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Ring-like shaped charge modulations in the t-J model with long-range Coulomb interaction
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The study of the charge excitations in cuprates is presently an interesting topic because of the development
of new and precise x-ray experiments. Based on a large-N formulation of the two-dimensional t-J model, which
allows us to consider all possible charge excitations on an equal footing, we investigate the charge spectrum for
both electron- and hole-doped cases. In both cases, the instability toward phase separation, which has momentum
modulation q = (0, 0), is found to be robust in a large region of the doping-temperature phase diagram. If
a short-range Coulomb repulsion is included the phase separation region shrinks, but the instability remains at
q = (0, 0). If on the other hand a two-dimensional long-range Coulomb interaction is included the instability sets
in at q momenta forming a ring around q = (0, 0). The computed charge spectrum in the translation-invariant
phase shows well-formed rings. We discuss our results in the light of recent x-ray experiments in electron- and
hole-doped cuprates, where ring-like shaped charge modulations have been reported.

DOI: 10.1103/PhysRevB.106.224512

I. INTRODUCTION

Recent progress in x-ray scattering techniques revealed the
presence of a charge order (CO), with CO momentum along
the axial direction [(0, 0)-(π, 0)], in hole-doped cuprates
(h-cuprates) [1–11] as well as in electron-doped cuprates (e-
cuprates) [12–14]. The CO tendency in h- and e-cuprates was
intensively studied theoretically [15,15–30], but its origin is
still under debate. This topic is of large interest because it
reveals the importance of charge fluctuations even in the deep
underdoped region, were magnetic fluctuations are usually
considered to be the dominant excitations.

Another interesting topic of the CO is its internal symme-
try. For a long time it was generally believed that d-wave
symmetry is realized [7]. However, recently it was found
that the CO has a predominant s-wave symmetry [31]. More
recently, it also was found that the CO extends along all di-
rections in the same manner through the Brillouin zone (BZ),
forming a ring. Such a ring had been observed in resonant
x-ray scattering in the h-cuprate Bi2Sr2CaCu2O8+δ [32]. A
similar ring has also been reported in e-cuprates [33].

In the following we present a theory for ring formation
based on the t-J model treated in the large-N approximation.
The large-N approximation, where the spin index is extended
from two projections to N and the small parameter 1/N is
taken for controlling the approximation, was extensively stud-
ied in Refs. [34–43], to name a few. This approximation has
the disadvantage that spin fluctuations are suppressed; i.e., the
Mott insulator is not captured properly. However, all possible
charge fluctuations can be treated on an equal footing mak-
ing the method of potential interest for studying the charge
excitations detected in the new x-ray scattering experiments.
Based on the t-J model on a square lattice and in the presence

of a long-range Coulomb interaction (t-J-V model) we will
show that ring-like shaped charge density waves (CDWs) are
expected from the local charge susceptibility. We will discuss
similarities and differences with the experiments, for both, e-
and h-cuprates.

In Sec. II we will show a summary of the theoretical
method, Sec. III contains our results, Sec. IV a comparison
with experiment, and Sec. V the conclusion.

II. MATHEMATICAL FRAMEWORK

We study the t-J model on a square lattice including
the two-dimensional long-range Coulomb interaction. The
Hamiltonian is given by

H = −
∑
i, j,σ

ti j c̃
†
iσ c̃ jσ + J

∑
〈i, j〉

(
�Si · �S j − 1

4
nin j

)

+ 1

2

∑
i, j

Vi jnin j, (1)

where c̃†
iσ (c̃iσ ) are creation (annihilation) operators for elec-

trons with spin σ (=↑,↓) in the Fock space without double
occupancy at any site, ni = ∑

σ c̃†
iσ c̃iσ is the electron density

operator, �Si is the spin operator, and the sites i and j run over
a two-dimensional square lattice. The hopping ti j takes the
value t (t ′) between the first (second) nearest-neighbor sites on
the square lattice. 〈i, j〉 denotes the nearest-neighbor sites and
J is the exchange interaction. Vi j is the long-range Coulomb
interaction on the two-dimensional lattice.

In this paper we will follow the large-N formulation of
Ref. [37]. In the large-N limit the t-J model becomes equiv-
alent to the following effective Hamiltonian in terms of usual
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creation and annihilation operators,

Heff =
∑
kσ

ε(k)c†
σ (k)cσ (k) − Ns

2

6∑
α=1

∑
q

ρ ′
α (q)ρ†

α (q). (2)

At leading order, the electron dispersion ε(k) is obtained
as

ε(k) =−2

(
t
δ

2
+�

)
(cos kx +cos ky)− 4t ′ δ

2
cos kx cos ky−μ.

(3)

While the dispersion is similar to the noninteracting case,
the hopping integrals t and t ′ are renormalized by a factor
δ/2 where δ is the doping rate. The quantity � in Eq. (3) is
given by

� = J

4Ns

∑
k

(cos kx + cos ky)nF (ε(k)), (4)

where nF is the Fermi function, and Ns the total number of
lattice sites. For a given doping δ, the chemical potential μ

and � are determined self-consistently by solving Eq. (4) and

(1 − δ) = 2

Ns

∑
k

nF (ε(k)). (5)

The second term in Eq. (2) represents an effective interac-
tion, where

ρ ′
α (q) = 1

Ns

∑
kσ

Eα (k, q)c†
σ (k + q)cσ (k), (6)

ρβ (q) = 1

Ns

∑
kσ

Fβ (k)c†
σ (k + q)cσ (k), (7)

with

Eα (k, q)

= [1, t (k + q) + J (q) − V (q), γ3(k), γ4(k), γ5(k), γ6(k)]

(8)

and

Fβ (k) = [t (k), 1, 2Jγ3(k), 2Jγ4(k), 2Jγ5(k), 2Jγ6(k)], (9)

where t (k) = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky and
J (q) = J (cos qx + cos qy) are the hopping and the magnetic
exchange in the momentum space. V (q) is the expression
for the two-dimensional long-range Coulomb interaction
in the momentum space. In Ref. [42] the long-range
Coulomb interaction Vi j in a square plane embedded in a
three-dimensional lattice is written in momentum space as

V (q) = Vc√
A2(q) − 1

, (10)

where A(q) = α(2 − cos qx − cos qy) + 1. In Eq. (10) Vc =
e2c(2ε⊥a2)−1 and α = ε̃(a/c)−2, with ε̃ = ε‖/ε⊥, where ε‖
and ε⊥ are the dielectric constants parallel and perpendicular

to the planes, respectively, a is the lattice constant in the
plane, and c the distance between them. The electric charge
of electrons is denoted as e.

In addition,

γ3,5 = (cos kx ± cos ky)/2, γ4,6 = (sin kx ± sin ky)/2,

(11)

where the subscripts 3 and 4 refer to the +, and 5 and 6 to the
− sign.

Using Eqs. (6) and (7) one easily verifies that the sum
of the terms α = 3–6 represents the Heisenberg exchange
interaction. The terms α = 1, 2 originate from the constraint
which acts in Heff as a two-particle interaction. Heff represents
the original t-J model in the large-N limit.

In this framework, all charge susceptibilities are treated on
equal footing and can be calculated as

χαβ (q) =
∑

γ

χ (0)
αγ (q)[1 + χ (0)(q)]−1

γ β . (12)

Here we used the abbreviation q = (iωn, q) with the bosonic
Matsubara frequencies ωn = 2πT n, where T is the tem-
perature. χ (0)(q) stands for a single bubble and is given
analytically by the expression

χ
(0)
αβ (q, iωn)

= 1

Ns

∑
k

Eα (k, q)Fβ (k)
nF (ε(k + q)) − nF (ε(k))
ε(k + q) − ε(k) − iωn

.

(13)

In Eq. (12) there are two types of charge fluctuations: on-
site (s-wave) usual charge-charge correlation function, which
is contained in the channels 1,2, and bond-charge fluctuations
triggered by J with internal symmetry s and d , included the
flux phase [15,44], that belong to the channels 3 to 6. It
was demonstrated in Ref. [45] that there is a dual structure
in energy, and the channels 3 to 6 are practically decoupled
from the channels 1,2. As discussed in Ref. [37], the usual
charge-charge correlation function is χch(q, ω) = χ12(q, ω)
in Eq. (12). Here, we will mainly focus on χ12(q, ω), since
the bond-charge fluctuations play a minor role in the present
study.

In the following we will consider Vc and α in V (q) as
independent parameters. t is considered the unit of energy, and
a the length unit. For a clear presentation of the ring structures
we chose α = 1 and Vc = 1, while in Sec. IV we use realistic
values of Vc and α in order to make contact with experiments.

It is important to note that although Eq. (12) looks like
a usual RPA form, this expression is obtained in a large-N
approximation [37]. For instance, the single bubble matrix
[Eq. (13)] contains the form factors Eα and Fβ which are
derived from the t-J model in the large-N approximation.
Some results in present paper were also obtained with the
equivalent formulation of Ref. [15].

III. RESULTS

A. Results for h-cuprates

For h-cuprates we chose J = 0.3 and t ′ = −0.3. In Fig. 1
we present the phase diagram in the doping δ and temperature
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FIG. 1. Phase diagram in the δ-T plane without Coulomb in-
teraction, i.e., Vc = 0. Solid (dotted) line is the onset of the phase
separation (dCDW) instability. A, B, C, and D are four selected
points in the translation-invariant phase (TI) which will be analyzed
in Fig. 2.

T plane for Vc = 0, i.e., no long-range Coulomb interaction
is present. The dotted line marks the onset of the flux phase
instability [15,44]. The flux phase is equivalent to the d-wave
charge density wave (dCDW) introduced phenomenologically
in Ref. [46]. The solid line represents the onset for the instabil-
ity toward phase separation (PS) [15]. That is, for dopings and
temperatures along the solid line the real part of the charge-
charge susceptibility Reχch(q = 0, ω = 0) diverges. The four
points A, B, C, and D in Fig. 1 will be discussed below.
They are located in the translation-invariant phase where our
large-N Fermi liquid phase is stable. In the gray region the
translation-invariant phase is unstable. Our calculations are
performed always in the translation-invariant phase.

In Fig. 2(a) we show Reχch(q, ω = 0) for q along the path
(π, π )-(0, 0)-(π, 0)-(π, π ) for the points A–D in Fig. 1. Since
A and C are close to the PS instability line, Reχch(q, ω = 0)
shows sharp and large peaks located at q = (0, 0). If both A
and C move to lower dopings and touch the solid line they will
show a δ function at q = (0, 0) signaling the long-range order
for PS. The points B and D also show peaks at q = (0, 0),
but they are broader and less intense than in A and C. That
is because the points B and D are far from the PS line, and
the fluctuations of the PS phase are weaker in B and D than
in A and C. The point C is also close to the dCDW instability
line; however, as discussed above, bond-charge and the usual

FIG. 3. Phase diagram in the δ-T plane with long-range
Coulomb interaction. Solid (dotted) line is the onset of the ring phase
(dCDW) instability. A, B, C, and D are four selected points in the
translation-invariant phase which will be analyzed in Fig. 4.

charge-charge correlations are decoupled. Then, the effect of
dCDW on χch is negligible. The peaks at q = (0, 0) appear
as disks in the color intensity maps for Reχch(q, ω = 0) over
the full BZ depicted in Figs. 2(b)–2(e). For the points A and
C, close to the PS instability line, the disks are small and
intense while for B and D are broader and with much lower
intensity.

The situation changes when we include the long-range
Coulomb repulsion. In Fig. 3 we show the phase dia-
gram including the long-range Coulomb interaction V (q).
Note that the dCDW is not affected by the presence of
the long-range Coulomb interaction, showing the decoupling
between channels 3–6 and the channels 1,2 as discussed
above. The solid line is clearly shifted to lower dopings
showing a larger region in the phase diagram where the
translation-invariant phase is stable. However, the nature of
the charge instability at the solid line line is no longer PS.
In Fig. 4(a) we show the Reχch(q, ω = 0) for q along the
path (π, π )-(0, 0)-(π, 0)-(π, π ) for the points located at A–D
in Fig. 3. Now, in the presence of the long-range Coulomb
interaction, the peaks are not located at q = (0, 0) but instead
they are shifted from (0,0). As in the case of Fig. 2, the peaks
are more intense and sharper for A and C than for B and D.
Figures 4(b)–4(e) show color intensity maps for Reχch(q, ω =
0) on the BZ for the selected points A, B, C, and D on the

FIG. 2. (a) Reχch(q, ω = 0) for q along the path (π, π )-(0, 0)-(π, 0)-(π, π ) for the selected points A, B, C, and D in Fig. 1. Note that the
intensity at B and D is multiplied by 5. (b)–(e) Color intensity maps on the Brillouin zone of Reχch(q, ω = 0) for the points A, B, C, and D,
respectively.

224512-3



BEJAS, ZEYHER, AND GRECO PHYSICAL REVIEW B 106, 224512 (2022)

FIG. 4. Reχch(q, ω = 0) for q along the path (π, π )-(0, 0)-(π, 0)-(π, π ) for the selected points A, B, C, and D in Fig. 3. (b)–(e) Color
intensity maps on the Brillouin zone of Reχch(q, ω = 0) for the points A, B, C, and D, respectively.

phase diagram, respectively. Interestingly, the intensity maps
show clear and well-defined ring-shaped charge modulations
around q = (0, 0). For this reason we have called the phase
that occurs at the onset of the solid line the ring phase (RP).
Note that, as they are farther from the instability line, the rings
for B and D are less intense and more diffused than for A
and C.

B. Results for e-cuprates

The t-J model is defined in the space where the presence
of two electrons per site is prohibited. In order to present
calculations for e-cuprates we proceed as usual: we make a
particle-hole transformation which requires a sign change for
t ′ [47–50]. Here we chose J = 0.3 and t ′ = 0.3.

Figure 5(a) shows the phase diagram for Vc = 0. Com-
paring Fig. 1 and Fig. 5(a) we can see that there is a larger
tendency for PS in the electron-doped case [50]. Figure 5(b)
is equivalent to Fig. 2 for the h-cuprates, and show that for
Vc = 0 the local charge instability is toward the usual PS with
ordered momentum q = 0. Then, the momentum map shows

disks [Figs. 5(c)–5(f)] instead of rings. Similar to Fig. 3 and
Fig. 4, Fig. 6 shows that rings are formed in the translation-
invariant phase near the RP instability when the long-range
Coulomb is included. That is, ring-shaped charge modula-
tions also occurs in e-cuprates. Since now the region for the
translation-invariant phase is much more extended in Fig. 6(a)
than in Fig. 5(a), we also show the leading instabilities from
the channels 3–6, triggered by J . The flux phase is the lead-
ing phase in the temperature range 0.01–0.03 and δ < 0.10.
For larger doping and lower temperatures a bond-order phase
(BOPxȳ) is the leading instability [50].

IV. COMPARISON WITH EXPERIMENTS

Resonant x-ray scattering on Bi2Sr2CaCu2O8+δ discovered
a dynamic quasicircular charge pattern [32], i.e, ring-like
shaped charge modulations. The authors of Ref. [32] pro-
posed an explanation for the rings. Assuming the random
phase approximation (RPA) [51] and a Coulomb repulsion
of the form V (q) = Vc(q) + U (q), where Vc(q) is a two-
dimensional long-range Coulomb interaction and U (q) is a

FIG. 5. (a) Phase diagram for e-cuprates without Coulomb interaction. Momentum cuts (b), and maps (c)–(f) of Reχch(q, ω = 0) for the
selected points A–D.
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FIG. 6. (a) Phase diagram for e-cuprates with long-range Coulomb interaction. In the presence of a long-range Coulomb interaction the
homogeneous translation-invariant phase extends and dCDW (dotted line) and BOPxȳ instabilities occur. Momentum cuts (b), and maps (c)–(f)
of Reχch(q, ω = 0) for the selected points A–D.

short-range Coulomb potential, the charge-charge correlation
function was calculated. Although both Vc(q) and U (q) have
a monotonic behavior, the sum of both show a nonmonotonic
behavior with a minimum at a given q that determines the qua-
sicircular pattern. Besides the proposed RPA does not describe
the observed rings in detail, RPA works for weakly correlated
systems but cuprates are considered strongly correlated. In
this paper we have studied the t-J model, which is a model
more appropriated for cuprates [52]. The t-J model contains
the competition between kinetic energy and PS [47,48,50,53],
which is characterized by a strong peak at q = (0, 0) in the
usual charge-charge correlation function. This competition
originates in the constraint that prohibits double occupancy,
and it is missing in RPA. It is well known that the inclusion
of a short-range Coulomb repulsion reduces the PS region in
the doping and temperature phase diagram [50]. However, if
instead of including a short-range we applied a long-range
Coulomb interaction, we found rings as shown in the previous
sections. Interestingly the radii of the rings are of the order
of 0.3π–0.4π , which is close to the radius reported in the
experiment [32,33]; see for instance Figs. 4(b)–4(e).

In previous sections, for a clearer presentation of the results
we have chosen the parameter values α = 1 and Vc = 1 in
the long-range Coulomb potential. What happens if we use
more suitable parameters as those used for describing the
recently observed low-energy plasmons in resonant inelastic
x-ray scattering (RIXS) [54–56]? In Fig. 7 we present results
for h-cuprates (t ′ = −0.3), and we chose α = 4 and Vc = 20
which are of the order of those used in Refs. [54–56] in the
context of the t-J-V model. The instability line toward the
ring phase is much more shrunken.

In Figs. 7(b)–7(d) we show color intensity maps for the
three chosen points A, B, and C in panel (a). These inten-
sity maps show that the largest intensity occurs along the
axial direction as in the experiment [32]. Then, in contrast
to the theoretical study presented in Ref. [32], our calcu-

lation captures the anisotropy behavior of the quasicircular
charge pattern. In addition, as discussed in Ref. [32], our
rings are dynamic, since they occur in the translation-invariant
phase.

Up to now we have discussed the ring-shaped struc-
tures by analyzing Reχch(q, ω = 0). In Ref. [32] the rings
where discussed by using resonant x-ray scattering (RXS)
and energy-integrated RIXS. RXS measures the equal-time

FIG. 7. (a) Phase diagram for h-cuprates for realistic long-range
Coulomb parameters. (b)–(d) Color intensity map on the Brillouin
zone for Reχch(q, ω = 0) for the selected points A, B, and C,
respectively.
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FIG. 8. (a) Momentum-energy map of Imχch(q, ω) along the
path (π, π )-(0, 0)-(π, 0)-(π, π ) for the point B in Fig. 7(a). The
horizontal dashed lines indicate the limits for the energy integration
discussed in the text. (b) Color intensity map on the Brillouin zone
of the low-energy (LE) integration of Imχch(q, ω). (c) The same as
(b) for the high-energy (HE) integration. (d) The same as (b) and
(c) for the full energy range, i.e., from ω = 0 to infinity.

correlation function,

IRXS (q) =
∫ ∞

−∞
Imχch(q, ω)[nB(ω) + 1]dω

=
∫ ∞

0
Imχch(q, ω)[2nB(ω) + 1]dω, (14)

where nB(ω) is the Bose factor, and Imχch(q, ω) is propor-
tional to the RIXS spectrum.

In Fig. 8(a) we show the momentum-energy map of
Imχch(q, ω) for the point B in Fig. 7(a) along the path
(π, π )-(0, 0)-(π, 0)-(π, π ). We obtain a two-dimensional
plasmon branch which has similarities to the low-energy
plasmons observed in cuprates [55–59]. What happens if we
integrate the spectra of Imχch(q, ω) [Eq. (14)] in different en-
ergy windows? Figure 8(b) shows the result for a low-energy
(LE) integration up to the dashed line indicated with LE in
Fig. 8(a). As in the experiment, Fig. 8(b) shows the largest in-
tensity along the axial directions. The obtained map is similar
to that of Fig. 7(c) for Reχch(q, ω = 0), since the low-energy
integration in Eq. (14) leads to IRXS (q) ∼ Reχch(q, ω = 0).
If instead we integrate in a high-energy window, up to the
dashed line indicated with HE in Fig. 8(a), we collect con-
tributions from the V-shaped dispersion, and rings are formed
[Fig. 8(c)]. However, the signals along the axial and nodal di-
rection have similar intensity; the stronger intensity along the
axial direction is lost. If we integrate the entire energy spectra
the rings are washed out [Fig. 8(d)], due to the contribution
from the top of the 2D plasmon dispersion.

Although our model does not capture quantitatively all the
experimental aspects, as the doping and temperature behavior
of the intensity and radius of the rings, we think that the

similarities between our results and those reported in Ref. [32]
for Bi2Sr2CaCu2O8+δ are remarkable. In fact, we agree with
the authors of Ref. [32] on the importance of the long-range
Coulomb interaction for the formation of the rings. It would
be desirable to make more x-ray experiments for different
members of the cuprate family as a function of doping and
temperature.

Finally, in Ref. [32] it is suggested that the momentum
of the observed stronger intensity along the axial direction
matches the wave vector of the discussed axial CO [1–11].
It is important to mention that most of the theoretical studies
about the CO [15,15–26] suggest that the CO occurs due
to bond-order charge excitations, and have an internal form
factor different from the isotropic s wave. The rings appear in
our calculation in the usual s-wave charge-charge correlation
function, as also proposed in Ref. [32]. While bond-order
charge fluctuations occur in our calculation in the sector 3–6,
usual charge excitations occur in the 1–2 sector, and both
channels are mainly decoupled [45]. This is an interesting
topic which needs more discussion, because a bond-order
charge fluctuation scenario is completely different from the
usual s-wave charge fluctuation picture.

V. CONCLUSION

Phase separation is an instability at q = (0, 0) of the
charge-charge correlation function. PS exists in the t-J-V
model even for J = V = 0. Thus, only the first term in Eq. (1)
is present. This means that the constraint which prohibits
double occupancy plays a central role in the instability toward
PS. It is well known that PS may cover a large region of the
phase diagram, and the inclusion of a short-range Coulomb
interaction reduces the PS region. This picture changes drasti-
cally if a long-range Coulomb interaction is included to cancel
PS. In this case, although the instability region is reduced,
the momenta q where the instability takes place is no longer
q = (0, 0) and the ordered momenta follows a ring-like shape
around q = (0, 0), leading to what we have called a ring
phase. Interestingly, the charge excitation spectrum in the
translation-invariant phase shows well-defined ring-shaped
charge modulations, for both e-cuprates and h-cuprates. It
is worth pointing out that although we compute the charge-
charge correlation function at ω = 0, this does not mean that
the rings are static. As we are in the translation-invariant
phase, the rings are formed by fluctuations in the proximity
of the ring phase instability. The presence of rings is not
difficult to understand. The long-range Coulomb interaction
is strongly peaked at q = (0, 0) and decays with increasing q.
If the system shows PS, under the presence of the long-range
Coulomb interaction the charge accumulation at q = (0, 0) is
expelled, and rings are developed. Thus, the wave vector Q,
whose magnitude is associated with the radius of the ring, is
unrelated to the Fermi surface topology and depends on the
presence of the long-range Coulomb interaction. Q is defined
as the momentum q where the maximum of Reχch(q, ω = 0)
is located. To quantify the doping dependence, for instance,
Fig. 4(a) shows that while the doping almost doubles between
C and D, |Q| increases by ∼50% in the axial direction and
by ∼35% in the diagonal direction. In addition, as can be
seen also in Figs. 4(b)–4(e) and Figs. 6(c)–6(f), the intensity
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of the ring decreases and the ring widens with increasing
doping away from the RP instability line. It is important to
mention that the ring-shaped structures are not exactly rings
in the mathematical sense. Although within the thickness
of the RP instability line the static charge susceptibility di-
verges for all wave vectors along the ring, which motivates
the name RP, in the translation-invariant phase the intensity
of the ring has a modulation with a maximum at the axial
(diagonal) direction for h-cuprates (e-cuprates). In Figs. 4(b)–
4(e) [Figs. 6(c)–6(f)] we can see well-defined rings; however
they have a very weak intensity modulation, indiscernible
in the intensity maps but noticeable in the cuts in Fig. 4(a)
[Fig. 6(b)], with maximum at the axial (diagonal) direc-
tion.

|Q| depends also on the strength of the long-range
Coulomb interaction Vc. |Q| increases with increasing Vc

which can be seen after comparing Figs. 4(b)–4(e) and
Figs. 6(c)–6(f), for Vc = 1, with Figs. 7(b)–7(d) for the re-
alistic value of Vc = 20. In addition, the anisotropy along the
ring is more evident at low energy [Fig. 7(b) and Fig. 8(b)]
for realistic values of the long-range Coulomb interaction,

where, as in the experiment, the largest intensity is at the axial
directions.

Our results capture several important details of the
experiment. Dynamic ring-shaped charge modulations exist
in the presence of the long-range Coulomb interaction in
the translation-invariant phase. However, it is a prerequisite
for the existence of rings that without long-range V (q) the
system shows PS.
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