth at which the water level was reached varied 
between 0.8 and 7.6 m below surface (bs; water samples 
were retrieved when the water table was reached), covering 
the entire perimeter of the lake (Fig. 1d).

Field measurements were performed following standard-
ized methods (e.g., Rice et al. 2012); these determinations 
included temperature (T), electrical conductivity (EC), and 
total dissolved solids (TDS). Unfiltered samples for stable 
isotope determinations were stored in 50 ml polyethylene 
bottles filled to the top with water, and capped without 
leaving any headspace. Stable isotope measurements were 
performed using cavity ring-down spectroscopy (Picarro 
L2120-i) at the GEA-IMASL-CONICET Institute. Results 
are expressed as δ% according to Eq. (1).

where δ is the isotopic deviation in %, R is the isotopic ratio 
(2H/1H or 18O/16O), S is the sample, and V-SMOW is the 
reference material (Vienna Standard Mean Ocean Water; 
Gonfiantini 1978). Analytical uncertainties were ± 0.1% for 
δ18O and ± 0.5% for δ2H.

The lake perimeter was determined with a Garmin 
global positioning system (GPS) equipment and lake 
depths were measured using a Speedtech Depthmate port-
able sounder (readings are accurate from 0.6 to 79 m). The 

(1)�% = 1000

(

RS − RV−SMOW

)

RV−SMOW

Fig. 2  Monthly mean rainfall 
(P) and temperature (T) series 
at the city of Villa Mercedes 
(1969-2019 record period). 
Evaporation (E) measured from 
evaporated ponds (2000-2005)
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lake area and volume were calculated using geographical 
information systems (ArcGIS).

Isotopic mass balance

Groundwater inflow to Lake Los Pocitos was determined by 
employing a mass balance method based on δ18O concentra-
tions (Gibson et al. 2016; Gonfiantini 1986). Several studies 
have employed a similar approach to determine groundwater 
inflow into lakes. For instance, some recent works are those of 
Shaw et al. (2017) who used this model to determine ground-
water inflow in a temperate seepage lake in Georgetown Lake 
in Montana (Canada), and Arnoux et al. (2017a), who applied 
this method in kettle lakes in Quebec (Canada). Recently, 
Campodonico et al. (2019) used the environmental tracer δ18O 
to quantify groundwater inflow into Laguna del Plata (Mar 
Chiquita system, Argentina). Steady-state mass balance equa-
tions assume that lakes are well mixed and maintain a long-
term constant volume (Gat 2010; Gibson and Edwards 2002). 
Lake levels were reconstructed for Lake Los Pocitos using the 
available Sentinel-2 imagery from June 2016 to September 
2020 (Fig. 3). For this period, a lake area of 0.196 ± 0.002  km2 
was calculated. The relatively constant lake area during this 
period, along with the depth of Lake Los Pocitos allows one 
to consider it a steady-state system for modeling purposes.

In absence of surface drainage networks, the water bal-
ance at Lake Los Pocitos is controlled by groundwater dis-
charge into the lake, groundwater outflow from the lake, 
rainfall, and evaporation. Thus, its general water mass bal-
ance can be stated as follows:

where V is the water volume in the lake, t is time, Gi is 
groundwater inflow, P is precipitation, Go is lake ground-
water outflow and E is evaporation.

A lake isotopic balance can be performed by measur-
ing or calculating the isotope compositions (δ) for all the 
components of the water balance equation. When combin-
ing each term of Eq. (2) with δ18O values, the following 
equation is obtained:

Since water outflow from the lake does not cause iso-
topic fractionation, one can assume that isotopic compo-
sitions from groundwater outflow and the lake water are 
the same (δGo = δL; Sacks et al. 2014). Rearranging and 
combining Eqs. (2) and (3), one can calculate the ground-
water inflow as follows:

(2)
dV

dt
= Gi + P − Go − E

(3)
dV�L

��
= Gi�Gi + P�

P
− Go�Go − E�E

Fig. 3  Lake-level variation from June 2016 to September 2020
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Most terms in Eq. (4) can be measured directly, with 
the exception of the isotopic composition of evaporated 
lake water (δE), which is difficult to measure. Thus, δE can 
be estimated using the linear resistance model provided 
by Craig and Gordon (1965), which describes δE (Eq. 5) 
as a function of the lake isotopic composition (δL), the 
relative humidity (h), the isotopic composition of local 
atmospheric water vapor (δA), and fractionation factors.

All fractionation factors were calculated using the experi-
mental equations defined by Horita and Wesolowski (1994). 
The equilibrium isotope fractionation factor at the tempera-
ture of the air-water interface for 18O (i.e., α*) is given by:

where αL/V is defined by Gonfiantini (1986) as the ratio in 
liquid versus vapor, and can be estimated with Eq. (7):

where T is the temperature in degrees K.
The kinetic fractionation factor (Δε) depends on humid-

ity, and can be calculated using Eq. (8).

where K(18O) = 14.2%, which is a value determined from 
wind tunnel experiments (Gonfiantini 1986).

The total fractionation factor (ε) is expressed in % and is 
estimated with Eq. (9):

where ε* is the equilibrium fractionation factor which 
depends on temperature and it is estimated with Eq. (10):

Finally, the isotopic composition of ambient atmospheric 
water vapor (δA) was calculated by means of Eq. (11) assum-
ing equilibrium with precipitation (Gibson et al. 2008):

(4)Gi =
P
(

�L − �P

)

+ E
(

�E − �L

)

�Gi − �L

(5)�E =
�
∗
�L − h�A − �

1 − h + 10−3Δ�

(6)�
∗
=

1

�L∕V

(7)

�L∕V

(

18
O
)

= exp

(

−7.685

103
+

6.7123

T
−

1666.4

T2
+

350410

T3

)

(8)Δ� = K(1 − h)

(9)� = �
∗
+ Δ�

(10)�
∗
= (1 − a

∗
) + Δ�

(11)�A =
�P − �

∗

1 + 10−3�∗

Hydrologic conditions and lake water residence 
time

Stable isotopes can also be used to classify the hydrologic con-
ditions of lakes such as desiccating water bodies, terminal lakes, 
or throughflow lakes (Gibson et al. 2002; Gonfiantini 1986). 
In well-mixed and steady-state conditions, the general water 
mass balance and the isotopic mass balance equations can be 
rearranged from Eqs. (1) and (2), and the fraction of total water 
inputs lost by evaporation (E/I) can be calculated as follows:

where δL represents water discharged from the lake, δI repre-
sents inflowing water, δ* is the limiting isotope enrichment 
factor, and m is the enrichment slope. Values of E/I between 
0 and 1 reflect varying degrees of throughflow lakes, E/I = 1 
correspond to terminal lakes, and E/I >1 represent desiccat-
ing water bodies (Gat 1995; Gibson et al. 2016). These last 
types of lakes are transient systems (dV/dt <0) and therefore 
cannot be considered to be in a hydrological steady state 
(Gibson et al. 2002).

The limiting isotope enrichment factor (δ*) is estimated 
with Eq. (13).

The enrichment slope (m) can be calculated with Eq. (14).

Water residence time (τ) is a determinant parameter of 
the ecological health of lakes, and it is defined as the aver-
age time that a water molecule spends in the system. For 
instance, WRT has also been related to the N removal effi-
ciency by the ecosystem (e.g., Finlay et al. 2013).

The lake WRT can be calculated from the estimation of 
E/I and lake volume (V), according to the equation proposed 
by Gibson et al. (2002):

Results and discussion

Lake evaporation estimation (E)

Evaporation (E) measured from evaporated ponds located at 
INTA Villa Mercedes gaging station was 1,541 mm  year−1, 
for the 2000-2005 period. These data are not available 

(12)
E

I
=

�L − �I

�∗ − �L

m

(13)�
∗
=

h�A + �

h − 10−3�

(14)m =
h − 10

−3
�

1 − h + 10−3Δ�

(15)� =

(

E

I

)(

V

E

)
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for the sampling period, therefore the Penman method 
was used to calculate E. The obtained results were 79 and 
176 mm  month−1 for the dry and wet seasons, respectively. 
The difference between the evaporation values estimated by 
means of the Penman method and those measured directly 
at INTA ponds is <10% for the 2000-2005 period.

Isotopic composition

Stable isotopic compositions can be visualized in the con-
ventional δ2H (%) vs. δ18O (%) plot (Fig. 4), jointly with the 
local meteoric water line (LMWL) of the city of Río Cuarto 
(located 150 km NE of Lake Los Pocitos), i.e.: δ2H (%) = 8.3 
δ18O (%) + 15.2 (Cabrera et al. 2019). The obtained results 
indicate that groundwaters were more depleted in heavy iso-
topes (δ18O = −5.9 to −3.2%; δ2H = −35 to −19%; Table 1) 
than surface waters (δ18O = −1.6 to 1.4%; δ2H = −10 to 3%; 
Table 1); besides, lake samples showed different isotopic 
compositions during both seasons. During the dry season, 
in September, the average stable isotopic composition of 
lake water was −1.3% for δ18O and − 8% for δ2H, while con-
versely, during the wet season, in April, lake waters were 
more enriched in heavy isotopes, and showed mean values 
of 0.9 and 0% for δ18O and δ2H, respectively.

All surface-water samples plot below the LMWL, evi-
dencing evaporation processes and defining a local evapora-
tion line (LEL), which can be explained by the equation: δ2H 
(%) = 4.8 δ18O (%) - 3.6 (R2 = 0.98; Fig. 4).

As stated in the preceding, groundwater samples corre-
spond to the shallowest portion of the phreatic aquifer. The 
groundwater samples were divided into shallow (<1.5 mbs) 
and deep (>1.5 mbs) waters according to their isotopic com-
position. Shallow groundwater presents δ18O and δ2H values 
of −4.3 to −3.2% and -27 to −19%, respectively. Except for 
the sample located at the east side of the lake (1GLP-6), 
δ18O values in deep groundwater around Lake Los Pocitos 
varied from −5.9 to −5.1%, and δ2H values varied between 
−35 and -27% (Table 1). The LEL origin coincides with the 
isotopic signatures of groundwater samples, suggesting that 
they constitute an important source of water from which sur-
face water is evaporated. Three samples plot near the LMWL 
but over the LEL, and correspond to groundwater samples 
that were taken on the dune at shallow depths (<1.5 mbs). 
In arid environments with sandy soils where the water table 
is high, direct evaporation from a bare soil surface is an 
important factor to consider (Gat 1996). Groundwater sam-
ple 1GLP-6 on the eastern margin of the lake shows a similar 
isotopic composition to lake waters, reflecting the effects of 
capillary evaporation. The remaining groundwater samples 
showed a similar isotopic signature to rainfall, as they plot 
near the LMWL. These groundwater samples are deeper 
(>1.5 mbs) and indicate that groundwater around Lake Los 

Pocitos has a dominant meteoric origin, whereas shallow 
groundwater is affected by evaporation processes (Fig. 4). 
This effect of evaporative losses on shallow groundwater 
(less than 1 mbs) was also observed in other points of the 
PP (Poca et al. 2020). Particularly, a deep groundwater sam-
ple (1-GLP-2) shows a more depleted isotopic composition, 
probably due to the influence of recharge coming from the 
western area according to the general behavior of Pampean 
rainfalls.

The isotopic composition of recharge water/rainfall into 
the lake (δ recharge) is commonly estimated by the inter-
section of the LEL and the LMWL (δ18O = −5.4% and 
δ2H = −30%; e.g., Gat 1996; Gibson et al. 1993; Krabben-
hoft et al. 1994). These isotopic values for rainfall are also 
similar to the mean values of the deepest groundwater sam-
ple (δ18O = −5.4% and δ2H = −30%). This is consistent with 
the fact that the isotopic composition of deep groundwater 
not affected by evaporation or mixing processes represents 
the average isotopic composition of rainfall in temperate cli-
mates (Fontes 1980).

Groundwater inflow into Lake Los Pocitos: stable 
isotope mass balance

The groundwater inflow into Lake Los Pocitos was esti-
mated using Eq. (4) during the dry and wet seasons. The 
rainfall value corresponds to the monthly rainfall regis-
tered at INTA Villa Mercedes gaging station for Septem-
ber 2017 and March 2019, representing the dry and wet 
seasons respectively (PDry = 28.5 mm and PWet = 116 mm). 
In addition, as stated in the preceding, the evaporation rate 
from Lake Los Pocitos was estimated for the dry and wet 
seasons using the Penman method (EDry = 79.0 mm and 
EWet = 176.0 mm).

The δ18O values for lake waters (δL) are −1.3 and 0.9% 
for the dry and wet seasons, respectively. Since Cabrera et al. 
(2019) observed a seasonal effect in the isotopic composition 
of rainfall at Río Cuarto city, two different δP values were 
used for mass balance calculations. During the dry season, 
rainfall is more depleted (δP = −5.7%), whereas in the wet 
period rainfall is more enriched in heavy isotopes, with a 
mean δ18O value of −4.5% (Cabrera et al. 2019). The δ18O 
value of groundwater (δGi = −4.6%) used for calculation 
purposes corresponds to the mean isotopic composition of 
samples collected around the perimeter of the lake, except 
for sample 1GLP-6 which clearly shows the effects of capil-
lary evaporation. Both δ18O values (i.e., δP and δGi) were 
multiplied by the lake surface area (0.2  km2).

Finally, the δ18O value of evaporating moisture (δE) was 
calculated for both seasons using the multilayered model 
(Eq. 5) developed by Craig and Gordon (1965) and consid-
ering the water salinity. Since δE also depends on humidity, 
mean monthly humidity values were obtained from INTA 
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Villa Mercedes gaging station for September 2017 and 
March 2019. For the dry season, the δE is −18.5%, whereas 
for the wet season it is −7.8%.

Results obtained from the isotope mass balance using 
δ18O values confirm that groundwater discharge into the lake 
occurs during both seasons (Table 2). During the dry season, 
a groundwater inflow of ~0.4 m  month−1 to Lake Los Pocitos 
was estimated, whereas for the wet season a lower ground-
water inflow was detected, in the order of ~0.2 m  month−1.

The groundwater discharge to Lake Los Pocitos during 
the dry season was previously demonstrated by Echegoyen 
et al. (2021) using the environmental tracer 222Rn. This 
method revealed that Lake Los Pocitos exhibits a differen-
tial hydrogeological behavior along its perimeter. Ground-
water inflow was detected at the northwestern sector of the 
lake, whereas surface water discharged into the aquifer at the 
southeastern sector of the lake. The different groundwater 
inflow values obtained with both methods can be explained 
by the fact that they indicate Gi rates at different timescales. 
While the stable isotope mass balance methods reflect the 
average conditions during months to several years (during 
the entire WRT), radon-based approaches reflect a maximum 
period of 20 days (Arnoux et al. 2017b; Petermann et al. 
2018). Moreover, it was considered that this period could 
be even shorter due to degassing of 222Rn to the atmosphere 

and wind-induced water mixing; thus, the authors consider 
that results obtained by means of both methods are consist-
ent with different timescales of sensitivity.

Regarding the sources of error of the stable isotope mass 
balance, previous works (e.g., Krabbenholft et al. 1990; Shaw 
et al. 2017) have demonstrated that this method is more sensi-
tive to the estimation of the isotopic composition of the evapo-
ration flux, which depends on humidity and the isotopic value 
of atmospheric moisture. Thus, the model uncertainty may be 
increased due to the fact that these parameters are estimated by 
indirect methods. Despite these sources of error, the employed 
method is adequate as a first assessment of groundwater inflow 
quantification in these types of lakes where previous studies 
have not considered the groundwater component.

Hydrologic conditions and lake water residence 
time

The proportion of the total water input that is lost through 
evaporation was calculated using Eq. (12). The E/I ratios of 
Lake Los Pocitos were 0.22 and 0.62 for dry and wet sea-
sons, respectively, indicating that about 22% of lake water 
was lost through lake surface evaporation during the dry 
period, whereas during the wet period the lake water lost by 
evaporation increased to 62%. Values of E/I between 0 and 

Table 1  Physico-chemical 
parameters and isotopic 
composition of Los Pocitos 
Lake and groundwater samples. 
The groundwater sample depth 
is also included. TDS total 
dissolved solids; EC electrical 
conductivity; T temperature

Sample name Depth T EC TDS δ18O δ2H
(mbs) (°C) (μS  cm−1) (mg  L−1) (%) (%)

1LLP-1 15.5 1,219    611 -1.1 -7

1LLP-2 15.8 1,218    611 -1.2 -8
1LLP-3 15.5 1,234    618 -1.0 -7
1LLP-4 16.3 1,169    587 -1.6 -10
1LLP-5 16.6 1,216    609 -1.5  -9
1LLP-6 16.7 1,333    668 -1.2  -7
2LLP-1 24.5 1,230    616  0.9  -1
2LLP-2 23.8 1,218    613  1.4   2
2LLP-3 23.7 1,218    610  1.1   2
2LLP-4 24.5 1,280    639  0.1  -5
2LLP-5 19.7 1,169 1,194  0.1  -3
2LLP-6 20.2 1,249    625  1.2   2
2LLP-7 23.6 1,238    620  1.3   3
2LLP-8 21.6 1,164    583  1.0   1
2LLP-9 21.1 1,180    591  1.3   2
2LLP-11 21.5 1,236    618  1.0   1
1GLP-2 2.20 25.2      89    177 -5.9 -35
1GLP-3 0.85 24.8    511    256 -3.7 -19
1GLP-4 7.60 19.4    472    236 -5.1 -27
1GLP-5 1.83 19.8 1,014    507 -5.2 -29
1GLP-6 2.21 Nd 1,651    826  0.1   -2
2GLP-3 0.95 Nd    332    166 -4.3 -27
2GLP-4 1.35 Nd    283    140 -3.2 -20
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approaching 1 (which corresponds to 0-100% respectively) 
reflect varying degrees of throughflow lakes (Gat 1995; Gib-
son et al. 2016; Turner et al. 2010), where inflow is continu-
ous and balanced by outflow (Gibson et al. 2002).

In the PP, dunes, especially those without vegetation, act 
as preferential recharge areas where freshwater from rainfall 
can locally form important groundwater lenses in the upper 
part of the aquifer, surrounded by salty groundwater (Blarasin 
et al. 2014; Jobbágy et al. 2011). This occurs in the dunes of 
Los Pocitos area, where barchanoid dunes act as preferential 
recharge zones. Here, groundwater measurements show EC 
values <550 μS  cm−1. Regional studies performed on rainwa-
ter samples from Río Cuarto station (2006-2012) have shown 
EC values of ~54 μS  cm−1 and that they correspond to the cal-
cium sulfate or calcium carbonate type (Cabrera et al. 2013).

The throughflow condition of the lake, along with fresh-
water inputs from the dune, can explain the existence of a 
nonsalty lake like Los Pocitos (mean TDS 651 mg  L−1) in a 

semiarid region in which high evaporation rates would war-
rant a fast concentration of solutes in any stagnant water body.

Figure 5 corresponds to a schematic diagram depicting the 
different components of the hydrological budget for this lake 
system. Evaporation exceeds rainfall during both seasons. 
Although groundwater inflow occurs during both seasons, it is 
lower during the wet season. Despite the fact that this is the sea-
son when the highest rainfall is recorded, due to lower ground-
water inflow in the lake and a greater loss of water by the intense 
evaporation, a decrease of 10 cm in the lake level was observed.

Water residence time, which was calculated taking 
into account evaporation, precipitation, the absence of an 
installed drainage network that flows into the lake, and the 
lake volume, indicates how rapidly the water in the system 
is replaced. WRT of 0.28 and 0.67 years were estimated for 
Lake Los Pocitos for dry and wet seasons, respectively. Low 
values (i.e., <1 year) indicate a short WRT in the system, 
which generates a constant exchange of water. Moreover, the 
low WRT inhibits the interaction between water and rocks, 

Fig. 4  Isotopic composition (δ2H vs. δ18O) of Lake Los Pocitos (δL) and associated groundwaters. The LMWL from the city of Rio Cuarto 
(Cabrera et al. 2019) and the mean isotopic composition of local rainfall (δP) are also included

Table 2  Input data for stable isotope mass balance and evaporation loss in Lake Los Pocitos

T: air temperature; h: relative humidity; P: precipitation; E: evaporation; δL: δ18O composition of lake waters; δP: δ18O composition of precipita-
tion; δGi: δ18O composition of groundwater; δA: δ18O composition of atmospheric water vapor; δE: δ18O composition of evaporated lake water; 
Gi: groundwater inflow

Season Area T h P E δL δP δGi δA δE Gi Gi

(m2) (°C) (mm  m−1) (mm  m−1) 18O (%) 18O (%) 18O (%) (%) (%) (m  month−1) (mm  day−1)

Dry 195,884 12.7 0.62   21   79 −1.3 −5.7 −4.6 −16 −19 0.4 12.8
Wet 195,185 17.9 0.74 116 176 0.9 −4.5 −4.6 −14 −7.8 0.2 5.5
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reducing the intensity of weathering processes, which favors 
a low salt concentration. The WRT values calculated for 
Lake Los Pocitos were lower than those reported for other 
lakes in the HPP (τ = 1.11 years) by Quiroz Londoño et al. 
(2020). These differences may be attributed to the existence 
of different climatic regimes in the PP. For instance, within 
the USA, aridity is an important factor controlling E/I and 
τ, with relative humidity and annual precipitation being the 
main drivers (Brooks et al. 2014).

Different studies (Brock et al. 1982; Wolfe et al. 2007) 
established that throughflow lakes and, to a lesser extent, 
those with relatively short WRT, show good biological con-
ditions and low concentrations of nitrogen, phosphorus, and 
dissolved organic carbon. Thus, the hydrological conditions 
determined for Lake Los Pocitos could explain the good 
water quality observed in this water body.

Unfortunately, the environmental quality of water bodies 
in this region is at risk of deterioration in response to distur-
bances caused by human activities. Changes in the hydro-
logic balance as a result of the conversion of native vegeta-
tion to areas devoted to agriculture have been reported for 
instance in Australia, Southern High Plains in the USA, and 
the Sahel plains in North Africa (George et al. 1997; Leblanc 
et al. 2008; Scanlon et al. 2005). A widely observed pattern 
of rising water levels and soil salinity has been reported in 
such semiarid sedimentary plains. This does not only cause 
the loss of cultivable hectares, but also the deterioration of 
ecosystems that depend on groundwater (George et al. 1997; 
Williams 1999). A widespread water-table rise accompanied 
by incipient salinization of soils, phreatic groundwater, and 
surface waters has also been recorded in the DPP (Bogino 
and Jobbágy 2011; Jayawickreme et al. 2011; Santoni et al. 
2010). Even the appearance of deep canyons and streams 
in the western edge of the DPP caused by sapping has been 

related to land use change (i.e., replacement of native vegeta-
tion by crops) and the consequent water-table rise (Contreras 
et al. 2013; Jobbágy et al. 2021). Particularly, in the study 
area, the anthropic activities have not significantly impacted 
the water quality and lake levels which have remained rela-
tively constant during the last few years. However, if human 
activities continue without control and remediation policies, 
it is probable that these modifications could generate a nega-
tive impact on the ecosystem in a short time.

The surface-water and groundwater degradation due to the 
use of fertilizers is another risk associated with agriculture 
expansion that has become an environmental problem in many 
regions of the world. In Argentina, N-containing fertilizers 
have been utilized inefficiently, and large quantities are fre-
quently discharged into aquatic ecosystems causing eutrophi-
cation (e.g., Licursi et al. 2016). N-degraded groundwater and 
lakes have been recognized in the PP (Blarasin et al. 2020; 
Romanelli et al. 2020). Lakes receive water inputs from nitrate-
contaminated groundwater, which can cause ecosystem dete-
rioration. WRT is an important factor related to the nitrogen 
(N) self-purification capacity of aquatic systems (e.g., Finlay 
et al. 2013; Tong et al. 2019). For instance, a longer WRT 
results in higher N removal efficiency via denitrification or 
permanent burial in water bodies (Finlay et al. 2013).

The results obtained in this work give an idea of the 
hydrological functioning of water bodies emplaced in the 
DPP and their possible response to anthropic disturbances. 
Thus, establishing the surface-water/groundwater interac-
tions, the type of lake, and the WRT in Lake Los Pocitos 
results in a relevant consideration of the changes in land use 
that have occurred in the DPP in the last few decades. For 
instance, the ecosystem N removal efficiency via denitrifi-
cation or permanent burial would be affected by the short 
WRT in Lake Los Pocitos. The preservation of groundwater 

Fig. 5  Schematic hydrological model for Lake Los Pocitos during a dry and b wet seasons. The arrow thickness is proportional to the compo-
nent contribution. The δ18O values for rainfall (δP) are those reported by Cabrera et al. (2019) for Rio Cuarto station
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quality is crucial in this region, where a high percentage of 
total inflow to surface-water bodies comes from this source.

Concluding remarks

Lakes where the evaporation rate exceeds rainfall are usu-
ally desiccating ponds. However, Lake Los Pocitos has 
maintained its water level through the last decade, show-
ing a relatively minor seasonal fluctuation. The δ18O mass 
balance model suggests a groundwater inflow of ~0.4 
and ~0.2 m  month−1 to Lake Los Pocitos during the dry 
and the wet season, respectively. These results confirm that 
groundwater discharge into the lake occurs during both sea-
sons, allowing a relatively constant water level throughout 
the year. During the wet season, in spite of the highest rain-
fall rate, the lowest groundwater inflow and the most intense 
evaporation causes a lake-level decrease of ∼10 cm com-
pared to the dry season, when it increases again.

Based on the ratio of water inputs to the lake and surface 
evaporation, Lake Los Pocitos is classified as a throughflow 
lake with uninterrupted inflows that exceed loss by evapora-
tion, and yield a WRT of approximately half a year. These 
hydrologic conditions, along with freshwater inputs from the 
dune, explain why, in spite of the aridity of the region, low 
water salinity and stable lake levels prevail.

This study constitutes a first approach to the quantifica-
tion of the groundwater inflow for a large group of lakes 
located in the DPP, helping researchers to understand the 
lake sensitivity to changes in groundwater resulting from 
the ongoing climate and land-use changes and supporting 
decision-makers in the development of water management 
policies in these landscapes. In addition, the results indicate 
that these lakes offer an ideal opportunity to observe the 
impact of land-use changes in this semiarid region, which 
is part of one of the major agricultural regions in the world. 
Future research efforts should address the effects of land-use 
change on the hydrological cycle of the DPP.
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