arXiv:2201.13076v1 [math.CA] 31 Jan 2022

MAXIMAL OPERATOR, LITTLEWOOD-PALEY FUNCTIONS AND VARIATION
OPERATORS ASSOCIATED WITH NONSYMMETRIC ORNSTEIN-UHLENBECK
OPERATORS.

VICTOR ALMEIDA, JORGE J. BETANCOR, PABLO QUIJANO, AND LOURDES RODRIGUEZ-MESA

ABSTRACT. In this paper we establish LP boundedness properties for maximal operators, Littlewood-Paley func-
tions and variation operators involving Poisson semigroups and resolvent operators associated with nonsymmetric
Ornstein-Uhlenbeck operators. We consider the Ornstein-Uhlenbeck operators defined by the identity as the co-
variance matrix and having a drift given by the matrix —A(I + R), being A > 0 and R a skew-adjoint matrix.
The semigroup associated with these Ornstein-Uhlenbeck operators are the basic building blocks of all the normal
Ornstein-Uhlenbeck semigroups.

1. INTRODUCTION

In this paper we are concerned with maximal operators, Littlewood-Paley functions and variation operators
defined by Poisson semigroups and resolvent operators for nonsymmetric Ornstein-Uhlenbeck operators.

We denote by @ a real, symmetric and positive definite d X d matrix and by B a nonzero real d x d matrix
having eigenvalues with negative real parts, being d € N, d > 1. We now introduce the Ornstein-Uhlenbeck
semigroup defined by @, named the covariance matrix, and B called the drift matrix. For every ¢t € (0, 00| we
consider the matrix @, given by

t
Qt _ / esBCQesB*d57
0
and the Gaussian measure v, on R? having mean zero and covariance matrix @Q; defined by
dye(z) = (2m) "2 (det Q) " 2e~3(Q =) gy,
The Ornstein-Uhlenbeck semigroup is {’H?’B}bo, where, for every t > 0,

(1.1) HOE (f)(x) = / 7 (Pe —y)duly), «eRY,
Rd

where f belongs to the space Cp(R?) of bounded continuous functions in R9.
The semigroup {HZ?};~¢ is the transition semigroup of the Ornstein-Uhlenbeck process on R? ([8]). The
measure 7 is the unique invariant measure for H?’B, t > 0. Furthermore, the equality (L)) defines a semigroup

of positive contractions in L?(R%,v,,), for every 1 < p < oc.
The Ornstein-Uhlenbeck operator £28 is defined by

LOP () = J6(@V2S)(@) + (Ba, VI (@), w R,

when f € C%(R?), the set of differentiable functions with continuity up to order two . Here, V denotes the
gradient and V? represents the Hessian. Thus, —£%® is an elliptic operator. If 1 < p < 0o, by naming —£§?*B
the infinitesimal generator of {H® "}y in LP(R?,~4), we have that Eg’Bf = LYBf f e S(R?), the set of
Schwartz functions, and S(R?) is dense in the domain D(L£$F) of LZF. In [31], it was proved that D(L$F)
coincides with the Sobolev space WP (vy,).

Harmonic analysis associated with the symmetric Ornstein-Uhlenbeck operator has been much investigated
over the last twenty five years. When Q = —B = I, where I denotes the identity matrix, the operator £ reduces
to the classical Ornstein-Uhlenbeck operator £/~ = %A — 2V and the Hermite polynomials are an orthonor-
mal basis in L?(R?, ~.,) of eigenfunctions of £/*~7. Muckenhoupt ([34]) studied maximal operator and Riesz
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transforms in the one dimensional £1'~/-setting . Sjogren ([40]) extended to higher dimensions Muckenhoupt’s
results about the maximal operator defined by {’H,,{ ’71}t>0. Harmonic analysis operators associated with £7—1
were studied in [16] and [30] (maximal operators); in [I3], [36] and [38] (Littlewood-Paley functions); in [12],
[17], [37] and [38] (Riesz transforms); in [15] and [I8] (spectral multipliers) and in [2I] (variation and oscillation
operators). Gutiérrez, Segovia and Torrea ([20]) and Gutiérrez ([19]) studied Riesz transforms defined by the
operator LB when B is symmetric.

Mauceri and Noselli proved L? boundedness properties for maximal operators ([29]) and Riesz transforms ([28])
when Q = I and B = —A\(I + R), with A > 0 and R is a skew-adjoint matrix. The semigroups {H;’ Y o
are the basic building blocks of normal Ornstein-Uhlenbeck semigroups because, after a change of variables, any
normal Ornstein-Uhlenbeck semigroup can be written as a product of commuting semigroups of that form.

Recently, Casarino, Ciatti and Sjogren ([6], [7] and [5]) have extended the results about maximal operators
and Riesz transforms due to Mauceri and Noselli ([28] and [29]).

Our objective in this paper is to establish L? boundedness properties of some maximal operators, Littlewood-
Paley functions and variation operators involving the Poisson semigroups and the resolvent operators associated
with the nonsymmetric Ornstein-Uhlenbeck operator considered by Mauceri and Noselli ([28] and [29]).

Assume that Q = I and B = —A(I + R) where A > 0 and R is a skew-adjoint matrix as in [28] and [29]. After
making a change of variables in (II)) we get

HEP () = [ FEP @) f@)drmats), @ € R and t>0,

—d/2

where dysox(y) = (5) e’ dy, and

I P (2,9) = det(Quo@i ) Fe 2@ (e e =@y w]

for 2, y € R? and t > 0.
By using the subordination formula, the Poisson semigroup {PQ’B}t>0 is given by

B e 4u
PRE( 2\F/ HQ B(fdu, t>0.
Let ke Nand j =1,...,d. We consider the maximal operator ngi defined by

PEE(f) = sup [¢*+10f0, PRE(f)].

The Littlewood-Paley g,?’jB is given by

0 2 dt 3
g7 () = ( | [¢atonpe ) ;)

Let p > 2. If g is a complex valued function defined in (0, 00), the p-variation V,(g) of ¢ is defined by

1.2 V,(g) = . .
(1.2) po)= s <Z 19(tnt1) — g(tn)]? )
LeEN

n=1

Variation inequalities have been studied in probability, ergodic theory and harmonic analysis in recent years,
The first variation inequality was due to Léplinge ([24]) in the martingales setting. Later, Bourgain ([2]) studied
variation operators associated with ergodic averages of dynamic systems. The last paper has motivated a lot of
researches in ergodic theory and harmonic analysis. We recommend to the interested reader the following recent
papers and the reference therein: [3], [26], [27], [32], [33] and [42].

We consider the variation operator VQk]j) given by

Vkae(f)(w) =V (tk+lafaijtQ7B(f)($)) , w€RL

Note that, for every f € LP(R?, vo0.1), 1 < p < 0o, the function VkaJ
because, for almost everywhere z € R?, the function F(t) = t"™19r0,, PRE(f)(x), t € (0,00), is continuous (see
the comments after [4, Theorem 1.2]). This measurability property also holds for the other variation operators
considered in this paper.

(f) is a Lebesgue measurable function
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g-Littlewood-Paley functions associated with the symmetric Ornstein-Uhlenbeck operator £1:~! were studied
n [13], [36] and [38]. The p-variation operator for the Poisson semigroup {P;}" "'} defined by the symmetric
Ornstein-Uhlenbeck operator without any derivatives was considered in [21].
Let keN,j=1,...,d, and M > 1. We consider the following maximal operators, Littlewood-Paley functions
and variation operators involving resolvent operators of £L9F defined by
S (1) = sup 42080y, (1 +1£95) =M (f)],

*,k,J,

GEQJBM(JI) = (/OOO ‘tk+%5fawj([+tﬁQ,B)—M(f)’Q %) 2 |

and
VEE (D) =V, (t’”%@f@wj (I+ tEQ’B)*M(f)(:c)) . zeR%

Square functions of G-type have been recently defined in other settings ([14]).
Our main result is the following one.

Theorem 1.1. Let k e N, M > (d+1)/2, 5 =1,...,d and p > 2. Assume that Q = I and B = —A\(I + R),
where A > 0 and R is a skew-adjoint matriz that generates a periodic one parameter group {e'®}icr. Then, the
operators P k;? gkj , VkaJ-;37 kaﬁz Mo GgJBM and Vl?,’fj’M are bounded from LP(RY, voo 2) into LP(R?, yeo )
and from LY(R% yoo.2) into L1 (RY ys0 ).

As it is usual since [34] was published, in the study of LP-boundedness properties of harmonic analysis operators
in the Ornstein-Uhlenbeck setting, in order to prove Theorem [[.T] we decompose the operator in two ones that
are named the local part and the global part of the operator under consideration. The local part, as the original
operator, is a singular integral, while the global part is controlled by a positive operator.

In Section 2 we give the definitions and known results that will be useful in the sequel. We also explain
the method used in the proof of Theorem [Tl LP-boundedness properties stated in Theorem [[LT] are proved in
Sections 3 and 4.

Throughout this paper C and ¢ always represent positive constants that can change in each occurrence.

2. PRELIMINARIES

Assume that @ = I and B = —A(I + R), where A > 0 and R is skew-adjoint. In this case we have that

T\ —4/2 212
Yoo (x) 1= dyoon () = (X> e Mol gy,

Actually we are going to work with A = 1. We define B; = —(I + R). We have that
HEP =U T HEP Uy, >0,

where Un(f)(x) = f(z/VA), € REL Tt is clear that Uy is an isometry from LP(R? v..,) (respectively,
LP(RY v 2)) into LP(RY, v 1) (respectively, LP>°(R%, v 1)), for every 1 < p < oo.
After a change of variable we can write

PRP() = 5= / ¢ f U HD B (U, ) () du
VIt

08 ()] (@)

)‘ 2\/_ 0 v?
(2.1) = U [Pf}fl(U,\(f))] (z), zeRandt> 0.

By using (1)) we deduce that, by denoting T%# every of the operators considered in Theorem [LT] the following
equality holds

T8 =y T By,

Thus, we show that it is sufficient to prove Theorem [[.T] when A = 1. In the sequel we assume A = 1.



4 V. ALMEIDA, J.J. BETANCOR, P. QUIJANO, AND L. RODRIGUEZ-MESA

We can write
P (@) = [ hEP e )y, @ e R and e> 0,

where

1 7‘€tBlm7y‘2

T 1_e—2t d
(2r(1 — efzt))d/ze ! , z,y € R%and t > 0.

As it was mentioned in the introduction in order to study LP-boundedness properties of the harmonic analysis
operators in the Ornstein-Uhlenbeck setting, those operators are decomposed in a local part and a global part.
Let 6 > 0. We define the sets

L, ={(z,y) R xR |z —y| < omin{l, |z +y[7'}},

hy P () =

and G, = (R x RY)\ L. L, and G, are named the o-local and o-global region respectively.
The integral kernel b} "" of #]"P*, ¢t > 0, can be estimated in different ways on L, and G, .

Lemma 2.1. (|28, Lemma 3.3]). For every o > 0, there exists C > 0 such that

C _la—yl?
A=zt T @y €Lle wFy andt>0.

0<hy P (a,y) <

In order to obtain a more manageable form of the kernel h,{ B1in the symmetric case, that is, when R = 0,

the following change of variable due to S. Meda was introduced in [I5]

1+s
1—5’

7(s) = log s € (0,1).

We observe that 7 maps (0, 1) onto (0, 00).
For every s € (0,1) we consider the quadratic form @, defined by

Qs(z,y) =|1+8)x— 1 -8y =zy€ R

As in [29, p. 190] if J is an interval in (0,00) and D > 0 we define J# = U,en(J + nD).
After a careful reading of the proof of [29, Lemmas 5.5 and 5.6] we can see that with minor modifications in
those ones the following properties can be proved.

Lemma 2.2. Let § € (0,1).
(i) There exists C' and to > 0 such that

(2.2) WL (2,y) < Cs™ 8 el Wi =) gy e RY and s € 771((0, 1)),

(ii) Suppose that the one-parameter group of rotations {e'f*},cr generated by the matriz R is periodic of
period D. Then, there exists an interval J = (a,b), with 0 < a < b < 00, and C > 0 such that

(2.3) hi’(f)l (z,y) < Cs~2eltl WP =35Q:(@w) 5y e RY gnd s € T (JE).

Here C, tg, a and b depend on 9.

Note that (22) and (Z3) also hold when ¢ty is replaced by ¢; € (0,%) and J is replaced by an interval J; C J,
respectively. In the sequel we consider ¢ty > 0 and an interval J = (a,b), with 0 < a < b < oo, satisfying ([2.2])
and (2.3]), respectively, and such that there exist n,m € N and 8 > 0 for which

(2.4) (0,00) \ N = [O((o,to) + kto) U [O(Jﬁ +e8)].
k=0 £=0

for certain A/ C (0, 00) of measure zero, and being a disjoint union. Let ¢ > 0. We choose an smooth function ¢
in R? x R? satisfying that
(i) 0<p <1, z,ycRY
(ii) (z,y) =1, (z,y) € Lo, and <pc(x,y) =0, (,y) ¢ Lao;
(111) |vm(p(x7y)| + |Vycp(x,y)| S Wv X,y S Rdu X 7é Y.
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By L°(R%) we denote the space of Lebesgue measurable functions in R? and we represent by C°(R?) the
space of smooth functions in R¢ having compact support. Suppose that 7T is a linear or sublinear operator from
C(R?) into L°(R?). We define the local part Ti,. of T by

Toe(f)(x) = T(f()p(x,))(x), =R,
and the global part Tgon of T' by
Tyob(f) (@) = T(f)(x) = Tioe(f)(z), = €R?

The following results were proved in [I6] and they will be useful to prove that the global parts of the operators
in Theorem [[T] are bounded from L'(R9, 74 1) into LY®(R% y4 1) If 7,y € R?\ {0}, 6(x,y) denotes the angle
between x and y.

Lemma 2.3. ([16, Lemma 4.1]) For every § > 0 there exists C > 0 such that

sup s~Y/2e(=D@N) < Cmin{(1 + |a])?, (2] sinf(z,9)) "}, (2.y) €Gr x £ 0 £y
0<s<1

Lemma 2.4. ([16) Lemma 4.4]). The operator T defined by
T(f)(a) = e [ win{(1 + [ol)?, (o] sin0(e,)) ) f e W dy, o e R
R4

is bounded from L'(R%, vo0 1) into LY*°(RY, yoo1).
In the study of the local parts of the operators in Theorem [[LT] we will use the LP-boundedness properties of

the operator S, defined by

1+ |z

—— = f(y)dy, xR,
yER:(z,y)ELs} |.I - y|d !

Su(f)(z) = /{

where § > 0. Operators of this type appear also when the symmetric case is considered (see, for instance, [21]).

Lemma 2.5. Let o > 0. The operator S, is bounded from LP(R?, dx) into itself and also from LP(RY v, 1) into
itself, for every 1 < p < co.

Proof. We include a sketch of the proof of this property for the sake of completeness.
We have that |z +y| = |22 +y — 2| > 2|z| — |x — y| > 2|z| — o > |z|, provided that | —y| < o < |z|. Tt follows
that

o/lz|
/ dr, l|z[=0
/ 1+ |z 0
{

— d_ldy§C(1+|x|) X <C.
yGRd(xy)ELg}|1: y| o
/ dr, lz] <6
0
Hence, sup / 1+7|i|_1dy < o0 and in a similar way sup / 1+7|‘Z|_1dx < 0.
z€R?® J{yeR4:(z,y)ELs} |,T - yl yERE J{zeR4:(z,y)ELs} |£L' - y|

By using interpolation we deduce that the operator S, is bounded from LP(R¢ dz) into itself, for every
1 < p < o0o. According to [I8, Lemma 3.6] S, is bounded from LP(R, v, 1) into itself, for every 1 < p < co. [

We are going to explain the method we use to prove Theorem [[LTI We extend the procedure developed by
Mauceri and Noselli ([28] and [29]).

Suppose that X is a Banach space of complex functions defined in (0,00). Let Kk € N and j = 1,...,d. We
consider the operator T,fj defined by

TE (@) = ||t = 7100, PP () (2)]| . 2 € R

It is clear that T}, reduces to P*I,f; and g,ﬁjfl when X = L°°((0,00),dt) and X = L2((0,00), 4), respectively.
Furthermore, let p > 2. We consider on the space C'(0, 00) of continuous functions on (0, c0) and the seminorm V,

defined in (I.2]). By identifying those functions in C(0, co) that differ in a constant the space V,(0, c0) consisting

of all those g € C(0, 00) such that V,(g) < oo endowed with V, is a Banach space. We have that TIXZ(O’OO) = p{fj{
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Let f € C°(RY). We can write
(2.5) Of0r, PP (D) = | [w)0 0., PP (x,y)dy, x € R and >0,
R
where PtI’B1 (z,y), z,y € R? and t > 0, denotes the Poisson integral kernel and
Fo, PLP (x,y) = 1 /Oo O [te=""/*)g, nlBr (x,y)d—zj, z,y € R and t > 0.
’ 2v7 Jo ! us

Differentiations under the integral sign are justified. Indeed, we have

|euBf||eule _

Ul e Bty 2/ (1—e2)
)

d
(1 — e2wyd/2+1 z,y € R" and u > 0.

|02, by P (2, y)| < C

Since [e*B7| < e, u > 0, we get

I,B e "
|0, 17 (0, )| SO(l_efQu)(dJrl)/Q7

;"

z,y e RYand t > 0.

By using [I, Lemma 4] we obtain, for each x,y € R? and t > 0,

/|ww%1
0

_tT
e su Y

du o
1,By el
[ (xvy”u% < O/o uFH2)/2(1 — —2u)(@+1)/2 du

o) 1 7%
S C </1 efudu + /0 mdu) S O(l + tikidil).
Since f € C°(R?) (Z3) holds.

Suppose that E C (0,00) and h > 0. We define the operator

Sg;h(f)(x,t) = /dsggh(x,y,t)f(y)dy, zeRand t > 0.
R

where -
E,h tht / Ky -t IB du
s (x,y,t) = Op[te” w0, hyy P (2, y) ————
E ) = 57 [ oHee 0, P ) s
Assume that X is one of the following Banach spaces: L*((0,00),dt), L?((0,00),dt/t) and V,(0,00). We
consider the operator

. z,yeRYand t > 0.

SEM @) = |sErD@)| o e ern
Cram 1 Let 1 < p < oo. We define 6, as follows
1
Sl 1
10’ p )

Op =
1 1 1

We denote E, the sets (0,t) or Jf; in Lemmal2.3 associated to to and satisfying the covering property (2.4)).
Then, for every h > 0, the operator g,f’]?’h is bounded from LP(R? ~s 1) into itself, when 1 < p < oo, and
from LY(R?, v 1) into LY (RY vy 1), when p = 1.
Suppose that the claim has been proved. Since

n

0,00\ = [J((0.t0) + et0)] [ JF + 3]

=0 =0

we can write

o t2 d n m 2 d
/ OF[te™ 3710, WP (2,9) 5 = Z/ +Z/ O [te™ 0, hL P (2, y) =5
0 uz ¢ (0,t0)+eto  y—p J JH+tB uz

=0

1,B; du

n 2
_ Z 8k[tefm]3zhu (z,y)——=
¢=0 / (0:t0) ' S (u + tto)?



i t2 du
kit,~ 300 I,B o euw d
+ E /# Oy [te™ 2Cr 10, hy s (e, y)(u—i—ﬂﬁ)%, z,y € R and ¢t > 0.

By using the semigroup property of {HI’B1 }t>0 we deduce that

n
£
1980, PIP () (@) = Y Sl P () () +ZSJD CHEP ()@, t), @ eRandt > 0.
£=0

Since the semigroup {H;”'},5¢ is contractive in LP(R, v00,1), for every 1 < p < oo, the Claim 1 allows us
to conclude that the operator Tk{(j is bounded from LP(RY, v,.1) into itself, for every 1 < p < oo, and from
LY (R?, yoo 1) into LY(RY, yeo 1).

Our objective is to prove the Claim 1. In order to see the LP-boundedness properties of the operator Sf}h we
study separately the local part and the global part of §E We analyze firstly the local part SER of §fjh We
consider the operator

k]loc

Ui (F)(w,t) = Rdﬂﬁ;—%—y,t)f(y)cz% z € R and t > 0,
where

k+1 d
Ul (2,t) = /ak [te™ 4<u+m]a W () —L

., zeR%andt>0.
(uth)2

Here W,,, u > 0 denotes the classical heat kernel given by

2|2
W) = < R? and u > 0
u(Z) = W, S and u > U.

We also define
Ulf;h(f)(x) = "Ulf;h(f)(wa ,)HX7 z e R4

By using Minkowski inequality we deduce that

SEoc D@ = Ul < [

CLaM 2. Let E € (0,00) and h > 0. The operator D}

sty @y, ) — W @ =y, || @)l f @)y, @ e R

ko, loc defined by

Dy o (f / sy (2, y,-) = 4057 (@ —yw)wa(x,y)f(y)d% z €RY,

is bounded from LP(R?, dx) into itself, and from LP(R%, v 1) into itself, for every 1 < p < oo.
CLAIM 3. Let h > 0 and E C (0,00) such that E C (0,n,) or E C (n,00), for somen > 0. The operator U,fjhloc
is bounded from LP(RY, dz) into itself, for every 1 < p < oo, and from L*(R?, dx) into LY*°(RY, dx).

By using [I8, Lemma 3.6] from Claim 3 we deduce that the operator ﬁfjhloc is bounded from LP(RY, v, 1)
into itself, for every 1 < p < oo, and from LY(R?, vo0,1) into LV°(RY v, 1). Then, according to Claim 2 it
follows that the operator Sk] loc
LY (R?, 4o 1) into LY®(RY, yeo 1).

Minkowski’s inequality leads to

S aon ()@ < [ lof @)1= ol )|y, @ € R

CLAIM 4. Let h > 0. Assume that 1 < p < oo and that E, is the set associated to 0, as in Claim 1. Then, the
~Eph
operator Vi 7oy, defined by

(f) is bounded from LP(R%, v, 1) into itself, for every 1 < p < oo, and from

Vi o (1)) = / st @yl (0 = @) @)y, = € RY

is bounded from LP(RY, voo.1) into itself, when 1 < p < oo, and from L'(R%, v 1) into LY*°(RY, v ,1).
Thus, Claim 1 is proved when we establish Claims 2, 3 and 4.
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Let ke N, j=1,...,d,and M > 1. We consider the operator ']I‘ifLM defined by
T (F)(@) = [t = 273000, (T + £ P) M (@) | . we R

Ty, ar reduces to 778 Gy and V7t | when X = L°((0,00),dt), X = L*((0,00), %) and X = V,,(0, 00),
respectively.
We have that

(I +eLhPy=Mf — >/OO e " Hy (N du.
0

(M
It is clear that
sup |(1 + L5 f| < sup [ ().
>
According to [29, Corollary 4.3 and Theorem 5.1] we have that the maximal operator sup,q |(I+¢LP1)=M] is
bounded from LP(R%, v, 1) into itself, for every 1 < p < oo, provided that the Ornstein-Uhlenbeck operator £1:51
is normal, and from L'(R? s 1) into L2®(R%, v,.1) when the matrix R generates a periodic group {ef};~o.
In order to establish the LP-boundedness properties for the maximal operators S, I.B M we need to work harder
because, as far as we know, the LP-boundedness properties for the correspondmg max1ma1 operators involving
the heat semigroup {’Ht] ’Bl}t>0 have not been studied.
Let f € C(RY). We can write
M

I+ 0£" )M (@) = g [ R (@

M ~
~ (M) / f(y)/ e thyP (@, y)u T dudy, € R and t > 0.
Rd 0

Then, for every x € R? and t > 0,

1 — tk+§ o _ _u —
tk+zafamj(l+t»cl781) M(f)(x) = F(M)/ f(y)‘/0 af[t Me t]awjhi)Bl(xuy)uM 1dUdy'

Differentiation under the integral can be justified as above by considering that M > (d + 1)/2.
We take E C (0,00) and h > 0. As in the previous case, we define the operator SkE’JhM by

Sk (Dl t) = / sey(@y 0 f(w)dy, xR and £ >0,
where
thr
skEJhM(x y,t) = i / okt e*(“Jrh)/t]azjhi’Bl (z,9)(u+h)Mrdu, z,y € RYand t > 0.

In order to prove the LP-boundedness properties of the operator Ty, ,, where X = L>((0,00),dt), X =

L2((0,00), %) and X = V,(0,00), we can proceed by following the same steps than in the previous case by
considering the operator

SER (D@ = |[SEM (D@ )|y, = €RY

Remark 2.6. Let k € N, a = (aq,...,aq) € N% such that k + @ > 0 when @ = a; + ... + ag. Assume that
X = L>=((0,00),dt), X = L*((0,00), %) or X = V,(0,00). We define the operator T}, by

T5(N@) = [t = 45 akos PP ()| . = e R
Here 09 = (%Tl‘?w,

It is natural to ask if LP-boundedness properties of this operator when @ # 1 can be proved by using the
procedure in this paper. At this moment we can not apply our procedure because we do not know how to deal
with the global parts of the operators when & # 1.

We now comment about some special cases. We consider & = 0 and X = L*°((0, 00), dt). By using the method

in [25], §4] we can see that
/ HIB(

L°°((O,oo),dt)
Tio (f) = Csup <
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Since {H] "' }450 is contractive in LP(R% vo01), 1 < p < 00, the Hopf-Dunford-Schwartz ergodic theorem ([9,
Lemma VIII.7.6 and Theorem VIIL.7.7]) leads to T = (0501 | is bounded from LP(R?, v, 1) into itself, for every
1 < p < oo, and from L'(RY v, 1) into L1 W(Rd,w%l).

We can write

8kPIley / 8k 1 ]a hIBl(x y)d x,yeRdandt>0.

V'
We have that

d
1
Ouhiy® (@, y) = 5 D 07 by ™ (@, y) + (Baz, Vihy P (2,y), oy € R and u > 0.

Then, the cases @ = 0 and & = 2 are connected.

The arguments used in the symmetric Ornstein-Uhlenbeck setting in [21], [36], [37] and [38] do not work for
the global parts of the operator T,ffa in the nonsymmetric context. Our objective in a next paper is to establish

LP-boundedness properties of Tk)fa—type operators for general nonsymmetric Ornstein-Uhlenbeck operators by
using some of the ideas developed by Casarino, Ciatti and Sjogren ([6], [7] and [5]).

3. PROOF OF CLAIMS 2 AND 4

Our objective in this section is to prove Claims 2 and 4 stated in the previous section for the operators in
Theorem [T 11

3.1. Proof of Claim 2. We consider firstly the operators Pf’,f}, g,ﬁ JBl and VI Bl In the sequel X represents

one of the following Banach spaces: L>((0,00),dt), L*((0,00), %) and V,,(0, oo) We are going to study the
operator

D e 0@ = [ o ) =@ =) ol Sy, R

where E C (0,00) and h > 0. The definitions can be found in Section 2.
We can write, for each z,y € R% and t > 0,

2
thtl [ Q[te” 1wim]

2V7 g (u+h)2

55?(:6,3/,1%) —LLkEy’jh(x —y,t) = (0 RIBi(z, y) — Oz, Wu(z — y))du.

;i
By using Minkowski inequality we get

4+ 9 te ™ T )

(B1) oy (w5 @y M < € | F——m s

|Ox, hl.B (2,y)—0n, Wy (x—y)|du, x,y € R

According to [Il Lemma 4] it follows that
R Cieo]

m, t,ue (0,00)

(3.2) |8k fte~ T )| < ©

We have that

2
3.3 th+1gkt *74(;2%) < Cm <C h t 0
(3.3) | ) [te ]|— (u—|—h)<k71)/2_ (u+ h), ;u € (0, 00).

By using again (8.2) we obtain

1
2 C > 2 Ldt\?
(3.4) th 19k [te™ 0T | 72 (/ [tFtle 8<u+h>|27> <C(u+h), u>D0.
0

P —
L2((0,00), 42y (U h)k=1

Suppose that g : (0,00) — C is a derivable function. If t; > t3 > -+ > ¢ > 0 we have that

1/p

k-1 e k-1

- - ti+1 P k= t1+1 <
Slat -owl| = (X| [ swd] | <Y / (Ol < [ 19/
j=1 j=1 vt j=1 0
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Then,
Vo) < [ ot
From (3.2) we deduce that

2
1ok [te ™ TTm |

g/ ’&(t’““&f(te*—aﬁm))’dt <C </ |tk Ok (te™ TwTm )|t
V, 0 0

oo t2
+ / [tFHLoR L (te ™ T0rm )|dt>
0

<C ((u+h)—<k—1>/2/ the T df + (u+h)—’f/2/ T gy

0 0
(3.5) <C(u+h), u>0.
By (B1I) we get
<1
E.h E.h
(36) H5k7j ('rvya ) _uk;J (.I - Y )HX < O/Q %| Ty
We are going to see that
<1 1+ |z
(3.7) — 0y, hEP (2, y) — 0, Wa(z — y)|du < C
0o Vu

When By = —1I the operator £151 is the symmetric Ornstein-Uhlenbeck and we have that

FET=t (z,y) € La.

le”“a—y|?

e 1—e—2Y

hl,—] —
u (‘r7y) (271_(1 _ 672“))(1/2,

z,y € R and u > 0.

By using [22 Lemma 3.4] we obtain

<1 _ 1+ |z
[ o )~ 0, Wl — < 0L @€ Lo
Then, (B7) will be proved when we see that
=1 - 1+
(38) A ﬁ awjh£7Bl (.’I],y) — 6mjh£) I(x,y)|du S C#, (CE, y) S LQ.

Since R+ R* =0 we get

a 'hl781 (Iay) - aIJWu(I - y)|du7 z,y € Rd'

levBra —y|? = (e7"Rle "z — e"By), e “Be "z — e*fly)) = |e 72 — e“Fy|?, 2,y € RY and u > 0.

We have that

‘C*UI,euRy‘Q

27", _, “ e 1-e T
(3.9) O hiy P () = —W(e zj — (e Ry)j)ma z,y € R and u > 0,
and
_lemte—y|?
_ 27" _, e l-e?v
(310) azjhi’ I(I,y) :—(27‘—)% (6 Zj —yj)m, I,yGRd and u > 0.

We can write, for every z,y € R? and u > 0,
2 1
(Qﬁ)% (1— 67271)%-‘1-1

I1,B I,—1 _
6$Ejh7j, 1($7y)_a$jh’u. ($,y)—_

“uz—uly? le" %z —y|? leUx—y|?

leTYa—c _ —le Tz—yl”
x ke e )(efuwj—(ff"Ry)j)ﬂL@ = (g — (e"My))

We need to establish some estimations. We have that

le™® —e b < emmindabl g — b a,b>0.
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Then, according to [28, Lemma 3.3 (i)] we obtain

lo—y|?
_leTta et ly)? _lemta—yl? e e 2 —u uR, |2
e 1T g ie-zu gcﬁﬂe z—yl>—le "z —e"My|?|, (z,y) € Ly and u > 0.
—e

We manipulate to get, for every z,y € R and u > 0,
e e —y* —[e7w — e"y|? = e a —y® —|eMr —y — (e"F — D)y|?
= — (" = Dyl* +2(e™ "z —y, (" ~ I)y)

= (e = Dy +2[(e™ = Do, (7 = Iy) + (@ — y, (7 = Dy).
It follows that
lle™"a —y|* — [e7x — ey ?| < CWP|y* + u®[a|ly| + ulz — yllyl), =, y € R? and u > 0.

We conclude that, for z, y € R% and u € (0,1),

le= g ouRy2

- 2
le” Ya—y| jlz—y|2

e em T —e e [ < Cemw Julyl (2] + yl) + |z — yllyl].

On the other hand we have that, for z, y € R? and u > 0,

ly; — (€“Py);| < |(e*™ = D)y| < Culyl,
and
e a; — (7" Fy);| < le "y — x5 + |z — yi| + y; — (€*y);| < Clulla| + y]) + = — yl].

We get, for z, y € R? and u € (0,1),

—clesul®
[0, 1y P (2, y) = Oy ™ ()| < Ceu? (Tulyl(l + lyl) + = = yllyl] [ullz] + ly]) + o = yl] + ulyl)
—clezul®
< OEUT ([ulyl (] + y]) + Valyl] [u(lz] + |y]) + v/u] + uly])
—clespl®
= 067 ([Vaulyl(l2] + [yD) + lyl] [Vu(lz] + ly[) + 1] +Jy]) -

Let us define the function m by m(z) = min {1,|z|72}, z € R?\ {0}, and m(0) = 1. When (z,y) € Lz and
0 < u < m(z), we have that |y| < C(1 + |z|) and vu(|]z] + |y|) < C. Then, it follows that

[Valyl(2] + [y]) + lyl] [Vu(le| + y]) + 1] + [y] < CA1 + |2]), (2,y) € L2 and 0 < u < m(z).

Thus we obtain that

2
_cle—y
w

10, BL B (2, y) — D0, Wl (2,)] < CF——

x;!y X5y
U

(14 |z]), (z,y) € Ly and 0 < u < m(z).

d
2
By using this estimation, we get, when (z,y) € Lo,

[ Flon bl ) = bl wlau < cO+lel) [ S mdu < o
0 \/E 0 2z

u T eyl
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On the other hand, by (3.9) and (8I0) and using Lemma [2.1] we deduce that

o0 1
L0 B ) — 00, W (2, ) du < / 100, BL P (2, ) | du + /
/7n(w) Vu' ! m(z) \/— ? m(z) \/_

z—y|?

oo oo

‘CfuzieuRy‘Q ‘efu

e 1 o0 e 1=eZu
<C / y le™ "2 — e"Fyle ™ du + / . le %z — yle “du
m(x) (1 - 67271)7-‘,-1\/6 m(x) (1 — 672“‘)7-"_1\/6
e o e,M o Lzl
< du < C/ —du
~/7n (z) 1 — 6_2u) d+1 \/U m(x) U%+1 \/ m m(x) ’u,dgl
14 |2
. |d|71’ (Ji,y) eL2-
m(ﬂ:)lﬂc—yId*1 |z =yl

We conclude that ([B.8]) holds. Thus we proved (B.7]).

According to (38) and @B7), by using Lemma we conclude that the operator DY
LP(R?, v00.1) into itself, for every 1 < p < oo,

We now consider the operators Siy’,f}’M, Gif}w and V;y’,f;M. Let E C (0,00) and h > 0. We define the
operator

k. IOC is bounded from

HES (o t) = [ HE (o =000y, 2 € R and e,

where

Eh thts M -k _ "
Hy oty (2 t)_F(M)/Eaf [t }8m]W()(u+h)M Ydu, z€R"™andt > 0.

Minkowski inequality leads to

s =10 < [ oo = BE (D@ =) @y, = e R

Our objective is to see that the operator Zk p M loe defined by

ZE e )@ = [ s st = BE ()@ =0 el i@l € B,

is bounded from LP(R9, v 1) into itself, for every 1 < p < oo.
By using again Minkowski inequality we get

|82 ~HE P 3

iy st 7]

We are going to see that
(3.11) | tar e

’ |00, WP (2, y) — O, Wa(z — y)|(u + WM 1du, 2,y € R%

‘ <Cu+h) M u>o.
We firstly consider £ = 0. We have that
t%_Me_%h

< C(u—l—h)%_M, u >0,
L*°((0,00),dt)

= </Oo t—2Me
L2((0,00),4t) 0
provided that M > %

-\/'\/e a.].SO get
V5 (0,00 = /
p( ) 0

and R
pp— Mot ) <C(u—|—h)% Mo w0,

1 +h
g3 M=

a[ts~

/ tM=se gt < Cu+h)F ™M, uw>0,
0

when M > %
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Suppose now k > 1. We can write

k—1 1
= Zciw%_zai_z, w=-€ (0,00),
i=0
where ¢; € R, i =0,...,k — 1. Tt follows that
. k—1k—i 1
(3.12) oF [t*MefT] = Z Z cigwk M —tmip=(uth)w g, 4 pyk=i=t gy — 70 UuE€ (0, 00),
i=0 =0

beingc; ¢ €R,i=0,....k—1,¢=0,...,k—i. Herec;p =0, when M <l <k—1,i=0,....,k— 1
We have that

k—1k—i
Hthr%af[thef#} ‘ < OZZ (u+ R)E=i7t qup hTM—tmimd o= (uthw
Loe((0,00),dt) == we(0,00)
C(u+ h)% Mo w >0,
when M > %
We also obtain
k—1k—i 1
"tk+%af [t—Me—&th] <C (u + h)F—i=t </ 2k+2M—2é—2i—2e—(u+h)wdw>
L2((0,00)

=0
gcw+hﬁ%4 u >0,

3

and

| bop(erre)

> kt+igk[p—M —2th
%@MgA‘&Pzaﬁ e HW

[ [eee

§:0L+iwk*‘f/wou#+MF@%—%e—W+dew
0

)

(u + h)k-i-l—i—f /oo wk-i—M—é—i—;e—(u-i-h)wdw)
=0 0

0
<Clu+h)zM u>o0,

provided that M > . Thus (B.II) is established.
From (BI1]) we deduce that

HskEJhM(x y,-)—H]ffM(x—y, <C/ Bw]hiBl( y) — O, Wu(z — y)|du, z,y € RY

By using (B.7)) we get

1+ |z

E,h E,h
H%,j,M(ﬂ?,ya )= H;g,j,M(x - Y )H > Omv (z,y) € Lo,

X

and then, by virtue of Lemma [Z.5] the operator Z,;E’;-}’LMJOC is bounded from LP(R? s 1) into itself, for every
1<p<oo

3.2. Proof of Claim 4. Let E C (0,00) and h > 0. By using Minkowski inequality we obtain

du

_ M Ly eRY
wrmi Y

’2
et < | oot <

It was proved (see (33), (34) and (B3)) that

k+1 Ak [~ 1o
([t 105 [te™ 30T

| 10,1 (@)

‘ < C(u+h), u>o0.
X
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Then,
du
E.h I,B d
50 @) gc/azjhule, . zyeRY
In a similar way by using (BEII) we can see that
du
. <C (%hl’Bl Rd.
Hsk,], (az,y, )HX_ /E‘| i (‘r’y”\/’u-i-—h’ T,y €

We denote now by E; the sets (0,t) and Jg associated with 6; = 1/10 given in Lemma[2Z2]l The arguments
developed in the proof of [28] Proposition 4.7] allow us to prove that

< Cel ™ min {(1 + Jal)%, (j2] sin ()"}, (2.y) € G,

TErO@ = [ [seten)| foidn, o e R

From Lemma [24] we deduce that the operators Vk7 j,glob and WN’,CE)fglob are bounded from L'(R¢ v, 1) into
LLOO(Rdu ’700,1)-

Let now 1 < p < co and § € (max{l — % 1 — %}, 1). Observe that 0, in Claim 4 is a particular case of such 4.
Consider Ej, one of the sets (0,%9) or JE 7 given in Lemma [2.2] which is associated to . By considering the above
estimations it is sufficient to see that the operator Zglobh is bounded from LP(R, v, 1) into itself, where

28 (P)a) = [ 2 ) whdy, @ e R
being

d
ZE‘“h(I,y):/ 00, BB (2, )| —— z,y € RY,

Ep ’ \/u—i-h’

‘We observe that

gl"b LP(RY, oo 1

= r%/ |Zglob (f)(@)|Pe 1" dz
2 2 Y p
/]Rd </le ZEp,h(:L“,y)(l — @(I,y))e_a(\w\ —|yl )f(y) \p\ dy> i

E,, _lwl?
= |Zgs @t )

=T

vl

p

L?(R,dz)’

where
~ 1152 —yl?
7 g)a) = [ 2P ) gy, o e R

Then, we only have to establish that the operator Zflgt’)h is bounded from LP (Rd, dz) into itself. For that, we
first prove the following estimations.
(a) For every n € (0,1),

(3.13) ZEvh(g,y) < Cena=9lel*=nlyl* (z,y) € G1, (z,y) <O0.

(b) For every n € (0,1) such that nd > 1 — 1,

(3.14) ZBvh (2, y) < Ola + y|?en1 =D el =y =Flatullz—vl (1 1) € Gy, (z,y) > 0.
Let € (0,1). First we observe that from ([B:9) we deduce that

—Uu uR, 2
1,B; < —u |€ x—e" yl #uy‘ d
|02, by 7 (2, y)| < Ce —(1 it e 1 , z,y € R and v > 0.
Then,
le—Ug_euRy)2
P e T ot B J
|00, iy P (2, y)] < Ce™ i < Coee==hy " (Vigz, /ily), 2,y € R and u > 0.

(1 —e20)%
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By using Lemma we have that

|8, b Bl( y)| < C e"(III2 WP =i ) 3y e RY and s € T YE,).

ivr(s) 2
Since
1@( _ S 2 1 2, || |3J|2 2 2 R? and 0.1
E S$,y)—1|iE+y| +E|I_y| f _Qs(y7 )—|—|{E| _|y|7 T,y € an SE(, )7
and
2
- 1
u _Qs(ya )a u:log +Sv I,yGRd and s € (071)5
1—e" 1—s
we get
2 o 0 2 2 e "x — y]? L+s d
|z|” =yl —EQS($79)2(1—5)(|$| = |yl )—5ﬁ, u:logme(o,oo), z,y € R%

Thus we obtain

—u x—y|2

le”
€ n(1=0)(Jz[>~[y[2) , S 554 z,y € R and u € E,,.

(%hi’Bl z,y)| <C
o, ) < O

)

2u

By making the change of variables t =1 — ™%, u € (0, 00), it follows that

1 —ndu(t
ZEr (2, y) < Ce"(1—5)(|w|2—\y\2)/ e ) 0
o t5 /Jlog(1 - VI—1t

1 —néu(t
<Oen<1—6><|w|2—\y\2>/ emm® dt
- 0ot T =¢

T,y e R4

Here u(t) = |1 —tx — y|?/t, z,y € RY and t € (0, 1).
Then, as in the proof of [37, Theorem 4.2] we deduce that (BI3) is satisfied.

Assume now that (x,y) > 0 and nd > 1—1/d. As in [37] we define ¢y = 2(”7%, being a = |z|? + |y|* and

lyl*—lal*+Ha+ulle—yl - By ysing [37, Lemma 4.1] we obtain

b= 2(x,y), and ug =

/1 e—nou(t) i< e—uo -4 /1 67(n671+§)u(t)dt
o 5t —1 14/2 0 t3y/1—1

0
1-1
e uo ¢ o= (mé—1+3)uo e—Mduo
=C d/2 1 <C /2’ (xay)EGl'
to tg to
Then,
n(1=8)(|z|*>~|y|*)—nduo
ZEnh (2, ) < ok (x,y) € Gy.

/2 ’

Since tg ~ V“Z_b2 = llleul 1y —ylle 4y > 1, (2,y) € Gy we obtain

ZEn(2,y) < Ol + y|ten= DUl ~wD=Flavlietsl ;) e Gy,

and (BI4) is proved.
We now choose 7 such that

11 1

So(1-= }< <1

P 5( d) n

Note that our hypothesis on § leads to 0 < 3(1 — %) < 1 and also n(1 — §) < %.

By using B13)) and [B.I4) we can deduce that Zglob is a bounded operator from L(R9,dz) into itself, for
every 1 < ¢ < oo. Indeed, from (BI3) we have that

/ Z50 ()= 1T (1 — (2, y))dy < Ce™ pumW/eWﬁw%%xew
{y€eR:(z,y) <0} Rd

max {
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Since 3 <7 <1 and (1 — ) < 2, it follows that

sup / ZErh (2, y)e "3 17T (1 — (a2, y))dy < oo,
2R J{yeRe:(z,y)<0}

On the other hand, from [BI4]) we can write

7B,y 2 (7= < Ol g y|de (5[5 mn0=DDletslle=sl () € Gy and () > 0.
By taking into account that 1—17 <n<landn(l-9)< %, we get that "76 l n(l— —) > 0. By proceeding as
in [37, p. 501] we obtain

sup / 7P (2, y)e” 51T (1 = oz, y))dy < oo.
z€RY J{yeR%:(z,y) >0}

We conclude that

sup / ZErh (2, y)e ™3 1T (1 — (a2, y))dy < oo,
reRd JRA

In a similar way we get

sup /d ZEvh(zy)e” 5 (Il =lyl® V(1 = o(z,y))dz < .
R

y€R
We deduce that the operator Z5r lob is bounded from L?(R9, dz) into itself, for every 1 < ¢ < co. Thus we prove
that the operator z5hr lob is bounded from LP(R? 74 1) into itself, and the proof of the Claim 4 is finished.
4. Proor or CLAIM 3
In this section we prove the Claim 3. Assume that E C (0,00) and h > 0.
4.1. Maximal operators.

4.1.1. We consider firstly the local maximal operator U* ;c j.loc defined by

U*Ekhj loc(f) (JJ) = sup
t>0

T @ =y el y)dy| @ €RY
R

where

k+1 du

/ak [te™ 4<u+h>]6 W(2)————5

uﬁ;ﬁ(z, B = (u+h)2

, zeRYandt>0.

We recall that

1212
e 2u

Wu(z) = ——,
(=) (2mu)z

Assume that f € C2°(RY). We can write, for each z,y € R and ¢ > 0,

tk+1
[ S @ = .0ty / O [te~ T | /R O, Wl = ) (1))

2 €R%and u > 0.

dydu
(u+h)2

dydu
(u,+-h)%'

k+1
_ ! /a’“ [te™ 4<u+h)]/Rd %uyJW (@ —y)fWe(z,y)

Then, by using Minkowski inequality and (IB:{I) we get that
~ 2
05l el @) <€ [ 18108t T um 0 [ 2 = oWl = )l Wlean)

1
<C | —— — | Wy (x — ,y)dydu, c R,
< /Ewm/"’” Y Wale — ) fW)lp(e,y)dydu,

Ew,(z) < W (2), z € RY,

dydu
u(u+ h)

N

If h > 0, by taking into account that |z — y| < C, when (z,y) € Lo, and that

it follows that
~E.h > 1
U*,k,j,loc(f)(x) <C </1 m /Rd WU(I - y)|f(y)|dydu
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/ m/ Waulw = 9)l7(y >|dydu>
© 1
<C <‘/1 ufgdu-i-/o u%du> i‘ilng('fl)(x)u r € RY.

On the other hand, we have that, for every 2 € R¢ and t > 0,

U2 10c()(w) < Csup (t’f“ | du> sup W, (/1) (x) < C'suap W1 1))
0 v>0 v>0

t>0 u -z
We conclude that
*,k,j,loc

U poe(N)(@) < Cigth(lfl)(l‘), z e R™.

From wellknown LP-boundedness propertles of the maximal operator defined by the classical heat semigroup we
deduce that the local maximal operator U* k jloc 18 bounded from LP(R?, dz) into itself, for every 1 < p < oo
and from L'(R?, dz) into L1>°(RY, dz).

4.1.2.  We now study the local maximal operator

B2, aeaoel Do) =sup | [ 4E0 (@ =007 )o@ xR

where
ﬂkEJhM (z,1) / oyt —m}amjw (2)(u+hm)Mdu, zecRandt> 0.

According to (.11 and Mlnkowskl inequality we can write
~E,h [
Uk g oc(F)(@) < O/E |[tFtzok[t—M

ut
et ||| Lo ((0,00),d1)
e 1
<C o x —y|Wylx — z,y)dydu, e RY
<0 — [ = uWula = It )y
By proceeding as in section LTIl we get that, if h > 0,
~E,h
Ul atioe(H)(@) < CoupWo(|f)(@), @ € R,

On the other hand, by using B.12), if £ > 1 we get

|z —

Wz = IfW)le(x,y) (u+ )M dydu

k—1 k—1i

o0
t’”%/ Pl Mem# ] M s du < CrF e Y TN ke M”“/ e tubTT Mgy < ) 1> 0.
0 i=0 £=0 0
Furthermore, we obtain
o0
(4.1) t%fM/ e tuM3du< C, t>0.
0

Then,

I[fj"‘E:}nyj,1\4,10(:(f)(:E) < Ctk—i_% /0 aéf [t—Me_%]

< CsupW,(|f)(z), =€ R,
v>0

s [ lz—y
w8 [ B W o — )0 dd

We conclude that

0 iatsoe (D) < CoupWe(lf)(z), w € RY,

and thus, we establish that [[NJ*EkhJ M.loc 18 bounded from LP(R?, dx) into itself, for every 1 < p < oo, and from
LY (R4, dz) into L1>°(RY, dz).
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4.2. Littlewood-Paley functions.
4.2.1. We consider the local Littlewood-Paley function gﬁb?loc defined by

oFh ()() = ( / h

By using Minkowski inequality and [B.4]) we get

E.h k+1 Ak [4,— Ty
! <C Ht +19k [te™ atutm ‘ / s — | W (2 — Y
gk,],loc(f)(‘r) — /E' t [ e ] L2((0,OO),%) Rd |‘TJ y]| (.’I] y)|f(y)|g0(:v )

FWW (@ =y, e, y)dy

1
2 2
dt
—> , xR
R4 t

dydu
u(u+h)3

= C/O wTJih ﬁ; > /R |z — y[Wu(z — y)If(y)le(z, y)dydu < Cf};lg W, (|f])(z), z€R%

As in section 1.1l we deduce that if h > 0 the operator ng}hloc is bounded from LP(R?, dz) into itself, for every
1 < p < oo, and from L'(RY, dz) into L1*°(R?, dx).
We now study the operator ng’JQ]OC. We consider the Littlewood-Paley function ng’jO defined by

~ 2 3
ng,}-O(f)(:v)=( /0 %) . zeRl

We are going to see that gﬁ;o is bounded from L2(R?, dx) into itself. If F denotes the Fourier transform defined
in L'(RY) by

/R T (@ =y, t)dy

F(h)(=) :/ g(x)e " “Fdz,  zeR,
R4
we have that (see for instance, [10, p. 15 (11)])

tlx|?

(4.2) FWy)(x)=e "2, zcRYandt>0.
By using Plancherel equality and [@2]) we get

|Eswra= [ [ df(y)ﬂf,;-o(:v—y,t)dy
=/0 /Rd (/ F)s (=, )dy)(Z)

_/OOO/Rd /Egjiak t: /f F (0o, Wa(- ))(z)dydu’zdz%

7 0o th+1 aéc [tefm] > gt
_/0 /Rd f(f)(z)zﬁ u% f(amjwu)(z)du‘ d=

Hht1 75—
FU / ] - ’—dz f e C=(RY).

2
dwﬁ
t

2
dzﬂ
t

Uu?2

Minkowski inequality and (3.4) 1eads to

[ <c [ 17 >|2(/O°°|z|e

du\ 2
£ [te” 4 ”‘L?(o o), &), ) dz
]

z ulz|? 2
C ]: —e 2 dz
<c | 1FHE)P < Yo )
<c / F())Pdz = Cll Waaany € CZRY.

We now use the Banach-valued Calderén-Zygmund theory for singular integrals (see [39]). We recall that the
operator U,f J’-O is defined by

U,fj’.o(f)(x,t) = / ﬂg;p(x —y, ) f(y)dy, x€Randt>0.
R4
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It is clear that

E,0 _ |ly7E0 d
0y @) = [V 0@ gy # B
By using again Minkowski inequality and (3.4))
y\
> _2 z—yle”
U0 —y,- ‘ < O/ Htkﬂakt T lz=yl
H k,j (‘T Y, ) LQ((O,oo),%) = 0 t [ € LQ((O,oo),dt) U ud+2
00 e,cwm—yﬁ C
4.3 <C " du< , xz,y€R :
) <O s aveRt Ay

In a similar way we obtain, for every ¢ = 1, ...,d,

C

(44) ‘ < W7 CE,yERd7 ;E;ﬁy

O U0 (2 — )|

L2((0,00),4") +‘

Let N € N, N > 2. The space Fy = L?((1/N, N),dt/t) is a Banach and separable space.
Assume that f € C°(R?). Let x € R?. We consider the mapping F, : R? — Fy defined, for every y € R?,
by Fy(y) : [+, N] — C such that

Fe))(t) = P — ), te 5 N],

We observe that F,(y), y € R%, is continuous in [1/N, N]. Thus, F, is continuous in R?. Indeed, let yo € R%.
We can write, by [8:2) and Minkowski inequality

L2((0,00),4)

Ootk-"_le Su
172 ) = Felmlew < || [ iz 1F00., Wae =) = Flu)o., Wae = )l

< [ et )0, W (=)~ F0)0, Wit (o = )|
0 8v 8v

< C/ e P [H(f ()0, Wiz (& = y) = f(40)Du, Wz (@ = wo))||5, dv, v € RY.
0 8v 8v

Since
£ )02, W 12 (& = ) = £ (50)0, Wz (& = 90)) |

= (2m) 412 </ Nt(lf<y><xj — e o) s (yo>j>e4%°2“|(f—3)g“)2dt>

1

N

[N

2
N . d+2 2,
v —y —8‘1 yo\
=€ (L 12d+3 (lz —ylPe” e 4 |z — yo|?e )dt>
N

ann (N dt a1 d and
< (Cv= N t2d+1§0 , yeR%and v >0,

by using the dominated convergence theorem we deduce that
lim |[F(y) — Fz(yo)llry = 0.
Y—Yo

Since Fy is a separable Banach space, Pettis’ Theorem ([41, Theorem p. 131]) implies that F, is Fy -strongly
measurable.

By (3] we get
[ @ =yl @ldy < 0o, & supp.
We define
~E,0 E,0
U5 (f)(z) = /Rd Wy (@ =y, ) f(y)dy, =« ¢&suppf,
where the integral is understood in the Fxy-Bochner sense. Suppose that g € Fy. We have that

N
10 = el < Clalsy [ P dy < oo o ¢ supr
% Jas e |7 =
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We can write
[, soEErow)of = [ o [ e oo fa - [ wutineng. o ¢mmr

Hence, for every x & suppf, U,fjo(f)(:t) = U,f}o(f)(x, ), in Fy.
We also have that

(15) Lo m@|, de< [ 1680 0@Pds < Ol
R4 Fn

According to [@3), @A) and (£I) and by taking into account that the constant C' in (L) does not depend
on N, the vector-valued Calderén-Zygmund theory ([39]) allows us to conclude that U,f ]10 defines a bounded

operator from
(i) LP(R?, dx) into Lg, (R4, dz) and

~E.,0
sup HUk ;
NeN ’
N>2

L (Rt dz)—LE (R,dz)

for every 1 < p < oc;
(i) L'(R?, dz) into Ly ™ (R?, dz) and

~E.0
sup HU,” ‘
NeN ’
N>2

LY (R4,dx) —>L;}V°° (R4, da)

By using monotone convergence theorem we deduce that ng’jO is bounded from LP(R%, dz) into itself, for every
1 < p < oo, and from L'(RY, dz) into L1*°(R?, dx).

4.2.2. We are going to study the local Littlewood-Paley function Gk i M loc defined by

244\ 2
G v toe()( (/ ‘/Rd b j A —y,t)f(y)w(x,y)dy‘ ?> , z€RL

Suppose that A > 0. Minkowski inequality and BI1]) lead to

1 _M _uth u+ h)M-1
GE e N < € [ b0k e S [l =l Wl = )l o)

L2((0,00),4t)
1

<C | —— C— | Wz — Ly)dydu < C W, , zeR%

<C [ e [ oy =0 Wala =IOl p)dydn < Csup W)@l @

It follows that G£37M710C is bounded from LP(R%, dx) into itself, for every 1 < p < oo, and from L'(R?, dz) into
LY (R4, dw).
In order to study the operator Gk i Mloc W€ use the vector-valued Calderén-Zygmund theory ([39]).

We define
oo 2dt %
£ = (][ et vosm| §) . remt

By using Plancherel equality, Minkowski inequality and (B.I1]) we obtain

LeE @~ [~ [
- L

> zd’u 2
<C ]:f22</ ze“|z|—> szCf22dm.
Rdl (=)l ; |z NG 1172 (R )

2
dwﬁ
t

U0 (@ =y, ) fy)dy
]Rd
2

tk+2 kp—M ,—% M—1 dt
)/Eat [t™Me™ ¢ | F (0, W) (2)u™ dy dz?

We consider the operator UkE’Q s defined by

UkEJOM(f) (z,t) / leJM( z—y,t)f(y)dy, xcRandt>0.
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We have that

GEo )= vty ol . zERY
k,g,M(f k,j,M (F)(z,) L2((0,00), 1) €z
Minkowski inequality and BI]) lead to
o e,\m—ywz C
yeo ,-‘ C/ R < —) ,y e RY, .
H kg (T =Y, ooy = O ) TaE u_|x—y|d z,y T #y
We also obtain, for every i =1, ..,d,
C
6mu - Y ‘ ‘ E)‘O - 7" <77 ) ERda .
‘ i k]M(‘T Yy ) L2((0,oo),%) k,g,M(‘r Y ) L2((O,oo),%) = |:17 _y|d+1 z,y x 7& )

By proceeding as in the previous case we can conclude that the operator GkE,fM,loc is bounded from LP(R?, dx)
into itself, for every 1 < p < oo, and from L'(R?, dz) into LY>°(RY, dx).

4.3. Variation operators.

4.3.1. We study the local variation operator defined by

oD@ =V, (t = Ul (N@.0) . @ eRY,

where
UER(f) (o, 1) = /R 4PN — ) f()dy, =€ RY and £ > 0.

By using (3 we can proceed as in section EEII] to prove that, when h > 0, v”
LP(RY, dz) into itself, for every, 1 < p < o0, and from L'(RY, dz) into L1 (R4, dz).

We now study the variation operator v” We consider first, E = (0,00). The classical Poisson kernel is
given by

’. k j.loc is bounded from

pk]loc

D) t
T (124 [22) %

P(z) = pEag zeR%and t > 0.

We have that

3tk+1[Pt(Z)]—3tk+2[ - —1|, zeR¥andt>0.

According to Faa di Bruno’s formula

1 1
] = Z aptht2=2t , zeRYandt >0,

8k+2
(12 + |22) = (12 + |2|2) T Hh+2-¢

t

0<e< kE2
for certain ap e R, 0 < £ < %, ¢ € N. Then,

tRHLOFIP, (2) = ¢¢(2), 2z €R%and t >0,
where ¢;(2) = t~9¢(z/t), = € R? and t > 0, and

¢(z) = Z a z e R%.

—+k+2 0’

On the other hand, given that P; is a radial function, the relation between the Fourier and the Hankel
Transform, leads to (see [I1], p. 7 (4) and p. 24 (18)]),

F (0, 0FP,) (2) = izj|2|Fe 17 = i%'wﬂe*ﬂz\, z € R\ {0} and t > 0.

We get
"0, 0P P (f) () = CHTLOF PR f)(2) = C(¢e * R f)(x), x€R%and ¢ >0,

for a certain C' € R. Here, R; denotes the j-th Euclidean Riesz transform.

We define a
_ ¢
p(u) = Z o (14 u2) k2=’ u € (0,00).
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It is clear that ¢(z) = ¥(|z[), z € R?. We have that ¢(u) — 0 as u — oo, and [ [¢/'(u)|u?du < co. According
to Lemma 2.4 in [4], the variation operator associated with {T}};s0 where T;f = ¢ * f, t > 0, is bounded from

LP(R?, dx) into itself, for every 1 < p < oo, and from L'(R%, dx) into LV*°(R¢, dz). Since R; is bounded from
(0, oo) 0
pk,g
is bounded from L!(R? dx) into L'>°(R?, dx), we use vector valued Calderén-

LP(R?, dx) into itself, for every 1 < p < oo we derive the same boundedness property for v

In order to see that U(O Oo)

Zygmund theory.
According to (BH) and Minkoswki inequality we obtain

kt1ak[, 2t
B O/oo 51 of [tea ]|y, |, —yj|€7\z4_;y\2du
b 0

0,00),
il( (x—y,-
H Y ) v, u% u%Jrl

(4.6) I

<C du < , T,YyeRY 2 ,
= / A S ey Y 7

and, in a similar way, for every i =1, ..., d,

C

A7 ’ <
.7 Vo T o=yl

z,y eRY, w#y.

Do 00—y, \

+ Haylilow)o(x—yw)‘

Let N € N, N > 2. We consider the space V, ([% ND consisting in all g € C' ([%, N]) such that

1
P
VV(g) = sup (Zlg i+1) — g(t:)]? ) < o0,
N<t[<t[ 1< <t1<N
LeN

By identifying those functions that differ in a constant (Vp ( [%, N D JVN ) is a Banach space. Assume that

P
f € CE(RY). Let x € RY. We define, for every y € R?, the function F,(y) € C ([+,N]) defined by

[EeW))(t) = f)U ™ (@ —y,1), te [L.N].

< C }a k+16k t _H ‘ |.’II] y]
A ()P
thrl tk 7—u o y|2
<c/ / < - ) € " o= dudt
uT u§+2

2+\m y|2

<C/ i ——du

<
(V- 2+|17—y| )t

By [Il Lemma 4] we get

y € R4

We define the mapping
Fy:RT*—V, ([4£,N])

F, is continuous. Indeed, let yo € RY. By Lemma 4 in [I] we obtain

VY (Fe(y) = Fe(yo))

k k e~ 4u
=¢ /i / oot (e )l LW (- y)fly) - L= ‘jy())jwu(x—yov(yw

dudt

N ) c . i — j

<C / tkek+2u uWu(fE - y)f(y) - MWU(‘% - yo)f(yo) dudt
FJo wE oW '
N oo —cv %

<[ S = W o = 0 0) (o = 00, W (2 = o)) v
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Since
B ‘(l‘j —y)We(x = y)f(y) = (x5 = y05)We (z —y0) f(yo)| dt < Cv=", y € R" and v > 0,
~
the dominated convergence theorem leads to

lim V,N(Fy(y) — Fu(y0)) = 0.

y—yo P

Since F, is continuous, it is V, ([ N})—strongly measurable by Pettis’ Theorem. Indeed, F, is weakly

N

——V,(|%.N
measurable. Furthermore, if Q represents the set of rational numbers, we have that F,(R?) = F,(Q9) ([N D
By using ([&0) we get

J.

W00 =y Wrwldr < [ 00y <o, o supp(s).

o —y[a "

VPN
We define
77 (0,00) (0 oo) O
M / u v )W)y, o & supp(f),

where the integral is understood in the V,- Bochner sense.
Let 0 < a # 1. We define the functional T, in V, ([%, N]) as follows

Ta(g) = g(a) — g(1).
It is clear that T, € V, ([%, ND/, the dual space of V, ([%, N]) We have that

T (S0 @) = [T (400w )

0,00),0 0,00),0
= U (), a) = U () @), @ ¢ supp()):
We deduce that, for every x ¢ supp(f), there exists ¢, € R such that

[F°(5)@)] (1) = U0 @ t) e (0,00),
and -
M () @) = UG () @)
as elements of V, ([N,ND
Since U(O j)’ is bounded from LP(R?, dx) into itself, for every 1 < p < oo, from (@8] and [T)we deduce that

M,g?joo) is bounded from L'(R?, dx) into b O(o[ ) (R ,daz). Furthermore

0,
sup ||M( ) ||L1 (R?,dz) Ly

(Rd,dm) < 0.
NeN,N>2

Vp([1/N,N])

By using the monotone convergence theorem we conclude that n( O;)’ is bounded from L'(R%, dz) into L' (RY, dz).
Suppose now that E C (n,c0) for some n > 0. By using Lemma 4 in [1] we get

Oy tk“ak te~ T o
||ﬂkE (z—y,- ||V <C// ‘ ( )} 5 yjqu(:E—y)dtdu

3
uz u

_olz=vl?

(o9} tk 7C— cC—p
< C/ / k:+4 d 1 du
< - -
B Iﬂc—yld‘l/77 /

1+|:1c|

According to Lemma [Z.5] the operator o” is bounded from LP(R?, dx) into itself, for every 1 < p < oo,

and from L'(R?, dz) into LV>°(R?, dz).

pk]loc
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E0

ook, loc is bounded

By combining the above results we deduce that if E C (0,7), for some 1 > 0, the operator v
from LP(R?, dx) into itself, for every 1 < p < oo, and from L'(R%, dx) into LV>°(R?, dx).

4.3.2. We consider the local variation operator defined by

o0 e (@) =V (t — U,f}?M)IOC(f)(x,t)) , zeRY
where
Uy ) = | SO @ =y idy, @ € R and > 0.

Minkowski inequality and (BI1)) allow us, as in Section T2l to see that the operator Uﬁ’,: i M.loc> When i >0,
is bounded from LP(R?, dz) into itself, for every 1 < p < oo, and from L'(R%, dx) into L1>°(R?, dx).
We are going to study the variation operator nf’ko j.M loc- 11 order to do this we consider firstly the operator
n;?,f;);\?[. We recall that
k+1/2
S )

0y 0y, / =MW, (2)uM tdu, z e R and t > 0.
0

We can write
U0z, t) = Ligar(z,t), 2€R%and t >0,

where
tk+l/2 k 00 —v M-1 d
L jm(z,t) = mat Oz, /0 e "Wy (2)v dv, ze€R%andt>0.
w|?tv
We have that F(0., Wy (2))(w) = iwje_%, w € R% and ¢,v > 0. Then,
_1 k tv|w 2
F(* 12980, Wiy (2))(w) = (=1 iwth T 2k ) ke~ e , weRand t,v >0,

2k

and we get

FOLSEO (1) (w) = F(f % Lot (1) (w) = —%f(f)(wm,t(w

= F(R;f)(w)F(F 1 (Up))(w), weRand t >0,
where R; denotes the j-th Euclidean Riesz transformation and
Wy (w) = ﬂtlﬁé /°° efvvk+M71|1U|2kHe*m;U‘2 dv, weRYandt>0
=aman’ | |

We consider the function 1 (w) = |w|?**+1e=alvl* € R, where a > 0. We define the Hankel transform h, by

na)s) = [ o) T (s, s € (0,00),

where J, denotes the Bessel function of the first kind and order v > —1. Since 1 is a radial function we obtain
1
71 o
F Wk)(@ - (27T)d
where ¥ (r) = pRhtle=ar® .o (0,00). According to [11I, (14), p. 30] we get

d+1 d s?

-1 o _d+1_ @, s
Fun)(s) = aa™ T R (= ki) s€ (0,00)

for certain ¢ > 0. Here 1 F; represents the Kummer’s confluent hypergeometric function (see, for example, [23]

§9]).
Thus,

hocs (Be)(Ja)), = €RY,

(—1)kt12% ¢,
I'(M)

(oY

o d+1 d 2
F (W) () = t / i 1F1(%+k,5;—ﬂ)dv, zeR,
0

2tv

and we can write

U ()@ t) = ((0n) y * Rif) (@), z€R?and ¢ >0,
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where

(k2% g, /°° o M1t d+1 . d || g
or(z) = () ; e v 2 1F( 5 +k 2v)dv, x € R

By taking into account [23] (9.11.2)] with the adequate correct form (see also [35, Theorem 1]), for every a, v € R,
with v # 0,—1, -2, ..., we have that 1Fy(a,v;2) =e* 1Fi(y — a,7;—2), z € R. Then,

d+1 d
k—-—): .
5 + i z 0

Since M > %, we infer by the dominated convergence Theorem that lim |, _, or(z) =0.
On the other hand let us consider the function

~ (—1)kH12% ¢, /°° o M1 d+1 d r?
S . vy F kL 0, 00).
or(7) T(M) , ¢ ! 1( 7 TRy 2U) v, 1€(0,00)

It is clear that ¢ (x) = gk(|x|), r € RY.
Again by [23] (9.11.2)] we deduce that

o0 d+1 d 2
/\—m \r”‘dr<0/ e vpM 2= / d+1’1F(%+k+12+1;—;—v)‘drdv

d+1 d 2
<C/ e~ vpM-2- / / d“ 1(i+k+1 +1;—T—)’drdv
2 2 %
§C</ e v Mﬁ?dv—i—/ e M2 / 2kQUd;lJrk“drdv)
0 0 Vo

o 3
:C/ e YoM~ 3dy < o0.
0

lim 1F1(

z—+o0

From [4, Lemma 2.4] we deduce that the variation operator V,(t — (¢x) 5% f) is bounded from L?(R?, dx) into

itself, for every 1 < p < oo, and from L'(R%, dz) into LV*°(R%,dz). Since R; is bounded from LP(R¢, dz) into

itself, for every 1 < p < oo, we deduce that U(Ok(zo)]v? is bounded from LP(R, dx) into itself, for every 1 < p < co.

In order to prove that UE)O,’CO;)]’\E is bounded from L!(R¢, dz) into L*°(R¢, dz) we can use the vector-valued

Calderéon-Zygmund theory by using the techniques developed to prove the corresponding property for the operator

(0,00),0
0, . jloc Nl SECtion 3T

Suppose that E C (n,00) for some > 0. From BII)) it follows that

du C * du 1+ |z d
<C O Wyl —y))|—=< ———— — < (C——, ,y € RY .
o SO f o Wte i < [ e sy Rty

u?2

|4 s w0

By using Lemma we prove that Uf”,gijyloc is bounded from LP(R?, dx) into itself, for every 1 < p < oo, and
from L'(RY, dz) into LY*°(RY, dx).

The above properties allow us to conclude that o” o k .M loc 18 bounded from LP(R%, dz) into itself, for every
1 < p < oo, and from L*(RY, dx) into L1 (R?, dz) provided that E C (0,n), for some 1 > 0.

Remark 4.1. Note that the properties proved in this section for maximal operators and Littlewood-Paley functions
hold for every subset E of (0,00). However, we prove the properties for variation operators when E C (0,7) or
E C (n,00), for some n > 0.
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