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Abstract. In this work we construct sequences of locally recoverable AG

codes arising from a tower of function fields and give bound for the parameters
of the obtained codes. In a particular case of a tower over Fq2 for any odd

q, defined by Garcia and Stichtenoth in [3], we show that the bound is sharp

for the first code in the sequence, and we include a detailed analysis for the
following codes in the sequence based on the distribution of rational places

that split completely in the considered function field extension.
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1. Introduction

Let q be a prime power. A linear code C of length n over the finite field Fq with
q elements is a linear subspace of Fnq . The dimension of the code k is the dimension
of C as a Fq-vector space and its minimum distance d is the minimum of the number
of non-zero entries of a vector in C \{0}. A linear code C of length n and dimension
k is a locally recoverable error-correcting code, (LRC for short) with locality r if
it is a code that produces an n-coordinate codeword from k information symbols
and, for any coordinate of the codeword, there exist at most r other coordinates
that allow to recover the lost coordinate. LRCs were introduced in [4] motivated
by the significant use of coding techniques applied to data distribution and cloud
storage systems, since local recovery techniques enable us to repair lost encoded
data by making use of small amount of data within the received vector instead of
all information.

One of the problems of interest in the field is the construction of long non triv-
ial codes, in which the ground field cardinality is not much larger than the code
length. It is well known that one way of obtaining long codes is by the use of al-
gebraic curves with many rational points, or equivalently, algebraic function fields
with many rational places. In this work we are interested in working with this type
of algebraic-geometry codes (AG codes for short), or codes coming from the eval-
uation of rational points on an algebraic curve over Fq, (see Section 2 for precise
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definitions). In this direction, Barg, Tamo and Vladut [1] constructed algebraic-
geometry locally recoverable codes, generalizing previous works of Barg and Tamo
[9, 10]. Haymaker, Malmskog and Matthews in [5], used fiber products of maximal
curves to construct LRC with availability, giving in this way a generalization of [1]
for more than one recovery set.

Since we aim to build sequences of AG codes that are also LR codes, we will
work with towers F = (F0, F1, . . .) of function fields over the same finite field Fq,
in the way defined by Garcia and Stichtenoth (see for example [3, 8]). By using
these type of asymptotically optimal towers, Tamo, Barg and Frolov in [11] gave a
construction of asymptotically good locally recoverable codes over Fq2 with locality
r = q − 1 whose rate R and relative distance δ satisfy the following equation

(1) R ≥ r

r + 1

(
1− δ − 3

q + 1

)
.

In our work, we also employ the Garcia-Stichtenoth function field given in [3]
to build asymptotically good LRCs. Our method can be viewed as an extension
of the construction given in [1]. Furthermore, our construction allows to compute
the exact dimension of the code in severals steps on the tower, using a different
evaluation set but in this case, although we can improve the dimension, we have
a cost to pay in the bound for the minimum distance. Nevertheless, we are able
to construct a family of LRC over Fq2 with locality r = q − 1 whose rate R and
relative distance δ satisfy

(2) R ≥ r

r + 1

(
1− δ − 2

q

)
,

which improves the asymptotic Gilbert-Varshamov type bound for LRCs with a
single recovery given by (1). This bound is a particular case of the bound given by
Li, Ma and Xing in [6], in which they use the same tower and the automorphism
group of the function fields involved to build asymptotically good LRCs. Neverthe-
less, note that the main difference with this work is that we are able to compute
the exact dimension of the constructed codes.

This work is organized as follows. In Section 2 we give some preliminary defi-
nitions and facts on the behavior of towers of function fields. Section 3 is devoted
to build locally recoverable codes from a tower of function fields, see Theorem 3.4.
Determining the exact minimum distance of linear codes can be a hard problem.
In particular, few results are known for the exact minimum distance of LRCs. In
[2], this problem is addressed by using the construction given in [5], and analyzing
relative parameters. In Section 4, and in particular in Propositions 4.1 and 4.2, we
compute the exact minimum distance of the constructed codes in one step exten-
sion of the tower, and we show that the method used to compute this distance will
not be enough to compute the minimum distance in further steps. Finally, in the
last section of this paper, we compute some asymptotic parameters and show the
improvements mentioned in Equation (2).

2. Preliminaries

Throughout this work, we will use the terminology of function fields for defining
AG-codes (instead of algebraic curves). An algebraic function field F over Fq
is a finite algebraic extension of the rational function field Fq(x), where x is a
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transcendental element over Fq. For a complete introduction on algebraic function
field and their relationship with codes see for example [8].

Let D and S = P1 + · · · + Pn be two disjoint divisors of an algebraic function
field F over Fq, where P1, . . . , Pn are different rational places of F , and consider
the Riemann-Roch space associated to D

L(D) = {f ∈ F \ {0} : (f) ≥ −D} ∪ {0},

where (f) denotes the principal divisor of f ∈ F . The algebraic-geometry code
defined by F , D and S is

C = CL(S,D) =
{(
f(P1), f(P2), . . . , f(Pn)

)
∈ Fnq : f ∈ L(D)

}
,

where f(Pi) stands for the residue class of f modulo Pi, i = 1, . . . , n.
Since our aim is to build infinite sequences of AG codes that are also LR codes,

we will work with infinite sequences of function fields. For fixing our notation and
settings we will use the following definitions.

Definition 1. We will consider sequences F = (F0, F1, . . .), of function fields over
the same finite field Fq such that

1. F0 ( F1 ( F2 ( · · · ,
2. the field extension Fi+1/Fi is finite and separable for all i ≥ 0, and
3. Fq is the full constant field of each Fi for all i ≥ 0, i.e., the only elements of Fi

which are algebraic over Fq are the elements of Fq.
Following the works of Garcia and Stichtenoth (see for example [3], [8]), we will say
that the sequence F is a tower of function fields over Fq, if the genus g(Fi) grows
to infinity as i→∞.

Definition 2. A sequence (or a tower) F = (F0, F1, . . .) is recursively defined if
there exist a bivariate polynomial f ∈ Fq[S, T ] and transcendental elements xi
i = 1, 2, . . ., such that for all i ≥ 0 the following statements hold:

1. F0 = Fq(x0) is the rational function field.
2. Fi+1 = Fi(xi+1) with f(xi, xi+1) = 0.
3. [Fi+1 : Fi] = degT f .

The following definitions are important in the study of the asymptotic behavior
of sequences of function fields. As usual, we will denote by P(F ) the set of all places
of the function field F/Fq. Given a finite extension E/F and a place P ∈ P(F )
there are finitely many places Q ∈ P(E) lying above P . We will write Q|P when Q
lies over P . If F = (F0, F1, . . .) is a sequence of function fields over Fq, we say that
a place P ∈ P(Fi) splits completely in F if P splits completely in each extension
Fj/Fi (and in this case we have [Fj : Fi] different places over P ). The splitting
locus of F over F0 is defined as

Split(F/F0) := {P ∈ P(F0) : deg(P ) = 1 and P splits completely in F} ,

where deg(P ) is the degree of the place P . A place P ∈ P(Fi) is ramified in F if P
is ramified in any extension Fj/Fi. The ramification locus of F over F0 is the set

Ram(F/F0) := {P ∈ P(F0) : P ramified in some extension Fn/F0}.

A place P ∈ P(Fi) is totally ramified in F if P is totally ramified in each extension
Fj/Fi (in this case we have only one place Q in P(Fj) over P and the ramification
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index e(Q|P ) is equal to [Fj : Fi]). The complete ramification locus of F over F0 is
defined as

CRam(F/F0) := {P ∈ P(F0) : deg(P ) = 1 and P is totally ramified in F} .
Since every place Q ∈ P(Fi) lying above a place in Split(F/F0) ∪ CRam(F/F0) is
a rational place (i.e. of degree one), we have that

(3) N(Fi) ≥ [Fi : F0]|Split(F/F0)|+ |CRam(F/F0)| ,
where N(Fi) is the number of rational places of Fi.

Lemma 2.1. If F is a sequence such that Split(F/F0) 6= ∅ then F is a tower.

Proof. Since Split(F/F0) 6= ∅ there is a rational place P in F0 that splits completely
in each extension Fi/F0 then, by the Hasse-Weil bound, we have that g(Fi) → ∞
as i→∞ so that F is actually a tower. �

The limit of a tower of function fields F is given by

λ(F) =
N(F )

g(F )
,

it always exist and it is a non negative amount, so it is said that the tower is asymp-
totically good if λ(F) > 0 and asymptotically bad on the other case. Therefore, a
tower is asymptotically good if and only if it has non-emply splitting locus and
finite ramification locus (see [8, Proposition 7.2.6]).

In this work we will “lift” divisors from one function field F to an extension E
by using the conorm map on divisors

ConE/F : Div(F )→ Div(E),

that we now recall. If P is a place in F , the conorm divisor of P is the divisor

ConE/F (P ) =
∑
Q|P

e(Q|P )Q

in E, where e(Q|P ) is the ramification index of the place Q in E over P . Now, the
conorm divisor of D =

∑
P nPP ∈ Div(F ) in E is given by

D′ := ConE/F (D) =
∑
P

nP ConE/F (P ).

3. Sequences of LRC

First we will present the construction of a LR code on an extension of function
fields. This construction can be found Theorem 3.1 in [1]. We included here for the
sake of completeness and adapting it to the function field language.

Theorem 3.1. Let F a function field over Fq and let E = F (x) a function field
extension of degree m. Let S be a set of places of F that split completely in E/F
and such that

{Q ∈ P(E) : Q ∩ F ∈ S} ∩ {Q ∈ P(E) : νQ(x) < 0} = ∅
and let B = {Q ∈ P(E) : Q ∩ F ∈ S}. Then, if |S| = s > 0 we have that |B| = sm.
Choose a divisor D of F of degree l such that Supp(D)∩S = ∅, and let {f1, . . . , f`}
a basis for L(D), the Riemann-Roch space associated to D. Let r = m − 1 and
consider the space V generated by

{fwxe : w = 1, . . . , `; e = 0, . . . , r − 1}.
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Since Supp(D) is disjoint from S, the evaluation map

ev : V −→ F(r+1)s
q

f → (f(P11), . . . , f(Pms))

is well defined. The image of this mapping is a locally recoverable code C with locality
r, which we denote by C(S,D). The code coordinates are naturally partitioned into
s subsets Aj = {Pij}i=1,...,r+1 of size r + 1 each. Denoting by g(F ) the genus of F
and h = [E : Fq(x)], we have that the parameters of the code satisfy

• n = (r + 1)s,
• k = r` ≥ r(l + 1− g(F )),
• d ≥ n− l(r + 1)− (r − 1)h,

provided that the right-hand side of the inequality for d is a positive integer. Local
recovery of an erased symbol cij = f(Pij) can be performed by polynomial interpo-
lation through the positions of the points in the recovery set Aj \ {Pij}.

Remark 3.2. Notice that the previous construction can be performed for any step
in a tower of function fields, either consecutive or not.

In particular, we can consider a tower of function fields, and built a LR code,
but starting with the rational function field, as the base field in the tower.

Theorem 3.3. Let F = {Fj}∞j=0 be a sequence of function fields and {xi}∞j=0 a
sequence of transcendental elements over Fq such that F0 = Fq(x0) is the rational
function field and Fj = Fj−1(xj) for every j > 0. Denote by mj = [Fj : Fj−1] and
consider E = Fi, for some index i ≥ 2. Let S be a set of places of F0 that split
completely in E/F0 and such that

{Q ∈ P(E) : Q ∩ F0 ∈ S} ∩

 i⋃
j=1

{Q ∈ P(E) : νQ(xj) < 0}

 = ∅

and let B = {Q ∈ P(E) : Q ∩ F0 ∈ S}. Then, if |S| = s > 0 we have that
|B| = sm where m = mi . . .m1. Choose a divisor D of F0 of degree l such that
Supp(D) ∩ S = ∅, and let D′ be the conorm divisor of D in Fi−1, i.e., D′ =
ConFi−1/F0

(D). Let {f1, . . . , fw} be a basis for L(D′), the Riemann-Roch space
associated to D′. Consider the space V generated by

{fj xeii : 1 ≤ j ≤ w and 0 ≤ ei ≤ mi − 2}.
Since Supp(D) is disjoint from S, the evaluation map

ev : V −→ Fmsq
f → (f(P11), . . . , f(Pms))

is well defined. The image of this mapping is a locally recoverable code with locality
r = mi − 1, which we denote by Ci(S,D). The code coordinates are naturally
partitioned into m̃s subsets of size mi each:

Ajt = {P jtu : 1 ≤ u ≤ mi}

= {Q ∈ P(Fi) : Q ∩ Fi−1 = P jt1 ∩ Fi0−1 = P̃t
j
}

where 1 ≤ j ≤ s; 1 ≤ t ≤ m̃ and m̃ = mi−1 . . .m1 = m/mi. Denoting by
h = [Fi : Fq(xi)], we have that the parameters of the code satisfy

• n = ms = mi . . .m1s,
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• k = w(mi−1) ≥ (deg(D′)+1−g(Fi−1))(mi−1) = (m̃l+1−g(Fi−1))(mi−1),
• d ≥ n− lm− (mi − 2)h,

provided that the right-hand side of the inequality for d is a positive integer. Local
recovery of an erased symbol f(P jtu) can be performed by polynomial interpolation

through the positions of the points in the recovery set Ajt \ {P
j
tu}.

Proof. Straightforward from Theorem 3.1 in the particular case of one step exten-
sion in the tower. �

A modification of the previous result allow us to compute the exact dimension
of the code, using a different vector space. Note that in this case, although we can
compute the exact dimension, and improve the dimension in some cases, we have
to pay a cost in the bound for the minimum distance of the code.

Theorem 3.4. Let F = {Fj}∞j=0 be a sequence of function fields and {xi}∞j=0 a
sequence of trascendental elements over Fq such that F0 = Fq(x0) is the rational
function field and Fj = Fj−1(xj) for every j > 0. Denote by mj = [Fj : Fj−1] and
consider E = Fi, for some index i ≥ 2. Let S be a set of places of F0 that split
completely in E/F0 and such that

{Q ∈ P(E) : Q ∩ F0 ∈ S} ∩

 i⋃
j=1

{Q ∈ P(E) : νQ(xj) < 0}

 = ∅

and let B = {Q ∈ P(E) : Q ∩ F0 ∈ S}. Then, if |S| = s > 0 we have that
|B| = sm where m = mi . . .m1. Choose a divisor D of F0 of degree l such that
Supp(D) ∩ S = ∅, and let {f1, . . . , f`} a basis for L(D), the Riemann-Roch space
associated to D. Consider the space V generated by

{fwxe11 · · ·x
ei
i : 1 ≤ w ≤ `; 0 ≤ ei ≤ mi−2 and 0 ≤ ej ≤ mj−1 for j = 1, . . . , i−1}.

Since Supp(D) is disjoint from S, the evaluation map

ev : V −→ Fmsq
f → (f(P11), . . . , f(Pms))

is well defined. The image of this mapping is a locally recoverable code C with
locality mi − 1, which we denote by Ci(S,D). The code coordinates are naturally
partitioned into m̃s subsets of size mi each:

Ajt = {P jtu : 1 ≤ u ≤ mi}

= {Q ∈ P(Fi) : Q ∩ Fi−1 = P jt1 ∩ Fi0−1 = P̃t
j
}

where 1 ≤ j ≤ s; 1 ≤ t ≤ m̃ and m̃ = mi−1 . . .m1 = m/mi. Denoting by
hj = [Fi : Fq(xj)], we have that the parameters of the code satisfy

• n = ms = mi . . .m1s,
• k = `(mi − 1)mi−1 · · ·m1 ≥ (l + 1)(mi − 1)mi−1 · · ·m1,
• d ≥ n− lm− (m1 − 1)h1 − · · · − (mi−1 − 1)hi−1 − (mi − 2)hi.

provided that the right-hand side of the inequality for d is a positive integer. Local
recovery of an erased symbol f(P jtu) can be performed by polynomial interpolation

through the positions of the points in the recovery set Ajt \ {P
j
tu}.
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Proof. Since [E : F0] =
∏i
j=1[Fj : Fj−1] =

∏i
j=1mj we have that n = |B| =

smi . . .m1. The dimension of the code is the dimension of the vector space V
(since the evaluation map is injective). Note also that the bound of the minimum
distance is just the length of a codeword minus the maximum number of zeroes
that a function f in V can have. In fact, fwx

e1
1 · · ·x

ei−1

i−1 ∈ Fi−1, and there is a
divisor G of Fi−1 of degree (l + (m1 − 1) + · · ·+ (mi−1 − 1))m̃ such that

fwx
e1
1 · · ·x

ei−1

i−1 ∈ L(G)

and if Q ∈ Supp(G) then Q|P for some P ∈ Supp(D) or Q|Qj where Qj is the

simple pole of xj in Fq(xj), for some j = 1, . . . , i− 1. Therefore, if we denote by G̃

the conorm divisor of G in Fi, i.e., G̃ = ConFi/Fi−1
(G) and Q̃i = ConFi/Fq(xi)(Qi)

the conorm divisor of the simple pole Qi of xi in Fq(xi), we have that

fwx
e1
1 · · ·x

ei
i ∈ L(G̃+ (mi − 2)Q̃i)

where

deg(G̃) = [Fi : Fi−1] deg(G)

= [l + (m1 − 1) + · · ·+ (mi−1 − 1)]m̃mi

= [l + (m1 − 1) + · · ·+ (mi−1 − 1)]m,

and deg(Q̃i) = [Fi : Fq(xi)] = h. Finally, since a function f ∈ V can have at most

[l + (m1 − 1) + · · ·+ (mi−1 − 1)]m+ (mi − 2)h

poles (and thus zeros) we have a lower bound for the minimum distance. Now, let
us show how the recovery of the coordinate is achieved. Let f ∈ V and

c = (f(P 1
11), . . . , f(P jm̃mi0

))

be a codeword. Assume, that the coordinate f(P jtu) is missing, for some fixed t, u

and j. Recall that we denote by Pj = P jtu ∩ F0 and P̃t
j

= P jtu ∩ Fi−1 (See Figure
1). The recovery set for this coordinate is the evaluation of f in the points of the

set Ajt \ {P
j
tu}, in other words, {f(P jtk)}1≤k≤r+1

k 6=u

. Since fwx
e1
1 · · ·x

ei−1

i−1 ∈ Fi−1 the

evaluation of this in any point of the recovery set is constant and equal to the

evaluation in P̃t
j
. So, f(P jtu) can be seen as the evaluation in P jtu of a polynomial

in T :

f̃(T ) :=

mi−2∑
k=0

bkT
k

with some appropriate chosen coefficients. And the same is true for all points in
the recovery set (since they are all above the same place in Fi−1). Therefore, the
coefficients b0, . . . , bmi−1 can be found by polynomial interpolation of the remaining
mi − 1 points in the recovery set. �

Remark 3.5. Notice that the elements in the set S are the places that split com-
pletely in all the extensions Fj/F0, j = 1, . . . , i but this is not a necessary condition.
Actually, the necessary condition is that the places in the set S have above them
places of degree one in E, and that we have enough of them to build a recovery
set and bound the dimension of V to have an injective application, but they could
ramify in some intermediate extension.
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F0

Fi−1

Fi

Pj

P̃ j
1

· · · · · · P̃ j
m̃

P j
11

P j
1mi

· · · P j
m̃1

P j
m̃mi

mi

m̃

Figure 1. Diagram of an splitting place Pj of F0 in Fi

Example 1. For each q > 2 let us consider the recursive tower F = {Fj}∞j=0 over
Fq2 defined by Garcia and Stichtenoth in [3], whose defining equation is

(4) yq + y =
xq

xq−1 + 1
.

It is known (see, for instance, [7, Example 5.4.1]) that N(Fj) ≥ qj(q2 − q) + 1 and
the genus is given by

g(Fj) =

{
(q

j+1
2 − 1)2 for j odd,

(q
j
2 +1 − 1)(q

j
2 − 1) for j even.

In this case, we have the set

S = {Pα ∈ P(F0) : α ∈ Fq2 and αq + α 6= 0},
where Pα denotes the only single zero of x0 − α in the rational function field F0 =
Fq2(x0). All the places in S split completely in the tower, so for some i > 1 we can
consider

Bi = {Q ∈ P(Fi) : Q|P for some P ∈ S}
as the evaluation set. Notice that using the defining equation of the tower, is not
hard to verify that the places in Bi are not poles of xj , j = 0, . . . , i. Moreover, the
only pole of x0 in F0, that we denote by P∞ is totally ramified in the tower, and
we can choose D = lP∞. Since F is an asymptotically good tower and every step
in the tower is of degree q, we have that m = [Fi : F0] = qi = [Fi : F2

q(xi)] = h.
Therefore, considering the set

Vi = 〈xe00 x
e1
1 · · ·x

ei
i : 0 ≤ e0 ≤ l; 0 ≤ ei ≤ q−2 and 0 ≤ ej ≤ q−1 for j = 1, . . . , i−1〉,

we can build a locally recoverable code Ci(S,D) with locality q − 1, whose param-
eters satisfy

n = qi(q2 − q)
k = (l + 1)(q − 1)qi−1

d ≥ (q2 − 2q + 2− l − (q − 1)(i− 1))qi

provided that the right-hand side of the third inequality for d is a positive integer.
Notice that in the case i = 1 the same construction can be done, where

V1 = 〈xe00 x
e1
1 : 0 ≤ e0 ≤ l; 0 ≤ e1 ≤ q − 2〉.

Remark 3.6. For 1 < i ≤ q − 1 and 1 ≤ l ≤ (q − 1)(q − i), the code Ci(S,D) in
the previous example verifies d > 0 since

d ≥ (q2 − 2q + 2− l − (q − 1)(i− 1))qi = ((q − 1)(q − i)− l + 1)qi > 0
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Example 1. (cont.) Taking into account the previous remark, if we want to
maximize the dimension, we can choose l = (q−1)(q− i) and in this case we obtain
codes Ci(S,D) for i ≤ q − 1 with the following relative parameters:

R =
k

n
=

(l + 1)

q2
≥ 1

q
and δ =

d

n
≥ 1

q(q − 1)
.

4. A particular case for small steps

In this section we will work with the tower presented in Example 1, and we will
show that the bound presented in Theorem 3.4 is sharp for the first two steps in
the tower.

Proposition 4.1. For q ≥ 5, the code C2(S,D) of Example 1 with D = qP∞, is a
locally recoverable code over Fq2 , with locality r = q − 1, whose parameters are

n = q2(q2 − q),
k = (q + 1)q(q − 1) = q3 − q,
d = q2(q2 − q − q − (q − 1)− (q − 2)) = q2(q2 − 4q + 3).

Proof. The set S0 = {α ∈ Fq2 : αq +α 6= 0}, can be naturally partitioned into q−1
disjoint subsets

(5) Si =

{
α ∈ Fq2 :

αq

αq−1 + 1
=

αq+1

αq + α
=: βi

}
, βi ∈ F∗q

each one of size q. For a rational place P ∈ P(Fj), we denote

N(P ) = NFq2/Fq
(xj(P )) = xj(P )q+1

and

Tr(P ) = TrFq2/Fq
(xj(P )) = xj(P )q + xj(P ),

where xj is the trascendental element over Fq2 such that Fj = Fj−1(xj), for every
step j in the tower. Using the defining equation of the tower, we have that if Q is
a place of Fj over a place P of Fj−1 such that xj−1(P ) ∈ Si, then

Tr(Q) =
N(P )

Tr(P )
= βi.

In particular we obtain that, for each place P ∈ B∩P(Fj−1) and each Si, there are
at most two places Q1 and Q2 of B such that

xj−1(Q1) = xj−1(Q2) = xj−1(P ) ∈ Si,
since there are at most two elements in Fq2 with the same norm and trace. Moreover,
if σ is the only non trivial automorphism in Fq2/Fq, we have that

xj(Q1) = σ(xj(Q2)),

and since q is odd, there is exactly one remaining place Q|P such that

xj−1(Q) = xj−1(P ) ∈ Si, and σ(xj(Q)) = xj(Q).

In other words, if we consider the q − 1 disjoint sets

(6) Bi = {α ∈ Fq2 : Tr(α) = βi}, for βi ∈ F∗q ,
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we have that for any indexes 1 ≤ i, k ≤ q − 1,

(7) |Sk ∩Bi| = |{Q ∈ P(Fj) : xj(Q) ∈ Sk and xj(Q) ∈ Bi}| ≤ 2

and

(8) |{Q ∈ P(Fj) : xj(Q) ∈ Sk and xj(Q) ∈ Bi}| = 1 if and only if xj(Q) ∈ Fq.

Now, using the notation in Theorem 3.4, we take i = 2 and l = q and we consider
D = lP∞ so that V is generated by

{xe00 x
e1
1 x

e2
2 : 0 ≤ e0 ≤ q; 0 ≤ e1 ≤ q − 1; 0 ≤ e2 ≤ q − 2}.

From the proof of the theorem we have that any function on V has at most

(l + 1)q2 + q3 + (q − 1)q2 = q2(3q − 3)

zeros, and we will now exhibit a function that actually achieves that number of
zeros. Consider an element β1 ∈ F∗q2 and set

h0 =
∏
α∈S1

(x0 − α) ,

so we have exactly q3 = |S1|[F2 : F0] places Q ∈ B that are zeroes of h0. In other
words, for any of these places we have that x0(Q) ∈ Si and x1(Q) ∈ B1, by the
recursive definition of the tower. Now since q is odd, chose βi such that

|Si ∩B1| = 1

and set

h1 =
∏

α∈Si\B1

(x1 − α) ,

so we have (q − 1)q2 = (|Si| − 1)[F2 : F1]|{Q ∈ F1 : x1(Q) = α}| new places Q ∈ B
that are zeroes of h1.

Since |B1| = q, from (7) and (8), we can write B1 as a disjoint union of (q+ 1)/2
non empty sets

B1 =

q+1
2⋃

k=1

B1 ∩ Sik

and therefore if Q ∈ B is such that x0(Q) ∈ S1 or x1(Q) = Si then x2(Q) is one
of the q(q + 1)/2 different values in Fq2 . Now, since q ≥ 5 implies that q

(
q+1

2

)
<

q2 − q− (q− 2) we can choose q− 2 values γ1, . . . , γq−2 in S0 such that x2(Q) = γi
for Q ∈ F2 and

h2 =

q−2∏
i=1

(x2 − γi) ,

has q2(q − 2) new different zeros in B.
Therefore, f = h0h1h2 ∈ V has exactly q3 + (q − 1)q2 + (q − 2)q2 = q2(3q − 3)

zeroes, attaining the bound provided by Theorem 3.4. �
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Figure 2. Diagram of three splitting places Pj of F0 in F2/F0,
for q = 5. Each colour, in each function field, represent a set Si,
for 1 ≤ i ≤ 4 = q − 1

Proposition 4.2. For each odd q ≥ 5, the code C2(S,D) in Example 1 with D =
q(q−1)

2 P∞, is a locally recoverable code over Fq2 , with locality r = q − 1, whose
parameters are

n = q2(q2 − q),

k = q(q − 1)

(
q

(
q − 1

2
− 1

)
+ 1

)
,

d =
1

2
q2
(
q2 − 3q + 6

)
.

Proof. We follow the same notation as in the previous proposition and we only
consider two steps in the tower. Chose one subset, let us say S1, which we know it
has q elements. So,

|{P ∈ P(F1) : x1(P ) ∈ S1}| = q2

since for each value x1(P ) ∈ S1 we have q different places Pα ∈ P(F0) under P .
Since these places in F1 come “in pairs” (with the only exceptions of places P with
x1(P ) ∈ Fq) and there are exactly q places Pα ∈ P(F0) with only one place P |Pα
and x1(P ) ∈ S1, we have that there are exactly q2−q

2 = q q−1
2 places Pα ∈ P(F0) with

two distinct places P |Pα, σ(P )|Pα and x1(P ) ∈ S1. Now we choose the remaining
q2 − q − q q−1

2 − q = q q−1
2 − q places Pα ∈ S ⊂ P(F0) such that for all P ∈ P(F1)

with P |Pα we have that x1(P ) 6∈ S1. Set then

H0 = {Pα ∈ S : x1(P ) 6∈ S1 for all P |Pα},

of cardinality q
(
q−1

2 − 1
)
, and put H0 = {x0(P ) : P ∈ H0}.

Now, defining

h0 =
∏
s∈H0

(x0 − s) ∈ V

we have that h0 has q3
(
q−1

2 − 1
)

= q4−3q3

2 different zeros in B.
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Now, among all the q2(q2− q) places Q in B ⊂ P(F2), such that Q∩F0 ∈ S \H0,
the value x1(Q) can attain q2 − q possible values, q of those are in S1. Since

|{x1(Q) : Q ∈ B and Q ∩ F0 ∈ H0}| = q

(
q − 1

2
− 1

)
(recall that the places are naturally partitioned into subsets of size q and inside
each subset these places decompose in the same way) and q ≥ 5, then we have

(q2 − q)− q − q
(
q − 1

2
− 1

)
≥ q,

so we can build a non empty set H1 ⊂ Fq2 of cardinality q − 1 such that

H1 ⊂ {x1(Q) : Q ∈ F1, Q ∩ F0 6∈ H0 and x1(Q) 6∈ S1}
and this allow us to form a function

h1 =
∏
s∈H1

(x1 − s) ∈ V

of degree q − 1 with q2(q − 1) zeroes in B.
Finally, since no point Q that is a zero of h0 or h1 verifies x1(Q) ∈ S1 by

construction of H0 and H1, we can consider some subset H2 ⊂ {x2(Q) : x1(Q) ∈
S1} = B1 ⊂ Fq2 of size q − 2 and set

h2 =
∏
s∈H2

(x2 − s)

of degree q − 2 with q2(q − 2) distinct zeroes in B.
Since the subsets {Q ∈ B : x0(Q) ∈ H0}, {Q ∈ B : x1(Q) ∈ H1}, {Q ∈ B :

x2(Q) ∈ H2} are pairwise disjoints by construction of H0, H1, H2, we obtain that

f = h0h1h2 ∈ V has exactly q4−3q3

2 +(q−1)q2 +q2(q−2) = 1
2q

2
(
q2 + q − 6

)
zeroes,

and thus the minimum distance is exactly

q2(q2 − q)− 1

2
q2
(
q2 + q − 6

)
=

1

2
q2(q2 − 3q + 6)

= q2

(
q2 − 2q + 2− q

(
q − 1

2
− 1

)
− (q − 1)

)
attaining the bound provided by the theorem and the example.

�

The above results show that, in the considered tower, the lower bound for the
minimum distance was attained for a small step in the tower, that is, considering the
extension F2 of F0 over Fq2 . Next, we show that in further steps (i.e., considering
extensions Fj/Fi for j ≥ i+ 3) there are common zeroes of xj and xi, so the bound
will never be attained for this tower.

In the following lemma, we use the same notation as in the previous propositions.

Lemma 4.3. Consider the field extensions Fj/F0 over Fq2 of the Garcia-Stichtenoth
tower of Example 1. Set B ⊂ P(Fj) the evaluation set with qj(q2 − q) places and

S = {Q ∩ F0, Q ∈ B} ⊂ P(F0). For S0 =
⋃q−1
j=1 Si ⊂ Fq2 , we have

(1) For 0 ≤ i ≤ j and α ∈ Fq2 \ S0, the function xi − α have no zeroes in B.
For α ∈ S0, the function xi − α have exactly qj zeroes in B.

(2) For 1 ≤ i ≤ j and α ∈ S0, if Q ∈ P(Fi) is a zero of xi−α, then P = Q∩Fi−1

verifies xi−1(P ) ∈ Sk, where α ∈ Bk,
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(3) Conversely, for 1 ≤ i ≤ j and α ∈ S0, if P ∈ P(Fi−1), verifies xi−1(P ) ∈
Sk, where α ∈ Bk, then exists exactly one place Q ∈ P(Fi) with Q|P that
is a zero of xi − α.

Proof. The proof of the first part follows from the definition of S0 and the fact that
each place P ∈ P(Fi−1) ∩ B has exactly q places of Fi above it. The second and
third part are straightforward from the definitions (see equations (5) and (6)) of the
sets Si and Bi, for 1 ≤ i ≤ j and the recursive defining equation of the tower. �

Since there are exactly qj places Q ∈ P(Fj) laying above a place in S = B∩P(F0),
and exactly qj−1(q2 − q) = qj(q − 1) places in P(Fj−1), we obtain a one-to-one
bijection between zeroes Q of xj − α and places P ∈ P(Fj−1) with xj−1(P ) ∈ Sk,
where α ∈ Bk.

Definition 3. We sayQ ∈ P(Fj) it is colored k if xj(Q) ∈ Sk for some 1 ≤ k ≤ q−1,
where Q lays under some place in B.

Let i ≥ 0, and j ≥ i + 3. There are exactly q+1
2 different colours appearing

over some place P ∈ P(Fi). On the other hand, when considering places Fj , each

colour appears above exactly q+1
2 different colours; that is, for fixed Sl there are

exactly q+1
2 indexes {l1, . . . , l q+1

2
} such that for Q ∈ P(Fj) with xj(Q) ∈ Sl it is

xj−1(Q ∩ Fj−1) ∈ Sk for some k ∈ {l1, . . . , l q+1
2
}.

Recall that two places of the same colour, when decompose, they decompose
each in q places of the same q+1

2 colours, independently of the function field they
belong.

Corollary 4.4. For j ≥ i+ 3 and any α, β ∈ S0, the functions xi − α and xj − β
have at least one common zero Q ∈ B.

Proof. Let Q0 ∈ B be a zero of xj − β and P ∈ P(Fi) be a zero of xi − α. Without
loss of generality, we can assume P is of colour blue and Q0 ∩Fi+2 is black. By the
pigeonhole principle, among the q+1

2 colours above P and among the q+1
2 colours

below any black place, there is at least one colour in common, let us say green.
Then, there is a place P0 ∈ P(Fi+1) such that P0|P and P0 is green, therefore there
is also a place P1 ∈ P(Fi+2) such that P1|P0 and P1 is black. Finally, since P1 is
black, there is also a place Q ∈ P(Fj) such that Q|P1 and xj(Q) = xj(Q0) = β.
Since Q|P we also have xi(Q) = xi(P ) = α. Thus, Q ∈ B and it is a common zero
of xi − α and xj − β. �

Fi

Fi+1

Fi+2

Fj

Q0 ∩ Fi+2

Q0

P

P0

P1

Q

Figure 3. Diagram of extension and places of Corollary 4.4
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The previous corollary, make us conjecture the following:

Conjecture 4.5. Any function f ∈ V will have fewer than

lqk + (k − 1)(q − 1)qk−1 + (q − 2)qk−1

zeroes in B, and therefore the lower bound for the distance in Theorem 3.4 will not
be attained for i ≥ 3.

5. Relative parameters and asymptotics

In this last section, we will analyze the relative parameters R and δ of the codes
Ci(S,D) built in the previous sections, using the tower described in Example 1.

Proposition 5.1. For each odd q ≥ 5 and any 2 ≤ i ≤ q−1, 1 ≤ l ≤ (q−1)(q− i),
the relative parameters R and δ of Ci(S,D) with D = lP∞ verify:

R+
q − 1

q
δ >

r

r + 1

(
q − i
q

)
,

where r = q − 1 is the locality of Ci.

Proof. Since δ ≥ ((q − 1)(q − i)− l + 1)qi

qi(q2 − q)
=

q

q − 1

(q − 1)(q − i)− l + 1

q2
we have

R+
q − 1

q
δ ≥ (q − 1)(q − i) + 2

q2
>

(q − 1)(q − i)
q2

=
r

r + 1

(
q − i
q

)
.

�

In the case i = 2, we have the following result, similar to the bound shown in
[6].

We now compare the relative parameters of the codes C2(S,D) with D =(
q q−1

2

)
P∞ shown in Proposition 4.2. Recall that

R =
k

n
=

(l + 1)

q2
and δ =

d

n
≥ (q − 1)(q − 2)− l + 1

q2 − q
.

Proposition 5.2. For each odd q ≥ 5 and any 1 ≤ l ≤ (q − 1)(q − 2), the relative
parameters R and δ of C2(S,D) with D = lP∞ verify:

R+
q − 1

q
δ >

r

r + 1

(
q − 2

q

)
,

or equivalently,

(9) R >
r

r + 1

(
1− δ − 2

q

)
,

where r = q − 1 is the locality of C2.

Proof. Since δ =
(q − 1)(q − 2)− l + 1

q2 − q
=

q

q − 1

(q − 1)(q − 2)− l + 1

q2
we have

R+
q − 1

q
δ =

(q − 1)(q − 2) + 2

q2
>

(q − 1)(q − 2)

q2
=
q − 1

q

(
1− 2

q

)
.

�
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Proposition 5.3. For each odd q ≥ 5 and l = q
(
q−1

2 − 1
)
, the relative parameters

R and δ of C2(S,D) with D = lP∞ verify:

(10)

R =
(l + 1)

q2
>

1

2

(
q − 2

q

)2

and δ =
(q − 1)(q − 2)− l + 1

q2 − q
>

1

2

(
q − 3

q − 1

)
.

Proof. By Proposition 4.2 we have n = q2(q2 − q), k = (l + 1)(q − 1)q and d =
1
2q

2(q2 − 3q + 6) so

R =
l + 1

q2

=
q
(
q−1

2 − 1
)

+ 1

q2

=
1

2

q(q − 1− 2) + 2

q2

=
1

2

(q − 1)(q − 2)

q2
>

1

2

(
q − 2

q

)2

.

On the other hand,

δ =
1

2

q2 − 3q + 6

q2 − q
>

1

2

q − 3

q − 1
.

�

For q ≥ 5 and 1 ≤ l ≤ (q − 1)(q − 2), Proposition 5.2 ensures that the rela-

tive parameters of C2(S,D) are all above the line R = q
q+1

(
1− δ − 2

q

)
improving

slightly a result in [1], while Proposition 5.3 shows the existence of a code whose
relative parameters lie exactly on that line. In Figures 4 and 5 below, we can see
those cases for q = 7 and q = 17.

Remark 5.4. For C3(S,D) and 1 ≤ l ≤ (q − 1)(q − 3) we can not guaran-
tee by Proposition 5.1 that its relative parameters (R, δ) lie above that line R =
q
q+1

(
1− δ − 3

q+1

)
. However, taking Corollary 4.4 in consideration, one could ex-

pect that the lower bound of δ may be improved from some step and on, obtaining
in this way a stronger lower bound for δ.

Remark 5.5. For q sufficiently large, and for certain 2 ≤ i ≤ q − 1, and 1 ≤ l ≤
(q − 1)(q − i), we have from Proposition 5.1, that the lower bound for the relative
parameters (R, δ) of Ci(S,D) with D = lP∞, improves a bound analogous to the
GV bound, derived in [11]. This is, for suitable i and l, we have that (R, δ) lies
above the curve

(11) R =
r

r + 1
− min

0<s≤1

{
1

r + 1
logq b2(s)− δ logq(s)

}
where b2(s) = 1

q

(
(1 + (q − 1)s)r+1 + (q − 1)(1− s)r+1

)
.
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Figure 4. Inequality (1) for r + 1 = q = 7 is shown as a black
line. For 2 ≤ i ≤ 6, lower bounds of the relative parameters of
Ci(S,D) are shown as blue points. The parameters of C2(S,D)
shown in (10) appeared as a red point.

Figure 5. Inequalities (1) and (11) for r + 1 = q = 17 are shown
as black curves. For 2 ≤ i ≤ 3, lower bounds of the relative
parameters of Ci(S,D) are shown as blue points. The parameters
of C2(S,D) shown in (10) appeared as a red point.
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