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Abstract

In this paper we enrich the orthomodular structure by adding a modal
operator, following a physical motivation. A logical system is devel-
oped, obtaining algebraic completeness and completeness with respect
to a Kripke-style semantic founded on Baer ⋆-semigroups as in [20].
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Introduction

In their 1936 seminal paper [1], Birkhoff and von Neumann made the pro-
posal of a non-classical logic for quantum mechanics founded on the ba-
sic lattice-order properties of all closed subspaces of a Hilbert space. This
lattice-order properties are captured in the orthomodular lattice structure.
The orthomodular structure is characterized by a weak form of distributivity
called orthomodular law. This “weak distributivity”, which is the essential
difference with the Boolean structure, makes it extremely intractable in cer-
tain aspects. In fact, a general representation theorem for a class of algebras,
which has as particular instances the representation theorems as algebras of

∗Fellow of the Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

1

http://arXiv.org/abs/0807.1278v1


sets for Boolean algebras and distributive lattices, allows in many cases and
in a uniform way the choice of a Kripke-style model and to establish a direct
relationship with the algebraic model [21]. In this procedure the distribu-
tive law plays a very important role. In absence of distributivity this general
technique is not applicable, consequently to obtain Kripke-style semantics
may be complicated. Such is the case for the orthomodular logic. Indeed,
in [12], Goldblatt gives a Kripke-style semantic for the orthomodular logic
based on an imposed restriction on the Kripke-style semantic for the or-
thologic. This restriction is not first order expressible. Thus the obtained
semantic is not very attractive. In [20], Miyazaki introduced another ap-
proach to the Kripke-style semantic for the orthomodular logic based on
the representation theorem by Baer semigroups given by Foulis in [11] for
orthomodular lattices. In this way a Kripke-style model is obtained whose
universe is given by semigroups with additional operations.

Several authors added modal enrichments to the orthomodular structure
based on generalizations of classic modal systems [7, 13, 14], or generalization
of quantifiers in the sense of Halmos [15]. In [9] and [10], we have introduced
an orthomodular structure enriched with a modal operator called Boolean
saturated orthomodular lattice. This structure has a rigorous physical moti-
vation and allows to establish algebraic-type versions of the Born rule and
the well known Kochen-Specker (KS) theorem [18].

The aim of this paper is to study this structure from a logic-algebraic
perspective. The paper is structured as follows. Section 1 contains gener-
alities on universal algebra, orthomodular lattices and Baer ⋆-semigroups.
In section 2, the physical motivation for the modal enrichment of the or-
thomodular structure is presented. In section 3 we introduce the class of
Boolean saturated orthomodular lattices OML2 and we prove that this
class conforms a discriminator variety. In section 4, a Hilbert-style calcu-
lus is introduced obtaining a strong completeness theorem for the variety
OML2. Finally, in section 5, we give a representation theorem by means
of a sub-class of Baer ⋆-semigroups for OML2. This allows to develop a
Kripke-style semantic for the calculus of the precedent section following the
approach given in [20]. A strong completeness theorem for these Kripke-style
models is also obtained.
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1 Basic notions

We freely use all basic notions of universal algebra that can be found in
[3]. If K is a class of algebras of the same type then we denote by V(K)
the variety generated by K. Let A be a variety of algebras of type σ. We
denote by TermA the absolutely free algebra of type σ built from the set
of variables V = {x1, x2, ...}. Each element of TermA is referred to as a
term. We denote by Comp(t) the complexity of the term t. Let A ∈ A.
If t ∈ TermA and a1, . . . , an ∈ A, by tA(a1, . . . , an) we denote the result
of the application of the term operation tA to the elements a1, . . . , an. A
valuation in A is a map v : V → A. Of course, any valuation v in A can
be uniquely extended to an A-homomorphism v : TermA → A in the usual
way, i.e., if t1, . . . , tn ∈ TermA then v(t(t1, . . . , tn)) = tA(v(t1), . . . , v(tn)).
Thus, valuations are identified with A-homomorphisms from the absolutely
free algebra. If t, s ∈ TermA, |=A t = s means that for each valuation v in
A, v(t) = v(s) and |=A t = s means that for each A ∈ A, |=A t = s. We
denote by Con(A) the lattice of congruences of A. A discriminator term for
A is a term t(x, y, z) such that

tA(x, y, z) =

{

x, if x 6= y
z, if x = y

The variety A is a discriminator variety iff there exists a class of algebras
K with a common discriminator term t(x, y, z) such that A = V(K).

Now we recall from [17] and [19] some notions about orthomodular lat-
tices. A lattice with involution [16] is an algebra 〈L,∨,∧,¬〉 such that
〈L,∨,∧〉 is a lattice and ¬ is a unary operation on L that fulfills the follow-
ing conditions: ¬¬x = x and ¬(x ∨ y) = ¬x ∧ ¬y. Let L = 〈L,∨,∧, 0, 1〉 be
a bounded lattice. Given a, b, c in L, we write: (a, b, c)D iff (a ∨ b) ∧ c =
(a ∧ c) ∨ (b ∧ c); (a, b, c)D∗ iff (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) and (a, b, c)T iff
(a, b, c)D, (a,b,c)D∗ hold for all permutations of a, b, c. An element z of a
lattice L is called central iff for all elements a, b ∈ L we have (a, b, z)T . We
denote by Z(L) the set of all central elements of L and it is called the center
of L. Z(L) is a Boolean sublattice of L [19, Theorem 4.15]. An orthomod-
ular lattice is an algebra 〈L,∧,∨,¬, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 that satisfies
the following conditions

1. 〈L,∧,∨,¬, 0, 1〉 is a bounded lattice with involution,

2. x ∧ ¬x = 0.
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3. x ∨ (¬x ∧ (x ∨ y)) = x ∨ y

We denote by OML the variety of orthomodular lattices. An important
characterization of the equations in OML is given by:

|=MOL t = s iff |=MOL (t ∧ s) ∨ (¬t ∧ ¬s) = 1 (1)

Therefore we can safely assume that all OML-equations are of the form
t = 1, where t ∈ TermOML.

Remark 1.1 It is clear that this characterization is maintained for each
variety A such that there are terms of the language of A defining on each
A ∈ A operations ∨, ∧, ¬, 0, 1 such that L(A) = 〈A,∨,∧,¬, 0, 1〉 is an
orthomodular lattice.

Proposition 1.2 [19, Lemma 29.9 and Lemma 29.16] Let L be an ortho-
modular lattice then we have that:

1. z ∈ Z(L) if and only if a = (a ∧ z) ∨ (a ∧ ¬z) for each a ∈ L.

2. If L is complete then, Z(L) is a complete lattice and for each family
(zi) in Z(L) and a ∈ L, a ∧

∨

zi =
∨

(a ∧ zi). 2

Now we recall from [11], [19] and [20] some notions about Baer ⋆-semigroups.
A ⋆-semigroup is an algebra 〈G, ·, ⋆, 0〉 of type 〈2, 1, 0〉 that satisfies the fol-
lowing equations:

1. 〈G, ·〉 is a semigroup

2. 0 · x = x · 0 = 0,

3. (x · y)⋆ = y⋆ · x⋆,

4. x⋆⋆ = x.

Let G be a ⋆-semigroup. An element e ∈ G is a projection iff e = e⋆ = e·e.
The set of all projections of G is denoted by P (G). Let M be a non empty
subset of G. If x ∈ G we define x · M = {x · m ∈ G : m ∈ M} and
M · x = {m · x ∈ G : m ∈ M}. Moreover x is said to be a left annihilator
of M iff x · M = {0} and it is said to be a right annihilator of M iff
M · x = {0}. We denote by M l the set of left annihilators of M and by M r
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the set of right annihilators of M . A ⋆-semigroup is called Baer ⋆-semigroup
iff for each x ∈ G there exists e ∈ G such that

{x}r = {y ∈ G : x · y = 0} = e · G

We do not assume in general that any e ∈ P (G) can be represented
as {x}r = e · G for some x ∈ G. Thus we say that e ∈ P (G) is a closed
projection iff there exists x ∈ G such that {x}r = e ·G. The set of all closed
projections is denoted by Pc(G). Let G be an orthomodular frame. From
[19, Lemma 37.2], for each x ∈ G there exists a unique projection ex ∈ P (G)
such that {x}r = e · G. We denote this ex by x′. Moreover 0′ is denoted as
1. We can define a partial order 〈P (G),≤〉 as follows:

e ≤ f ⇐⇒ e · f = e

Proposition 1.3 Let G be a Baer ⋆-semigroup. For any e1, e2 ∈ Pc(G), we
have that:

1. e ≤ f iff e · G ⊆ f · G [19, Theorem 37.2]

2. x · 1 = 1 · x = x [19, Theorem 37.4] 2

Theorem 1.4 [19, Theorem 37.8] Let G be a Baer ⋆-semigroup. For any
e1, e2 ∈ Pc(G), we define the following operation:

1. e1 ∧ e2 = e1 · (e
′
2 · e1)

′,

2. e1 ∨ e2 = (e′1 ∧ e′2)
′.

then 〈Pc(G),∧,∨,′ , 0, 1〉 is an orthomodular lattice with respect to the order
〈P (G),≤〉. 2

On the other hand we can build a Baer ⋆-semigroup from a partial or-
dered set. Let 〈A,≤〉 be a partial ordered set. If ϕ : A → A is an order homo-
morphism then, a residual map for ϕ is an order homomorphism ϕ♮ : A → A
such that (ϕ ◦ϕ♮)(x) ≤ x ≤ (ϕ♮ ◦ϕ)(x) where ◦ is the composition of order-
homomorphisms. We denote by G(A) the set of order-homomorphisms in A
admitting residual maps. If we consider the constant order-homomorphism
θ, given by θ(x) = 0, then θ ∈ G(A) and 〈G(A), ◦, θ〉 is a semigroup.

Theorem 1.5 [11, Theorem 8] Let A be an orthomodular lattice and we
consider the semigroup 〈G(A), ◦, θ〉. If for each ϕ ∈ G(A) we define ϕ⋆ as
ϕ⋆(x) = ¬ϕ♮(¬x) then we have that:
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1. 〈G(A), ◦, ⋆, θ〉 is a Baer ⋆-semigroup,

2. if we define µa(x) = (x ∨ ¬a) ∧ a for each a ∈ A then Pc(G(A)) =
{µa : a ∈ A},

3. f : A → Pc(G(A)) such that f(a) = µa is a OML-homomorphism. 2

2 Physical motivation of the modally enriched or-

thomodular structure

In the usual terms of quantum logic, a property of a system is related to
a subspace of the Hilbert space H of its (pure) states or, analogously, to
the projector operator onto that subspace. A physical magnitude M is
represented by an operator M acting over the state space. For bounded self-
adjoint operators, conditions for the existence of the spectral decomposition
M =

∑

i aiPi =
∑

i ai|ai >< ai| are satisfied. The real numbers ai are
related to the outcomes of measurements of the magnitude M and projectors
|ai >< ai| to the mentioned properties. Thus, the physical properties of the
system are organized in the lattice of closed subspaces L(H). Moreover,
each self-adjoint operator M has associated a Boolean sublattice WM of
L(H) which we will refer to as the spectral algebra of the operator M.

Assigning values to a physical quantity M is equivalent to establishing
a Boolean homomorphism v : WM → 2, being 2 the two elements Boolean
algebra. Thus we can say that it makes sense to use the “classical discourse”
–this is, the classical logical laws are valid– within the context given by M.

One may define a global valuation of the physical magnitudes over L(H)
as a family of Boolean homomorphisms (vi : Wi → 2)i∈I such that vi |
Wi ∩ Wj = vj | Wi ∩ Wj for each i, j ∈ I, being (Wi)i∈I the family of
Boolean sublattices of L(H). This global valuation would give the values
of all magnitudes at the same time maintaining a compatibility condition in
the sense that whenever two magnitudes shear one or more projectors, the
values assigned to those projectors are the same from every context. As we
have proved in [8], the KS theorem in the algebraic terms of the previous
definition rules out this possibility:

Theorem 2.1 If H is a Hilbert space such that dim(H) > 2, then a global
valuation over L(H) is not possible. 2

This impossibility to assign values to the properties at the same time sat-
isfying compatibility conditions is a weighty obstacle for the interpretation
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of the formalism. B. van Fraassen was the first one to formally include the
reasoning of modal logic to circumvent these difficulties presenting a modal
interpretation of quantum logic in terms of its semantical analysis [22]. In
our case, the modal component was introduced with different purposes: to
provide a rigorous framework for the Born rule and mainly, to discuss the
restrictions posed by the KS theorem to modalities [9].

To do so we enriched the orthomodular structure with a modal operator
taking into account the following considerations:

1) Propositions about the properties of the physical system are inter-
preted in the orthomodular lattice of closed subspaces of the Hilbert space
of the (pure) states of the system. Thus we will retain this structure in our
extension.

2) Given a proposition about the system, it is possible to define a context
from which one can predicate with certainty about it together with a set of
propositions that are compatible with it and, at the same time, predicate
probabilities about the other ones (Born rule). In other words, one may
predicate truth or falsity of all possibilities at the same time, i.e. possibilities
allow an interpretation in a Boolean algebra. In rigorous terms, for each
proposition P , if we refer with 3P to the possibility of P , then 3P will be
a central element of a orthomodular structure.

3) If P is a proposition about the system and P occurs, then it is trivially
possible that P occurs. This is expressed as P ≤ 3P .

4) Assuming an actual property and a complete set of properties that
are compatible with it determines a context in which the classical discourse
holds. Classical consequences that are compatible with it, for example prob-
ability assignments to the actuality of other propositions, shear the classical
frame. These consequences are the same ones as those which would be ob-
tained by considering the original actual property as a possible one. This is
interpreted in the following way: if P is a property of the system, 3P is the
smallest central element greater than P .

From consideration 1) it follows that the original orthomodular structure
is maintained. The other considerations are satisfied if we consider a modal
operator 3 over an orthomodular lattice L defined as 3a = Min{z ∈ Z(L) :
a ≤ z} with Z(L) the center of L under the assumption that this minimum
exists for every a ∈ L. In the following section we explicitly show our
construction. For technical reasons this algebraic study will be performed
using the necessity operator 2 instead of the possibility operator 3. As
usual, it will be then possible to define the possibility operator from the
necessity operator.
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3 Orthomodular structures and modality

Definition 3.1 Let A be an orthomodular lattice. We say that A is Boolean
saturated if and only if for all a ∈ A the set {z ∈ Z(A) : z ≤ a} has a
maximum. In this case such maximum is denoted by 2(a).

Example 3.2 In view of Proposition 1.2, orthomodular complete lattices
considering e(a) =

∨

{z ∈ Z(L) : z ≤ a} as operator, are examples of
boolean saturated orthomodular lattices.

Proposition 3.3 Let A be an orthomodular lattice. Then A is boolean sat-
urated iff there exists an unary operator 2 satisfying

S1 2x ≤ x

S2 21 = 1

S3 22x = 2x

S4 2(x ∧ y) = 2(x) ∧ 2(y)

S5 y = (y ∧ 2x) ∨ (y ∧ ¬2x)

S6 2(x ∨ 2y) = 2x ∨ 2y

S7 2(¬x ∨ (y ∧ x)) ≤ ¬2x ∨ 2y

Proof: Suppose that A is is Boolean saturated. S1), S2) and S3) are triv-
ial. S4) Since x ∧ y ≤ x and x ∧ y ≤ y then 2(x ∧ y) ≤ 2(x) ∧ 2(y). For
the converse, 2(x) ≤ x and 2(y) ≤ y, thus 2(x) ∧ 2(y) ≤ 2(x ∧ y). S5)
Follows from Proposition 1.2 since 2(x) ∈ Z(A). S6) For simplicity, let
z = 2y. From the precedent item and taking into account that z ∈ Z(L)
we have that 2(z ∨ x) ∧ 2(¬z ∨ x) = 2((z ∨ x) ∧ (¬z ∨ x)) = 2(x). Since
¬z ≤ 2(¬z ∨ x) then we have that 1 = z ∨ ¬z ≤ z ∨ 2(¬z ∨ x). Also we
have z ≤ 2(z ∨ x). Finally z ∨ 2(x) = (z ∨ 2(z ∨ x)) ∧ (z ∨ 2(¬z ∨ x)) =
(z ∨ 2(z ∨ x)) ∧ 1 = 2(z ∨ x) i.e. 2(x ∨ 2y) = 2x ∨ 2y. S7) Since
2(x) ≤ x then ¬x ≤ ¬2x, we have that ¬x ∨ (y ∧ x) ≤ ¬2x ∨ y. Using the
precedent item 2(¬x∨(y∧x)) ≤ 2(¬2x∨y) = ¬2x∨2y since ¬2x ∈ Z(A).

For the converse, let a ∈ A and {z ∈ Z(A) : z ≤ a}. By S1 and S5 it
is clear that 2a ∈ {z ∈ Z(A) : z ≤ a}. We see that 2a is the upper bound
of the set. Let z ∈ Z(A) such that z ≤ a then 1 = ¬z ∨ (a ∧ z). Using S2
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and S7 we have 1 = 21 = 2(¬z ∨ (a ∧ z)) ≤ ¬2z ∨ a = ¬z ∨ a. Therefore
z = z∧ (¬z∨2a) and since z is central z = z∧2a resulting z ≤ 2a. Finally
2a = Max{z ∈ Z(A) : z ≤ a}. 2

Note that the operator 2 is an example of quantifier in the sense of
Janowitz [15].

Theorem 3.4 The class of Boolean saturated orthomodular lattices consti-
tutes a variety which is axiomatized by

1. Axioms of OML,

2. S1, ..., S7.

Proof: Obvious by Proposition 3.3 2

Boolean saturated orthomodular lattices are algebras 〈A,∧,∨,¬,2, 0, 1〉
of type 〈2, 2, 1, 1, 0, 0〉. The variety of this algebras is noted as OML2. By
simplicity, the set TermOML2 will be denoted by Term2. Since OML is
a reduct of OML2 we can also suume that all OML2-equations are of
the form t = 1. It is well known that OML is congruence distributive
and congruence permutable. Therefore if A ∈ OML2 and we consider
the OML-reduct of A it is clear that ConOML2(A) ⊆ ConOML(A) result-
ing A congruence distributive and congruence permutable in the sence of
OML2-congruences. Hence the variety OML2 is congruence distributive
and congruence permutable. The following lemma gives basic properties
that will be used later:

Lemma 3.5 Let A ∈ OML2 and a, b ∈ A and z1, z2 ∈ Z(A). Then we
have:

1. ¬2a ∨ a = 1,

2. ¬(a ∨ ¬b) ∨ (a ∨ ¬2b) = 1,

3. ¬(¬z1 ∨ z2) ∨ ((¬(z1 ∨ a) ∨ (z2 ∨ a) = 1

4. 2a ∨ 2b ≤ 2(a ∨ b),

5. (¬2a ∧ ¬2b) ∨ 2(a ∨ b) = 1,

6. if x ≤ y then 2x ≤ 2y.
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Proof: 1) Since 2a ≤ a then ¬a ≤ ¬2a and 1 = a ∨ ¬a ≤ a ∨ ¬2a.
2) Since ¬2b ∈ Z(A) and by item 1 we have that ¬(a∨¬b)∨ (a∨¬2b) =
(¬a∧b)∨(a∨¬2b) = ((¬a∨¬2b)∧(b∨¬2b))∨a = ((¬a∨¬2b)∧1)∨a = 1.
3) ¬(¬z1 ∨ z2)∨ ((¬(z1 ∨a)∨ (z2 ∨a) = ¬((¬z1 ∨ z2)∧ (z1 ∨a))∨ (z2 ∨a) =
¬((¬z1∧a)∨ (z1 ∧z2)∨ (z2 ∧a))∨ (z2 ∨a) = ((z1∨¬a)∧ (¬z1 ∨¬z2)∧ (¬z2 ∨
¬a)) ∨ (z2 ∨ a) = ((z1 ∨ ¬a ∨ z2) ∧ (¬z2 ∨ ¬x ∨ z2) ∧ (¬z2 ∨ ¬a ∨ z2)) ∨ a =
z1 ∨ ¬a ∨ z2 ∨ a = 1. 4) 2a ≤ a and 2b ≤ b, 2a ∨ 2b ≤ a ∨ b. Since
2a ∨ 2b ∈ Z(A) it is clear that 2a ∨ 2b ≤ 2(a ∨ b). 5) Immediately
from item 4. 6) Suppose that x ≤ y then x = x ∧ y. By Axiom S4 we
have that 2x = 2(x ∧ y) = 2x ∧ 2y), hence 2x ≤ 2y. 2

Lemma 3.6 Let A ∈ OML2 and z ∈ Z(A). Then the binary relation Θz

on A defined by aΘzb iff a ∧ z = b ∧ z is a congruence on A, such that
A ∼= A/Θz × A/Θ¬z.

Proof: It is well known that Θz is a OML-congruence and A is OML-
isomorphic to A/Θz×A/Θ¬z. Therefore we only need to see the 2-compatibility.
In fact: suppose that aΘzb then a ∧ z = b ∧ z. Therefore 2(a) ∧ z =
2(a) ∧ 2(z) = 2(a ∧ z) = 2(b ∧ z) = 2(b) ∧ 2(z) = 2(b) ∧ z. Hence
2(a)Θz2(b). 2

Proposition 3.7 Let A ∈ OML2 then we have that:

1. The map z → Θz is a lattice isomorphism between Z(L) and the
Boolean subalgebra of Con(L) of factor congruences.

2. A is directly indecomposable iff Z(A) = {0, 1}.

Proof: 1) Follows from Lemma 3.6 using the same arguments that prove
the analog result for orthomodular lattices [2, Proposition 5.2]. 2) Follows
form item 1. 2

Proposition 3.8 Let A be a directly indecomposable OML2-algebra. Then

t(x, y, z) = (x ∧ ¬2((x ∧ y) ∨ (¬x ∧ ¬y))) ∨ (z ∧ 2((x ∧ y) ∨ (¬x ∧ ¬y)))

is a discriminator term for A.

Proof: By Proposition 3.7, Z(A) = {0, 1}. Therefore for each a ∈ A−{1},
2(a) = 0. Let a, b, c ∈ A. Suppose that a 6= b. By the characterization of
the equations in OML2 we have that (a ∧ b) ∨ (¬a ∧ ¬b) 6= 1 and then
t(a, b, c) = a. If we suppose that a = b then it is clear that t(a, b, c) = c.
Hence t(x, y, z) is a discriminator term for A. 2
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Proposition 3.9 If A is a subvariety of OML2 then A is a discriminator
variety.

Proof: Let SIA be the class of subdirectly irreducible algebras of A. Each
algebra of SIA is directly indecomposable. Therefore by Proposition 3.8
SIA admit a common discriminator term. Since A = V(SIA) we have that
A is a discriminator variety. 2

4 Hilbert-style calculus for OML2

In this section we build a Hilbert-style calculus 〈Term2,⊢〉 for OML2. We
first introduce some notation. α ∈ Term2 is a tautology iff |=OML2 α = 1.
Each subset T of Term2 is referred as theory. If v is a valuation, v(T ) = 1
means that v(γ) = 1 for each γ ∈ T . We use T |=OML2 α (read α is semantic
consequence of T ) in the case in which when v(T ) = 1 then v(α) = 1 for
each valuation v.

Lemma 4.1 Let γ and α ∈ Term2. Then we have

1. If v is a valuation then v(α) = 1 iff v(2α) = 1.

2. γ |=OML2 α iff γ |=OML2 2α iff 2γ |=OML2 α iff 2γ |=OML2 2α.

Proof: 1) If v(α) = 1 then 1 = 21 = 2(v(α)) = v(2α). The converse
follows from the fact 1 = v(2α) = 2(v(α)) ≤ v(α). 2) Immediate from
the item 1. 2

Definition 4.2 Consider by definition the following binary connective

αRβ for (α ∧ β) ∨ (¬α ∧ ¬β)

The calculus 〈Term2,⊢〉 is given by the following axioms:

A0 1R(α ∨ ¬α) and 0R(α ∧ ¬α),

A1 αRα,

A2 ¬(αRβ) ∨ (¬(βRγ) ∨ (αRγ)),

A3 ¬(αRβ) ∨ (¬αR¬β),

A4 ¬(αRβ) ∨ ((α ∧ γ)R(β ∧ γ)),
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A5 (α ∧ β)R(β ∧ α),

A6 (α ∧ (β ∧ γ))R((α ∧ β) ∧ γ),

A7 (α ∧ (α ∨ β))Rα,

A8 (¬α ∧ α)R((¬α ∧ α) ∧ β),

A9 αR¬¬α,

A10 ¬(α ∨ β)R(¬α ∧ ¬β),

A11 (α ∨ (¬α ∧ (α ∨ β))R(α ∨ β),

A12 (αRβ)R(βRα),

A13 ¬(αRβ) ∨ (¬α ∨ β),

A14 (2α ∨ α)Rα,

A15 2(α ∨ ¬α)R(α ∨ ¬α),

A16 22αR2α,

A17 2(α ∧ β)R(2α ∧ 2β),

A18 ((α ∧ 2β) ∨ (α ∧ ¬2β))Rα,

A19 2(α ∨ ¬2β)R(2α ∨ ¬2β),

A20 2(α ∨ 2β)R(2α ∨ 2β),

A21 (2(¬α ∨ (β ∧ α)) ∨ (¬2α ∨ 2β))R(¬2α ∨ 2β),

A22 ¬(α ∨ ¬β) ∨ (α ∨ ¬2β),

A23 ¬(γ ∨ ¬β) ∨ (¬(β ∨ α) ∨ (γ ∨ α)),

A24 2(α ∨ β) ∨ (¬2α ∧ ¬2β).

and the following inference rules:

α,¬α ∨ β

β
disjunctive syllogism (DS)

α

2α
, necessitation (N)

12



Let T be a theory. A proof from T is a sequence α1, ..., αn in Term2

such that each member is either an axiom or a member of T or follows from
some preceding member of the sequence using DS or N. T ⊢ α means that
α is provable in T , that is, α is the last element of a proof from T . If T = ∅,
we use the notation ⊢ α and in this case we will say that α is a theorem
of 〈Term2,⊢〉. T is inconsistent if and only if T ⊢ α for each α ∈ Term2;
otherwise it is consistent.

Proposition 4.3 Let T be a theory and α, β, γ ∈ Term2. Then we have

1. T ⊢ αRβ =⇒ T ⊢ βRα

2. T ⊢ αRβ and T ⊢ βRγ =⇒ T ⊢ αRγ

3. T ⊢ αRβ =⇒ T ⊢ ¬αR¬β

4. T ⊢ αRβ and T ⊢ α ∧ γ =⇒ T ⊢ β ∧ γ

5. T ⊢ αRβ and T ⊢ α ∨ γ =⇒ T ⊢ β ∨ γ

6. T ⊢ αRβ =⇒ T ⊢ 2αR2β

7. ⊢ α ∨ ¬α

8. T ⊢ α =⇒ T ⊢ α ∨ β

Proof:
1)

(1) T ⊢ αRβ

(2) T ⊢ (αRβ)R(βRα) by A12

(3) T ⊢ ¬((αRβ)R(βRα)) ∨ (¬(αRβ) ∨ (βRα)) by A13

(4) T ⊢ (¬(αRβ) ∨ (βRα)) by DS 2,2

(5) T ⊢ βRα by DS 1,4

2) Is easily from A2 and two application of the DS .
3) Follows from A3.
4)

(1) T ⊢ αRβ
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(2) T ⊢ α ∧ γ

(3) T ⊢ ¬(αRβ) ∨ ((α ∧ γ)R(β ∧ γ)) by A4

(4) T ⊢ (α ∧ γ)R(β ∧ γ) by DS 1,2

(5) ¬(α ∧ γ)R(β ∧ γ) ∨ (¬(α ∧ γ) ∨ (β ∧ γ)) by A4

(6) T ⊢ β ∧ γ by DS 5,4,2

5) Follows by item 4, A9 and A10.
6)

(1) T ⊢ αRβ

(2) T ⊢ (α ∧ β) ∨ (¬α ∧ ¬β) equiv 1

(3) T ⊢ (α ∧ β) ∨ ¬(α∨ β) by item 5 and A10

(4) ⊢ ¬((α ∧ β) ∨ ¬(α ∨ β)) ∨ ((α ∧ β) ∨ ¬2(α ∨ β)) by A22

(5) T ⊢ (α ∧ β) ∨ ¬2(α ∨ β) by DS 4,3

(6) T ⊢ 2((α ∧ β) ∨ ¬2(α ∨ β)) by DS 4,3

(7) T ⊢ 2(α ∧ β) ∨ ¬2(α ∨ β) by A13, A19

(8) T ⊢ (2α ∧ 2β) ∨ ¬2(α ∨ β) by item 5 and A17

(9) ¬((2α ∧ 2β) ∨ ¬2(α ∨ β)) ∨ (¬(2(α ∨ β) ∨ (¬2α ∧ ¬2β)) ∨ ((2α ∧
2β) ∨ (¬2α ∧ ¬2β)) by A23

(10) 2(α ∨ β) ∨ (¬2α ∧ ¬2β) by A24

(11) (2α ∧ 2β) ∨ (¬2α ∨ ¬2β)) by SD 8,9,10

(12) T ⊢ 2αR2β equiv 1

7)Follows from A1 and A13.
8)

(1) T ⊢ α

(2) T ⊢ (α ∨ ¬α)R((α ∨ ¬α) ∨ β) by A3, A8, A10

(3) T ⊢ (α ∨ ¬α) ∨ β by item 7 and A13
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(4) ⊢ ¬((α ∧ β) ∨ ¬(α ∨ β)) ∨ ((α ∧ β) ∨ ¬2(α ∨ β)) by A22

(5) ⊢ ¬α ∨ (α ∨ β) by 4, A5, A3, A10

(6) ⊢ α ∨ β by DS 1, 5 2

Proposition 4.4 Axioms of the 〈Term2,⊢〉 are tautologies.

Proof: For A0... A13 see ([17, Chapter 4.15 ]). A22...24 follow from
Proposition 3.5. 2

Theorem 4.5 Let T be a theory. If for each α ∈ Term2 we consider the set
[α] = {β : T ⊢ αRβ} then LT = {[α] : α ∈ Term2} determines a partition
in equivalence classes of Term2. Defining the following operation in LT

[α] ∧ [β] = [α ∧ β] ¬[α] = [¬α] 0 = [0]

[α] ∨ [β] = [α ∨ β] 2[α] = [2α] 1 = [1]

then we have

1. 〈LT ,∨,∧,¬,2, 0, 1〉 is a Boolean saturated orthomodular lattice.

2. T ⊢ α if and only if [α] = 1

Proof: 1) By A1 and Proposition 4.3 (item 1 and 2) LT = {[α] : α ∈
Term2} is a partition in equivalence classes of Term2. By Proposition 4.3
(item 3 and 6) ∨,∧,¬,2 are well defined in LT . By A0...A13 and ([17,
Proposition 4.15. 1]) LT is an orthomodular lattice. By A14...A21 and
Proposition 4.4, LT is boolean saturated. 2) Assume that T ⊢ α, then we
have that:

(1) T ⊢ α

(2) T ⊢ αR(α ∧ (α ∨ ¬α)) by A7

(3) T ⊢ α ∧ (α ∨ ¬α) by 1 and A13

(4) T ⊢ (α ∧ (α ∨ ¬α)) ∨ (¬α ∧ ¬(α ∨ ¬α)) by 3 and Prop. 4.3 8

(5) T ⊢ αR(α ∨ ¬α) equiv in 4
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resulting [α] = 1. On the other hand, if [α] = 1, we have that T ⊢
αR(α ∨ ¬α). Using Proposition 4.3 7 and Ax13, it results T ⊢ α. 2

The following theorem establishes the strong completeness for 〈Term2,⊢〉
with respect to the variety OML2.

Theorem 4.6 Let α ∈ Term2 and T be a theory. Then we have that:

T ⊢ α ⇐⇒ T |=OML2 α

Proof: If T is inconsistent, this result is trivial. Assume that T is con-
sistent. =⇒) Immediate. ⇐=) Suppose that T does not prove α. Then,
by Proposition 4.5, [α] 6= 1. Then the projection p : Term2 → LT with
p(ϕ) = [ϕ] is a valuation such that p(ϕ) = 1 for each ϕ ∈ T and p(α) 6= 1.
Finally we have that not T |=OML2 α. 2

Corollary 4.7 (Compactness) Let α ∈ Term2 and T be a theory. Then
we have that, T |=OML2 α iff there exists a finite subset T0 ⊆ T such that
T0 |=OML2 α.

Proof: In view of Theorem 4.6, if T |=OML2 α then T ⊢ α. If ϕ1, · · ·ϕm, α
is a proof of α from T , we can consider the finite set T0 = {ϕi ∈ T : ϕi ∈
{α1, · · ·αn}}. Using again Theorem 4.6 we have T0 |=OML2 α. 2

We can also establish a kind of deduction theorem.

Corollary 4.8 Let γ, α ∈ Term2 and T be a theory. Then we have that:

T ∪ {γ} ⊢ α iff T ⊢ ¬2γ ∨ α

Proof: By Theorem 4.6 we will prove that T ∪{γ} |=OML2 α iff T |=OML2

¬2γ ∨ α. By Corollary 4.7 T ∪ {γ} |=OML2 α iff there exists ϕ1 . . . ϕn ∈ T
such that (ϕ1 ∧ . . . ∧ ϕn) ∧ γ |=OML2 α. Let ϕ = ϕ1 ∧ . . . ∧ ϕn. Then
ϕ ∧ γ |=OML2 α implies that (ϕ ∧ γ) ∨ ¬2(γ) |=OML2 ¬2γ ∨ α and then
ϕ ∨ ¬2γ |=OML2 ¬2γ ∨ α since for each valuation v, v(2γ) is a central
element and v(γ ∨ ¬2γ) = 1. Since ϕ |=OML2 ϕ ∨ ¬2γ we have that
ϕ |=OML2 2γ ∨ α thus T |=OML2 ¬2γ ∨ α.

On the other hand, if T |=OML2 ¬2γ ∨ α we can consider again ϕ =
ϕ1 ∧ . . . ∧ ϕn such that ϕ1 . . . ϕn ∈ T and ϕ |=OML2 ¬2γ ∨ α. Therefore
ϕ ∧ 2γ |=OML2 2γ ∧ (¬2γ ∨ α) and then ϕ ∧ 2γ |=OML2 2γ ∧ α since for
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each valuation v, v(2γ ∧ (¬2γ ∨ α)) = v(2γ ∧ α) taking into account that
v(2α) is always a central element. Since 2γ ∧ α |=OML2 α we have that
ϕ∧2γ |=OML2 α. Applying Lemma 4.1 we have that 2(ϕ∧2γ) |=OML2 α
hence 2ϕ ∧ 2γ |=OML2 α and ϕ ∧ γ |=OML2 α in view of Axiom S4 of
OML2. Thus T ∪ {γ} |=OML2 α. 2

5 Modal orthomodular frames and Kripke-style

semantics

In order to establish a Kripke-style semantics 〈Term2,⊢〉 we first introduce
el concept of modal Baer semigroups which constitute a sub-class of Baer
⋆-semigroups.

Definition 5.1 A modal Baer semigroup is a Baer ⋆-semigroup G such that
〈Pc(G),∧,∨,′ , 0, 1〉 is a Boolean saturated orthomodular lattice. A modal
orthomodular frame is a pair 〈G,u〉 such that G is a modal Baer semigroup
and u is a valuation u : Term2 → Pc(G)

We denote by MOF the class of all modal orthomodular frames. The
following result is a representation theorem by modal Baer semigroups of
Boolean saturated orthomodular lattices.

Theorem 5.2 Let A ∈ OML2, then there exists a modal Baer semigroup
G(A) such that A is OML2-isomorphic to Pc(G(A)).

Proof: Let A ∈ OML2. By Theorem 1.5 there exists a Baer ⋆-semigroup
G such that A is OML-isomorphic to Pc(G(A)). Since OML-isomorphisms
preserve supremum of central elements we have that Pc(G(A)) ∈ OML2 and
then, G(A) ∈ MBS. 2

Note that we can easily prove that |=OML2 t = 1 iff for all modal Baer
semigroups G we have that |=Pc(G) t = 1.

Proposition 5.3 Let 〈G,u〉 be a modal orhomodular frame and t, s ∈ Term2.
Then we have that:

1. u(t ∧ s) · G = (u(t) · G) ∩ (v(t) · G),

2. u(¬t) · G = {x ∈ G : ∀y ∈ u(t) · G, y⋆ · x = 0}
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3. u(2t) · G =
⋃

{x · G : x ∈ Z(Pc(G)) and x ≤ v(t)}.

Proof: 1) Follows from an analogous argument used in [20, Theorem 3.13].
2) See the proof of [20, Lemma 3.16-3]. 3)We first note that u(t) ≥ 2u(t) =
u(2t) ∈ Z(Pc(G)). Thus u(2t) · G ∈ {x · G : x ∈ Z(Pc(G)) and x ≤ u(t)}
and then u(t) · G ⊆

⋃

{x · G : x ∈ Z(Pc(G)) and x ≤ u(t)}. On the other
hand, if x ∈ Z(Pc(G)) and x ≤ u(t) then x · G ⊆ u(2t) · G since x ≤ u(2t).
Hence

⋃

{x · G : x ∈ Z(Pc(G)) and x ≤ u(t)} ⊆ u(t) · G. 2

Definition 5.4 Let 〈G,u〉 be a modal orhomodular frame. Then we define
inductively the forcing relation |=x

〈G,u〉⊆ G × Term2 as follows:

1. |=x
〈G,u〉 p iff x ∈ u(p) · G, for each variable p ∈ Term2,

2. |=x
〈G,u〉 α ∧ β iff |=x

〈G,u〉 α and |=x
〈G,u〉 β,

3. |=x
〈G,u〉 ¬α iff ∀g ∈ G, |=g

〈G,u〉 α =⇒ g′ · x = 0,

4. |=x
〈G,u〉 2α iff x = z · g such that z ∈ Z(Pc(G)) and |=z

〈G,u〉 α.

The relation |=x
〈G,u〉 α is read as α is true at the point x in the modal

orthomodular frame 〈G,u〉 and by |=〈G,u〉 α we understand that for each
x ∈ G, |=x

〈G,u〉 α. Generalizing, if T is a theory, |=〈G,u〉 T means that, for

each β ∈ T we have that |=〈G,u〉 β. With these elements we can establish
a notion of consequence in the Kripke-style sense that will be noted by
T |=MOF α.

T |=MOF α iff ∀〈G,u〉 ∈ MOF , |=〈G,u〉 T =⇒|=〈G,u〉 α

Let α ∈ Term2, T be a theory and 〈G,u〉 be an orthomodular frame. Then
we consider the following sets:

| α |〈G,u〉= {x ∈ G :|=x
〈G,u〉 α}

| T |〈G,u〉=
⋂

β∈T

| β |〈G,u〉

Proposition 5.5 Let α ∈ Term2, T be a theory and 〈G,u〉 be a modal
orthomodular frame. Then we have that:

1. | α |〈G,u〉= u(α) · G,
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2. |=〈G,u〉 T iff | T |〈G,u〉= G

Proof: 1) We use induction on the complexity of terms. If α is a variable
the proposition results trivial. If α is β∧γ or ¬β we refer to [20, Lemma 3.16].
Suppose that α is 2β. We prove that u(2β)·G ⊆ | 2β |〈G,u〉. By Proposition
1.3-1 and by inductive hypothesis, we have that u(2β) · G = 2(u(β)) · G ⊆

u(β) · G =| β |〈G,u〉. Then 2(u(β)) · 1 = 2(u(β)) ∈| β |〈G,u〉 i.e., |=
2(u(β))
〈G,u〉 β.

Thus if x ∈ u(2β) · G then x = 2(u(β)) · g and, taking into account that
2(u(β)) ∈ Z(Pc(G)), it results that x ∈| 2β |〈G,u〉. On the other hand, if
x ∈ | 2β |〈G,u〉, then x = z · g such that z ∈ Z(Pc(G)) and z ∈ | β |〈G,u〉.
Then by inductive hypothesis we have that z = u(β)·g0 ≤ u(β)·1 = u(β). By
the lattice-order definition of 2(u(β)) it is clear that z ≤ 2(u(β)) = u(2(β)).
Therefore z · G ⊆ u(2(β)) · G. Hence x ∈ u(2(β)) · G.

2) Using the above item, |=〈G,u〉 T iff ∀β ∈ T , |=〈G,u〉 β iff ∀β ∈ T ,
| β |〈G,u〉= G iff G =

⋂

β∈T | β |〈G,u〉=| T |〈G,u〉 2

Theorem 5.6 [Kripke style completeness] Let α ∈ Term2 and T be a the-
ory. Then we have

T |=OML2 α ⇐⇒ T |=MOF α

Proof: Suppose that T |=OML2 α. By Corollary 4.7 there exists γ1, . . . γn ∈
T such that if we consider γ as γ1 ∧ . . .∧ γn then γ |=OML2 α. By Corollary
4.8 we have that |=OML2 ¬2γ ∨ α. Let 〈G,u〉 be a modal orthomodular
frame such that |=〈G,u〉 T . By Proposition 5.5 and Proposition 1.3-1 we have
that | γ |〈G,u〉= G and then u(γ) = 1. But u(γ) = 1 implies u(2γ) = 1 and
¬u(2γ) = 0. Therefore, necessarily u(α) = 1, and | α |〈G,u〉= G. Hence
|=〈G,u〉 α.

On the other hand we assume that T |=MOF α. Suppose that T 6|=OML2

α. Then there exists A ∈ OML2 and a valuation v : Term2 → A such
that v(T ) = 1 but v(α) 6= 1. By Theorem 5.3 there exists a modal Baer
semigroup G(A) such that A is OML2-isomorphic to Pc(G(A)) being f :
A → Pc(G(A)) such isomorphism. Consider the modal orthomodular frame
〈G(A), fv〉. Then for each β ∈ T we have that | β |〈G(A),fv〉= fv(β) ·G(A) =
1 ·G(A) = G(A). Therefore | T |〈G(A),fv〉= G(A) and |=〈G(A),fv〉 T in view of
Proposition 5.5. By Proposition 1.3-1 | α |〈G(A),fv〉= fv(α) · G(A) 6= G(A)
again since fv(α) < 1. Then 6|=〈G(A),fv〉 α which is a contradiction. Hence
T |=OML2 α. 2
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Conclusions

We have developed a logical system based on the orthomodular structure of
propositions about quantum systems enriched with a modal operator. We
have obtained algebraic completeness and completeness with respect to a
Kripke-style semantic founded on Baer ⋆-semigroups. The importance of
this structure from a physical perspective deals with the interpretation of
quantum mechanics in terms of modalities.
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