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We study the operator product expansion in the AdS3 Wess-Zumino-Novikov-Witten (WZNW) model.

The operator-product expansion of primary fields and their spectral flow images is computed from the

analytic continuation of the expressions in the Hþ
3 WZNW model, adding spectral flow. We argue that the

symmetries of the affine algebra require a truncation which establishes the closure of the fusion rules on

the Hilbert space of the theory. Although the physical mechanism determining the decoupling is not

completely understood, we present several consistency checks on the results. A preliminary analysis of

factorization allows to obtain some properties of four-point functions involving fields in generic sectors of

the theory, to verify that they agree with the spectral flow selection rules and to show that the truncation

must be realized in physical amplitudes for consistency.
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I. INTRODUCTION

String theory on AdS3 with Neveu-Schwarz antisym-
metric background field is one of the best understood string
theories in curved geometries and it has been very useful
for the analysis of black holes in two and three dimensions
and of some cosmological spacetimes. It is so far the only
case in which the AdS/CFT correspondence [1] can be
examined beyond the supergravity approximation with
control over the world sheet theory, and this property has
allowed to show, in particular, the equivalence among
three-point correlators of BPS observables in the super-
string on AdS3 � S4 � T4 and those of the dual conformal
field theory (CFT) [2].

The world sheet of the bosonic string propagating on
AdS3 is described by the SLð2;RÞWess-Zumino-Novikov-
Witten (WZNW) model. The string spectrum is built from
affine primaries of a product of left and right copies of the
universal cover of SLð2;RÞ and their spectral flow images
[3]. It consists of long strings with the continuous energy
spectrum arising from the principal continuous representa-
tion and its spectral flow images, and short strings with
discrete physical spectrum resulting from the highest-
weight discrete representation and its spectral flow images.
A no ghost theorem for this spectrum was proved in [3] and
verified in [4]. Amplitudes on the sphere were computed in
[5], analytically continuing the expressions obtained for

the Euclidean Hþ
3 ¼ SLð2;CÞ

SUð2Þ WZNW model in [6,7]. Some

subtleties of the analytic continuation relating the Hþ
3 and

AdS3 models were clarified in [5] and this allowed one to
construct, in particular, the four-point function of unflowed
short strings. Integrating over the moduli space of the
world sheet, it was shown that the string amplitude can
be expressed as a sum of products of three-point functions

with intermediate physical states, i.e., the structure of the
factorization agrees with the Hilbert space of the theory.
A step-up towards a proof of consistency and unitarity of

the theory involves the construction of four-point functions
including states in different representations and the verifi-
cation that only unitary states corresponding to long and
short strings in agreement with the spectral flow selection
rules are produced in the intermediate channels. To achieve
this goal, the analytic and algebraic structure of the
SLð2;RÞ WZNW model should be explored further.
Most of the important progress achieved in [5] is based

on the better though not yet completely understood
Euclidean Hþ

3 model. Together with the Liouville theory,

these are examples of nonrational conformal field theories
with continuous families of primary fields. The absence of
singular vectors and the lack of chiral factorization in the
relevant current algebra representations obstruct the use of
the powerful techniques from rational conformal field
theories. Nevertheless, a generalized conformal bootstrap
approach was successfully applied in [6,7] to theHþ

3 model

on the punctured sphere, allowing one to discuss the facto-
rization of four-point functions. In principle, this method
offers the possibility to unambiguously determine any n >
3-point function in terms of two- and three-point functions
once the operator product expansions of two operators and
the structure constants are known. Aiming to carry out
some initial steps towards developing this procedure for
the more involved AdS3 WZNW model, in these notes we
examine the role of the spectral flow symmetry on the
analytic continuation of the operator product expansion
from Hþ

3 to the relevant representations of SLð2;RÞ and
on the factorization properties of four-point functions.
While only contributions of the highest-weight states are

usually written in an operator-product expansion (OPE),
the descendants being neglected, a fundamental problem of
the AdS3 WZNW model is that the spectral flow operation
maps primaries into descendants and vice versa. Thus, to
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complete this program it is necessary to learn more about
the spectral flow representations and the secondary fields
than is currently known. Nevertheless, based on previous
work in [5–10], we are able to make some progress. We
obtain the OPE of fields in all sectors of the theory and
discuss some properties of the factorization limit of four-
point functions.

The paper is organized as follows. In Sec. II we review
some well-known results on the Hþ

3 and AdS3 WZNW

models in order to setup the notations. In Sec. III we
analytically continue the expressions obtained in [6,7]
from the Euclidean to the Lorentzian model and we add
spectral flow to obtain the OPE of primary fields and their
spectral flow images. The extension of the OPE to generic
descendants is discussed in Sec. IV where we show that the
spectral flow symmetry requires a truncation of the fusion
rules determining the closure of the operator algebra on the
Hilbert space of the theory. In Sec. V we consider the
factorization of four-point functions and study some of
its properties. Finally, Sec. VI contains a summary and
conclusions. Some technical details of the calculations are
included in Appendices A 1 and A 3 and the relation of our
results to certain conclusions in [5] is the content of
Appendix A 2.

II. REVIEW OF THE Hþ
3 AND AdS3 WZNW

MODELS

In this section we review somewell-known results on the
Hþ

3 and the AdS3 WZNW models in order to setup the

notations.

A thorough study of the Hþ
3 ¼ SLð2;CÞ

SUð2Þ WZNW model

was presented in [6,7]. The Lagrangian formulation was
developed in [11] and it follows from

L ¼ kð@� �@�þ e2� �@�@ ��Þ: (2.1)

Normalizable operators�jðx; �x; z; �zÞ, x, z 2 C, are labeled
by the spin j ¼ � 1

2 þ iRþ of a principal continuous rep-

resentation of SLð2;CÞ and can be semiclassically identi-
fied with the expression

�jðx; �x; z; �zÞ ¼ 2jþ 1

�
ðð�� xÞð ��� �xÞe� þ e��Þ2j:

(2.2)

They satisfy the following OPE with the holomorphic
SLð2;CÞ currents

JaðzÞ�jðx; �x; z0; �z0Þ �
Da�jðx; �x; z0; �z0Þ

z� z0
; a ¼ �; 3;

(2.3)

where D� ¼ @x, D3 ¼ x@x � j, Dþ ¼ x2@x � 2jx, and

they have the conformal weight ~� ¼ � jðjþ1Þ
k�2 . The asymp-

totic � ! 1 expansion, given by

�jðx; �xjz; �zÞ � :e2ð�1�jÞ�ðzÞ:�2ð�ðzÞ � xÞ
þ BðjÞ:e2j�ðzÞ:j�ðzÞ � xj4j; (2.4)

fixes a normalization and determines the relation between
�j and ��1�j as

�jðx; �xjz; �zÞ ¼ BðjÞ
Z
C
d2x0jx� x0j4j��1�jðx0; �x0; z; �zÞ;

(2.5)

where the reflection coefficient BðjÞ is given by

BðjÞ ¼ k� 2

�

�1þ2j

�ð� 1þ2j
k�2 Þ

; � ¼ �
�ð1� 1

k�2Þ
�ð1þ 1

k�2Þ
;

�ðxÞ ¼ �ðxÞ
�ð1� xÞ :

(2.6)

For our purposes, it is convenient to transform the primary
fields to the m basis as

�j
m; �mðz; �zÞ ¼

Z
d2xxjþm �xjþ �m��1�jðx; �x; z; �zÞ; (2.7)

where m ¼ nþis
2 , �m ¼ �nþis

2 , n 2 Z, s 2 R. The fields

�j
m; �m have the following OPE with the chiral currents

J�ðzÞ�j
m; �mðz0; �z0Þ �

�jþm

z� z0
�j

m�1; �mðz0; �z0Þ;

J3ðzÞ�j
m; �mðz0; �z0Þ �

m

z� z0
�j

m; �mðz0; �z0Þ;
(2.8)

and the relation between �j
m; �m and ��1�j

m; �m is given by

�j
m; �mðz; �zÞ ¼ Bð�1� jÞc�1�j

m; �m ��1�j
m; �m ðz; �zÞ

¼ �Bð�1� jÞ
�ð2þ 2jÞ

� �ð1þ jþmÞ�ð1þ j� �mÞ
�ð�jþmÞ�ð�j� �mÞ ��1�j

m; �m ðz; �zÞ:
(2.9)

The following operator product expansion for any prod-
uct �j1�j2 was determined in [6,7]:

�j2ðx2jz2Þ�j1ðx1jz1Þ
¼
Z
Pþ

dj3Cð�j1;�j2;�j3Þjz2 � z1j�~�12

�
Z
C
d2x3jx1 � x2j2j12 jx1 � x3j2j13 jx2 � x3j2j23

���1�j3ðx3jz1Þ þ descendants: (2.10)

Here, the integration contour is Pþ ¼ � 1
2 þ iRþ, the

structure constants CðjiÞ are given by
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Cðj1; j2; j3Þ ¼ � Gð1� j1 � j2 � j3ÞGð�j12ÞGð�j13ÞGð�j23Þ
2�2�j1þj2þj3�1�ðk�1

k�2ÞGð�1ÞGð1� 2j1ÞGð1� 2j2ÞGð1� 2j3Þ
; (2.11)

with GðjÞ ¼ ðk� 2Þððjð1�j�kÞÞ=ð2ðk�2ÞÞÞ�2ð�jj1; k� 2Þ�
�2ðk� 1þ jj1; k� 2Þ, �2ðxj1; wÞ being the Barnes double
Gamma function, ~�12 ¼ ~�ðj1Þ þ ~�ðj2Þ � ~�ðj3Þ and j12 ¼
j1 þ j2 � j3, etc.

The OPE (2.10) holds for a range of values of j1, j2
given by

jReðj�21Þj< 1
2; jþ21 ¼ j2 þ j1 þ 1; j�21 ¼ j2 � j1:

(2.12)

This is the maximal region in which j1, j2 may vary such
that none of the poles of the integrand hits the contour of
integration over j3. However, as long as the imaginary
parts of j�21 do not vanish, Teschner [7] showed that
(2.10) admits an analytic continuation to generic complex
values of j1, j2, defined by deforming the contour Pþ. The
deformed contour is given by the sum of the original one
plus a finite number of circles around the poles leading to a
finite sum of residue contributions to the OPE. When j�21
are real, one can give them a small imaginary part which is
sent to zero after deforming the contour.

Inserting (2.10) into a four-point function gives an ex-
pansion of the correlator which takes the form of an
integral with respect to the spin of the intermediate repre-
sentation. The integrand factorizes into structure constants,
two-point functions, and conformal blocks. Since these
expressions are analytic in j’s (up to delta functions),
correlation functions involving states with arbitrary spin
values may be obtained through an appropriate analytic
continuation. This procedure was implemented in [5] to
construct the four-point function of short strings in AdS3.

The world sheet of the string propagating on AdS3 is
described by the SLð2;RÞWZNWmodel which shares thedslð2Þ symmetries with theHþ

3 model though it differs in the

allowed representations. The spectrum of the AdS3
WZNW model was determined in [3] and it is constructed
from a product of left and right copies of representations of
the universal cover of SLð2;RÞ. It is built on products of
conventional representations of the zero modes, i.e., the
principal continuous representations C�j � C�j with j ¼
� 1

2 þ iR; � ¼ ð0; 1� and the lowest-weight discrete series

Dþ
j �Dþ

j with j 2 R and � k�1
2 < j<� 1

2 . It contains

the current algebra descendants Ĉ�j � Ĉ�j , D̂
þ
j � D̂þ

j , and

spectral flow images Ĉ�;wj � Ĉ�;wj , D̂þ;w
j � D̂þ;w

j , with the

same value of j and the same amount of spectral flow on
the left and right sectors. Throughout this paper, we deal
with these representations of the universal cover of
SLð2;RÞ, to which we refer as SLð2;RÞ for short.

The spectral flow representations are generated by the
following automorphism of the current algebra

~J 3
n ¼ J3n � k

2
w�n;0; ~J�n ¼ J�n�w; (2.13)

with w 2 Z, which gives a copy of the Virasoro algebra
with

~L n ¼ Ln þ wJ3n � k

4
w2: (2.14)

Unlike in the compact SUð2Þ case, different amounts of
spectral flow give inequivalent representations of the cur-
rent algebra of SLð2;RÞ.
An affine primary state in the unflowed sector is mapped

by the automorphism (2.13) to a highest/lowest-weight
state of the global slð2Þ algebra. We denote these fields

in the spectral flow sector w as �j;w
m; �m. Their explicit ex-

pressions will not be needed below. It is only necessary to
know that they verify the following OPE with the currents:

J3ðzÞ�j;w
m; �mðz0; �z0Þ �

mþ k
2w

z� z0
�j;w

m; �mðz0; �z0Þ;

J�ðzÞ�j;w
m; �mðz0; �z0Þ �

�jþm

ðz� z0Þ�w �j;w
m�1; �mðz0; �z0Þ þ � � �

and m� �m 2 Z, mþ �m 2 R.
Two- and three-point functions of the fields �jðxjzÞ in

the Hþ
3 model were computed in [6,7]. Following

[5,8,9,12], we assume that correlation functions of primary
fields in the SLð2;RÞ WZNW model are those of Hþ

3 with

ji, mi, �mi taking values in representations of SLð2;RÞ. The
spectral flow operation is straightforwardly performed in
the m basis where the only change in the w-conserving

expectation values of fields�j;w
m; �m in differentw sectors is in

the powers of the coordinates zi, �zi. Correlation functions
may violate w conservation according to the following
spectral flow selection rules:

�Ntþ2	XNt

i¼1

wi	Nc�2; at least one state in Ĉ�;wj � Ĉ�;wj ;

(2.15)

� Nd þ 1 	 XNt

i¼1

wi 	 �1; all states in D̂þ;w
j � D̂þ;w

j ;

(2.16)

with Nt ¼ Nc þ Nd and Nc, Nd are the total numbers of

operators in Ĉ�;wj � Ĉ�;wj and D̂þ;w
j � D̂þ;w

j , respectively.

The spectral flow preserving two-point function is given
by
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h�j;w
m; �mðz; �zÞ�j0;�w

m0; �m0 ðz0; �z0Þi ¼ �2ðmþm0Þðz� z0Þ�2�ðjÞ

� ð�z� �z0Þ�2 ��ðjÞ½�ðjþ j0 þ 1Þ
þ Bð�1� jÞc�1�j

m; �m �ðj� j0Þ�;
(2.17)

where �ðjÞ¼ ~�ðjÞ�wm� k
4w

2¼�jðjþ1Þ
k�2 �wm� k

4w
2.

For states in discrete series, it is convenient to work with
spectral flow images of both lowest- and highest-weight

representations related by the identification D̂þ;w
j 


D̂�;wþ1
�ðk=2Þ�j, which determines the range of values for the

spin

� k� 1

2
< j <� 1

2
; (2.18)

and allows one to obtain the (� 1) unit spectral flow two-
point functions from (2.17).

Spectral flow conserving three-point functions are the
following:�Y3
i¼1

�ji;wi
mi; �mi

ðzi; �ziÞ
�
¼ �2

�X
mi

�
Cð1þ jiÞW

j1; j2; j3

m1;m2;m3

" #

�Y
i<j

z
��ij

ij �z
� ��ij

ij ; (2.19)

where zij ¼ zi � zj and CðjiÞ is given by (2.11). The

function W is

W
j1; j2; j3

m1; m2; m3

" #
¼
Z

d2x1d
2x2x

j1þm1

1 �xj1þ �m1

1 xj2þm2

2 �xj2þ �m2

2

� j1� x1j�2j13�2j1� x2j�2j23�2

� jx1 � x2j�2j12�2; (2.20)

and we omit the obvious �m dependence in the arguments to
lighten the notation. This integral was computed in [13].

The one unit spectral flow three-point function [5] is
given by1�Y3
i¼1

�ji;wi
mi; �mi

ðzi; �ziÞ
�
¼ �2

�X
mi � k

2

�

�
~Cð1þ jiÞ ~W

j1; j2; j3

�m1;�m2;�m3

" #
�ðj1 þ j2 þ j3 þ 3� k

2Þ
�Y

i<j

z
��ij

ij �z
� ��ij

ij ; (2.21)

where
P

iwi ¼ �1, the � signs correspond to the � signs
in the right-hand side (r.h.s.),

~CðjiÞ � Bð�j1ÞC
�
k

2
� j1; j2; j3

�
; (2.22)

up to k-dependent factors, j-independent factors, and

~W
j1; j2; j3

m1; m2; m3

" #
¼ �ð1þ j1 þm1Þ

�ð�j1 � �m1Þ
�ð1þ j2 þ �m2Þ
�ð�j2 �m2Þ

� �ð1þ j3 þ �m3Þ
�ð�j3 �m3Þ : (2.23)

For discrete states, this expression is related to theP
iwi ¼ �2 three-point function through D̂þ;w

j 

D̂�;wþ1

�ðk=2Þ�j.

In the following sections, we shall use these results to
study the analytic continuation of the OPE (2.10) from the
Hþ

3 to the AdS3 WZNW model. Then, we shall discuss

some aspects of the factorization of four-point functions.

III. OPERATOR ALGEBRA IN THE SLð2;RÞWZNW
MODEL

A nontrivial check on the OPE (2.10) and structure
constants (2.11) of the Hþ

3 WZNW model is that the

well-known fusion rules of degenerate representations
[15] are exactly recovered by analytically continuing ji,
i ¼ 1, 2 [6]. On the other hand, it was argued in [5–9,12]
that correlation functions in the Hþ

3 and AdS3 WZNW

models are related by analytic continuation and moreover,
the k ! 1 limit of the OPE of unflowed fields computed
along these lines in [8,9] exhibits complete agreement with
the classical tensor products of representations of SLð2;RÞ
[16]. It seems then natural to conjecture that the OPE of all
fields in the spectrum of the AdS3 WZNW model can be
obtained from (2.10) analytically continuing j1, j2 from the
range (2.12).
However, the spectral flowed fields do not belong to the

spectrum of the Hþ
3 model and moreover, the spectral flow

symmetry transforms primaries into descendants. Thus, a
better knowledge of these representations seems necessary
in order to obtain the fusion rules in the AdS3 model.
Nevertheless, we will show that it is possible to obtain
them from the Hþ

3 model by analytic continuation and by

taking into account the w-violating structure constants in
addition to (2.11). In this section, we explore this possi-
bility in order to get the OPE of primary fields and their
spectral flow images in the SLð2;RÞ WZNW model.
To deal with highest/lowest weight and spectral flow

representations, it is convenient to work in the m basis.
We have to keep in mind that when j is real, new diver-
gences appear in the transformation from the x basis and it
must be performed for certain values of mi, �mi, i ¼ 1, 2.
Indeed, to transform the OPE (2.10) to the m basis using
(2.7), the integrals over x1, x2 in the r.h.s. must be inter-
changed with the integral over j3 and this process does not
commute in general if there are divergences. However,
restricting j1, j2 to the range (2.12), one can check that

1For an independent calculation of three-point functions using
the free field approach, see [14].
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the integrals commute and are regular when jmij< 1
2 andj �mij< 1

2 , i ¼ 1, 2, 3, where m3 ¼ m1 þm2, �m3 ¼ �m1 þ
�m2. For other values of mi, �mi the OPE must be defined, as
usual, by analytic continuation of the parameters.
Therefore, after performing the x1, x2 integrals, the OPE
(2.10) in the m basis is found to be

�j1
m1; �m1

ðz1; �z1Þ�j2
m2; �m2

ðz2; �z2Þjw¼0

¼
Z
P
dj3jz12j�2~�12Qw¼0

j1; j2; j3

m1;m2;m3

" #
�j3

m3; �m3
ðz1; �z2Þ

þ descendants; (3.1)

where we have defined

Qw¼0
j1; j2; j3

m1; m2; m3

" #
¼ Cð1þ j1; 1þ j2;�j3Þ

�W
j1; j2;�1� j3

m1; m2;�m3

" #
: (3.2)

It is easy to see that the integrand is symmetric under
j3 ! �1� j3 using the identity [9]

W
j1; j2; j3

m1; m2; m3

" #

W
j1; j2;�1� j3

m1; m2; m3

" # ¼ Cð1þ j1; 1þ j2;�j3Þ
Cð1þ j1; 1þ j2; 1þ j3Þ

� Bð�1� j3Þc�1�j3
m3; �m3

; (3.3)

and as a consequence of (2.9). In the x basis, every pole in
(2.10) appears duplicated, one over the real axis and an-

other one below, and the j3 ! �1� j3 symmetry implies
that the integral may be equivalently performed either over
Imj3 > 0 or over Imj3 < 0 [7]. In the m basis, the
ðj1; j2Þ-dependent poles are also duplicated, but the
m-dependent poles are not. The j3 ! �1� j3 symmetry
is still present, as we discussed above, because of poles and

zeros in the normalization of �j
m; �m. The integral must be

extended to the full axis P ¼ � 1
2 þ iR before performing

the analytic continuation in m1, m2 because the
m-dependent poles fall on the real axis. The maximal
regions in which m1, m2 may vary such that none of the
poles hit the contour of integration are jm1 þm2j< 1

2 andj �m1 þ �m2j< 1
2 .

Since the w-conserving structure constants of operators

�j;w
m; �m 2 C�;wj orDþ;w

j in different w sectors do not change

in the m basis,2 the OPE (3.1) should also hold for fields
obtained by spectral flowing primaries to arbitrary w sec-
tors, as long as they satisfy w1 þ w2 ¼ w3. But this OPE
would yield an incorrect zero answer if used to compute a
w-violating three-point function. It then seems natural to
additionally take into account the spectral flow nonpreserv-
ing structure constants and consider the following OPE3:

�j1;w1
m1; �m1

ðz1; �z1Þ�j2;w2
m2; �m2

ðz2; �z2Þ ¼
X1

w¼�1

Z
P
dj3Q

wz��12

12 �z�
��12

12

��j3;w3
m3; �m3

ðz2; �z2Þ þ � � � ;
(3.4)

with w ¼ w3 � w1 � w2, m3 ¼ m1 þm2 � k
2w, �m3 ¼

�m1 þ �m2 � k
2w, and

Qw¼�1ðji;mi; �miÞ ¼ ~W
j1; j2; j3

�m1;�m2;�m3

" #
~Cðji þ 1Þ

Bð�1� j3Þc�j3�1
m3; �m3

�ðj1 þ j2 þ j3 þ 3� k
2Þ

� �ð� �m3 � j3Þ
�ð1þ j3 �m3Þ

Y2
a¼1

�ð1þ ja �maÞ
�ð�ja � �maÞ

Cðk2 � 1� j1; 1þ j2; 1þ j3Þ
�ðj1 þ j2 þ j3 þ 3� k

2Þ
: (3.5)

For completeness, according to the spectral flow selection rules (2.16), we should also include terms with w ¼ �2 in the
sum. However, we shall show in the next section that these do not affect the results of the OPE. The integrand is symmetric
under j3 ! �1� j3. This follows from (3.3) and the analogous identity

~W
j1; j2; j3

m1; m2; m3

" #
~W

j1; j2;�1� j3

m1; m2; m3

" # ¼
~Cð1þ j1; 1þ j2;�j3Þ�ðj1 þ j2 þ j3 þ 3� k

2Þ
~Cð1þ j1; 1þ j2; 1þ j3Þ�ðj1 þ j2 � j3 þ 2� k

2Þ
Bð�1� j3Þc�1�j3

m3; �m3
; (3.6)

together with the reflection relation

�j;w
m; �mðz; �zÞ ¼ Bð�1� jÞc�1�j

m; �m ��1�j;w
m; �m ðz; �zÞ: (3.7)

The dots in (3.4) stand for spectral flow images of current
algebra descendants with the same J30 eigenvalues m3, �m3.
This expression is valid for j1, j2 in the range (2.12) and the
restrictions onm1,m2 depend onQ

w. The maximal regions

in which they may vary such that none of the poles hit the
contour of integration are, other than jm1 þm2j< 1

2 and

3A similar expression was proposed in [10] and some support-
ing evidence was presented from the relation between the Hþ

3
model and Liouville theory.

2We denote the series containing the highest/lowest-weight
states obtained by spectral flowing primaries as C�;wj , Dþ;w

j .
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j �m1 þ �m2j< 1
2 for Qw¼0, minfm1 þm2; �m1 þ �m2g<

� k�1
2 for Qw¼�1 and maxfm1 þm2; �m1 þ �m2g> k�1

2 for
Qw¼þ1. For other values of j1, j2 andm1,m2 the OPE must
be defined by analytic continuation. In the rest of this
section we perform this continuation.

To specifically display the contributions to (3.4), we
have to study the analytic structure ofQw. We first consider
the simpler case w ¼ �1 and we refer to the terms pro-
portional to Qw¼�1 as spectral flow nonpreserving contri-
butions to the OPE. Then, we investigate Qw¼0 and obtain
the spectral flow preserving contributions.

A. Spectral flow nonpreserving contributions

Let us study the analytic structure ofQw¼�1 in (3.5). The
m-independent poles arising from the last factor are the
same for both w ¼ �1 sectors and are explicitly given by

j3 ¼ �j�21 þ
k

2
� 1þ pþ qðk� 2Þ;

j3 ¼ �j�21 �
k

2
� p� qðk� 2Þ;

j3 ¼ �jþ21 þ
k

2
� 1þ pþ qðk� 2Þ;

j3 ¼ �jþ21 �
k

2
� p� qðk� 2Þ;

(3.8)

with p, q ¼ 0; 1; 2; . . . The m-dependent poles, instead,
vary according to the spectral flow sector. However they
are connected through ðm; �mÞ $ ð�m;� �mÞ and thus going
from w ¼ �1 to w ¼ þ1 involves the change D�;wi

ji
�

D�;wi

ji
$ Dþ;wi

ji
�Dþ;wi

ji
. Therefore we concentrate on the

contributions from w ¼ �1.

By abuse of notation, from now on we denote the states
by the representations they belong to and we write only the

holomorphic sector for short, e.g., when�ji;wi
mi; �mi

2 Dþ;wi
ji

�
Dþ;wi

ji
, i ¼ 1, 2, we write the set of all possible operator

products �j1;w1
m1; �m1

�j2;w2
m2; �m2

for generic quantum numbers

within these representations as Dþ;w1

j1
�Dþ;w2

j2
.

Let us study the OPE of fields in all different combina-

tions of representations. First consider the case �wi;ji
mi; �mi

2
C�i;wi

ji
� C�i;wi

ji
, i ¼ 1, 2.

1. C�1;w1

j1
� C�2;w2

j2

The pole structure of Qw¼�1 is represented in Fig. 1(a)
forminfm1 þm2; �m1 þ �m2g<� k�1

2 . Recalling thatm3 ¼
m1 þm2 þ k

2 , then minfm3; �m3g< 1
2 , and therefore the

poles from the factor �ð�j3� �m3Þ
�ð1þj3þm3Þ are to the right of the

integration contour. Moreover, given that all
m-independent poles are to the right of the axis k

2 � 1 or

to the left of� k
2 , we conclude that the OPE C�1;w1

j1
� C�2;w2

j2

receives no spectral flow violating contributions from dis-
crete representations when minfm1 þm2; �m1 þ �m2g<
� k�1

2 .

Some poles cross the integration contour when
minfm1 þm2; �m1 þ �m2g>� k�1

2 . They are sketched in

Fig. 1(b) and indicate contributions from the discrete series

Dþ;w3¼w1þw2�1
j3

with j3 ¼ �minfm3; �m3g þ n, n ¼
0; 1; 2; . . . , and such that j3 <� 1

2 . Since Q
w¼�1 does not

vanish for j3 ¼ � 1
2 þ iR and m3 is not correlated with j3,

there are terms from C�3;w3¼w1þw2�1
j3

in this OPE as well.

Therefore we get

FIG. 1. Case C�1;w1
j1

� C�2 ;w2
j2

. The solid line indicates the integration contour P ¼ � 1
2 þ iR in the j3 complex plane. The dots above

or below the real axis represent the ðj1; j2Þ-dependent poles and those on the real axis correspond to the m-dependent poles. The
crosses are the positions of the first poles in the series. (a) When m1 þm2 <� k�1

2 or �m1 þ �m2 <� k�1
2 , there are no poles crossing

the contour of integration. (b) When m1 þm2 >� k�1
2 and �m1 þ �m2 >� k�1

2 , poles from the factor �ð�j3� �m3Þ
�ð1þj3þm3Þ cross the contour,

indicating the contribution to the OPE from states in discrete representations.
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C�1;w1
j1

� C�2;w2
j2

jjwj¼1 ¼
X

j3<�ð1=2Þ
Dþ;w3¼w1þw2�1

j3

þ X
j3<�ð1=2Þ

D�;w3¼w1þw2þ1
j3

þ X
w¼�1;1

Z
P
dj3C

�3;w3¼w1þw2þw
j3

þ � � � ; (3.9)

where jjwj¼1 denotes that only spectral flow nonpreserving

contributions are displayed in the right-hand side.

2. C�1;w1
j1

�D�;w2
j2

To analyze this case, we need to perform the analytic
continuation for j2 away from � 1

2 þ is2. When is2 is

continued to the real interval ð� k�2
2 ; 0Þ, the series of

m-independent poles changes as shown in Fig. 2. It is
easy to see that these poles do not cross the contour of
integration. For instance, Refj1 þ j2 þ k

2g> 0, Refj1 �
j2 þ k

2 � 1g> k
2 � 1, etc. Similarly, as in the previous

case, only poles from �ð�j3� �m3Þ
�ð1þj3þm3Þ can cross the contour,

but due to the factor �ð1þj2þ �m2Þ
�ð�j2�m2Þ there are contributions

from the discrete series just for �j2;w2
m2; �m2

2 D�;w2

j2
�

D�;w2

j2
. Therefore we get

C�1;w1

j1
�D�;w2

j2
jjwj¼1 ¼

Z
P
dj3C

�3;w3¼w1þw2�1
j3

þ X
j3<�ð1=2Þ

D�;w3¼w1þw2�1
j3

þ � � � : (3.10)

3. D�;w1

j1
�D�;w2

j2
and D�;w1

j1
�D�;w2

j2

Let us first analytically continue both j1 and j2 to the
interval ð� k�1

2 ;� 1
2Þ, which is shown in Fig. 3. The correct

way to do this is to consider that both j1 and j2 have an
infinitesimal imaginary part, �1 and �2, respectively, which
is sent to zero after computing the integral.
The m-independent poles cross the contour of integra-

tion only when j1 þ j2 <� kþ1
2 . However, due to the

factors �ð1þj1þm1Þ
�ð�j1� �m1Þ

�ð1þj2þ �m2Þ
�ð�j2�m2Þ in Qw¼�1, the contributions

from these poles only survive when the quantum numbers

of both �j1;w1
m1; �m1

and �j2;w2
m2; �m2

are in D�;wi

ji
�D�;wi

ji
, i ¼ 1, 2.

In this case, the poles at j3 ¼ j1 þ j2 þ k
2 þ n give contri-

butions from D�;w3¼w1þw2�1
j3

. This may be seen noticing

that j3 ¼ m1 þm2 þ k
2 þ n3 ¼ �m1 þ �m2 þ k

2 þ �n3, with

n3 ¼ nþ n1 þ n2 and �n3 ¼ nþ �n1 þ �n2, or using m3 ¼
m1 þm2 þ k

2 , �m3 ¼ �m1 þ �m2 þ k
2 , so that j3 ¼

m3 þ n3 ¼ �m3 þ �n3. Instead, the contributions from the
poles at j3 ¼ �j1 � j2 � k

2 � 1� n seem to cancel due to

the factor �ð�j3� �m3Þ
�ð1þj3þm3Þ . However, these zeros are cancelled

because the operator diverges. In fact, using (3.7) and
relabeling j3 ! �1� j3, it is straightforward to recover
exactly the same contribution from the poles at j3 ¼ j1 þ
j2 þ k

2 þ n. Obviously, this was expected as a consequence

of the symmetry j3 $ �1� j3 of the integrand in (3.4).
Finally, the m-dependent poles give contributions from

Dþ;w3¼w1þw2�1
j3

. Actually, when minfm3; �m3g> 1
2 some of

the m-dependent poles cross the contour. Using m conser-
vation it is not difficult to check that these contributions
fall inside the range (2.18).
Let us continue the analysis, considering the OPE

D�;w1

j1
�D�;w2

j2
. For instance, take the limiting case j1 ¼

m1 þ n1 þ i�1 and j2 ¼ �m2 þ n2 þ i�2 with �1, �2 ! 0.

The factor �ð1þj2þ �m2Þ
�ð�j2�m2Þ vanishes as a simple zero. However,

some poles from the series j3 ¼ j2 � j1 � k
2 � n will over-

lap with the m-dependent poles. But because the
m-independent simple poles are outside the contour of
integration, in the limit �i ! 0 they may cancel the simple
zeros. The way to compute this limit is determined by the
definition of the three-point function. We assume that a
finite and nonzero term remains in the limit.4

FIG. 2. Case C�1 ;w1
j1

�D�;w2
j2

. Only m-dependent poles can
cross the contour of integration. This occurs when both m1 þ
m2 and �m1 þ �m2 are larger than � k�1

2 . We have given j2 an

infinitesimal imaginary part, �2, to better display the
ðj1; j2Þ-dependent series of poles.

4In the limit �1, �2 ! 0, ResðQw¼�1Þ � �2
�2��1

. The same
ambiguity appears in the three-point function including
�j1;w1

m1; �m1
2 D�;w1

j1
�D�;w1

j1
, �j2 ;w2

m2; �m2
2 Dþ;w2

j2
�Dþ;w2

j2
, with

n1 	 n2 such that j3 ¼ j1 � j2 � k
2 � Zn�0. The resolution of

this ambiguity requires an interpretation of the divergences. The
w-selection rules allow one to assume that a finite term survives
in the limit. For instance, consider a generic three-point function
hD�;w1

j1
Dþ;w2

j2
Dþ;w3

j3
i with w1 þ w2 þ w3 ¼ �1. According to

(2.16) this is nonvanishing (for certain values of ji, not deter-
mined from the w-selection rules). Indeed, the divergence from
the �2ðPimi � k

2Þ in (2.21) cancels the zero from �ð�j3 �m3Þ
and then the pole in ~Cð1þ jiÞ � 1

�2��1
must cancel the zero from

�ð1þj2þ �m2Þ
�ð�j2� �m2Þ � �2, leaving a finite and nonvanishing contribution.
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Including the contributions from continuous representa-
tions, we get the following results:

D�;w1

j1
�D�;w2

j2
jjwj¼1

¼
Z
Pþ

dj3C
�3;w3¼w1þw2�1
j3

þ X
�j1�j2�ðk=2Þ	j3<�ð1=2Þ

D�;w3¼w1þw2�1
j3

þ X
j1þj2þðk=2Þ	j3<�ð1=2Þ

D�;w3¼w1þw2�1
j3

þ � � � : (3.11)

Dþ;w1

j1
�D�;w2

j2
jjwj¼1 ¼

X
j3<j2�j1�ðk=2Þ

D�;w3¼w1þw2þ1
j3

þ X
j3<j1�j2�ðk=2Þ

Dþ;w3¼w1þw2�1
j3

þ � � � : (3.12)

B. Spectral flow preserving contributions

The analytic structure of Qw¼0ðji;mi; �miÞ in (3.2) was
studied in [9]. Here we present the analysis mainly to
discuss some subtleties which are crucial to perform the
analytic continuation of mi, �mi. i ¼ 1, 2. Although our
treatment of the m-dependent poles differs from that fol-
lowed in [9], we show in this section that the results
coincide.

The function Cð1þ jiÞ has zeros at ji ¼ j�1
2 , i ¼ 1, 2, 3,

and poles at j ¼ �j1 � j2 � j3 � 2, �1� j1 � j2 þ j3,
�1� j1 � j3 þ j2, or�1� j2 � j3 þ j1 where j :¼ pþ
qðk� 2Þ;�ðpþ 1Þ � ðqþ 1Þðk� 2Þ, p, q ¼ 0; 1; 2; � � � .
To explore the behavior of the function W, we use the
expression [9]

W
j1; j2; j3

m1; m2; m3

� �
¼ ði=2Þ2½C12 �P12 þ C21 �P21�; (3.13)

with ði=2Þ2P12 ¼ sðj1 þm1Þsðj2 þm2ÞC31 � sðj2 þm2Þ�
sðm1 � j2 þ j3ÞC13,

C12 ¼ �ð�NÞ�ð1þ j3 �m3Þ
�ð�j3 �m3Þ

�G
�m3 � j3;�j13;1þm2 þ j2

�m3 � j1 þ j2 þ 1;m2 � j1 � j3

" #
;

C31 ¼ �ð1þ j3 þm3Þ�ð1þ j3 �m3Þ
�ð1þNÞ

�G
1þN;1þ j1 þm1;1�m2 þ j2

j3 þ j2 þm1 þ 2; j1 þ j3 �m2 þ 2

" #
;

G
a;b; c

e; f

" #
¼ �ðaÞ�ðbÞ�ðcÞ

�ðeÞ�ðfÞ F
a;b; c

e; f

" #

¼ X1
n¼0

1

n!

�ðaþ nÞ�ðbþ nÞ�ðcþ nÞ
�ðeþ nÞ�ðfþ nÞ�ðnþ 1Þ ; (3.14)

and N ¼ 1þ j1 þ j2 þ j3, sðxÞ ¼ sinð�xÞ. �Pabð �CabÞ is
obtained from PabðCabÞ by replacing (mi ! �mi) and
PbaðCbaÞ from PabðCabÞ by changing (j1, m1 $ j2, m2)
and

F
a; b; c
e; f

� �
¼ 3F2ða; b; c; e; f; 1Þ:

An equivalent expression for W, which will be useful
below, is the following [9]

W
j1; j2; j3

m1; m2; m3

" #
¼ D1C

12 �C12 þD2C
21 �C21

þD3½C12 �C21 þ C21 �C12�; (3.15)

FIG. 3. Case Dw1
j1

�Dw2
j2
. Both m-dependent and m-independent poles can cross the contour of integration. There are two

possibilities: (1) D�;w1
j1

�D�;w2
j2

. When j1 þ j2 <� kþ1
2 , only m-independent poles can cross the contour, as shown in Fig. 3(a)

and when j1 þ j2 >� k�1
2 , only m-dependent poles can cross as shown in Fig. 3(b). (2) D�;w1

j1
�D�;w2

j2
. Both m-dependent and

m-independent poles can cross the contour but only the former survive after taking the limit �þ, �� ! 0, where �� ¼ �1 � �2.
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where

D1 ¼ sðj2 þm2Þsðj13Þ
sðj1 �m1Þsðj2 �m2Þsðj3 þm3Þ ½sðj1 þm1Þ
� sðj1 �m1Þsðj2 þm2Þ � sðj2 �m2Þ
� sðj2 � j3 �m1Þsðj2 þ j3 �m1Þ�;

D2 ¼ D1ðj1; m1 $ j2; m2Þ;

D3 ¼ � sðj13Þsðj23Þsðj1 þm1Þsðj2 þm2Þsðj1 þ j2 þm3Þ
sðj1 �m1Þsðj2 �m2Þsðj3 þm3Þ :

(3.16)

Studying the analytic structure ofQw¼0 is a difficult task
as a consequence of the complicated form of W. The
analysis greatly simplifies when analytically continuing
the quantum numbers of one operator to those of a discrete
representation. Indeed, when j1 ¼ �m1 þ n1 ¼
� �m1 þ �n1, and n1; �n1 ¼ 0; 1; 2; � � � ,

W
j1; j2; j3

m1; m2; m3

� �

reduces to W1 ¼ D1C
12 �C12 [9], i.e.,

W1

j1; j2; j3

m1; m2; m3

" #
¼ ð�Þm3� �m3þ �n1�2�ð�NÞ

�ð�2j1Þ�ð1þ j12Þ�ð1þ j13Þ
�ð1þ j3 �m3Þ�ð1þ j3 � �m3Þ

�ð1þ j3 �m3 � n1Þ�ð1þ j3 � �m3 � �n1Þ

� Y
i¼2;3

�ð1þ ji þmiÞ
�ð�ji � �miÞ F

�n1;�j12; 1þ j23

�2j1; 1þ j3 �m3 � n1

" #
F

� �n1;�j12; 1þ j23

�2j1; 1þ j3 � �m3 � �n1

" #
: (3.17)

It is easy to see that

�ð1þ j3 �m3Þ
�ð1þ j3 �m3 � n1ÞF

�n1;�j12; 1þ j23

�2j1; 1þ j3 �m3 � n1

" #

¼ Xn1
n¼0

ð�Þnn1!
n!ðn1 � nÞ!

�ðn� j12Þ
�ð�j12Þ

�ðnþ 1þ j23Þ
�ð1þ j23Þ

� �ð�2j1Þ
�ðn� 2j1Þ

�ð1þ j3 �m3Þ
�ðnþ 1þ j3 �m3 � n1Þ : (3.18)

Recall that the OPE involves the function

W
j1; j2; j3

m1; m2;�m3

� �
and then the change ðm3; �m3Þ ! ð�m3;� �m3Þ is required in
the above expressions to analyze Qw¼0. Thus, for generic
2ji =2 Z, the poles and zeros of Qw¼0ðji;mi; �miÞ are con-
tained in

Cð1þ jiÞ�ð�1� j1 � j2 � j3Þ
�ð1þ j12Þ�ð1þ j13Þ

� �ð1þm2 þ j2Þ�ð�m3 � j3Þ
�ð� �m2 � j2Þ�ð1þ �m3 þ j3Þ ; (3.19)

plus possible additional zeros in (3.18) and its antiholo-
morphic equivalent expression (see Appendix A). The
ðj1; j2Þ-dependent poles in (3.19) are at j3 ¼ �j�21 þ pþ
ðqþ 1Þðk� 2Þ, �j�21 � ðpþ 1Þ � qðk� 2Þ, �j�21 þ pþ
qðk� 2Þ, �j�21 � ðpþ 1Þ � ðqþ 1Þðk� 2Þ. There are
also zeros at 1þ 2ji ¼ pþ qðk� 2Þ, �ðpþ 1Þ � ðqþ
1Þðk� 2Þ, i ¼ 1, 2, 3.

Let us first consider �w1;j1
m1; �m1

2 Dþ;w1

j1
�Dþ;w1

j1
and note

that when �w1;j1
m1; �m1

2 D�;w1

j1
�D�;w1

j1
the OPE follows di-

rectly using the symmetry of the spectral flow conserving

two- and three-point functions under ðmi; �miÞ $
ð�mi;� �miÞ, 8 i ¼ 1, 2, 3.5

1. D�;w1

j1
� C�2;w2

j2

Consider j1 ¼ �m1 þ n1 þ i�1 with ni 2 Z�0 and �1
an infinitesimal positive number, and j2 ¼ � 1

2 þ is2 not

correlated with m2. In this case,

W
j1; j2; j3

m1; m2; m3

� �
� W1

j1; j2; j3
m1; m2; m3

� �
:

The m-independent poles are to the right or to the left of
the contour of integration as sketched in Fig. 4(a). If
minfm3; �m3g< 1

2 , none of the m-dependent poles cross

the contour, implying that only continuous series contrib-
ute to the spectral flow conserving terms of the OPE

Dþ;w1

j1
� C�2;w2

j2
. On the other hand if minfm3; �m3g> 1

2 ,

this OPE also receives contributions from Dþ;w3¼w1þw2

j3
.

Note that when j1 � m1 þ n1,

W
j1; j2; j3

m1; m2; m3

� �
� W1

j1; j2; j3
�m1;�m2;�m3

� �
;

which implies that the spectral flow conserving terms in the
OPE D�;w1

j1
� C�2;w2

j2
contain contributions from the con-

tinuous representations as well as from D�;w3

j3
when

maxfm3; �m3g<� 1
2 . So we find

5This symmetry follows directly from the integral expression
for

W
j1; j2; j3

m1; m2; m3

� �
performing the change of variables ðxi; �xiÞ!ðx�1

i ; �x�1
i Þ in (2.20).
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D�;w1

j1
� C�2;w2

j2
jw¼0 ¼

Z
P
dj3C

�3;w3¼w1þw2

j3

þ X
j3<�1=2

D�;w3¼w1þw2

j3
þ � � � :

(3.20)

2. D�;w1

j1
�D�;w2

j2
and D�;w1

j1
�D�;w2

j2

When j2 is continued to (� k�1
2 þ i�2, � 1

2 þ i�2), �2
being an infinitesimal positive number, W is again well
approximated by W1 as long as j2 � �m2 þ n2 þ i�2,
� �m2 þ �n2 þ i�2. Otherwise, one also has to consider
W2 
 D2C

21 �C21, but the result coincides exactly with the
one obtained using W1, so we are restricted to this. Two
m-independent series of poles may cross the contour of
integration: j3 ¼ j1 � j2 � 1� p� qðk� 2Þ and j3 ¼
j2 � j1 þ pþ qðk� 2Þ, both with q ¼ 0. The former has
j3 >� 1

2 and the latter, j3 <� 1
2 . The m-dependent poles

in Qw¼0 arise from �ð�j3� �m3Þ
�ð1þj3þm3Þ . When j2 ¼ �m2 þ n2 þ

i�2, because of the factor �ð�j2 �m2Þ�1, only
m-dependent poles give contributions from discrete series.
To see this, consider the m-independent poles at j3 ¼ j1 þ
j2 � p� qðk� 2Þ. These are outside the contour of inte-
gration and in the limit �1, �2 ! 0 some of them may
overlap with the m-dependent ones. Again, one may argue
that this limit leaves a finite and nonvanishing factor.

When j2 ¼ m2 þ n2 þ i�2, at first sight there are no
zeros. If j2 � j1 <� 1

2 , some poles with q ¼ 0 in the

series j3 ¼ j2 � j1 þ pþ qðk� 2Þ and j3 ¼ j1� j2�
1�p�qðk� 2Þ cross the contour, as shown in Fig. 4(b).
Using the relation between ji andmi andm conservation, it
follows that the former poles can be rewritten as j3 ¼
m3 þ n3 ¼ �m3 þ �n3, where n3 ¼ n2 � n1 þ p and �n3 ¼

�n2 � �n1 þ p. Obviously, if n2 � n1 and �n2 � �n1, all the
residues picked up by the contour deformation imply con-

tributions to the OPE fromD�;w3¼w1þw2

j3
. When n2 < n1 or

�n2 < �n1, only those values of p for which both n3 and �n3
are non-negative integers remain after taking the limit �1,
�2 ! 0. This is because of extra zeros appearing in W1

which are not explicit in (3.17) (see Appendix A 1). Using
the results in the Appendix and the identity (3.7) it is
straightforward to see that the latter series of poles give
the same contributions.
The poles at j3 ¼ �minfm3; �m3g þ n3 may cross the

contour. If this happens, they overlap with the
m-independent poles. But there are double zeros cancelling
these contributions.
If j2 � j1 >� 1

2 , only m-dependent poles may cross the

contour. But they give contributions only if they do not
overlap with the poles at j3 ¼ j1 � j2 � 1� n, again be-
cause of the presence of double zeros. Therefore, these
contributions remain only for j3 � j1 � j2.
Putting all together we get

Dþ;w1

j1
�D�;w2

j2
jw¼0 ¼

Z
P
dj3C

�3;w3¼w1þw2

j3

þ X
j2�j1	j3<�ð1=2Þ

D�;w3¼w1þw2

j3

þ X
j1�j2	j3<�ð1=2Þ

Dþ;w3¼w1þw2

j3

þ � � � ; (3.21)

D�;w1
j1

�D�;w2
j2

jw¼0 ¼
X

j3	j1þj2

D�;w3¼w1þw2

j3
þ � � � :

(3.22)

FIG. 4. Analytic continuation of Qw¼0 for ðj1; j2Þ values away from the axis � 1
2 þ iR, using W1 instead of W. In Fig. 4(a) j2 ¼

� 1
2 þ is2 and only m-dependent poles can cross the contour of integration. In Fig. 4(b) � k�1

2 < j2 <� 1
2 was considered. While

m-independent poles only cross the contour when j2 < j1, m-dependent poles can cross independently of the values of j1, j2, but they
are annihilated unless j2 > j1.
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3. C�1;w1

j1
� C�2;w2

j2

The zero and pole structure of Qw¼0 is given by

Qw¼0ðji;mi; �miÞ � Cð1þ jiÞ �ð�NÞ
sð �m3 þ j3ÞG

m3 � j3;�j13; 1þm2 þ j2

m3 � j1 þ j2 þ 1; m2 � j1 � j3

" #

�
�
sð �m1 þ j1ÞG

1þ N; 1þ �m1 þ j1; 1� �m2 þ j2

2þ �m1 þ j2 þ j3; 2� �m2 þ j1 þ j3

" #

� sð �m1 � j2 þ j3ÞG
1þ N; 1þ �m2 þ j2; 1� �m1 þ j1

2þ �m2 þ j1 þ j3; 2� �m1 þ j2 þ j3

" #�
þ ðj1; m1; �m1Þ $ ðj2; m2; �m2Þ:

G
a; b; c
e; f

� �
has simple poles at a, b, c ¼ 0;�1;�2; . . . as well as at
u ¼ eþ f� a� b� c ¼ 0;�1;�2; � � � , if a, b, c �
0;�1;�2; � � � . So, a direct analysis leads to the conclusion
that, when ji ¼ � 1

2 þ isi, i ¼ 1, 2, the poles are contained
in the following expression:

Cð1þ jiÞ�ð�NÞ½�ð�j12Þ�2�ð�j13Þ�ð�j23Þ
� �ð�j3 þm3Þ�ð�j3 � �m3Þ�ð1þ j3 þ �m3Þ: (3.23)

Instead, if one looks for poles in Qw¼0 using (3.15), they
seem to be those contained in

Cð1þ jiÞ½�ð�NÞ�ð�j12Þ�ð�j13Þ�ð�j23Þ�2
� �ð�j3 þm3Þ�ð�j3 � �m3Þ�ð1þ j3 þ �m3Þ: (3.24)

These different behaviors in the ðj1; j2Þ-dependent poles
suggest that one must be very careful when analyzing the
analytic structure of Qw¼0. The ðm3; �m3Þ-dependent poles
coincide in both expressions. However, the symmetries of
W imply that for generic j1, j2 and m1, m2, the
m3-dependent poles must be symmetric under m3 $ �m3

as well as under ðm3; �m3Þ $ ð�m3;� �m3Þ, and this does
not seem to be the case in the expressions above.

This puzzle is a consequence of the intricate functional
form of W. Extra zeros may be hidden. Actually, let us
show that the correct behavior of Qw¼0 must be of the
form6

Qw¼0 � �ð�j3 �m3Þ�ð�j3 þ �m3Þ
�ð1þ j3 �m3Þ�ð1þ j3 þ �m3Þ ; (3.25)

for generic j1, j2 and for m1, m2 not correlated with them,
up to regular and nonvanishing contributions for j3 ¼
�m3 þ n3 ¼ � �m3 þ �n3, with n3, �n3 2 Z.

To check (3.25), let us consider j3 ¼ �m3 þ n3 þ
i�3 ¼ � �m3 þ �n3 þ i�3, with �3 an infinitesimal number.
Using (3.15) with the relabeling 1 $ 3, only a term likeD1

remains in W because the other terms behave as �3 and

there are no extra divergences to cancel the zeros when
�3 ! 0. Then, W behaves as W1 in (3.17), with the relab-
eling discussed above. The factor

�ð1þ j1 �m1Þ
�ð1þ j1 �m1 � n3Þ

F
�n3;�j23; 1þ j12

�2j3; 1þ j1 �m1 � n3

� �
and the similar antiholomorphic one have no poles or zeros
when j1 andm1 are not correlated. So, we conclude that for
j3 ¼ �m3 þ q3 þ i�3 ¼ � �m3 þ �q3 þ i�3, W has no
m3-dependent poles or zeros, and then

Qw¼0 � Cð1þ jiÞ�ð�NÞ�ð�j23Þ�ð�j13Þ

� �ð�j3 �m3Þ�ð�j3 þ �m3Þ
�ð1þ j3 �m3Þ�ð1þ j3 þ �m3Þ : (3.26)

Using the symmetry ðmi; �miÞ $ ð�mi;� �miÞ of W, it is
straightforward to deduce that the same behavior is ob-
tained for j3 ¼ m3 þ n3 þ i�3 ¼ �m3 þ �n3 þ i�3.
We may now analyze the OPE C�1;w1

j1
� C�2;w2

j2
. A sum

over continuous representations appears because Qw¼0

does not vanish for j3 ¼ � 1
2 þ is3 when s3 is a real

number. On the other hand, the expression (3.25) shows
that there are no contributions from discrete representa-
tions provided minfm1 þm2; �m1 þ �m2g< 1

2 and

maxfm1 þm2; �m1 þ �m2g>� 1
2 . Obviously both bounds

cannot be violated at the same time. When the first one is
violated, operators belonging to spectral flow images of
lowest-weight representations contribute to the OPE. On
the contrary, when the second bound is not satisfied, op-
erators in spectral flow images of highest-weight represen-
tations appear in the OPE.
Extra poles could possibly appear in the m basis, imply-

ing contributions from operators not belonging to C�;wj or

D�;w
j representations. However, the poles of 3F2 are well

known and no other than those in (3.23) and (3.24) appear
inW. Instead, there could be extra zeros cancelling certain
poles as a consequence of particular combinations of the
arguments in 3F2. As we have shown, these possible zeros

cannot cancel the m3-dependent poles. This information
supports the conclusion that the OPE is closed among C�;wj

and D�;w
j representations.

6The pole structure of this expression is obviously symmetric
under m3 $ �m3 as well as under ðm3; �m3Þ $ ð�m3;� �m3Þ.
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Finally, we want to remark the importance of a relation
like (3.25), because the other expressions (3.23) and (3.24)
do not admit a definition of the OPE as analytic continu-
ation since the m3-dependent poles do not seem to begin
(or end) at a given point.

Therefore, we conclude that the w-conserving contribu-
tions to the OPE of two continuous representations are the
following:

C�1;w1

j1
� C�2;w2

j2
jw¼0 �

Z
P
dj3C

�3;w3¼w1þw2

j3

þ X
j3<�ð1=2Þ

Dþ;w3¼w1þw2

j3

þ X
j3<�ð1=2Þ

D�;w3¼w1þw2

j3
; (3.27)

up to descendants. Note that, in a particular OPE with mi,
�mi fixed, only one of the discrete series contributes, de-
pending on the signs of m3, �m3.

Collecting all the results, the OPE for primary fields and
their spectral flow images in the spectrum of the SLð2;RÞ
WZNW model are the following:

D�;w1

j1
�D�;w2

j2
¼ X

j3	j1þj2

D�;w3¼w1þw2

j3

þ X
�j1�j2�ðk=2Þ	j3<�ð1=2Þ

D�;w3¼w1þw2�1
j3

þ X
j1þj2þðk=2Þ	j3<�ð1=2Þ

D�;w3¼w1þw2�1
j3

þ
Z
P
dj3C

�3;w3¼w1þw2�1
j3

þ � � � :
(3.28)

Dþ;w1

j1
�D�;w2

j2
¼ X

j1�j2	j3<�ð1=2Þ
Dþ;w3¼w1þw2

j3

þ X
j2�j1	j3<�ð1=2Þ

D�;w3¼w1þw2

j3

þ X
j3	j2�j1�ðk=2Þ

D�;w3¼w1þw2þ1
j3

þ X
j3	j1�j2�ðk=2Þ

Dþ;w3¼w1þw2�1
j3

þ
Z
P
dj3C

�3;w3¼w1þw2

j3
þ � � � ;

(3.29)

D�;w1

j1
� C�2;w2

j2
¼ X1

w¼0

Z
P
dj3C

�3;w3¼w1þw2�w
j3

þ X
j3<�ð1=2Þ

D�;w3¼w1þw2

j3

þ X
j3<�ð1=2Þ

D�;w3¼w1¼w2�1
j3

þ � � � ;

(3.30)

C �1;w1

j1
� C�2;w2

j2
¼ X1

w¼0

X
j3<�ð1=2Þ

ðDþ;w3¼w1þw2�w
j3

þD�;w3¼w1þw2þw
j3

Þ

þ X1
w¼�1

Z
P
dj3C

�3;w3¼w1þw2þw
j3

þ � � � :

(3.31)

In order to analyze these results, let us first restrict to the
spectral flow conserving contributions forwi ¼ 0, i ¼ 1, 2.
In this case, exactly the same results were obtained in [9]
using the following prescription for the OPE of w ¼ 0

primary fields �j1
m1; �m1

�j2
m2; �m2

7:

�j1
m1; �m1

ðz1; �z1Þ�j2
m2; �m2

ðz2; �z2Þ�z1!z2

X
j3

jz12j�2~�12

�Qw¼0ðji;mi; �miÞ�j3
m1þm2; �m1þ �m2

ðz2; �z2Þ; (3.32)

where Qw¼0 was obtained using the standard procedure,
i.e., multiplying both sides of (3.32) by a fourth field in the
w ¼ 0 sector and taking expectation values. The formal
symbol

P
j3
denotes integration overD�

j3
and C�3

j3
, namely,

X
j3

¼
Z
Pþ

dj3 þ �D�
j3

I
C
dj3: (3.33)

The integration over Pþ stands for summation over C�
j .

The contour integral along C encloses the poles from D�
j3

and �D�
j3
means that j3 is picked up from the poles inQw¼0

by the contour C only when it belongs to a discrete repre-
sentation. The range of j3 is Rej3 	 � 1

2 and lmj3 � 0,

consistently with the argument which determined Qw¼0

because
P

j3
picks up only one term in (2.17). This pre-

scription to deal with the j- and m-independent poles was
shown to be compatible with the one suggested in [7] for
the Hþ

3 model. The strategy designed in (3.33) for the

treatment of m-dependent poles, which were absent in
[7], aimed to reproducing the classical tensor product of
representations of SLð2;RÞ in the limit k ! 1.8 This

7See [8] for previous work involving highest-weight
representations.

8We thank Y. Satoh for comments on this point.
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proposal for the OPE includes in addition the requirement
that poles with divergent residues should not be picked up.

In this section, we have followed a different path. We
have treated the j- and m-dependent poles alike. However,
although the equivalence between both prescriptions is not
obvious a priori, we obtained the same results for the OPE
of unflowed primary fields.9 Indeed, notice that poles in
Qw¼0 at values of quantum numbers in C�

j or D�
j3
would

not contribute to the OPE determined by (3.4) if they do not
cross the contour P , unlike to (3.32). On the other hand,
contributions from operators in other representations, i.e.,
neither in C�

j nor in D�
j3
, could have appeared in (3.28),

(3.29), (3.30), and (3.31), but they did not. Moreover, by a
careful analysis of the analytic structure of Qw¼0 we have
shown that there are no double poles, so that the regulari-
zation proposed in [9] is not really necessary.10

In the case w1 ¼ w2 ¼ 0, k ! 1, the w-conserving
contributions to the OPE of representations of the zero
modes in (3.28), (3.29), (3.30), and (3.31) reproduce the
classical tensor products of representations of SLð2;RÞ
obtained in [16]. Continuous series appear twice in the
product of two continuous representations due to the ex-
istence of two linearly independent Clebsh-Gordan coef-
ficients. As noted in [9], this is in agreement with the fact
that both terms C12 and C21 in (3.13) contribute to Qw¼0 in
the fusion of two continuous series. Moreover, it was also
observed that the analysis can be applied for finite k
without modifications. The results are given by replacing
D�

j , C
�
j in (3.28), (3.29), (3.30), and (3.31) by the corre-

sponding affine representations D�
j , C

�
j . It is easy to see

that this OPE of unflowed fields in the spectrum of the
SLð2;RÞ WZNW model is not closed, i.e., it gets contri-
butions from discrete representations with j3 <� k�1

2 .

When spectral flow is turned on, incorporating all the
relevant representations of the theory and the complete
set of structure constants as we have done in this section,
the OPE still does not close, namely, there are contribu-
tions from discrete representations outside the range (2.12).
In particular, this feature of the OPE of fields in discrete
representations differs from the results in [5] where the
factorization limit of the four-point function ofw ¼ 0 short
strings was shown to be in accord with the Hilbert space of
the theory.

In the following section we will show that assuming the
OPE (3.28), (3.29), (3.30), and (3.31) holds for states in
representations of the full current algebra, i.e., replacing

D�;w
j , C�;wj by D̂�;w

j , Ĉ�;wj , leads to inconsistencies unless a

truncation is performed.

IV. TRUNCATION OF THE OPERATOR ALGEBRA
AND FUSION RULES

The analysis of the previous section involved primary
operators and their spectral flow images. Then, the OPE
(3.28), (3.29), (3.30), and (3.31) explicitly includes some
descendant fields. Assuming the appearance of spectral
flow images of primary states in the fusion rules indicates
that there are also contributions from descendants not
obtained by spectral flowing primaries but descendants

with the same J30 eigenvalue, namely, replacing D�;w
j ,

C�;wj by D̂�;w
j , Ĉ�;wj in the r.h.s. of (3.28), (3.29), (3.30), and

(3.31), some interesting conclusions can be drawn.
For instance, consider the spectral flow nonpreserving

terms in the OPE D�;w1

j1
�D�;w2

j2
, (3.28). If they are ex-

tended to the affine series, using the spectral flow symme-
try they may be identified asX

�ððk�1Þ=2Þ<~j3	j1þj2

D̂þ;w3¼w1þw2�1

�k
2�~j3


 X
�ððk�1Þ=2Þ<j3	j1þj2

D̂�;w3¼w1þw2

j3
: (4.1)

This reproduces the spectral flow conserving terms in the
first sum in (3.28). However, there is an important differ-
ence: here j3 is automatically restricted to the region
(2.18).
Analogously, applying the spectral flow symmetry to the

discrete series contributing to the OPE Dþ;w1

j1
�

D�;w2
j2

jjwj¼1 in (3.12) leads to contributions fromP
j2�j1	j3

D̂�;w3¼w1þw2

j3
as well as fromP

j1�j2	j3
D̂þ;w3¼w1þw2

j3
, which were found among the spec-

tral flow conserving terms with the extra condition j3 <

� 1
2 .

In order to see further implications of the spectral flow
symmetry on the OPE (3.28), (3.29), (3.30), and (3.31), let
us now consider operator products of descendants. Take the

OPE D̂þ;w1¼0
j1

� D̂�;w2¼1
j2

.11 Equation (3.29) gives spectral

flow conserving contributions from D̂�;w3¼1
j3

, for certain

mi, �mi, i ¼ 1, 2, with j3 verifying (2.18). Using the spectral
flow symmetry, one might infer that the contributions from

D̂þ;w3¼0
j3

to the OPE D̂þ;w1¼0
j1

� D̂þ;w2¼0
j2

in (3.28) would

also be within the region (2.18). On the contrary, we found

9More generally, it can be shown that a generalization of the
ansatz (3.32) for fields �j1;w1

m1 ; �m1
�j2 ;w2

m2; �m2
, by adding the contribu-

tions from terms proportional to Qw¼�1 and replacing �D�
j3
by

�
D

�;w3
j3

, leads to the same results (3.28), (3.29), (3.30), and (3.31).
10This is very important because the double poles discussed in
[9] would lead to inconsistencies in the analytic continuation of
the OPE from Hþ

3 that we have performed in this section. In
particular, they would give divergent contributions to the OPE
Dþ

j �D�
j and, in addition, this OPE would be incompatible

with D�
j �Dþ

j , in contradiction with expectations from the
symmetries of the function W.

11We use the tensor product symbol � to denote the OPE of
fields in representations of the current algebra, to distinguish it
from that of highest/lowest-weight fields.
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terms in D̂þ;w3¼0
j3

with j3 <� k�1
2 . Moreover, using the

spectral flow symmetry again, these terms can be identified

with contributions from D̂�;w3¼1
j3

with j3 >� 1
2 to the OPE

D̂þ;w1¼0
j1

� D̂�;w2¼1
j2

, in contradiction with our previous

result.
Similar puzzles are found identifyingP
j3<�ð1=2ÞD̂

þ;w3¼w1þw2�1
j3

¼ P
�ððk�1Þ=2Þ<j3

D̂�;w3¼w1þw2

j3

in (3.30), which gives some of the spectral flow conserving
contributions. It is interesting to note that only the states
within the region (2.18) contribute in both cases, explicitly
j3 ¼ j1 þ �2 þ n, with n 2 Z such that � k�1

2 < j3 <

� 1
2 . It is also important to stress the following observation.

For given j1, m1 and j2, m2 the spectral flow conserving
part of the OPE (3.30) receives contributions from states
with ~j3, ~m3 verifying ~j3 ¼ ~m3 þ ~n3 with ~n3 ¼
0; 1; � � � ; ~nmax

3 , ~nmax
3 being the maximum integer such that

~j3 <� 1
2 . On the other hand, the spectral flow nonconserv-

ing terms get contributions from j3 ¼ �m3 þ n3 with

n3 ¼ 0; 1; 2; . . . ; nmax
3 and here nmax

3 is the maximal non-

negative integer such that j3 <� 1
2 . So, identifying both

series implies considering ~j3 ¼ � k
2 � j3 and now nmax

3

(which is the same as before) has to be the maximal non-
negative integer for which ~j3 >� k�1

2 . There is just one

operator appearing in both contributions to the OPE. It has
~n3 ¼ 0 in the former and n3 ¼ 0 in the latter. This is a

consequence of the relation �j;w¼0
m¼ �m¼�j ¼ �ðk=2Þ�1

ðk�2Þ �
1

Bð�1�j0Þ�
j0;w0¼1
m0¼ �m0¼j0 with j0 ¼ � k

2 � j [5]. One can check

that the w-conserving three-point functions containing

�j;w¼0
m¼ �m¼�j reduce to the w-non-conserving ones involving

�j0;w0¼1
m0¼ �m0¼j0 . This result can be generalized for arbitrary w

sectors in the m basis, i.e., �j;w
m¼ �m¼�j ��j0;w0¼wþ1

m0¼ �m0¼j0 up to a

regular normalization for j in the region (2.18). For in-
stance, one can reduce a spectral flow conserving three-

point function including �j;w
m¼ �m¼�j to a one unit violating

amplitude containing �j0;wþ1
m0¼ �m0¼j0 using the identity

Cð1þ j1; 1þ j2; 1þ j3Þ ¼ �k�2�ðk� 2� j23Þ�ð2� k� 2j1ÞCðkþ j1 � 1; 1þ j2; 1þ j3Þ
ðk� 2Þ�ð1þ 2j1Þ�ð�NÞ�ð�j12Þ�ð�j13Þ ; (4.2)

which is a consequence of the relation GðjÞ ¼
ðk� 2Þ1þ2j�ð�jÞGðj� kþ 2Þ.

The OPE (3.30) was obtained for states in C�;wj and

D�;w
j . When replacing operators in, say D�;w

j by those

in D̂�;w
j , the latter can be interpreted as having been

obtained by performing w units of spectral flow on pri-

maries of D̂�;w¼0
j or w� 1 units of spectral flow on

primaries of Dþ
�ðk=2Þ�j, that is w units of spectral flow

from Dþ;w¼�1
�ðk=2Þ�j, which in turn may be thought of as the

highest-weight field in D̂�;w¼0
j (see Fig. 5). Only the

spectral flowed primary of highest-weight appears in both
sets of contributions, i.e., the one with n3 ¼ ~n3 ¼ 0. This
behavior was observed in all other cases, namely, the same
discrete series arising in the OPE from Qw¼0 can also be
seen to arise from Qw¼1 or Qw¼�1, but only one operator
appears in both simultaneously.

Thus, even if the calculations involved operators in the

series D�;w
j and C�;wj , we collect here the results for the

fusion rules12 assuming �ji;wi
mi; �mi

ðzi; �ziÞ 2 D̂�;wi

ji
or Ĉ�i;wi

ji
,

i ¼ 1, 2, 3. Using the spectral flow symmetry to identify

D̂�;w
j ¼ D̂þ;w�1

�ðk=2Þ�j, we obtain:

(1) D̂þ;w1

j1
�D̂þ;w2

j2
¼
Z
P
dj3Ĉ

�3;w3¼w1þw2þ1
j3

 X
�ððk�1Þ=2Þ<j3	j1þj2

D̂þ;w3¼w1þw2

j3

 X
j1þj2þðk=2Þ	j3<�ð1=2Þ

D̂þ;w3¼w1þw2þ1
j3

;

(2) D̂þ;w1

j1
� Ĉ�2;w2

j2
¼ X

�ððk�1Þ=2Þ<j3<�ð1=2Þ
D̂þ;w3¼w1þw2

j3

 X1
w¼0

Z
P
dj3Ĉ

�3;w3¼w1þw2þw
j3

;

(3) Ĉ�1;w1

j1
� Ĉ�2;w2

j2
¼ X0

w¼�1

X
�ððk�1Þ=2Þ<j3<�ð1=2Þ

� D̂þ;w3¼w1þw2þw
j3

 X1
w¼�1

�
Z
P
dj3Ĉ

�3;w3¼w1þw2þw
j3

:

We have truncated the spin of the contributions from
discrete representations following the criterion that pro-

cesses related through the identity D̂þ;w
j 
 D̂�;wþ1

�ðk=2Þ�j must

be equal, i.e., equivalent operator products should get the
same contributions. Indeed, one finds contradictions unless
the OPE is truncated to keep j3 within the region (2.18). As
we have seen through some examples, extending the OPE
(3.28), (3.29), (3.30), and (3.31) to representations of the
current algebra, discrepancies occur both when comparing

12Actually, the fusion rules for two representations determine
the exact decomposition of their tensor products. These not only
contain information on the conformal families appearing in the
r.h.s of the OPE, but also on their multiplicities. We shall not
attempt to determine the latter here.
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w-conserving with nonconserving contributions as well as
when comparing w-conserving terms among themselves.
So the truncation is imposed by self-consistency.

A strong argument in support of the fusion rules (1)–(3)
is that only operators violating the bound (2.18) must be
discarded. Indeed, the cut amounts to keeping just contri-
butions from states in the spectrum,13 i.e., it implies that
the operator algebra is closed on the Hilbert space of the
theory. However, the spectrum involves irreducible repre-
sentations and there are no singular vectors to decouple
states like in SUð2Þ [17].14 We do not have an understand-
ing of the physical process determining the truncation.
Moreover, the cut cannot be directly implemented in the
analysis performed in the previous section because it
would break analyticity. Therefore, either the prescription
(3.4) must be modified to be consistent with the spectral
flow symmetry or there is a yet to be discovered physical
mechanism decoupling states. In other words, the OPE in
theHþ

3 and theAdS3 WZNWmodels do not seem to be just

related by analytic continuation, at least not in the way we
have implemented here.

Nevertheless, the results listed in items (1)–(3) above are
supported by several consistency checks. First, the limit
k ! 1 contains the classical tensor products of represen-

tations of SLð2;RÞ [16] when restricted to w ¼ 0 fields.
Second, as mentioned in the previous paragraph, once the
OPE is truncated to keep only contributions from the
spectrum, one can verify full consistency. In particular,

the OPE D̂þ;w1

j1
� D̂þ;w2

j2
is consistent with the results in

[5] (see the discussion in Appendix A 2). Finally, based on
the spectral flow selection rules (2.15) and (2.16), the
following alternative analysis can be performed. Let us

consider, for instance, the operator product D̂þ;w1
j1

�
D̂þ;w2

j2
. Applying Eq. (2.16) to correlators involving three

discrete states in D̂þ;w
j requires either (i) w3¼

�w1�w2�1 or (ii) w3 ¼ �w1 � w2 � 2. Therefore, to-
gether with m conservation, (i) implies that the three-point

function hD̂þ;w1
j1

D̂þ;w2
j2

D̂þ;w3¼�w1�w2�1
j3

i will not vanish as
long as the OPE D̂þ;w1

j1
� D̂þ;w2

j2
contains a state in

D̂�;w¼w1þw2þ1
j3

, which is equivalent to D̂þ;w¼w1þw2
~j3

.

Indeed, this contribution appeared above. Similarly,

(ii) implies that in order for hD̂þ;w1

j1
D̂þ;w2

j2
�

D̂þ;w3¼�w1�w2�2
j3

i to be nonvanishing, the OPE D̂þ;w1

j1
�

D̂þ;w2

j2
must have contributions from D̂�;w3¼w1þw2þ2

j3



D̂þ;w3¼w1þw2þ1
~j3

, which in fact were found. Finally, when

the third state involved in the three-point function is in the

series Ĉ�3;w3

j3
, Eq. (2.15) leaves only one possibility, namely

w3 ¼ �w1 � w2 � 1, and thus the OPE must include

terms in Ĉ�3;w3¼w1þw2þ1
j3

, which actually appear in the list

above. Although this analysis based on the spectral flow
selection rules does not allow one to determine either the
range of j3 values or the OPE coefficients, it is easy to
check that the series content in (1)–(3) is indeed com-
pletely reproduced in this way.
As mentioned in the previous section, in principle w ¼

�2 three-point functions should have been considered.
However, the contributions from these terms are already
contained in our results. If they gave contributions from
discrete representations outside the spectrum, they should
be truncated since the equivalent terms listed above do not
include them. Contributions from operators in

D̂�;w3¼w1þw2þ2
j3

can only appear in case (1), namely,

D̂þ;w1

j1
� D̂þ;w2

j2
, for j3 ¼ �k� j1 � j2 � n. These corre-

spond to the terms denoted as Poles2 in [5], where they
could not be interpreted in terms of physical string states
and were then truncated. See Appendix A 2 for a detailed
discussion.
In conclusion, the results presented in this section are in

agreement with the spectral flow selection pattern (2.15)
and (2.16); they are consistent with the results in [5] and
determine the closure of the operator algebra when prop-
erly treating the spectral flow symmetry. The full consis-
tency of the OPE should follow from a proof of
factorization and crossing symmetry of the four-point
functions, but closed expressions for these amplitudes are

FIG. 5. Weight diagram of D̂�;w¼0
j3

. The lines with arrows
indicate the states in D�;w¼0

j3
and Dþ;w¼�1

�ðk=2Þ�j3
. Consider a state

in D̂þ;w¼0
~j

, at level ~N and weight ~m ¼ �~jþ ~n. It follows from

(2.13) and (2.14) that after spectral flowing by (� 1) unit, this

state maps to a state in D̂�;w¼0
j , with j ¼ � k

2 � ~j, level N ¼ ~n

and weight m ¼ j� n, with n ¼ ~N. For instance primary states

in D̂þ;w¼0
�ðk=2Þ�j3

, denoted simply by Dþ;w¼0
�ðk=2Þ�j3

, map to highest-

weight states in D̂�;w¼0
j3

. So, only one state in Dþ;w¼�1
�ðk=2Þ�j3

coincides with one in D�;w¼0
j3

, namely, that with ~n ¼ 0.

13It is important to stress that the truncation is not discarding
contributions from the microstates associated to the
ðj1; j2Þ-dependent poles that were found in [7]. Only
m-dependent poles which are absent in the x basis present
inconsistencies with the spectral flow symmetry.
14The spectral flow operators ��ðk=2Þ

�ðk=2Þ;�ðk=2Þ have null descend-
ants. Even though they are excluded from the range (2.18), they
are necessary auxiliary fields to construct the states in spectral
flow representations. Although the physical mechanism is not
clear to us, these operators might play a role in the decoupling.
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not known, even in the simplerHþ
3 model. In order to make

some preliminary progress in this direction, in the next
section we discuss certain properties of the factorization of
four-point amplitudes involving states in different repre-
sentations of the SLð2;RÞ WZNW model, constructed
along the lines in [7].

V. COMMENTS ON THE FACTORIZATION OF
FOUR-POINT FUNCTIONS

Although a complete description of the contributions of
descendant operators is not available to complete the boot-
strap program, in this section we display some interesting
properties of the amplitudes that can be useful to achieve a
resolution of the theory. We first summarize known results
on the s-channel factorization of four-point functions in the
Hþ

3 model and show that an alternative expression can be

written in theAdS3 WZNWmodel if the correlators in both
models are related through analytic continuation. Then, we
perform a qualitative study of the contributions of primar-
ies and flowed primaries in the intermediate channels of the
amplitudes and finally, we discuss the consistency of the
factorization with the spectral flow selection rules.

A decomposition of the four-point function in the
Euclidean model was worked out in [6,7] using the OPE
(2.10) for pairs of primary operators �j1�j2 and �j3�j4 .

The s-channel factorization was written as follows:

h�j1ðx1jz1Þ�j2ðx2jz2Þ�j3ðx3jz3Þ�j4ðx4jz4Þi
¼ jz34j2ð~�2þ~�1�~�4�~�3Þjz14j2ð~�2þ~�3�~�4�~�1Þjz24j�4~�2

� jz13j2ð~�4�~�1�~�2�~�3Þ
Z
Pþ

djAðji; jÞGjðji; z; �z; xi; �xiÞ
� jzj2ð�j��1��2Þ: (5.1)

Here

A ðji; jÞ ¼ Cð�j1;�j2;�jÞBð�j� 1ÞCð�j;�j3;�j4Þ
(5.2)

and

Gjðji; z; �z; xi; �xiÞ ¼
X1

n; �n¼0

zn �z �nDðnÞ
x;jðji; xiÞ �D �n

�x;jðji; �xiÞ

�Gjðji; xi; �xiÞ; (5.3)

where DðnÞ
x;jðji; xiÞ are differential operators containing the

contributions from intermediate descendant states and

Gjðji; xi; �xiÞ ¼ jx12j2ðj1þj2�jÞjx34j2ðj3þj4�jÞ Z d2xd2x0

� jx1 � xj2ðj1þj�j2Þjx2 � xj2ðj2þj�j1Þ

� jx3 � x0j2ðj3þj�j4Þjx4 � x0j2ðj4þj�j3Þ

� jx� x0j�4j�4; (5.4)

which may be rewritten as

Gjðji; xi; �xiÞ ¼ �2

ð2jþ 1Þ2 jx34j
2ðj4þj3�j2�j1Þjx24j4j2

� jx14j2ðj4þj1�j2�j3Þjx13j2ðj3þj2þj1�j4Þ

�
�
jFjðji; xÞj2

þ �ð1þ jþ j4 � j3Þ�ð1þ jþ j3 � j4Þ
�ð2jþ 1Þ�ðj1 � j2 � jÞ�ðj2 � j1 � jÞ

� jF�1�jðji; xÞj2
�
;

with Fjðji;xÞ
xj1þj2�j
2 F1ðj1�j2�j;j4�j3�j;�2j;xÞ

and x ¼ x12x34
x13x24

.

The properties of (5.1) under j ! �1� j allow one to
extend the integration contour from Pþ to the full axis
P ¼ � 1

2 þ iR and rewrite it in a holomorphically factor-

ized form. Crossing symmetry follows from similar prop-
erties of a five-point function in Liouville theory and it
amounts to establishing the consistency of the Hþ

3 WZNW

model [18].
Expression (5.1) is valid for external states �j1 , �j2 in

the range (2.12) and similarly for �j3 , �j4 . In particular, it

holds for operators in continuous representations of the
SLð2;RÞ WZNW model. The analytic continuation to
other values of ji was performed in [5]. In this process,
some poles in the integrand cross the integration contour
and the four-point function is defined as (5.1) plus the
contributions of all these poles. This procedure allowed
the authors to analyze the factorization of four-point func-
tions of w ¼ 0 short strings in the boundary conformal
field theory, obtained from primary states in discrete rep-
resentations Dw¼0

j �Dw¼0
j , by integrating over the world

sheet moduli. It is important to stress that the aim in [5] was
to study the factorization in the boundary conformal field
theory with coordinates xi, �xi, so the x basis was found
convenient. The conformal blocks were expanded in
powers of the cross ratios x, �x and then integrated over
the world sheet coordinates z, �z. To study the factorization
in the SLð2;RÞ WZNW model instead, we expand the
conformal blocks in powers of z, �z, and in order to consider
the various sectors, we find convenient to translate (5.1) to
the m basis.
To this purpose, one can verify that the integral over j

commutes with the integrals over xi, �xi, i ¼ 1; . . . ; 4 and
that it is regular for j�21 and j�43 in the range (2.12) and for

all of jmj, j �mj, jmij, j �mij< 1
2 , where we have introduced

m ¼ m1 þm2 ¼ �m3 �m4, �m¼ �m1þ �m2¼� �m3� �m4.
Integrating in addition over x and x0 in (5.4), we get

h�j1
m1; �m1

�j2
m2; �m2

�
j3
m3; �m3

�j4
m4; �m4

i
¼ jz34j2ð~�2þ~�1�~�4�~�3Þjz14j2ð~�2þ~�3�~�4�~�1Þjz24j�4~�2

� jz13j2ð~�4�~�1�~�2�~�3Þ
Z
Pþ

djAw¼0
j ðji;mi; �miÞ

� jzj2ð~�j�~�1�~�2Þ þ � � � ; (5.5)
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where

Aw¼0
j ðji;mi; �miÞ¼�ð2Þðm1þ . . .þm4ÞCð1þj1;1þj2;1þjÞ

�W
j1;j2;j

m1;m2;�m

" #
1

Bð�1�jÞc�1�j
m; �m

�Cð1þj3;1þj4;1þjÞW j3;j4;j

m3;m4;m

" #
:

(5.6)

An alternative representation of (5.6) was found in [19]
in terms of higher generalized hypergeometric functions

4F3. This new identity among hypergeometric functions is

an interesting by-product of the present result.
The dots in (5.5) refer to higher powers of z, �z corre-

sponding to the integration of terms of the form

AN;w¼0
j jzj2ð�ðNÞ

j �~�1�~�2Þ, where AN;w¼0
j , N ¼ 1; 2; 3; . . .

stand for contributions from descendant operators at level

N with conformal weights �ðNÞ
j ¼ ~�j þ N.

Notice that the symmetry under j $ �1� j in (5.6),
which can be easily checked by using the identity (3.3),
allows one to extend the integral to the full axisP ¼ � 1

2 þ
iR.

Given that correlation functions in the SLð2;RÞWZNW
model in the m basis depend on the sum of wi numbers,
except for the powers of the coordinates zi, �zi, if the
Lorentzian and Euclidean theories are simply related by
analytic continuation, this result should hold, in particular,
for states in continuous representations in arbitrary spectral
flow sectors (with jmij, j �mij, jmj< 1

2 ), as long as
P

iwi ¼
0, i.e.,

h�j1;w1
m1; �m1

�j2;w2
m2; �m2

�
j3;w3
m3; �m3

�j4;w4
m4; �m4

iP4
i¼1

wi¼0

¼ z
�2þ�1��4��3

34 z
�2þ�3��4��1

14 z
�4��1��2��3

13 z�2�2

24

� c:c:�
Z
P
djAw¼0

j ðji;mi; �miÞz�j��1��2 �z
��j� ��1� ��2

þ � � � ; (5.7)

where �j ¼ � jðjþ1Þ
k�2 �mðw1 þ w2Þ � k

4 ðw1 þ w2Þ2 and

c.c. stands for the obvious antiholomorphic �zi dependence.
For other values of j1; � � � ; j4, m1; . . . ; �m4 the integral may
diverge and must be defined by analytic continuation.

That a generic w-conserving four-point function involv-
ing primaries or highest/lowest-weight states in C�;wj or

D�;w
j should factorize as in (5.7), if the amplitude with

four w ¼ 0 states is given by (5.5), can be deduced from
the relation [10]:�Yn

i¼1

�ji;wi
mi; �mi

ðzi; �ziÞ
�P

n
i¼1

wi¼0
¼ � ��

�Yn
i¼1

�ji; ~wi¼0
mi; �mi

ðzi; �ziÞ
�
;

(5.8)

where � ¼ Q
i<jz

�wimj�wjmi�ðk=2Þwiwj

ij , �� ¼Q
i<jz

�wi �mj�wj �mi�ðk=2Þwiwj

ij , after Taylor expanding around

z ¼ 0 the r.h.s. of the following identity:

�z
~�2þ~�1�~�4�~�3

34 z
~�2þ~�3�~�4�~�1

14 z�2~�2

24 z
~�4�~�1�~�2�~�3

13 z
~�j�~�1�~�2

¼ z
�2þ�1��4��3

34 z
�2þ�3��4��1

14 z
�4��1��2��3

13 z�2�2

24

� z�j��1��2ð1� zÞ�m2w3�m3w2�ðk=2Þw2w3 : (5.9)

The conclusion is that, if the Hþ
3 and AdS3 models are

simply related by analytic continuation, then (5.7) and its
analytic continuation should hold for genericw-conserving

four-point functions of fields in C�;wj or D�;w
j .15 However,

expression (5.7) appears to be in contradiction with the
factorization ansatz and the OPE found in Sec. III for the
SLð2;RÞ WZNW model, because it seems to contain just
w-conserving channels. Actually, directly applying the
factorization ansatz based on the OPE (3.4) would give
the following expression for both w-conserving and violat-
ing four-point functions:

h�j1;w1
m1; �m1

�j2;w2
m2; �m2

�
j3;w3
m3; �m3

�j4;w4
m4; �m4

i
� z�2þ�1��4��3

34 z�2þ�3��4��1

14 z�4��1��2��3

13 z�2�2

24

� c:c:�2

�X4
i¼1

mi þ k

2
wi

� X1
w¼�1

Z
P
djQwQ�w�P4

i¼1
wi

� Bð�1� jÞc�1�j
m; �m z�j��1��2 �z

��j� ��1� ��2 þ � � � (5.10)

withm ¼ m1 þm2 � k
2w ¼ �m3 �m4 � k

2w, �m ¼ �m1 þ
�m2 � k

2w ¼ � �m3 � �m4 � k
2w, and �j ¼ � jðjþ1Þ

k�2 �
mðw1 þ w2 þ wÞ � k

4 ðw1 þ w2 þ wÞ2 (similarly for ��j).

Actually, in the m basis, the starting point for the
w-conserving four-point function would have been (5.7)
plus an analogous contribution involving one unit spectral
flow three-point functions, i.e., (5.7) rewritten in terms of
Aw¼1

j or Aw¼�1
j instead of Aw¼0

j , where

A w¼�1
j ðji;mi; �miÞ ¼ �ð2Þ

�X4
i¼1

mi

� ~Cð1þ j1; 1þ j2; 1þ jÞ
�ðj1 þ j2 þ jþ 3� k

2Þ
~W

j1; j2; j
�m1;�m2;�m

� �
1

Bð�1� jÞc�1�j
m; �m

�
~Cð1þ j3; 1þ j4; 1þ jÞ
�ðj3 þ j4 þ jþ 3� k

2Þ
~W

j3; j4; j
�m3;�m4;�m

� �
: (5.11)

15See Appendix A 3 for an alternative discussion directly in the m basis, independent of the x basis.

FUSION RULES AND FOUR-POINT FUNCTIONS IN THE . . . PHYSICAL REVIEW D 79, 086004 (2009)

086004-17



But if correlation functions in this model are to be obtained
from those in the Hþ

3 model [5–9,12], spectral flow con-
serving and nonconserving channels should give the same
result for the w-conserving four-point functions. This does
not imply that Aw¼0

j and Aw¼�1
j carry the same amount of

information.16 In general, if both expressions for the four-
point functions were equivalent, one would expect that part
of the information inAw¼0

j was contained inAw¼�1
j and the

rest in the contributions from descendants in AN;w¼�1
j .

A proof of this statement would require making explicit
the higher order terms and possibly some contour manipu-
lations, which we shall not attempt. Nevertheless there are
several indications supporting this claim. A similar prop-
osition was advanced in [10] for the Hþ

3 model and some

evidence was given that these possibilities might not be
exclusive, depending on which correlator the OPE is in-
serted in. Furthermore, w ¼ 1 long strings were found in
the s-channel factorization of the four-point amplitude of
w ¼ 0 short strings in [5] starting from the holomorphi-
cally factorized expression for (5.1), rewriting the inte-
grand and moving the integration contour. Moreover, in
the m basis, spectral flow nonconserving channels can be
seen to appear naturally from (5.7) in certain special cases,
as we now show.

Identities among different expansions of four-point
functions containing at least one field in discrete represen-
tations can be generated using the spectral flow symmetry.
In particular, w-conserving four-point functions involving

the fields �j1;w1

m1¼ �m1¼�j1
and �j3;w3

m3¼ �m3¼j3
coincide [up to

Bðj1Þ; Bðj3Þ factors] with the w-conserving amplitudes in-

volving�
j0
1
¼�ðk=2Þ�j1;w

0
1
¼w1þ1

m0
1
¼ �m0

1
¼j0

1
and �

j0
3
¼�ðk=2Þ�j3;w

0
3
¼w3�1

m0
3
¼ �m0

3
¼�j0

3
.17

This allows one to expand the four-point amplitude in two
alternative ways, namely,Z
P
djAw¼0

j ðj1; j2; j3; j4;m1; . . . ; �m3; �m4Þ

� z�ðjÞ��ðj1Þ��ðj2Þ �z ��ðjÞ� ��ðj1Þ� ��ðj2Þ þ � � � (5.12)

or

	1;3

Z
P
djAw¼0

j ðj01; j2; j03; j4;m0
1; . . . ; �m

0
3; �m4Þ

� z�
0ðjÞ��ðj01Þ��ðj2Þ �z ��0ðjÞ� ��ðj01Þ� ��ðj2Þ þ � � � ;

(5.13)

where 	1;3 
 Bð�1�j3Þ
Bð�1�j0

1
Þ and the dots refer to contributions

from descendants and, in addition, to residues at poles in
Aw¼0

j crossing P after analytic continuation of ji (i ¼ 1, 3

and eventually 2, 4) to the region (2.18). Explicitly,
Aw¼0

j ðj01; j2; j03; j4;m0
1; . . . ; �m

0
3; �m4Þ is given by

Cð1þ j01; 1þ j2; 1þ jÞCð1þ j03; 1þ j4; 1þ jÞ

� �3�ð2þ 2jÞ
Bð�1� jÞ

�ðj� j01 � j2Þ�ðj2 � j01 � jÞ
�ð2þ j01 þ j2 þ jÞ�ð�2j01Þ

� �ðj� j03 � j4Þ�ðj4 � j03 � jÞ
�ð2þ j03 þ j4 þ jÞ�ð�2j03Þ

� �ð1þ j2 �m2Þ�ð1þ j4 þ �m4Þ
�ð�j2 þ �m2Þ�ð�j4 �m4Þ

� �ð�j� �mÞ�ð1þ j�mÞ
�ð1þ jþmÞ�ð�jþ �mÞ :

Using (4.2) and rewriting this expression in terms of ji,
mi, the following equivalence can be shown

ð5:13Þ ¼
Z
P
djAw¼1

j ðj1; j2; j3; j4;m1; . . . ; �m3; �m4Þ

� z�ðjÞ��ðj1Þ��ðj2Þ �z ��ðjÞ� ��ðj1Þ� ��ðj2Þ þ . . . (5.14)

Notice that not only the coefficient Aw¼1
j but also the zi,

�zi dependence are as expected. In fact, �ðj01Þ ¼ ~�ðj01Þ �
m0

1w
0
1 � k

4w
02
1 ¼ ~�ðj1Þ �m1w1 � k

4w
2
1 ¼ �ðj1Þ and

�0ðjÞ ¼ ~�ðjÞ � ðm0
1 þm2Þðw0

1 þ w2Þ � k
4 ðw0

1 þ w2Þ2 ¼
~�ðj1Þ �mw� k

4w
2 ¼ �ðj1Þ, where m ¼ m1 þm2 � k

2

and w ¼ w1 þ w2 þ 1. Therefore, we have seen, in a
particular example, that spectral flow conserving and vio-
lating channels can give the same result for four-point
functions. This is a nontrivial result showing that the
spectral flow symmetry allows one to exhibit
w-nonconserving channels that are not equivalent to other
w-conserving ones in expressions constructed as sums over
w-conserving exchanges.
In Appendix A 3, we show that the terms explicitly

displayed in both (5.7) and (5.14) are solutions of the
Knizhnik-Zamolodchikov (KZ) equations. However, these
equations do not give enough information to confirm that
the full expressions (5.7) and (5.14) are equivalent.
The factorization of four-point functions reproduces the

field content of the OPE. Therefore, the truncation imposed
on the operator algebra by the spectral flow symmetry must
be realized in physical amplitudes. Again, to confirm this
would require more information on the contributions from
descendant fields and studying crossing symmetry. Here,
we just illustrate this point with one example. Take for
instance the following four-point function18:

hDþ;w1¼0
j1

Dþ;w2¼�1
j2

D�;w3¼0
j3

D�;w4¼�1
j4

i; (5.15)

in the particular case with ni ¼ 0, 8i (where mi ¼ �ji �16In other words, both expressions seem to give the same
contribution in w-conserving four-point functions. However,
one cannot always use either one of them. In particular, this is
not expected to hold for w-violating amplitudes.
17This is a consequence of the identities discussed in the
paragraph containing Eq. (4.2) in the previous section.

18Here, as in the previous section, we denote the states by the
representations they belong to and we omit the antiholomorphic
part for short.
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ni) and j1 þ j2 ¼ j3 þ j4 <� k�1
2 . The OPE (3.28) im-

plies one intermediate state in the s channel in Dþ;w¼�1
j ,

with j ¼ j1 þ j2 ¼ �m as well as exchanges of states in

Dþ;w¼0
j if j1 þ j2 ¼ j3 þ j4 <� kþ1

2 with j ¼ j1 þ j2 þ
k
2 þ n, n ¼ 0; 1; 2; . . . such that j <� 1

2 , and also of con-

tinuous states in C�;w¼0
j . The unique state found in

Dþ;w¼�1
j is equivalent to the highest-weight state in

D�;w¼0
~j

with ~j ¼ � k
2 � j >� 1

2 .

This four-point function must coincide with the follow-
ing one:

hDþ;w1¼0
j1

D�;w2¼0
~j2

D�;w3¼0
j3

Dþ;w4¼0
~j4

i; (5.16)

where as usual ~ji ¼ � k
2 � ji (notice that this holds without

‘‘hats’’ because ni ¼ 0, 8i). Now ~j2 � j1 ¼ ~j4 � j3 >

� 1
2 . Therefore, (3.29) implies that only states from

C�;w¼0
j as well as from Dþ;w¼0

j with j ¼ j1 � ~j2 þ n ¼
j1 þ j2 þ k

2 þ n propagate in the intermediate s channel,

the latter requiring the extra condition ~j2 � j1 ¼ ~j4 � j3 >
1
2 , i.e., j1 þ j2 ¼ j3 þ j4 <� kþ1

2 . The important remark

is that no intermediate states from D�;w¼0
~j

appear in the

factorization. This behavior was discussed in the previous
section when studying the consequences of the spectral
flow symmetry on the OPE. However, we have considered
this case carefully here because it explicitly displays the
fact that the same four-point function factorizes in two
different ways and the unique difference is an extra state
violating the bounds (2.18). Recall that we are only con-
sidering primaries and their spectral flow images. We ex-
pect that some consistency requirements, such as crossing
symmetry, will automatically realize the OPE displayed in
the previous section in physical amplitudes.

An indication in favor of the bootstrap approach to this
nonrational CFT is that the expressions reproduce the
spectral flow selection rules (2.15) and (2.16) for four-point
functions in different sectors. Indeed, let us analyze this
feature in a four-point function involving only external
discrete states or their spectral flow images. The bounds
(2.16) require�3 	 P

4
i¼1 wi 	 �1, in agreement with the

factorization of this amplitude in any channel. Indeed,
consider for instance

hD̂þ;w1

j1
D̂þ;w2

j2
D̂þ;w3

j3
D̂þ;w4

j4
i: (5.17)

The OPE D̂þ;w1

j1
� D̂þ;w2

j2
computed in the previous section

(and similarly for j3, j4) requires either w1 þ w2 ¼
�w3 � w4 � 1 or w1 þ w2 ¼ �w3 � w4 � 2 or w1 þ
w2 ¼ �w3 � w4 � 3 for discrete intermediate states and
w1 þ w2 ¼ �w3 � w4 � 2 for continuous intermediate
states, and similarly in the other channels.

Repeating this analysis for four-point functions involv-
ing fields in different representations, it is straightforward
to conclude that the spectral flow selection rules for four-
point functions in different sectors can be obtained from

those for two- and three-point functions, or equivalently
from the OPE found in Sec. IV.

VI. SUMMARYAND CONCLUSIONS

We have studied the OPE in the AdS3 WZNW model.
Performing the analytic continuation of the expressions in
the Euclidean Hþ

3 WZNW model proposed in [6,7] and

adding spectral flow, i.e., considering the full set of struc-
ture constants, we obtained the OPE of spectral flow im-
ages of primary fields in the Lorentzian theory. Assuming
the results also hold for affine descendants, we have argued
that a truncation is necessary in order to avoid contra-
dictions, and we have shown that a consistent cut amounts
to the closure of the operator algebra on the Hilbert space
of the theory. Indeed, the spectral flow symmetry implies
that only operators outside the physical spectrum must be
discarded and moreover, every physical state contributing
to a given OPE is also found to appear in all possible
equivalent operator products. The fusion rules obtained
in this way are consistent with results in [5], deduced
from the factorization of four-point functions of w ¼ 0
short strings in the boundary conformal field theory, and
contain in addition operator products involving states in
continuous representations. A discussion of the relation
between our results and some conclusions in [5] can be
found in Appendix A 2.
Implementing the truncation in the procedure followed

in Sec. III in order to directly obtain a consistent OPE does
not seem possible because it would break analyticity.
Therefore, an inevitable conclusion is that either the pre-
scription must be modified in order to avoid inconsisten-
cies with the spectral flow symmetry, i.e., the route we have
followed to relate the OPE in the Hþ

3 and the AdS3 models

is not self-consistent, or the structure constants must be
further constrained. Nevertheless, although the physical
process determining the truncation is not completely
understood, several consistency checks have been per-
formed in Sec. IV and the OPE displayed in items (1) –
(3) can be taken to stand on solid foundations.
The full consistency of the fusion rules should follow

from a proof of factorization and crossing symmetry of the
four-point functions. A preliminary analysis of the facto-
rization of amplitudes involving states in different sectors
of the theory was presented in Sec. V. Based on the
factorization ansatz, we proposed an expression for generic
four-point functions and we showed that some terms are
redundant in w-conserving amplitudes. We illustrated in
one example that the amplitudes must factorize as expected
in order to avoid inconsistencies, i.e., if the bootstrap
approach holds, only states according to the fusion rules
determined in Sec. IV must propagate in the intermediate
channels. Analogously as the OPE, the factorization also
agrees with the spectral flow selection rules. However,
more work is necessary to put this ansatz on a firmer
mathematical ground. In particular, additional information
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on the action of the spectral flow operation on descendant
operators is required to verify crossing symmetry.

Given that scattering amplitudes of string theory on
AdS3 should be obtained from correlation functions in
the SLð2;RÞ WZNW model, our results constitute a step
forward towards the construction of the S matrix in string
theory on Lorentzian AdS3 and to learn more about the
dual conformal field theory on the boundary through AdS/
CFT, in the spirit of [5]. Indeed an important application of
our results would be to construct the S matrix of long
strings in AdS3 which describes scatterings in the CFT
defined on the Lorentzian two-dimensional boundary. In

particular, the OPE Ĉ�1;w1

j1
� Ĉ�2;w2

j2
obtained in Sec. IV

sustains the expectations in [5] that short and long strings
should appear as poles in the scattering of asymptotic states
of long strings.
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APPENDIX A: APPENDICES

1. Analytic structure of W1

The purpose of this appendix is to study the analytic
structure of W1. In particular, we are especially interested
in possible zeros appearing in W1 which are not evident in
the expression (3.17), but are very important in our defini-
tion of the OPE.

Let us recall some useful identities relating different
expressions for

G
a; b; c
e; f

� �
[20],

G
a; b; c
e; f

� �
¼ �ðbÞ�ðcÞ

�ðe� aÞ�ðf� aÞG
e� a; f� a; u
uþ b; uþ c

� �
;

(A1)

G
a;b;c
e;f

� �
¼ �ðbÞ�ðcÞ�ðuÞ
�ðf�aÞ�ðe�bÞ�ðe�cÞG

a;e�b;e�c
e;aþu

� �
;

(A2)

where u is defined as u ¼ eþ f� a� b� c. Using the
permutation symmetry among a, b, c and e, f, which is
evident from the series representation of the hypergeomet-
ric function 3F2, seven new identities may be generated. In

what follows we use these identities in order to obtain the
greatest possible amount of information on W1.

Consider for instance C12 defined in (3.14). Using (A1),
it can be rewritten for j1 ¼ �m1 þ n1, with n1 a non-

negative integer, as

C12 ¼ �ð�NÞ�ð�j13Þ�ð�j12Þ�ð1þ j2 þm2Þ
�ð�j3 �m3Þ

Xn1
n¼0

n1

n

 !

� ð�Þn
�ðn� 2j1Þ

�ðn� j12Þ
�ð�j12Þ

�ðnþ 1þ j23Þ
�ð1þ j23Þ

� �ð1þ j3 �m3Þ
�ð1þ j3 �m3 � n1 þ nÞ : (A3)

Using (A2) instead of (A1), one finds an expression for
C12 equal to (A3) with j3 ! �1� j3.
There is a third expression in whichC12 can be written as

a finite sum for generic j2, j3. This follows from (3.14),
using the identity obtained from (A2) with (e $ f). This
expression is explicitly invariant under j3 ! �1� j3.
Consider for instance (A3). All quotients inside the sum

are such that the arguments in the � functions of the
denominator equal those in the numerator up to a positive
integer, except for the one with �ðn� 2j1Þwhich is regular
and nonvanishing for Rej1 <� 1

2 . Then, each quotient is

separately regular. Eventually, some of them may vanish,
but not for all values of n. In particular, for n ¼ 0 the first
two quotients equal one. The last factor may vanish for
n ¼ 0, but for n ¼ n1 it equals one. However, particular
configurations of ji,mi may occur such that one of the first
two quotients vanishes for certain values of n, namely, n ¼
nmin; nmin þ 1; . . . ; n1, and the last one vanishes for other
special values, namely, n ¼ 0; 1; . . . ; nmax. Thus, if nmax �
nmin, all terms in the sum cancel and C12 vanishes as a
simple zero. In fact, let us consider for instance both 1þ
j23 ¼ �p3 and 1þ j3 �m3 ¼ 1þ n3, with p3; n3 non-

negative integers. This requires �j2;w2
m2; �m2

2 D�;w2

j2
and j3 ¼

j1 � j2 � 1� p3 ¼ m3 þ n1 � n2 � 1� p3, which im-
pose p3 < n1 and allow one to rewrite the sum in (A3) as

Xp3

n¼0

1

n!

n1!

ðn1 � nÞ!
p3!

ðp3 � nÞ!
�ðn� j12Þ
�ð�j12Þ

1

�ðn� 2j1Þ

� n3!

�ð1þ n3 � n1 þ nÞ : (A4)

Finally, taking into account that 1þ n3 � n1 þ n ¼
�n2 � ðp3 � nÞ 	 0, for n ¼ 0; 1; . . . ; p3, the sum van-
ishes as a simple zero. A similar analysis for j12 ¼ p3 � 0
and 1þ j3 �m3 ¼ 1þ n3 � 1 shows that no zeros appear

in this case when �j2;w2
m2; �m2

is the spectral flow image of a

primary field.
From the expression obtained for C12 by changing j3 !

�1� j3, one finds zeros again for�
j2;w2
m2; �m2

2 D�;w2

j2
. These

appear when both j3 ¼ j2 � j1 þ p3 and j3 ¼
�m3 � 1� n3 hold simultaneously.
Finally, repeating the analysis for the sum in the third

expression for C12, i.e., that explicitly symmetric under
j3 ! �1� j3, one finds the same zeros as in the previous
cases.
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Let us now consider the analytic structure of W1 ¼:

D1C
12 �C12. Expression (3.17) together with the discussions

above allow one to rewrite W1 as

W1ðji;mi; �miÞ ¼ ð�Þm3� �m3þ �n1�2�ð�NÞ
�ð�2j1Þ�ð1þ j12Þ�ð1þ j13Þ
� �ð1þ j2 þm2Þ

�ð�j2 � �m2Þ
� �ð1þ j3 þm3Þ

�ð�j3 � �m3Þ E12
�E12; (A5)

where E12 is given by �ð�2j1Þ times (A4). E12 has no
poles but it may vanish for certain special configurations if

�j2;w2
m2; �m2

2 D�;w2
j2

, namely, n2 < n1 � p3 and j3 ¼ m3 þ n3
or j3 ¼ �m3 � 1� n3, with n3 ¼ 0; 1; 2; . . . , where p3 ¼
�1� j23 in the former and p3 ¼ j13 in the latter. The same
result applies to �E12, changing ni by �ni. Obviously one
might find, using other identities, new zeros for special
configurations. This could be a difficult task, because the
series does not reduce to a finite sum in general.
Fortunately, it is not necessary for our purposes.

2. Relation to [5]

This appendix contains some comments about the rela-
tion between our work and [5]. For simplicity, we use the
conventions of the latter, related to ours by j ! �j in the x
basis, up to normalizations. The range of j for discrete
representations is now 1

2 < j< k�1
2 and for continuous

representations, j ¼ 1
2 þ iR.

One of the aims of [5] was to study the factorization of
four-point functions involving w ¼ 0 short strings in the
boundary conformal field theory. The x basis seems appro-
priate for this purpose since xi, �xi can be interpreted as the
coordinates of the boundary. Naturally, both the OPE and
the factorization look very different in the m and x basis.
For instance, it is not obvious how discrete series would
appear in the OPE or factorization of fields in continuous
representations if they are to be obtained from the analo-
gous expressions in the Hþ

3 model in the x basis. However,
when discrete representations are involved, there are cer-
tain similarities. Actually, in accord with the fusion rules

D̂þ;w1

j1
� D̂þ;w2

j2
obtained in Sec. IV, w ¼ 1 long strings

and w ¼ 0 short strings were found in the factorization
studied in [5]. Conversely, it was interpreted that w ¼ 1
short strings do not propagate in the intermediate channels,
while we found spectral flow nonpreserving contributions
of discrete representations in the OPE. In this Appendix we
analyze this issue. We reexamine the three-point functions
involving two w ¼ 0 strings and one w ¼ 1 short string
and certain divergences in the four-point functions of w ¼
0 short strings, namely, the so-called Poles2, which seem to
break the factorization.

a. Three-point functions involving onew ¼ 1 short string
and two w ¼ 0 strings

The w-conserving two-point functions of short strings in
the target space (w � 0) are given by

h�w;j

J; �J
ðx1; �x1Þ�w;j

J; �J
ðx2; �x2Þi � j2j� 1� ðk� 2Þwj

� �ð2jþ pÞ�ð2jþ �pÞ
�ð2jÞ2p! �p!

BðjÞ
x2J12 �x

2 �J
12

;

(A6)

where BðjÞ ¼ Bð�jÞ and the upper (lower) sign holds for
J ¼ jþ pþ k

2w (J ¼ �j� pþ k
2w), p, �p being non-

negative integers. Three-point functions of w ¼ 0 string
states are

h�j1ðx1; �x1Þ�j2ðx2; �x2Þ�j3ðx3; �x3Þi
¼ Cðj1; j2; j3Þ

Y
i>j

jxijj�2jij ; (A7)

and for one w ¼ 1 short string and two w ¼ 0 strings they
are given by (we omit the x, �x dependence)

h�j1;w¼1

J1; �J1
ðx1; �x1Þ�j2ðx2; �x2Þ�j3ðx3; �x3Þi

� 1

�ð0ÞBðj1ÞC
�
k

2
� j1; j2; j3

�
�ðj2 þ j3 � J1Þ

�ð1� j2 � j3 þ �J1Þ

� �ðj1 þ J1 � k
2Þ

�ð1� j1 � �J1 þ k
2Þ

1

�ðj1 þ j2 þ j3 � k
2Þ
: (A8)

The �ð0Þ�1 factor is absent when the w ¼ 1 operator is a
long string state. This three-point function was obtained in
[5] from an equivalent expression in the m basis. J1, �J1
label the global SLð2;RÞ representations and can bewritten
in terms of parameters m1, �m1 as J1 ¼ �m1 þ k

2 ,
�J1 ¼

� �m1 þ k
2 , depending if the correlator involved the field

�j1;w1¼�1
m1; �m1

.

As observed in [5], when J1 ¼ k
2 � j1 � p, �J1 ¼

k
2 � j1 � �p, the factor

�ðj1þJ1�k
2Þ

�ð1�j1� �J1þk
2Þ
cancels the �ð0Þ and

the three-point function is finite and can be interpreted as
a w-conserving amplitude. To see this, recall that if it was
obtained from a w ¼ �1 three-point function in the m
basis and m1 ¼ j1 þ p, then

h�j1;w¼1

J1; �J1
ðx1; �x1Þ�j2ðx2; �x2Þ�j3ðx3; �x3Þi

� ð�Þpþ �pBðj1ÞC
�
k

2
� j1; j2; j3

�
� �ðj2 þ j3 þ j1 � k

2 þ pÞ
p!�ðj2 þ j3 þ j1 � k

2Þ
�ðj2 þ j3 þ j1 � k

2 þ �pÞ
�p!�ðj2 þ j3 þ j1 � k

2Þ
(A9)

reduces to (A7) when p ¼ �p ¼ 0 and j1 ! k
2 � j1, as

expected from spectral flow symmetry. Similarly, if w ¼
þ1 and m1 ¼ �j1 � p, the same interpretation holds.
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On the contrary, for w ¼ �1 (w ¼ þ1) and m1 ¼
�j1 � p (m1 ¼ j1 þ p), the �ðj1 þ J1 � k

2Þ does not can-
cel the factor �ð0Þ�1 and then, it was concluded in [5] that
the three-point function vanishes in this case.

However, notice that if J1 ¼ k
2 þ j1 þ n ¼ j2 þ j3 þ p,

�J1 ¼ k
2 þ j1 þ �n ¼ j2 þ j3 þ �p, n, �n 2 Z�0, the r.h.s. of

(A8) can also be rewritten as the r.h.s. of (A9), but now this
nonvanishing amplitude corresponds to a w ¼ 1 three-
point function which is not equivalent to a w-conserving
one. Indeed, (A9) is regular as long as n < p ( �n < �p) and
when n � p ( �n � �p) there are divergences in Cðk2 �
j1; j2; j3Þ at j1 ¼ j2 þ j3 � k

2 � q with q ¼ 0; 1; 2; � � � .
Using the spectral flow symmetry, the w ¼ 1 short string
can be identified with a w ¼ 2 short string with ~j1 ¼ k

2 �
j1 ¼ k� j2 � j3 þ q, which correspond to the Poles2 in
[5].

b. Factorization of four-point functions of w ¼ 0 short
strings

The four-point amplitude of w ¼ 0 short strings was
extensively studied in [5]. The conformal blocks were
rearranged as sums of products of positive powers of x
times functions of u ¼ z=x. In order to perform the integral
over the world sheet before the j integral, it was necessary
to change the j-integration contour from 1

2 þ iR to k�1
2 þ

iR, and in this process two types of sequences of poles
were picked up, namely,

Poles 1: j3 ¼ j1 þ j2 þ n;

Poles2: j3 ¼ k� j1 � j2 þ n;

where n ¼ 0; 1; 2; . . . . Only values of n for which j3 <
k�1
2

contribute to the factorization, so Poles1 appear when j1 þ
j2 <

k�1
2 and Poles2 when j1 þ j2 >

kþ1
2 . The contributions

from Poles1 were identified as two particle states of short
strings in the boundary conformal field theory, but no
interpretation was found for Poles2 as s-channel exchange.

Recall that we found Poles1 among the w-conserving

discrete contributions to the OPE Dþ;wi

ji
�Dþ;wi

ji
[see

(3.28)] and Poles2 in the w-violating terms with ~j3 ¼ k
2 �

j3 ¼ j1 þ j2 � k
2 � n. Therefore, it seems tempting to con-

sider Poles2 as two particle states of w ¼ 1 short strings in
the boundary conformal field theory. However, neither the
powers of x, �x nor the residues of the poles in the four-point
function studied in [5] allow this interpretation and thus the
Poles2 had to be truncated. Clearly, more work is necessary
to determine the four-point function and understand the
factorization.

3. KZ equations in the m basis and the factorization
ansatz

We studied some features of the factorization of four-
point functions in Sec. V. The purpose of this Appendix is

to show some consistency conditions of the expressions
used in that section.
Let us start by considering the KZ equation for

w-conserving n-point functions in the m basis, namely,
[10]

E i�
�1

�Yn
‘¼1

�j‘;w‘
m‘; �m‘

ðz‘; �z‘Þ
�
¼ 0; (A10)

where

E i 
 ðk� 2Þ @

@zi
þX

j�i

Qij

zji
;

Qij ¼ �2t3i t
3
j þ t�i tþj þ tþi t�j ;

(A11)

ta are defined by ~Ja0jj;m; �m;wi ¼ �tajj; m; �m;wi,
jj; m; �m;wi being the state corresponding to the field

�j;w
m; �m, and � was introduced in Sec. V.

Since a generic w-conserving four-point function can be
obtained from the expression involving four w ¼ 0 fields,
we concentrate on

�Y4
i¼1

�ji;wi¼0
mi; �mi

ðzi; �ziÞ
�
¼ jz34j2ð~�2þ~�1�~�4�~�3Þ

� jz14j2ð~�2þ~�3�~�4�~�1Þ

� jz13j2ð~�4�~�1�~�2�~�3Þ

� jz24j�4~�2F jðz; �zÞ;

F jðz; �zÞ being a function of the cross ratios z, �z, not

determined by conformal symmetry. The KZ equation
(A10) implies the following constraint:

@F jðz; �zÞ
@z

¼ 1

k� 2

�
Q21

z
þ Q23

z� 1

�
F jðz; �zÞ: (A12)

Assuming that F jðz; �zÞ has the following form

F jðz; �zÞ ¼
X1

N; �N¼0

Z
dj

�
AðN; �NÞ
j

j1; j2; j3; j4

m1; m2; . . . ; �m4

" #

� z�j�~�1�~�2þN �z�j�~�1�~�2þ �N

�
; (A13)

inserting it into (A12) with �j ¼ ~�j 
 � jð1þjÞ
k�2 , then

Að0;0Þ
j

j1; j2; j3; j4
m1; m2; . . . ; �m4

� �
satisfies
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f2m1m2 � jð1þ jÞ þ j1ð1þ j1Þ

þ j2ð1þ j2ÞgAð0;0Þ
j

j1; j2; j3; j4

m1; m2; . . . ; �m4

" #

¼ ðm1 � j1Þðm2 þ j2ÞAð0;0Þ
j

j1; j2; j3; j4

m1 þ 1; m2 � 1; . . . ; �m4

" #

þ ðm1 þ j1Þðm2 � j2ÞAð0;0Þ
j

j1; j2; j3; j4

m1 � 1; m2 þ 1; . . . ; �m4

" #
:

(A14)

The equations relating coefficients AðN; �NÞ
j with N, �N �

0, are much more complicated because they mix terms with
different values of mi, �mi with terms at different levels N,
�N.

This equation does not have enough information to

determine Að0;0Þ
j completely. So we just check that the

expression found in (5.5) is consistent with an analysis
performed directly in the m basis. Inserting

Að0;0Þ
j

j1; j2; j3; j4
m1; m2; . . . ; �m4

� �
¼ Aw¼0

j ðj1; . . . ; j4;m1; . . . ; �m4Þ

into (A14) reproduces the same equation with Að0;0Þ
j re-

placed by Wðj1; j2; j;m1; m2; mÞ. Because of the compli-
cated expressions known for W, we focus on the case in
which one of the fields in the four-point function is a

discrete primary, namely, �j1;w1¼0
m1; �m1

2 Dþ;w¼0
j1

. In this

case, using (3.17) one can show that (A14) is equivalent to

0 ¼ Xn1�1

n¼0

ð�Þn n1
n

� ��
j�mþ ðm1 � j1Þð1þ j1 þm1Þ

n1 þ 1� n
þ ðm2 � j2Þð1þ j2 þm2Þðn1 � nÞ

nþ 1þ jþm� n1

�
�ðn� j1 � j2 þ jÞ
�ð�j1 � j2 þ jÞ

� �ðnþ 1þ jþ j2 � j1Þ
�ð1þ jþ j2 � j1Þ

�ð�2j1Þ
�ðn� 2j1Þ

�ð1þ jþmÞ
�ðn� n1 þ 1þ jþmÞ � ð�Þn1½m1ð1�m1Þ þ j1ð1þ j1Þ�

� �ðn1 � j1 � j2 þ jÞ
�ð�j1 � j2 þ jÞ

�ðn1 þ 1þ jþ j2 � j1Þ
�ð1þ jþ j2 � j1Þ

�ð�2j1Þ
�ðn1 � 2j1Þ ;

where n1 ¼ m1 þ j1 and m ¼ m1 þm2. Using m conservation this can be rewritten as

0 ¼ Xn1�1

n¼0

ð�Þn n1
n

� ��
�n

1� nþ 2j1
n1 þ 1� n

þ ðn� j1 � j2 þ jÞðnþ 1þ j2 þ j� j1Þ
nþ 1þ jþm� n1

�
�ðn� j1 � j2 þ jÞ
�ð�j1 � j2 þ jÞ

� �ðnþ 1þ j2 þ j� j1Þ
�ð1þ j2 þ j� j1Þ

�ð�2j1Þ
�ðn� 2j1Þ

�ð1þ jþmÞ
�ðn� n1 þ 1þ jþmÞ � ð�Þn1½m1ð1�m1Þ þ j1ð1þ j1Þ�

� �ðn1 � j1 � j2 þ jÞ
�ð�j1 � j2 þ jÞ

�ðn1 þ 1þ j2 þ j� j1Þ
�ð1þ j2 þ j� j1Þ

�ð�2j1Þ
�ðn1 � 2j1Þ :

To see that this vanishes, it is sufficient to note that

Xn1�1

n¼0

ð�Þn n1
n

� ��
�n

1� nþ 2j1
n1 þ 1� n

�
�ðn� j1 � j2 þ jÞ
�ð�j1 � j2 þ jÞ

�ðnþ 1þ j2 þ j� j1Þ
�ð1þ j2 þ j� j1Þ

�ð�2j1Þ
�ðn� 2j1Þ

�ð1þ jþmÞ
�ðn� n1 þ 1þ jþmÞ

� ð�Þn1½m1ð1�m1Þ þ j1ð1þ j1Þ��ðn1 � j1 � j2 þ jÞ
�ð�j1 � j2 þ jÞ

�ðn1 þ 1þ j2 þ j� j1Þ
�ð1þ j2 þ j� j1Þ

�ð�2j1Þ
�ðn1 � 2j1Þ

¼ � Xn1�1

~n¼0

ð�Þ~n n1
~n

� ��ð~n� j1 � j2 þ jÞð~nþ 1þ j2 þ j� j1Þ
~nþ 1þ jþm� n1

�
�ð~n� j1 � j2 þ jÞ
�ð�j1 � j2 þ jÞ

�ð~nþ 1þ j2 þ j� j1Þ
�ð1þ j2 þ j� j1Þ

�ð�2j1Þ
�ð~n� 2j1Þ

� �ð1þ jþmÞ
�ð~n� n1 þ 1þ jþmÞ ;

where ~n ¼ n� 1.
Let us now discuss the other possible ansatz, namely (5.11). To see that Aw¼1

j also verifies the KZ equation, consider

�j ¼ � jð1þjÞ
k�2 �m� k

4 and m ¼ m1 þm2 � k
2 in (A12). In this case, the equation to be satisfied by Að0;0Þ

j , obtained by

replacing (A13) into (A12), is the following:
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f2m1m2 � jð1þ jÞ þ j1ð1þ j1Þ þ j2ð1þ j2Þ � ðk� 2Þ
�
m1 þm2 � k

4

��
Að0;0Þ
j

j1; j2; j3; j4

m1; m2; . . . ; �m4

" #

¼ ðm1 � j1Þðm2 þ j2ÞAð0;0Þ
j

j1; j2; j3; j4

m1 þ 1; m2 � 1; . . . ; �m4

" #
þ ðm1 þ j1Þðm2 � j2ÞAð0;0Þ

j

j1; j2; j3; j4

m1 � 1; m2 þ 1; . . . ; �m4

" #

� ðm2 � j2Þðm3 þ j3ÞAð0;0Þ
j

j1; j2; j3; j4

m1; m2 þ 1; m3 � 1; . . . ; �m4

" #
: (A15)

It is not difficult to check that

Að0;0Þ
j

j1; j2; j3; j4
m1; m2; . . . ; �m4

� �
¼ Aw¼1

j ðj1; . . . ; j4;m1; . . . ; �m4Þ

is a solution of this equation.

Obviously, Aw¼�1
j is also a solution of (A12) when �j ¼ � jð1þjÞ

k�2 þm� k
4 and m ¼ m1 þm2 þ k

2 .

Here, we have considered the simple case of four w ¼ 0 fields. However, these results can be generalized for arbitrary
w-conserving correlators using the identity (5.9).
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