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ep
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2Departamento de Matemática-CONICET, FCE, Univ. Austral,Paraguay 1950, S2000FZF Rosario, Argentina. E-mail: DTarzia@austral.edu.ar

Abstract: We consider a family of optimal control problems where the control variable is given by a boundary
condition of Neumann type. This family is governed by parabolic variational inequalities of the second kind. We prove the
strong convergence of the optimal controls and state systems associated to this family to a similar optimal control problem.
This work solves the open problem left by the authors in IFIP TC7 CSMO2011.
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1 Introduction
The motivation of this paper is to prove the strong con-

vergence of the optimal controls (borders) and state systems
associated to a family of second kind parabolic variational
inequalities. With this paper, we solve the open question,
left in [11] and we generalize our work [10], to study the
Control border.

To illustrate the problem considered, we consider in the
following, just as examples, two free boundary problems
which leads to second kind parabolic variational inequali-
ties.

We assume that the boundary of a multidimensional reg-
ular domainΩ is given by ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 with
meas(Γ1) > 0 andmeas(Γ3) > 0. We consider a fam-
ily of optimal control problems where the control variable
is given by a boundary condition of Neumann type whose
state system is governed by a free boundary problem with
Tresca conditions on a portionΓ2 of the boundary, with a
flux f onΓ3 as the control variable, given by:

Problem 1.1
u̇−∆u = g in Ω× (0, T ),

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

< q ⇒ u = 0, onΓ2 × (0, T ),

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

= q ⇒ ∃k > 0 : u = −k
∂u

∂n
, onΓ2 × (0, T ),

u = b on Γ1 × (0, T ),

−
∂u

∂n
= f on Γ3 × (0, T ),

with the initial condition
u(0) = ub on Ω,

and the compatibility condition onΓ1 × (0, T )

ub = b on Γ1 × (0, T )

where q > 0 is the Tresca friction coefficient onΓ2

( [1], [2], [3]). We define the spacesF = L2((0, T )× Γ3),
V = H1(Ω), V0 = {v ∈ V : v|Γ1

= 0}, H = L2(Ω),
H = L2(0, T ;H), V = L2(0, T ;V ) and the closed convex

setKb = {v ∈ V : v|Γ1
= b}. Let given

g ∈ H, b ∈ L2(0, T,H1/2(Γ1)), f ∈ F

q ∈ L2((0, T )× Γ2), q > 0, ub ∈ Kb. (1.1)

The variational formulation ofProblem 1.1 leads to the
following parabolic variational problem:

Problem 1.2 Let giveng, b, q, ub andf as in (1.1). Find
u = uf ∈ C(0, T,H)∩L2(0, T ;Kb) with u̇ ∈ H, such that
u(0) = ub, and fort ∈ (0, T )

< u̇, v − u > +a(u, u− v) + Φ(v)− Φ(u) ≥ (g, v − u)

−

∫

Γ3

f(v − u)ds, ∀v ∈ Kb.

where(·, ·) is the scalar product inH , a andΦ are defined
by

a(u, v) =

∫

Ω

∇u∇vdx, andΦ(v) =
∫

Γ2

q|v|ds. (1.2)

The functionalΦ comes from the Tresca condition on
Γ2 [1], [2]. We consider also the following problem where
we change, inProblem 1.1, only the Dirichlet condition on
Γ1 × (0, T ) by the Newton law or a Robin boundary condi-
tion i.e.

Problem 1.3
u̇−∆u = g in Ω× (0, T ),
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∂u
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< q ⇒ u = 0, onΓ2 × (0, T ),
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∂u

∂n

∣

∣

∣

∣

= q ⇒ ∃k > 0 : u = −k
∂u

∂n
, onΓ2 × (0, T ),

−
∂u

∂n
= h(u− b) onΓ1 × (0, T ),

−
∂u

∂n
= f onΓ3 × (0, T ),

with the initial condition
u(0) = ub on Ω,

and the condition of compatibility onΓ1 × (0, T )

ub = b on Γ1 × (0, T ).
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The variational formulation of the problem (1.3) leads to
the following parabolic variational problem

Problem 1.4 Let giveng, b, q, ub andf as in (1.1). For
all h > 0, findu = uhf in C(0, T,H)∩V with u̇ in H, such
thatu(0) = ub, and fort ∈ (0, T )

< u̇, v − u > +ah(u, u− v) + Φ(v)− Φ(u) ≥ (g, v − u)

−

∫

Γ3

f(v − u)ds+ h

∫

Γ1

b(v − u)ds, ∀v ∈ V,

whereah is defined by

ah(u, v) = a(u, v) + h

∫

Γ1

uvds.

Moreover from [4∼7] we have that:∃λ1 > 0 such that

λh‖v‖
2
V ≤ ah(v, v) ∀v ∈ V, with λh = λ1 min{1 , h}

that is,ah is also a bilinear, continuous, symmetric and co-
ercive formV × V to R. The existence and uniqueness of
the solution to each of the aboveProblem 1.2 andProblem
1.4, is well known see for example [8], [9], [3].

The main goal of this paper is to prove in Section 2 the ex-
istence and uniqueness of a family ofoptimal control prob-
lems 2.1 and 2.2 where the control variable is given by a
boundary condition of Neumann type whose state system
is governed by a free boundary problem with Tresca condi-
tions on a portionΓ2 of the boundary, with a fluxf onΓ3 as
the control variable, using a regularization method to over-
come the nondifferentiability of the functionalΦ. Then in
Section 3 we study the convergence whenh → +∞ of the
state systems and optimal controls associated to the prob-
lem 2.2 to the corresponding state system and optimal con-
trol associated to problem 2.1. In order to obtain this last
result we obtain an auxiliary strong convergence by using
the Aubin compactness arguments see Lemma 3.2. This pa-
per completes our previous paper [10] and solves the open
problem left in [11].

Remark here that our study still valid with the bilinear
form a in more general cases, provided thata must be sym-
metric, coercive and continuous fromV × V toR.

2 Boundary optimal control problems
LetM > 0 be a constant and we define the space

F− = {f ∈ F : f ≤ 0}.

We consider the following Neumannn boundary optimal
control problems defined by [12∼15]

Problem 2.1 Find the optimal controlfop ∈ F− such
that

J(fop) = min
f∈F−

J(f) (2.1)

where the cost functionalJ : F− → R
+ is given by

J(f) =
1

2
‖uf‖

2
H +

M

2
‖f‖2F (M > 0) (2.2)

anduf is the unique solution of theProblem 1.2 for a given
f ∈ F−.

Problem 2.2 Find the optimal controlfoph ∈ F− such
that

J(foph
) = min

f∈F−

Jh(f) (2.3)

where the cost functionalJh : F− → R
+ is given by

Jh(f) =
1

2
‖uhf‖

2
H +

M

2
‖f‖2F (M > 0, h > 0) (2.4)

anduhf is the unique solution ofProblem 1.4 for a given
f ∈ F− andh > 0.

Theorem 2.1 Under the assumptionsg ≥ 0 in Ω ×
(0, T ), b ≥ 0 on Γ1 × (0, T ) andub ≥ 0 in Ω, we have
the following properties:
(a) The cost functionalJ is strictly convex onF−,
(b) There exists a unique optimal controlfop ∈ F− solution
of the Neumann boundary optimal control Problem 2.1.

Proof We give some sketch of the proof, following [10]
we generalize for parabolic variational inequalities of the
second kind, given inProblem 1.2, the estimates obtained
for convex combination betweenu4(µ) = uµf1+(1−µ)f2 ,
andu3(µ) = µuf1 + (1 − µ)uf2 , for any two elementf1
andf2 in F . The main difficulty, to prove this result comes
from the fact that the functionalΦ is not differentiable. To
overcome this difficulty, we use the regularization method
and consider forε > 0 the following approach ofΦ defined
by

Φε(v) =

∫

Γ2

q
√

ε2 + |v|2ds, ∀v ∈ V, (2.5)

which is Gateaux differentiable, with

〈Φ′
ε(w) , v〉 =

∫

Γ2

qwv
√

ε2 + |w|2
ds ∀(w, v) ∈ V 2.

We defineuε as the unique solution of the corresponding
parabolic variational inequality for allε > 0. We obtain that
for all µ ∈ [0, 1] we haveuε

4(µ) ≤ uε
3(µ) for all ε > 0.

Whenε → 0 we have that: fori = 1, · · · , 4.
uε
i → ui strongly inV ∩ L∞(0, T ;H). (2.6)

As f ∈ F−, g ≥ 0 in Ω× (0, T ), b ≥ 0 in Γ1 × (0, T ) and
ub ≥ 0 in Ω, we obtain by the weak maximum principle that
for all µ ∈ [0, 1] we have0 ≤ u4(µ), so following [10] we
get

0 ≤ u4(µ) ≤ u3(µ) in Ω×[0, T ], ∀µ ∈ [0, 1]. (2.7)

Then for allµ ∈]0, 1[, and for allf1, f2 in F−, and by using
f3(µ) = µf1 + (1 − µ)f2 we obtain that:
µJ(f1) + (1− µ)J(f2)− J(f3(µ)) =
1

2

(

‖u3(µ)‖
2
H − ‖u4(µ)‖

2
H

)

+
1

2
µ(1− µ)‖uf1 − uf2‖

2
H

+
M

2
µ(1 − µ)‖f1 − f2‖

2
F . (2.8)

ThenJ is strictly convex functional onF− and therefore
there exists a unique optimalfop ∈ F− solution of the Neu-
mann boundary optimal controlProblem 2.1.2

Theorem 2.2 Under the assumptionsg ≥ 0 in Ω ×
(0, T ), b ≥ 0 in Γ1 × (0, T ) andub ≥ 0 in Ω, we have
the following properties:
(a) The cost functionalJh are strictly convex onF−, for all
h > 0,
(b) There exists a unique optimal controlfhop

∈ F− solu-
tion of the Neumann boundary optimal control Problem 2.2,
for all h > 0.



Proof We follow a similar method to the one developed
in Theorem 2.1 for allh > 0. 2

3 Convergence when h → +∞
In this section we study the convergence of the Neumann

optimal controlProblem 2.2 to the optimal controlProblem
2.1 whenh → ∞. For a givenf ∈ F we have first the
following result which generalizes [6,7,10,16].

Lemma 3.1 Letuhf be the unique solution of the prob-
lem 1.4 anduf the unique solution of the problem 1.2, then

uhf → uf ∈ V strongly ash → +∞, ∀f ∈ F .

Proof Following [10], we takev = uf (t) in the varia-
tional inequality of the problem 1.4 whereu = uhf , and
recalling thatuf (t) = b on Γ1×]0, T [, taking φh(t) =
uhf(t) − uf (t) we obtain forh > 1, that‖uhf‖V is also
bounded for allh > 1 and for allf ∈ F . Then there exists
η ∈ V such that (whenh → +∞)

uhf ⇀ η weakly inV
and

uhf → b strongly onL2((0, T )× Γ1)

soη(0) = ub.
Let ϕ be in L2(0, T,H1

0 (Ω)) and taking in the vari-
ational inequality of the problem 1.4 whereu = uhf ,
v = uhf(t)± ϕ(t), we obtain as‖uhf‖V is bounded for all
h > 1, we deduce that‖u̇hf‖L2(0,T,H−1(Ω)) is also bounded
for all h > 1. Then we conclude that
uhf ⇀ η in V weak, and inL∞(0, T,H) weak star,
andu̇hf ⇀ η̇ in L2(0, T,H−1(Ω)) weak.

}

(3.1)

From the variational inequality of the problem 1.4 and
takingv ∈ K sov = b onΓ1, we obtaina.e. t ∈]0, T [

〈u̇hf , v − uhf 〉+ a(uhf , v − uhf)− h

∫

Γ1

|uhf − b|2ds ≥

Φ(uhf )− Φ(v) + (g, v − uhf )−

∫

Γ3

f(v − uhf)ds,

for all v ∈ K, then ash > 0 we have a.e.t ∈]0, T [.
〈u̇hf , v − uhf 〉+ a(uhf , v − uhf) ≥ Φ(uhf )− Φ(v) +

(g, v − uhf )−

∫

Γ3

f(v − uhf)ds, ∀v ∈ K. (3.2)

So using (3.1) and passing to the limit whenh → +∞ we
obtain
〈η̇, v − η〉+ a(η, v − η) + Φ(v)− Φ(η) ≥ (g, v − η)

−

∫

Γ3

f(v − η)ds, ∀v ∈ K a.e. t ∈]0, T [,

and η(0) = ub. Using the uniqueness of the solution of
Problem 1.2 we get thatη = uf .

To prove the strong convergence, we takev = uf(t) in
the variational inequality of theproblem 1.4

〈u̇hf , uf − uhf〉+ ah(uhf , uf − uhf ) + Φ(uf)

−Φ(uhf) ≥ (g, uf − uhf) + h

∫

Γ1

b(uf − uhf )ds

−

∫

Γ3

f(uf − uhf)ds,

a.e. t ∈]0, T [, thus asuf = ub onΓ1×]0, T [, we put

φh = uhf − uf , so a.e.t ∈]0, T [ we have

〈φ̇h , φh〉+ a(φh, φh) + h

∫

Γ1

|φh|
2ds+Φ(uhf)− Φ(uf )

≤ 〈u̇f , φh〉+ a(uf , φh) + (g, φh)−

∫

Γ3

fφhds,

so
1

2
‖φh‖

2
L∞(0,T,H) + λh‖φh‖

2
V +Φ(uhf)− Φ(uf )

≤ −

∫ T

0

〈u̇f (t), φh(t)〉dt−

∫ T

0

a(uf (t), φh(t))dt

+

∫ T

0

(g(t), φh(t))dt −

∫ T

0

∫

Γ3

fφhdsdt.

Using the weak semi-continuity ofΦ and the weak conver-
gence (3.1) the right side of the just above inequality tends
to zero whenh → +∞, then we deduce the strong conver-
gence ofφh = uhf − uf to 0 in V ∩ L∞(0, T,H), for all
f ∈ F− and the proof holds.2

We prove now the following lemma by using the Aubin
compactness arguments. This Lemma 3.2 is very important
and necessary which allow us to conclude this paper. In-
deed this result is needed to pass to the limit exactly in the
last term of the inequality (3.12) in the proof of the main
Theorem 3.3.

Lemma 3.2 Let uhfoph
the state system defined by the

unique solution of Problem 1.4, where the fluxf is replaced
by foph

. Then, forh → +∞, we have

uhfoph
→ uf in L2((0, T )× ∂Ω), (3.3)

whereuf is the the state system defined by the unique solu-
tion of Problem 1.2 with the fluxf onΓ3.

Proof Let consider the variational inequality of Prob-
lem 1.4 withu = uhfoph

andf = foph
i.e.

< u̇hfoph
, v − uhfoph

> +ah(uhfoph
, v − uhfoph

) + Φ(v)

−Φ(uhfoph
) ≥ (g, v − uhfoph

)−

∫

Γ3

foph
(v − uhfoph

)ds

+h

∫

Γ1

b(v − uhfoph
)ds, ∀v ∈ V, (3.4)

and letϕ ∈ L2(0, T ;H1
0(Ω)), and setv = uhfoph

(t)±ϕ(t)
in (3.4), we get

< u̇hfoph
, ϕ >= (g, ϕ)− a(uhfoph

, ϕ).

By integration in times fort ∈ (0, T ), we get
∫ T

0

< u̇hfoph
, ϕ > dt =

∫ T

0

(g, ϕ)dt−

∫ T

0

a(uhfoph
, ϕ)dt

thus forA = (c‖g‖H + ‖uhfoph
‖
V
), we get

|

∫ T

0

< u̇hfoph
, ϕ > dt| ≤ A‖ϕ‖L2(0,T ;H1

0
(Ω))

where c comes from the Poincaré inequality, and as in
Lemma 3.1 we can obtain thatuhfoph

is bounded inV , so
there exists a positive constantC such that

‖u̇hfoph
‖L2(0,T ;H−1(Ω)) ≤ C. (3.5)

Using now the Aubin compactness arguments, see for ex-
ample [17] with the three Banach spacesV , H

2

3 (Ω) and
H−1(Ω), then

uhfoph
→ uf L2(0, T ;H

2

3 (Ω)).



As the trace operatorγ0 is continuous fromH
2

3 (Ω) to
L2(∂Ω), then the result follows.2

We give now, without need to use the notion of adjoint
states [14,18], the convergence result which generalizes the
result obtained in [19] for a parabolic variational equalities
(see also [18,20∼23]). Other optimal control problems gou-
verned by variational inequalities are given in [24∼26].

Theorem 3.3 Let uhfoph
∈ V , foph ∈ F− andufop ∈

V , fop ∈ F− be respectively the state systems and the opti-
mal controls defined in the problems (1.4) and (1.2). Then

lim
h→+∞

‖uhfoph
− ufop‖V =

= lim
h→+∞

‖uhfoph
− ufop‖L∞(0,T,H),

= lim
h→+∞

‖uhfoph
− ufop‖L2((0,T )×Γ1) = 0, (3.6)

lim
h→+∞

‖foph
− fop‖F = 0. (3.7)

Proof We have first

Jh(foph
) =

1

2
‖uhfoph

‖2H +
M

2
‖foph

‖2F ≤

≤
1

2
‖uhf‖

2
H +

M

2
‖f‖2F ,

for all f ∈ F−, then forf = 0 ∈ F− we obtain that

Jh(foph
) =

1

2
‖uhfoph

‖2H +
M

2
‖foph

‖2F ≤
1

2
‖uh0‖

2
H (3.8)

whereuh0 ∈ V is the solution of the following parabolic
variational inequality

〈u̇h0, v − uh0〉+ ah(uh0, v − uh0) + Φ(v) − Φ(uh0)

≥

∫

Ω

g(v − uh0)dx + h

∫

Γ1

b(v − uh0)ds, a.e. t ∈]0, T [

for all v ∈ V anduh0(0) = ub.
Takingv = ub ∈ Kb we get that‖uh0−ub‖V is bounded

independently ofh, then‖uh0‖H is bounded independently
of h. So we deduce with (3.8) that‖uhfoph

‖H and‖foph
‖F

are also bounded independently ofh. So there exist̃f ∈ F−

andη in H such that

foph
⇀ f̃ in F− and uhfoph

⇀ η in H (weakly).(3.9)

Taking nowv = ufop(t) ∈ Kb in Problem (1.4), for
t ∈]0, T [, with u = uhfoph

andf = foph
, we obtain

〈u̇hfoph
, ufop − uhfoph

〉+ a1(uhfoph
, ufop − uhfoph

)

+(h− 1)

∫

Γ1

uhfoph
(ufop − uhfoph

)ds+Φ(ufop)

−Φ(uhfoph
) ≥ (g, ufop − uhfoph

) + h

∫

Γ1

b(ufop − uhfoph
)ds

−

∫

Γ3

foph
(ufop − uhfoph

)ds, a.e. t ∈]0, T [.

As ufop = b onΓ1 × [0, T ], takingφh = ufop − uhfoph
we

obtain
1

2
‖φh‖

2
L∞(0,T ;H) + λ1‖φh‖

2
V + (h− 1)

∫ T

0

∫

Γ1

|φh(t)|
2dsdt

≤

∫ T

0

∫

Γ3

foph
φhdsdt−

∫ T

0

(g(t), φh(t))dt

+

∫ T

0

∫

Γ2

q|φh(t)|dsdt+

∫ T

0

〈u̇fop(t)φh(t)〉dt

+

∫ T

0

a(ufop(t), φh(t))dt.

As foph
is bounded inF−, from (3.5) u̇fop is bounded in

L2(0, T ;H−1(Ω)), anduhfoph
is also bounded inV , all

independently onh, so there exists a positive constantC
which does not depend onh such that
‖φh‖V = ‖uhfoph

− ufop‖V ≤ C, ‖φh‖L∞(0,T,H) ≤ C

and(h− 1)

∫ T

0

∫

Γ1

|uhfoph
− b|2dsdt ≤ C,

thenη ∈ V and
uhfoph

⇀ η in V and inL∞(0, T,H) weak star (3.10)

uhfoph
→ b in L2((0, T )× Γ1) strong, (3.11)

soη(t) ∈ Kb for all t ∈ [0, T ].
Now takingv ∈ K in Problem (1.4) whereu = uhfoph

andf = foph
so

〈u̇hfoph
, v − uhfoph

〉+ ah(uhfoph
, v − uhfoph

) + Φ(v)

−Φ(uhfoph
) ≥ (foph

, v − uhfoph
) + h

∫

Γ1

b(v − uhfoph
)ds

−

∫

Γ3

foph
(v − uhfoph

)ds, a.e. t ∈]0, T [

asv ∈ Kb sov = b onΓ1, thus we have
〈u̇hfoph

, uhfoph
− v〉+ a(uhfoph

, uhfoph
− v) +

h

∫

Γ1

|uhfoph
− b|2ds+Φ(uhfoph

)− Φ(v)− (g, v − uhfoph
)

≤

∫

Γ3

foph
(v − uhfoph

)ds a.e. t ∈]0, T [.

Thus
〈u̇hfoph

, uhfoph
− v〉+ a(uhfoph

, uhfoph
− v)

+Φ(uhfoph
)− Φ(v) ≤ −(g, v − uhfoph

)

−

∫

Γ3

foph
(v − uhfoph

)ds a.e. t ∈]0, T [. (3.12)

Using Lemma 3.2, (3.9) and (3.10), we deduce that [3,27]
〈η̇, v − η〉+ a(η, v − η) + Φ(v) − Φ(η) ≥ (f, v − η)

−

∫

Γ3

f̃(v − η))ds, ∀v ∈ K, a.e. t ∈]0, T [,

so also by the uniqueness of the solution ofProblem (1.2)
we obtain that

uf̃ = η. (3.13)

We prove thatf̃ = fop. Indeed we have

J(f̃) =
1

2
‖η‖2H +

M

2
‖f̃‖2F

≤ lim inf
h→+∞

{

1

2
‖uhfoph

‖2H +
M

2
‖foph

‖2F

}

= lim inf
h→+∞

Jh(foph
)

≤ lim inf
h→+∞

Jh(f) = lim inf
h→+∞

{

1

2
‖uhf‖

2
H +

M

2
‖f‖2F

}

so using now the strong convergenceuhf → uf as
h → +∞, ∀ f ∈ F− (see Lemma 3.1), we obtain that

J(f̃) ≤ lim inf
h→+∞

Jh(foph
)≤

1

2
‖uf‖

2
H +

M

2
‖f‖2F



= J(f), ∀f ∈ F− (3.14)

then by the uniqueness of the optimal controlProblem
(1.2) we get

f̃ = fop. (3.15)

Now we prove the strong convergence ofuhfoph
to η =

uf in V ∩ L∞(0, T ;H) ∩ L2(0, T ;L2(Γ1)), indeed taking
v = η in Problem (1.4) whereu = uhfoph

andf = foph
, as

η(t) ∈ K for t ∈ [0, T ], soη = b onΓ1, we obtain
1

2
‖uhfoph

− η‖2L∞(0,T ;H) + λ1‖uhfoph
− η‖2V +

∫ T

0

{Φ(uhfoph
)− Φ(η)}dt+ h̃‖uhfoph

− η‖2L2((0,T )×Γ1)

≤

∫ T

0

(g, uhfoph
(t)− η(t))dt −

∫ T

0

〈η̇, uhfoph
− η〉dt+

∫ T

0

a(η(t), η(t) − uhfoph
(t))−

∫

Γ3

foph
(uhfoph

− η))dsdt.

whereh̃ = h− 1
Using (3.10) and the weak semi-continuity ofΦ we de-

duce that
lim

h→+∞
‖uhfoph

− η‖L∞(0,T ;H) = lim
h→+∞

‖uhfoph
− η‖V

= ‖uhfoph
− η‖L2((0,T )×Γ1) = 0,

and with (3.13) and (3.15) we deduce (3.6). Then from
(3.14) and (3.15) we can write

J(fop) =
1

2
‖ufop‖

2
H +

M

2
‖fop‖

2
F ≤≤ lim inf

h→+∞
Jh(foph

)

= lim inf
h→+∞

{

1

2
‖uhfoph

‖2H +
M

2
‖foph

‖2F

}

≤ lim
h→+∞

Jh(fop) = J(fop) (3.16)

and using the strong convergence (3.6), we get
lim

h→+∞
‖foph

‖F = ‖fop‖F . (3.17)

Finally as
‖foph

− fop‖
2
F = ‖foph

‖2F + ‖fop‖
2
F − 2(foph

, fop)

(3.18)
and by the first part of (3.9) we have

lim
h→+∞

(foph
, fop) = ‖fop‖

2
F ,

so from (3.17) and (3.18) we get (3.7). This ends the proof.
2

Corollary 3.4 Let uhfoph
in V , foph in F−, ufop in V

andfop in F− be respectively the state systems and the op-
timal controls defined in the problems (1.4) and (1.2). Then

lim
h→+∞

|Jh(foph
)− J(fop)| = 0.

Proof It follows from the definitions (2.1) and (2.2),
and the convergences (3.6) and (3.7).2

4 Conclusion
The main difference here with our work [10] where the

control variable was the functiong, is that we consider
here as a control variable the functionf given by the Neu-
mann boundary condition onΓ3. This change induce in the

variational problems 1.2 and 1.4, and also in the proofs of
Lemma 3.1 and Theorem 3.3, a new integral term onΓ3.
The main difficulty here is in Section 3 and the question is
exactly how to pass to the limit forh → +∞ in the last inte-
gral term onΓ3 in (3.12). To overcome this main difficulty
we have introduced the new Lemma 3.2, which is the key
of our problem. The idea of Lemma 3.1 and Theorem 3.3
and their proofs are indeed similar to those of our work [10]
with the differences and difficulties mentioned just above.
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