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Abstract

We set up a framework to conduct experiments for estimating spillover effects when units
are grouped into mutually exclusive clusters. We improve upon existing methods by allowing
for heteroskedasticity, intra-cluster correlation and cluster size heterogeneity, which are typi-
cally ignored when designing experiments. We show that ignoring these factors can severely
overestimate power and underestimate minimum detectable effects. We derive formulas for
optimal group-level assignment probabilities and the power function used to calculate power,
sample size, and minimum detectable effects. We apply our methods to the design of a large-
scale randomized communication campaign in a municipality of Argentina to estimate total
and neighborhood spillover effects on property tax compliance. Besides the increase in tax
compliance of individuals directly targeted with our mailing, we find evidence of spillover
effects on untreated individuals in street blocks where a high proportion of taxpayers were
notified.
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1 Introduction

There has been a renewed interest in the social interactions behind public policy interventions—
in the context of schools, of welfare take-up and of tax compliance, among many others. The
presence of interference between units has important consequences and challenges for the design
of randomized controlled trials and the assessment of their impact, and the early experimental
literature typically considered effects on non-treated units in an ex-post fashion (e.g. Miguel and
Kremer, 2004). In this paper, we set up a general framework to design and carry out experiments
of this type. We then employ our methods and design a large scale field experiment to capture

relatively elusive spillover effects of communication campaigns on tax compliance.

Our first methodological contribution is to derive an asymptotic distributional approximation
and variance formulas to conduct power, sample size and minimum detectable effects calculations
for general multi-treatment experimental designs where units are grouped into mutually exclusive
clusters (as in, e.g., Duflo and Saez, 2003; Crépon et al., 2013). We improve upon existing methods
by allowing for general forms of heteroskedasticity, intracluster correlation and cluster size hetero-
geneity, all factors that affect the variance of treatment effect estimators but are typically ignored
when designing experiments. To illustrate the importance of this issue empirically, we use data
from existing studies to show that the corrected minimum detectable effects (MDEs) can be about

20% and up to 30% larger than the ones that fail to account for cluster heterogeneity.

We consider a double-array asymptotic setting where cluster sizes are allowed, but not required,
to grow with the sample size. This allows us to determine the effect of group size heterogeneity on
the accuracy of the normal approximation for conducting inference and power calculations. Our
analysis nests the commonly analyzed cases with fixed cluster sizes, equally sized clusters, binary
treatment and non-clustered experiments, among others. Our results can be straightforwardly
implemented after imputing values for outcome variances and intracluster correlations, as in any
standard power analysis. We also show that our general formula simplifies to well-known formulas

in specific designs (e.g. Duflo, Glennerster and Kremer, 2007).

Our second methodological contribution is to apply our general results to partial population
designs for estimating spillover effects. We show our formulas generalize those of Hirano and Hahn
(2010) and Baird et al. (2018) to account for heteroskedasticity, general forms of intra-cluster
correlation and cluster size heterogeneity. In addition, we provide a power function to conduct
power, sample size, and minimum detectable effects calculations for different treatment effects
based on our distributional approximation and variance formulas. Finally, we derive formulas for

optimal group-level assignment probabilities.

Lastly, we apply our framework to the design of a large-scale field experiment devised to estimate
total and neighborhood spillover effects of a randomized communication campaign on property tax

compliance. We conducted the experiment in a large municipality of Argentina where neighbors are



required to pay a monthly bill on their real estate, locally known as Tasa por Servicios Generales
(TSG), which accounts for most of the local own revenues in Argentine municipalities. Property tax
collection fell significantly in the context of the COVID-19 lockdown, and we devised an intervention
in October 2020, when mobility restrictions started to ease, to help the Municipality recoup its
collection levels. Our campaign consisted of sending personalized letters to randomly selected
dwellings with reminders about due taxes, as well as information about the status of the account,
due dates, past due debt, and payment methods. While there is ample evidence on the effect
of tax reminders on compliance and collection (Antinyan and Asatryan, 2019), our main research
objective was to find evidence on relatively elusive spillover effects from information campaigns on
tax collection. We designed the experiment — group sizes, power calculations, etc. — following our
framework to maximize the chance of capturing spillover effects of our mailings on neighbors that
lived in the same street blocks of treated individuals (i.e., those who received letters from us) but

that did not receive a letter.

Randomization took place in two stages. First, we randomly divided our sample of 3,982 blocks
(clusters) into four groups with different intensity of treatment: (1) pure control blocks where
no accounts were notified, (2) blocks with 20% of the accounts treated, (3) blocks with 50% of the
accounts treated, and (4) blocks with 80% of the accounts treated. In the second stage, we randomly
selected accounts within the last three groups of blocks to receive the personalized information letter.
We sent approximately 25,000 letters between September 28th and October 7th, 2020, corresponding
to the October billing period (with due date on the 9th) as well as past due debt (if any). We run
saturated regressions that identify total effects (the change in outcomes among treated individuals
— i.e., letter recipients — relative to those in pure control blocks) and spillover effects (the behavior
of untreated neighbors within treated blocks —blocks with treated individuals— relative to those in

pure control blocks) on monthly payments.

We find compelling graphical evidence of total effects and spillover effects on property tax pay-
ment rates in the October billing period (the month of the intervention). Our results reveal higher
payment rates of treated and untreated accounts relative to neighbors in pure control blocks where
no neighbors received the information letter. The regressions show an immediate and statistically
significant effect in the payment rate of treated units in the three saturation groups relative to
pure control blocks. For blocks with the highest saturation (80% treated accounts), total effects on
bill payments emerge (numerically and statistically) on the same day that the letters started to be
distributed, reaching a magnitude of about 4.5 percentage points by the due date. This represents
a 13.2% increase relative to the payment rate in pure control blocks. We validate the experiment by
showing no effects for bill payments in September 2020 (i.e., a billing period before the intervention

took place).

Spillover effects are more modest in magnitude but still substantial and precisely estimated, but

only in high-saturation street blocks (those with 80% treated accounts). Payment rates of untreated



accounts in those blocks increase by about 1.1 percentage point, a statistically significant effect in
the early days of the intervention. Conversely, we do not find evidence of spillover effects in blocks
with only 20% or 50% treated accounts, with estimates of spillover effects that oscillate around

Zero.

Finally, we find some heterogeneous effects along the expected (i.e., pre-registered) dimensions.
Spillovers in street blocks with 80% treated individuals are much higher at about 2.6 percentage
points (and highly statistically significant) in the blocks above the median of payment rates for
2019, the tax year before our intervention (and the pandemic and the ensuing lockdown), whereas

it is not statistically significant in blocks below the median.

Comparison with existing literature. Our paper contributes to a growing literature on ex-
perimental design (Hirano and Hahn, 2010; Athey, Eckles and Imbens, 2018; Baird et al., 2018;
Bugni, Canay and Shaikh, 2018, 2019; Basse, Feller and Toulis, 2019; Jiang and Imai, 2021; Puelz
et al., 2022; Bai, 2022; Viviano, 2022). More specifically, our results are applied to the estimation
of spillover effects and generalize those of Hirano and Hahn (2010) and Baird et al. (2018) by allow-
ing for general treatment assignment mechanisms, within-group heteroskedasticity and correlation
structures, heterogeneity in cluster sizes and alternative optimality criteria for experimental design.
In particular, cluster size heterogeneity, which is commonly ignored when designing experiments,
has two important practical implications. First, when clusters are not equally sized, variance for-
mulas need an adjustment term that depends on the first and second moments of the cluster size
distribution (Cameron and Miller, 2015). Ignoring this heterogeneity when designing experiments
results in overestimating power and underestimating MDEs, as we illustrate in Section 2. Second,
cluster heterogeneity can affect the accuracy of the large sample normal approximation, and power
calculations based on this approximation may be misleading when cluster sizes are “too heteroge-
neous” (Carter, Schnepel and Steigerwald, 2017; Djogbenou, MacKinnon and Orregaard Nielsen,
2019). This fact highlights the importance of analyzing and accounting for the distribution of clus-
ter sizes when designing experiments. Based on recent advances in the econometric literature on
inference for clustered data (Hansen and Lee, 2019), our main methodological result provides two

statistics that summarize the heterogeneity in the cluster size distribution.

In related work, Athey, Eckles and Imbens (2018), Basse, Feller and Toulis (2019) and Puelz
et al. (2022) derive randomization inference tests for a general class of null hypotheses under in-
terference, and Jiang and Imai (2021) analyze two-stage completely randomized experiments and
provide randomization-based variance estimators and sample size formulas. Our results complement
this literature by considering different assignment mechanisms and by conducting super-population-
based large-sample (instead of design-based) inference in a double array asymptotic framework. One
advantage of our approach is that it allows us to determine the effect of cluster size heterogeneity

in the asymptotic distribution of the treatment effect estimators. As mentioned, we also contribute



to the existing literature by deriving optimal choices of group-level assignment probabilities.

We also contribute to a large empirical literature on property tax compliance and a small but
growing literature on spillover effects. There has been a renewed interest on this subject with
some recent insightful papers such as Brockmeyer et al. (2020) in Mexico City, Weigel (2020) and
Bergeron, Tourek and Weigel (2021) in the Democratic Republic of Congo, Krause (2020) in Haiti,
and Eguino and Schéchtele (2020) in Argentina, among others.! While the latter are randomized
controlled trials, they do not address directly the issue of potential spillovers in compliance at
the local level. The social interactions behind public policy interventions in tax compliance has
remained a relatively elusive issue in this literature. In a recent study of tax professionals as
sources of spillovers between taxpayers, Battaglini et al. (2019) highlight that network externalities
in compliance behavior has been documented in laboratory experiments. They also discuss more
recent studies based on randomized controlled trials that test the importance of spatial proximity.
Rincke and Traxler (2011) study enforcement spillovers of TV licensing inspections on untreated
households in Austria (see also Drago, Mengel and Traxler, 2020). In a study of the income tax
at the city level in Detroit, Meiselman (2018) fails to find evidence of geographic network effects
on neighbors. In the context of firms, Boning et al. (2020) analyze direct and network effects from
in-person visits by revenue officers on visited and non-visited firms. Whereas these papers find
spillover effects in compliance, their original experiments were not designed to capture these effects.
A notable exception is Pomeranz (2015) who shows that increasing enforcement on a randomly-
selected group of Chilean firms leads to spillovers up the VAT chain. We build on these pioneering

works by designing our intervention with the purpose of capturing spillovers.

The paper is organized as follows. Section 2 provides a brief illustration based on previously
published studies of how our methodology can result in better design of partial population exper-
iments. In Section 3, we set up our framework for two-stage experiments and derive the main
methodological results. In Section 4, we describe the large-scale randomized communication cam-
paign, the administrative data used in the analysis, the empirical strategy and the results from our

empirical analysis. Section 5 provides some concluding remarks.

2 Why is Accounting for Cluster Heterogeneity in Experi-
mental Design Important?
One of our main methodological contributions is to provide variance and power formulas that ac-

count for cluster size heterogeneity. In field experiments with clustered designs, we can expect

cluster sizes to vary substantially: for instance, electoral precincts, towns, schools or school dis-

IFor previous work in Argentina see Castro and Scartascini (2015) and Lopez-Luzuriaga and Scartascini (2019).
Antinyan and Asatryan (2019) present a meta-analysis of nudges in tax compliance.
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tricts, can have different numbers of voters, population or students. In the application we present
below, our tax information campaign reaches city street blocks with a wide range of taxpayers—
from 8 in the smallest blocks to 50 in the largest (see Figure 2). When clusters vary in size, the
variance of treatment effect estimators requires an adjustment factor that depends on the average
and the variance of cluster size. Ignoring this adjustment factor underestimates the variance of the
estimators of interest, which in turn results in overestimating power and underestimating MDEs.
As we show in Section 3, this problem becomes more serious the larger (i) the ratio of the variance to
average cluster size, (ii) the intraclass correlation in outcomes, and (iii) the within-group correlation

of treatment assignments.

We illustrate this issue based on data from four published studies: Ichino and Schiindeln (2012),
Haushofer and Shapiro (2016), Giné and Mansuri (2018) and Imai, Jiang and Malani (2021). These
four experiments employ a partial population design where clusters are randomly assigned to dif-
ferent treatment intensities to estimate spillover effects (see Section 3.4 and Section C.1 in the
supplemental appendix for further details). Specifically, we use the formulas we derive in Section
3 to calculate standard errors and MDEs accounting for cluster size heterogeneity using the me-
dian values of number of groups, G = 95, average group size, n = 23.3, and group size standard
deviation, sd(n,) = 15.2, from these four studies. We then compare these adjusted standard errors
and MDEs with the unadjusted ones that would be obtained if (incorrectly) ignoring cluster size

heterogeneity.

The results from this numerical exercise are shown in Figure 1. Panel (a) shows the ratio of the
adjusted to unadjusted standard errors as a function of the intraclass correlation in the outcomes,
p. The figure shows that the ratio grows rapidly as p increases, and stabilizes between 1.15 and
1.2, suggesting that even for moderate levels of intraclass correlation, the adjustment factor due
to group size heterogeneity is substantial. Panel (b) shows the adjusted and unadjusted MDEs,
and shows that even for values of p as low as 0.05, the adjusted MDE can be 10% larger than the

unadjusted one, and this difference can grow up to around 20% for larger values of p.

The underestimation of standard errors and MDEs becomes more severe as the ratio of variance
to mean of group sizes increases. For instance, in this illustration, keeping a standard deviation of
group sizes of sd(n,) = 15.2 but reducing average group size from n = 23.3 to n = 18 results in
adjusted MDEs that can be between 25% and 30% larger than the unadjusted ones. Ignoring this

adjustment results in overly optimistic and thus under-powered designs.



Figure 1: Adjusted and unadjusted standard errors and MDEs.
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Notes: Panel (a) shows the ratio of adjusted to unadjusted standard errors as a function of the intraclass correlation
(ICC). Panel (b) shows the adjusted (solid line) and unadjusted (dashed line) minimum detectable effects as a
function of the intraclass correlation (ICC). Adjusted magnitudes account for group size variability. Unadjusted
magnitudes assume no group size variability, i.e. zero variance of group size. Calculations use the median values

from Table Ad: G =95, n = 23.3, sd(ng) = 15.2.

3 Design of Two-Stage Experiments

3.1 Setup

In our general setup, we consider the design of experiments in a sample where units are grouped
into mutually exclusive clusters within which there might be spillovers in the outcomes of interest.
Common examples of this type of clustering are students in schools (Miguel and Kremer, 2004;
Beuermann et al., 2015), family members in households (Barrera-Osorio et al., 2011; Foos and
de Rooij, 2017), job seekers in labor markets (Crépon et al., 2013), employees in firms or organiza-
tions (Duflo and Saez, 2003), or households or voters in villages or other geographic administrative
units (Angelucci and De Giorgi, 2009; Ichino and Schiindeln, 2012; Haushofer and Shapiro, 2016;
Giné and Mansuri, 2018). In our application, a local tax reminder information campaign, the pop-
ulation of interest consists of taxpayers in residential city street blocks, and the outcome of interest
is the impact of the campaign on payments by targeted individuals and the potential spillovers on

the non-treated within blocks with different saturations of treated individuals.

We consider a sample of observations that are divided into mutually independent clusters g =
1,...,G, where each cluster g contains n, observations ¢ = 1,...,n, and the total sample size is

n = Zle ng (which includes the non-clustered setting as the special case in which n, = 1 for all
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g). We analyze a general design where the experimenter randomly assigns a multi-valued treatment
A;, taking values in a set A = {ag,a1,...,ax} where we set qy as the baseline treatment status
(such as no treatment or a placebo). In our setup, the treatment assignment may vary both within
and between clusters, which encompasses (multi-treatment) cluster randomized trials as the special

case in which A;; = A;; = A, for all ¢ and j. The binary treatment case corresponds to A = {0, 1}.

The treatment assignments in group g are collected in a vector Ay = (Ayy, ..., Ay, 4) charac-
terized by a probability distribution my(a) = Py[A, = a] for a € A". These probabilities can
differ across clusters, which allows, for example, for stratification at the cluster level. Similarly, let
Y, = (Yi,,...,Y,, ) be the vector collecting the observed outcomes in group g.

) Ngg

We introduce the following restrictions on the sampling and treatment assignment mechanism.

Assumption 1 (Sampling and Assignment Mechanism)
(1) (Y, Ag)g’;l are mutually independent across g.
(it) For each g and for alli=1,... ny, Py[A;y = ai] = my(ar) for a, € A.

(iii) For all ay € A, Y5 mg(ay) > 0.

Part (i) of Assumption 1 states that groups are independent. Part (ii) states that the treatment
assignment is identically distributed within each cluster, so that all units within the same group are
subject to the same assignment mechanism. Part (iii) rules out the case in which some treatment

values a; have zero probability in the sample.

3.2 Estimands and Estimators of Interest

In multi-treatment experiments, effects are commonly estimated through a saturated regression like

the following;:

K
Vig=a+ Y Bl(Ayy = ar) + &4 (1)
k=1

Because the regression is saturated, it follows that the OLS estimator of each coefficient Bk is a
difference in means between each assignment a; and the baseline assignment ay:
5 Zg Zz }/;g]l(Azg = ak) Zg Zz )/lgﬂ(Alg = ao)

I S S Ay = a) |y, 5 1Ay = a)

To ensure that these regression coefficients have a causal interpretation, we introduce the fol-
lowing assumption. In what follows, for each i and j, let A(;), denote the vector of assignments

excluding unit 7, and let A;), be the vector of assignments excluding 7 and j.
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Assumption 2 (Conditional Moments) For all i, j and g,

(i) E[Yig|Aig = ar, Awyg] = EYig|Aig = ar] = plar) for all a € A,
(it) V[Yig|Aig = ar, Ap)g] = V[Yig|Aig = ai] = o?(ag) for all a, € A,

(iti) Cov(Yig, Yig|Aig = ar, Ajg = al’A(iJ’)g> = Cou(Yiy, YjglAig = ar, Ajy = a1) = clax, ar) for all
ag,a; € A.

This assumption imposes two restrictions on the first and second conditional moments of the

observed outcomes. The first one states that, conditional on own assignment A;,, the other units’

19
assignments do not affect the outcome moments. In other words, the assignment A;, contains all
the relevant variation in the outcome moments. In Section 3.4 we show that, in a partial population
design, this assumption amounts to assuming that peers are exchangeable, that is, that outcomes

depend on the proportion of treated units but not their identities.

The second part of Assumption 2 imposes equal conditional first and second moments across
units and clusters, so that these moments do not vary over ¢ and g. In this case, the parameters
can be defined in terms of a general population and not on a specific sample. This assumption
can be relaxed at the expense of additional notation by switching focus to averages across groups,

although this makes the parameters sample-dependent.

Under this assumption, the coefficients 8 = (f31, ..., fk)’ from Equation (6) equal differences in
expected outcomes, [ = E[Y |4, = aix] — E[Yi4|Aiy = ao] = plar) — p(ag) for k =1,..., K and
Eleig|Aig] = 0. In addition, OLS estimators are conditionally unbiased, that is, ]E[Bk|Ag] = [y.

3.3 Asymptotic Distribution and Power Function

In this section we present our main methodological result, which provides an asymptotic approxi-
mation to the distribution and the variance of the OLS estimators for the parameters in Equation
(1). Let this vector of OLS estimators be 3.

In what follows, we define 02(ay) = V[Yi,|Aiy = ax, c(ag, a;) = Cov(Yiy, Vsl Aig = ax, Ajy = a;),
plag, a)) = clag, a)/(o(ar)o(w)), my(ag, a) = Py[Aiy = ar, Ajy = @] for i # j and we let “—p”
denote convergence in distribution. We consider an asymptotic setting in which both the number
of groups and the group sizes grow with the sample size. The goal of letting n, — oo as n — oo
is to determine how fast group sizes can grow relative to the total sample size to allow for valid
inference based on the normal approximation. This type of approximation is more appropriate than
the fixed cluster size approach when groups can be large and heterogeneous in size. The setting
with fixed n, and/or equally-sized clusters (n, = n for all g) is nested as a particular case of our

analysis. The number of parameters remains fixed in our setup (see Vazquez-Bare, Forthcoming,



for an alternative approach in which the number of parameters is allowed to grow with the sample

size). The next result follows from applying Theorem 9 in Hansen and Lee (2019) to our setting.

Proposition 1 Suppose that Assumptions 1 and 2 and the reqularity conditions in Assumption 3

in the supplemental appendiz hold. If

2 G 4

n >n
max - — 0, =9 <O < oo, (2)
9<G n n?

then
V2 /(B — B) —p N (0, Ix)

where I is a K-dimensional identity matriz and:

no?(ay)

>g ngmy(ar)

mGk =

{1 + play, ak)z" ng(ny — )y (a, ak)}

>og ngmy(ar)
M 2 ng(ng — 1)my(ao, ao)
* >y ngTg(ao) {1 + #lao, o) }

> gy (a0)
2 ng(ng — 1)my(ax, ao)

2 ngﬂg(“’ﬂ) 29 ngﬂ'g(ao)

— 2no(ag)o(ag)p(ag, ag)

The proof and the full shape of the covariance matrix (including the off-diagonal elements) are
given in supplemental appendix C.4. In terms of practical implementation, the main takeaway from

this result is that, provided Condition (2) holds, the variance of each Bk can be approximated by:

Vo 0*(an)
n Z ngmg(a)

{1 + a0 22 n<znn— ;)(Z;ak m}
{1 + plan, 9) =2 nggg%;g)&()@o? “0>} ’
2y (g — 1)me(ar, ao)

> g gTg(ar) 3o ngmy(ao) '

+7( 02

>y NgTg(ao)

— 20(ag)o(ao)p(ar, ap)

This formula corresponds to the variance of a difference in means with clustered data.? More pre-
cisely, in the first two terms of the sum, the first components 0*(ay)/ 3, ngmg(ax) and o*(ag)/ 3=, ngmy(ag)
are the conditional variance of the outcome divided by the expected cell sample size, and the second
component is the design effect that accounts for clustering between observations within a group.
Notice that the design effect depends on the correlation in outcomes conditional on treatment as-
signments, p(a, ax), the correlation in treatment assignments, captured by 7, (ax, ax) and 7, (ag, ao),
and the heterogeneity in group sizes. Finally, the third term captures the covariance between the

two sample means. This last term is equal to zero whenever P,[A;, = ax, A;; = ao] = 0.

2Heuristically, 8 = Y3 — Yo and thus V[3;] = V[Yi — Yo] = V[Yi] 4+ V[Y5] — 2Cov(Yi, Yo).



In the above formula, the group sizes n, are observable and the probabilities 7, (ay), m4(ao)
and 7y(ag, a;) are determined by the experimental design. Hence, the only unknown terms are the
variances 02(a) and 02(ag) and intracluster correlations p(ay, ax), p(ag, ag) and p(ax, ag), which can
be imputed by the researcher based on a pilot experiment, previous literature or by considering a
range of reasonable values, as in standard power analysis. More precisely, based on the distributional
approximation and variance formulas in Proposition 1, power, sample size and minimum detectable

effects calculations can be conducted for each effect 3 using the power function:

5k + q) L — Zl—a/2 (4)

—— t Z1-q/2 =
Vel VA

after imputing the unknown parameters (outcome variances and intracluster correlations), where

T(B) ~1—

Z1_ay2 is the (1 —a/2)-quantile from the standard normal distribution. Also notice that conducting
inference and power calculations for linear combinations or smooth functions of the coefficients in
B (see e.g. the pooled and slope effects proposed by Baird et al., 2018) is straightforward using the
delta method. See Section C in the appendix for further details.

The approximation in Proposition 1 holds when the sample size is large enough and as long as
no cluster is “too large”, as formalized by Condition (2).*> More precisely, the first part of Condition
(2) ensures that the largest cluster is small relative to the total sample size, whereas the second
part restricts the fourth moment of the distribution of group sizes, which intuitively rules out heavy
tails. In practical terms, this highlights the importance of analyzing the distribution of group sizes
when designing an experiment to verify that all clusters are small relative to the total sample size

and possibly discard outliers if present. We discuss this further in our empirical analysis.

The following examples show how the general formula in Theorem 1 simplifies to well-known

formulas in specific designs.

Example 1 (Non-clustered experiments) Suppose that all clusters have only one unit, n, = 1.
This amounts to analyzing a random sample of individuals as in a standard RCT. Suppose the
treatment is assigned independently to each unit with probability p € (0,1). In this case, K = 1,
Ay €{0,1}, my(1) = p, m4(0) =1 — p, and Equation (3) reduces to:

A 0%(1) a2(0)
(i p)

In addition, under homoskedasticity, c*(1) = 02(0) = 0 and thus:

~ 02

M np(1 —p)

3Notice that this condition holds automatically when group sizes are seen as fixed in the asymptotic analysis, which
corresponds to the case of “many small groups”.
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which corresponds to Equation (6) in Duflo, Glennerster and Kremer (2007).

Example 2 (Clustered randomized experiments) Suppose that clusters are assigned to a bi-
nary treatment with probability A € (0,1) and that all units within a cluster receive the same
treatment, A;; = A, € {0,1}, which implies K = 1 and 7 (a1, a0) = 0. In addition, suppose that

all clusters are equally sized so that n, = n for all g. Then, Equation (3) reduces to:

a?(1)
GnA

a*(0)

VIB ~ Ga(l—\)

[1+p(0)(n —1)].

[1+p(1) (R = 1) +

In addition, assume a random effects structure so that 0?(1) = 02(0) = 0* + 7% and p(1) = p(0) =

72/(0? + 72). In this case,
~ 1 nr? + o?
Vig] =~ '
5] A1 =)\ Gn

which corresponds to Equation (9) in Duflo, Glennerster and Kremer (2007).

3.4 Partial Population Designs

We now apply Proposition 1 to partial population designs for estimating spillover effects. In a
partial population design, groups are randomly divided into categories denoted by T, € T =
{0,1,2,..., M} where by convention T, = 0 denotes a pure control group and P[T, = t] = ¢,.
Within each group, treatment is assigned at the individual level with a probability that depends
on the value of T,, P,[D;, = 1|T, = t] = p,(t) and where P,[D;, = 0|7, = 0] = 1. Thus, in this case
Ay = (Diy,T,) and Wg(d, t) = p(t)4(1 — py(t))' . In addltlon, P,[A;, = (d,t), Ajy = (0,0)] =0
for any t # 0.

In this setting, Assumption 2 requires that outcome moments do not vary with peers’ assign-
ments, conditional on own assignment, for example E[Yj|A;y = ax, Ag)g] = E[Yig|Aiy = ax]. In a
partial population experiment, this assumption reduces to E[Y;j|D;y, = d,T,, D, = E[Yig|D;y =
d, T, = t]. Since T, =t determines the proportion of treated units in the group, this requirement
amounts to assuming that, given the proportion of treated units determined by 7T}, the identities
of the treated peers do not affect the outcome. In such cases, it is usually said that peers are
exchangeable. This assumption is commonly invoked in the spillovers literature (see Vazquez-Bare,

Forthcoming, and references therein for further discussion).

Denote the assignment (D;,,T,) = (d,t) by “dt” and the assignment (D;,,T,) = (0,0) by “0”.

Applying Proposition 1 to this case, under Condition (2) the variance of each treatment effect
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estimator Bdt can be approximated by:

5 o?(dt, dt)
V[Ba| ~ N L (e RO {1 + p(dt, dt)

+ 027(1(;’ 0) {1 + p(0,0) <Z“;n — 1>} .

As mentioned, the variances and intra-cluster correlations are the only unknown parameters,

>y ng(ng — 1)Py[Dig = d, Djy = d|Ty = t]}
22g gDy (1) (1 = py (1)1

Q N

(5)

whereas the group sizes are observed in the sample and the probabilities ¢, p,(t) and P,[D;, =
d,D;, = d|T, = t] are chosen by the researcher. Section C.2 in the appendix discusses the two
most common within-group assignment mechanisms, namely, fixed margins and Bernoulli trials,

and characterizes these probabilities explicitly.

Next, we show how our general formula in Equation (5) simplifies to the formulas proposed in

the literature under further assumptions.

Example 3 (Homoskedastic case with two treatment intensities) Suppose there is only one
treatment intensity and a pure control category, so that M =1 and A;; € {(0,0),(0,1),(1,1)}, as
in Duflo and Saez (2003). Let ¢ = P[T, = 1] and p = P[D;, = 1|T, = 1]. Assume that o*(ay) = 1
and p(ag,a;) =0 for k,1 =0,1. In this case, for assignment (d,t) = (0,1), Equation (5) simplifies

to:
A1 1 —pq
Vil (1—=p)q(1—q)

which corresponds to the variance formula in Hirano and Hahn (2010).

Example 4 (Random effects structure with equally-sized groups) Consider the case in which
groups are equally sized, ng = n for all g, and a random effects covariance structure so that
o%(ay) = o® + 72, plag, ;) = 7% for all k,1. In addition, suppose that the within-group assign-
ment given T, = t sets a fixzed number of treated units np, in each group, which implies that
PD;, = 1,D;, = 1T, = t] = pi(np, — 1)/(n — 1). In this case, for assignment (1,t), Equation

(5) becomes:
o o2 4+712 (_ 1 1 1 1
V[fi] = — {”P <+>+(1_P) (+>}
nG &% Qo P Qo

which corresponds to Equation (3) in Baird et al. (2018).

While these two examples provide useful guidance for practitioners on how to design experiments
to estimate spillovers, they make restrictive assumptions that may result in under-powered designs,
as illustrated in Section 2. Equation (5) generalizes these cases by allowing for general forms of

heteroskedasticity, intra-cluster correlation and non-homogeneous clusters.*

4A practical issue that arises when allowing for heterogeneously-sized clusters is that it may not be possible to assign
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3.5 Design of Partial Population Experiments

Our results can be used to optimally choose assignment probabilities. To see the intuition, suppose
for simplicity that the probabilities Py[D;, = d|T, = t| and P,[D;, = d, D;, = d|T, = t] do not
vary over g. When designing a partial population experiment, the researcher needs to specify (i)
the number of treatment intensities M, (ii) the group-level assignment probabilities {q; }, where
¢ = P[T, = t] and (iii) the within-group treatment probabilities {p;}}’, and {P[D;, = d, D;, =
d|T, = t|}M, where p, = P[D;, = 1T, = t].

The choices of M and of the within-group treatment probabilities p; are closely related, and
depend on the structure of spillover effects that the researcher wants to be able to estimate. A
larger M allows for more “granularity” which may give a more complete assessment of spillovers, at
the expense of complicating estimation by introducing more parameters. This issue is discussed in
Vazquez-Bare (Forthcoming) in a setting with equally-sized groups. Given a value of M, the choice
of within-treatment probabilities p; depends on the researcher’s prior on the treatment intensities
that generate spillovers. For instance, suppose M = 3 (i.e. one pure control and three treatment
intensities). If the researcher believes that spillovers only materialize when the treatment intensity
is large, a possible choice would be p; = 50%, ps = 70% and p; = 90%. On the other hand, the
choice p; = 20%, ps = 50% and p3 = 80% may be more useful when the researcher does not have
a clear prior on the structure of spillovers and may therefore prefer a more uniform distribution of
treatment intensities. We do not discuss optimal choices of M and p, in this paper, as they depend
on the parameters that the researcher wishes to identify, which in turn depend on an unknown

function (the outcome response function).

We now discuss the choice of {g;}£, given M and the within-group treatment probabilities.
Optimally choosing this set of probabilities requires defining an optimality criterion that determines
how the variances of all the parameters of interest are aggregated. The literature on optimal design
of experiments has proposed several criteria (see e.g. Silvey, 1980; Melas, 2006; Berger and Wong,
2009). We focus on A-optimality, which minimizes the trace of the variance-covariance matrix of
the estimators (or equivalently, the average of the asymptotic variances).® The justification of this
criterion is that the trace of the variance-covariance matrix can be seen as a measure of the size of
the confidence ellipsoid (i.e. the multidimensional confidence interval) for the vector of parameters
of interest. While other criteria are possible, A-optimality has the advantage of having a simple

closed-form solution in this setting, as shown in the following proposition.

the exact desired number of units to treatment. We propose a method to deal with this issue in Section C.2 of the
appendix.

°Notice that this criterion is different from the one in Baird et al. (2018), who minimize the average standard error.
We propose this alternative method as it is more in line with the theoretical literature on experimental design, while
also allowing for a simple, closed-form solution to the optimality problem in Proposition 2.
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Proposition 2 In the design described in Section 3.4, consider the optimal design problem:

min z; {V[ﬁot] + V[Blt]}

90,915--,9M

with q > 0, Zt]\io @ = 1 using the variance formula in Equation (5). The optimal assignment

probabilities are given by:

. 2M By . V' By L0
= " /oMB, + > VB %= " /oMB, + > VB ’
> >
where ) )
0,0
By =7 (n’ ) {1+p(0,0) (ZZ - 1)}
and fort >0
2(1¢,1 - 1HP,[D;, =1,D;, = 1|T, =t
Bt: 9 ( t’ t) {1+p(1t, 1t)zgng(n9 ) g[ g ) 19 ‘ g ]}
Eg ngpg (t) Zg ngpg (t)
N a2(0t, 0t) {1 . Ot)zg ng(ng — 1)Py[Dsyy = 0, D;y = 0|T, = t]}
2 ng(1 — py(t)) 7 2 ng(1 — py(t))

The proof is given in supplemental appendix C.5.

Constrained Designs. Researchers may often need to incorporate different sets of practical
constraints when choosing assignment probabilities. For example, the design may need to account
for logistical, budgetary, political, administrative or other types of constraints that restrict the total
number of units that receive treatment. These restrictions can be incorporated when choosing ¢;.
In the next section, we describe the design of our partial population experiment where the total
number of treated units was in part given by a budgetary restriction. To choose the assignment
probabilities, we set up a system of equations incorporating this restriction and ensuring that the
variance of the smallest treatment cells are equal, to ensure a certain level of precision for the

“hardest” treatment effect to estimate.
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4 A Randomized Property Tax Communication Campaign

4.1 Background and Experimental Design

As discussed in the introduction, there is a large body of evidence on nudges and tax compliance
(Antinyan and Asatryan, 2019), but there is relatively scant evidence on the social interactions
behind these interventions. We designed and implemented a public policy intervention based on
the framework presented in the previous section to illustrate its potential to maximize the statistical
power to capture the presence of social effects in tax compliance — establishing credible evidence on

these effects was our second research question.

Our randomized controlled trial was designed as a partial population experiment with the pur-
pose of estimating the direct and spillover effects of a personalized communication campaign on
property tax compliance. The intervention took place in a large municipality of Argentina where
neighbors are billed and required to pay a municipal property tax on a monthly basis (the Tasa
por Servicios Generales). The experiment consisted of a two-level randomized communication cam-
paign where we sent a one-page personalized letter with information on the current billing period,

past due debt, and how to pay online or in person.’

Randomization took place in two stages—first at the city street block level, and then at the
taxpayer account (i.e., property) level. In the first stage, we randomly divided our sample of 3,982
blocks (clusters) into four groups with different intensity of treatment: (1) pure control blocks
where no accounts were notified, (2) blocks with 20% of the accounts treated, (3) blocks with 50%
of the accounts treated, and (4) blocks with 80% of the accounts treated. These different treatment
intensities were designed to capture whether spillovers depend on the saturation of our information
campaign at the city street block level (namely, low, medium and high saturation levels).” In the
second stage, we randomly selected accounts within the last three groups of blocks to receive the
treatment letter. The experiment was run on the universe of residential dwellings present in the

municipality in 2019.

The timeline of the intervention is displayed below. We sent approximately 25,000 treatment
letters to account holders who are billed the Tasa por Servicios Generales. The letters were delivered

between September 28th and October 7th, 2020, corresponding to payments due on October 9th,

6Figure A.1 in the appendix provides an anonymized example of the intervention letter. Our simple design emphasized
action-relevant information, in accordance with De Neve et al. (2021) who show that simplified tax letters are an
effective way to increases tax compliance.

7As explained in Subsection 3.5, the choice p; = 20%, p» = 50% and p3 = 80% may be useful when the researcher
does not have a clear prior on the structure of spillovers and may therefore prefer a more uniform distribution of
treatment intensities. Our choice attempts to balance parsimony with flexibility to detect nonlinearities in total
and spillover effects without having to estimate too many parameters. Ultimately, the choice of within-treatment
probabilities p; depends on the researcher’s prior on the treatment intensities that generate spillovers. The optimal
choice of p; depends on the parameters that the researcher wishes to identify and, thus, it is not addressed in our
paper.
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2020 as well as past due debt (if any). Direct effects of the campaign are captured by the difference
in outcomes among individuals targeted by the intervention (treated) compared to those in pure
control blocks. To study spillover or indirect effects, we compare the payment behavior of non-

targeted neighbors within treated blocks (untreated) relative to those in pure control blocks.

Timeline of the randomized communication campaign

25,000 letters delivered
A

~ ~

| | |
T T T
September 28 October 7 October 9 Timeline
First day Last day October 2020 2020
of campaign of campaign bill is due

4.2 Administrative Data

For the empirical analysis, we use a combination of administrative databases provided by the revenue
agency of the municipality where the experiment took place. The main database is constructed from
the monthly bills issued to account holders between January 2018 and December 2020. The unit
of observation is an account (cuenta), which coincides with a dwelling unit. The data contain the
following billing details and demographic characteristics of the account holder (titular): account
number (unique ID), address, block number, name of locality (neighborhood), year and month of
the bill (12 bills per year), monthly fee (in pesos), paid fee (amount in pesos), due date, date of
payment, days overdue, means of payment (cash or electronic), type of account (residential, retail
store, factory), gender of the account holder, age of the account holder, linear front meters of the

lot /property, assessed value of the property.

Baseline data. For the randomization, power calculations, and simulations, we use baseline data
from the year 2019. We rely on three different pre-treatment outcomes: (i) an indicator equal to 1
if the account paid the twelve monthly bills of 2019, (ii) an indicator equal to 1 if the account paid
at least one bill in 2019, and (iii) an indicator equal to 1 if the account paid six bills or more in
2019.

The municipality required us to target city street blocks with 8 to 50 accounts. Figure 2 shows
the distribution of accounts per block. Table 2 shows some descriptive statistics for the year 2019.
Our sample size consists of 68,808 accounts distributed in 3,982 blocks. The frequency of payments
is highly polarized. About 45 percent of the accounts paid the twelve 2019 monthly bills and about
35 percent did not pay any bill at all.® We call these two core groups always payers and never payers,
respectively. The proportion of always payers is relatively low (45 percent) and, therefore, leaves
room for potential behavioral responses from non-compliant and partially-compliant neighbors, and

this was compounded by the context of the pandemic, during which lockdown measures reduced

8For the full distribution, see Figure A.5.
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payments even from highly compliant individuals.

4.3 Treatment Assignment

Using the notation from Section 3.4, let n, indicate the number of units (accounts - cuentas) per
group (block - cuadra) with g = 1,...,G and let N = }° n, be the total sample size. The group-
level (block) treatment indicator is denoted by T, € {0, 1,2, 3} with distribution P[T, = t] = ¢, for
t =0,1,2,3 where T, = 0 indicates the pure control group, T, = 1 indicates the groups with 20%
treated, T, = 2 indicates groups with 50% treated, and T, = 3 indicates groups with 80% treated.
The unit-level (account) treatment indicator is D;, € {0,1}. We have that:

(

0 ift=0

02 ift=1
]P)[ng - 1|Tg = ] =Pt =

05 ift=2

\0.8 if t = 3.

Choice of ¢;. The expected number of treated units/letters sent is
ny = n(0.2q; + 0.5g2 + 0.8¢3)

On the other hand, since the assignments 7, = 1 and T, = 3 are symmetric, we set ¢; = ¢3. If the

goal is to send L letters, the choice of ¢; should satisfy:

Go+a+teptg=1
n(0.2¢1 + 0.5¢2 + 0.8¢q3) = L
q1 = g3

Finally, to ensure that the variances of the estimators are similar across assignments, we set:
q2 = Ry

where R depends on the intraclass correlation and the variance of the outcomes. We use the results
in Proposition 1 to approximate the variances and obtain the ratio R. We provide further details
in Appendix B.1. We were able to send L = 25,061 letters and determined the sample sizes shown
in Table 1.
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Table 1: Sample sizes

Blocks Control Obs Treated Obs

T, =0 Pure control 1,102 19,103 0
T,=1 20% treated 1,099 15,060 3,853
T, =2 50% treated 680 5,905 5,897
T,=3 80% treated 1,100 3,677 15,311
Total 3,981 43,745 25,0061

Power and MDE. Finally, we use the power function formula (4) to conduct power calculations
for each estimator using the following parameters: (i) o?(d,¢) = 0.25 for all (d,t);% (i) ICC = 0.1
which is close to (but larger than) the estimated intraclass correlation of the baseline outcome; (iii)
the sample and group sizes given by the baseline data. The power calculations give a minimum

detectable effect between 2.6 and 3.3 percentage points.'?

4.4 Estimation

Given an outcome Y;,, our goal is to estimate Sy, = E[Y;4|D;y = 0,7, = t| — E[Y}4|D;y = 0,7, = 0]
for t = 1,2,3, which can be seen as spillover effects on untreated units in groups with 7, = ¢
compared to pure controls, and 3y, = E[Y;,|D;, = 1,T, = t] — E[Y;y|D;y = 0,T, = 0] which are total

effects on treated units in groups with 7, =t compared to pure controls.

We jointly estimate the parameters of interest through the following saturated OLS regression:
3 3
Y;g =a+ ZﬁOtﬂ(Tg = t)(l - Dig) + ZBUIL(T{/ = t)Dig + Eig (6)
t=1 t=1
where we allow €;, to be correlated within blocks and use a cluster-robust variance estimator. In

this regression, ¢, is interpreted as the spillover effect on untreated units in groups with 7, =t and

7; is interpreted as the total effect on treated units in groups with 7;, = t.

9This gives a conservative estimate because 0.25 is the upper bound for the variance of a binary variable.
19 Appendix Figure B.10 plots the power function for each estimator
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4.5 Property Tax Information Campaign: Empirical Results
4.5.1 Total and Spillover Effects on the October 2020 bill

We begin the analysis by estimating total and neighborhood spillover effects on timely payments of
the October 2020 property tax bill.'! The due date was October 9th and the letters were delivered
between September 28th and October 7th. We start by showing compelling graphical evidence of
the effect of the intervention in Figures 3 to 5 and then we summarize the corresponding point

estimates in Tables 3 and 4.

Figure 3 panel (a) shows the cumulative share of individuals paying the October 2020 bill over
time, both for treated units and pure control blocks. The brown dashed line shows the payment rate
for pure control units. The blue dashed line corresponds to treated units in group 7, = 1 (blocks
with 20% treated). The black dashed line corresponds to treated units in group 7, = 2 (blocks with
50% treated). The red solid line corresponds to treated units in group 7, = 3 (blocks with 80%
treated). Panel (b) shows, for each calendar day, the difference between each treated group and the
pure control group (i.e., the treatment effect coefficients). Similarly, Figure 4 shows the analog but

for untreated units and pure control blocks. Panel (b) thus captures spillover effects.'?

Figure 3 reveals a clear positive direct effect of the intervention on tax compliance of treated
accounts. The payment rate of treated units started to diverge from the pure control group as
soon as the intervention began, reaching the maximum effect exactly by the due date of the current

billing period, and staying relatively constant afterwards.

Although smaller in size, Figure 4 reveals a clear spillover effect of the intervention on untreated
accounts. Spillover effects mainly arise in high-saturation blocks where 80% of the neighbors were
treated, and, to a lesser extent, for blocks where 50% of units were treated. The payment rate of
untreated units starts to diverge from the pure control group right after the intervention began,
reaching the maximum effect by the due date of the current billing period, and declining slightly
afterwards. Conversely, social interference seems to be absent in blocks with only 20% treated

accounts, where the spillover effect for untreated units oscillates around the zero line.

Figure 5 presents the coefficients and 95% confidence intervals from a saturated regression that
estimates, day by day, the difference in payment rates between each treated and each untreated
group relative to pure control blocks in which no accounts were treated (see equation 6). The top
panel shows the effect on treated (left) and untreated (right) units in blocks with 80% treated,
and the middle and bottom panels display the analog results for blocks with 50% and 20% treated

1 Appendix section A.2 presents the results from balance test regressions. These results confirm that our groups are
balanced and comparable.

12For comparison, the gray solid line shows the treatment effect for treated units (pooled together from T, = 1,2,3
in Figure 3).
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units.'® The estimates displayed in the left panels of Figure 5 indicate an immediate and statistically
significant increase in the payment rate of treated units in the three saturation groups relative to
pure control blocks. Note that for the highest saturation group with 80% treated units, the effect
emerges (numerically and statistically) on the same day that the letters started to be distributed,
reaching a magnitude of about 4.5 percentage points. The right panels of Figure 5 show that
spillover effects are more modest in magnitude and precisely estimated. In high-saturation blocks
with 80% treated accounts, payment rates increase by about 1.1 percentage point and the effect is
statistically significant in the early days of the intervention, losing significance from the due date
onward. In all the cases, both total and spillover effects remain relatively constant after the due
date (October 9th).

Table 3 summarizes the corresponding point estimates for total and spillover effects reported
in Figure 5. Panels A, B, and C display total effects and spillover effects in blocks where 80%,
50%, and 20% were treated, respectively. The omitted category comprises accounts in blocks where
no accounts were treated. To validate our experiment, column (1) shows a placebo saturated
regression using timely payments of the September 2020 property tax bill as the dependent variable
(i.e., a billing period before the intervention took place). Reassuringly, these coefficients are small
in magnitude and none is statistically significant at standard levels.!* Columns (2) to (3) show
the coefficients and block-clustered standard errors for October 2020 bill payments at two different
dates: October 3 (early payments) and October 31 (includes overdue payments). To benchmark
our estimates, in the last row we report the average payment rate in pure control blocks at each of

these dates (i.e., the constant of each regression).

From Table 3, we can see that in the early stage of the intervention, high-saturation blocks
with 80% treated accounts present a statistically significant total and spillover effect of about 1.1
percentage point. This effect is relatively large in magnitude if we consider that by this date, only
5.2% of neighbors in pure controls block had paid their October 2020 bill. Naturally, as time goes
by more individuals start to pay their bill, reaching 34.4% in pure control blocks by the end of
the month, making small effects harder to detect. Accordingly, although the spillover effect on
untreated units remains unchanged in size, it loses statistical significance. In contrast, the total
effect on treated units increases to 4.5 percentage points, which represents 13.2% of the payment

rate in pure control blocks.

In sum, our property tax experiment uncovers both total and spillover effects by estimating a
higher payment rate of treated and untreated accounts relative to neighbors in pure control blocks
where nobody received the communication letter. In both cases, effects are larger in high-saturation

blocks, albeit short-lived for spillovers when considering the full sample.

13These point estimates coincide with those reported in panels (b) of Figures 3 and 4.

M Figure A.4 in the appendix presents the analog of Figure 5 for the pre-treatment September 2020 bill. Reassuringly,
the evidence indicates a zero pre-treatment effect on payment rates between each treated and untreated group
relative to pure control blocks.

20



4.5.2 Heterogeneous Effects

The results from the full experimental sample presented in the previous section unearthed modest
spillover effects only in the high saturation group and only in the early days of the intervention.
However, as discussed in our experiment’s pre-analysis plan, it is highly likely that our treatment
effects could vary along a fundamental dimension, namely pre-treatment tax compliance behav-
ior. The relevance of this dimension of heterogeneity was anticipated and pre-registered in the

experiment’s pre-analysis plan.

In this section, we study heterogeneous effects along this dimension. To do so, we divide the
sample in blocks that exhibited average compliance (i.e., payments) above and below the median
compliance in 2019. We define past compliance by computing the average number of payments of
the twelve monthly bills for 2019 in each block. We use this measure to divide our sample in two

groups — those above and those below the median block average payment rate.'

The logic of this heterogeneity analysis goes as follows. A large fraction of neighbors that
typically paid their bills stopped doing so during the pandemic in the first few months of 2020.
This decrease in compliance was stronger in blocks that had higher compliance in 2019. Hence,
we argue that such a core group of “good compliers” is more likely to be nudged to pay by our

intervention, and where spillover effects are more likely to show up.'6

This additional evidence is presented in Table 4, which is analogous to Table 3 but presents
two sets of results—below and above median 2019 compliance. The direct effects at the end of the
first month are generally larger but not substantially different: for blocks with 80%, 50% and 20%
saturation, direct effects are about 5.1, 5.7 and 4.4 percentage points for street blocks above the

median average compliance in 2019, compared to about 4.1, 4.8 and 5.4 for those below.!”

The division of the sample in these two groups shows a much starker contrast for indirect or
spillover effects. As in the main analysis in Table 3, there is a spillover effect in early payments for
the 80% saturation group but only for city blocks above median compliance in 2019. This effect is
relatively large (1.58 percentage points, larger in fact than the direct effect of 1.06). There is also
a significant spillover effect for the 20% saturation group, but it is relatively small and it dissipates
when looking at the end-of-month effects. For those in above median 2019 compliance city blocks in

the 80% saturation group, the end-of-month spillover effect is much larger: 2.56 percentage points,

5The distribution of the 68,806 accounts by the number of bills paid in 2019 is bi-modal, with a core group of
neighbors not paying any bill (35%) and another group paying all of them (45%). Panel (a) of Figure A.5 shows
the individual-level distribution. Panel (b) shows the block-level distribution with the corresponding moments used
to divide our sample.

16Figure A.6 suggests that 2018 and 2019 are comparable in terms of compliance, but compliance decreased substan-
tially in 2020 because of the pandemic—the sharp fall corresponds to the lockdown measures put in place. Figure
A.7 shows that payment rates in 2020 decreased more in blocks with higher compliance in 2019. In contrast, 2018
and 2019 show similar levels of compliance.

1"The differences are relatively small for early payments, and not significant for the placebo September 2020 bill.
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about half of the direct effect in the same group (5.09 percentage points).

The daily direct and indirect effect of our campaign for the group with 80% of individuals treated
in street blocks above and below median compliance in 2019 is illustrated in Figure 6, which makes

the pattern in Table 4 all the more apparent.'®

To sum up, the mild spillover effect reported in the previous section is much stronger and driven
by individuals living in blocks with high compliance in 2019, as predicted and registered in our
pre-analysis plan. The effect is only present in blocks where 80% of the accounts were treated,

where spillovers were more likely to emerge.

4.5.3 Other Margins

Subscriptions to electronic billing. We find evidence that our tax communication campaign
also increases the subscriptions to receive an electronic bill by e-mail.!” These effects are greater
in high-saturation blocks, albeit small in absolute value. Appendix Section A.3 presents convincing
graphical evidence of total and spillover effects (Figure A.8) which are then summarized in Table

A2, although spillover effects in this outcome are much more tenuous.

Backward and forward payments. We also find that the effects of our letters are not solely
concentrated on the October 2020 billing period (the bill targeted by our intervention). Section
A.4 presents convincing graphical evidence that the letters also increased the payment rates in
subsequent billing periods. Perhaps more striking, we also show that some neighbors made backward
payments to cancel past-due debt from previous billing periods. This is especially prominent after
April 2020 when the COVID-19 lockdown measures were established in Argentina (See Figure A.9).

5 Conclusion

We provide a general framework to carry out partial population experiments with an application to
spillovers in property tax compliance. The estimation of spillovers and other indirect effects must be
built into the experimental design and not as an afterthought. Yet, how to incorporate these aspects
is not obvious. We derive an asymptotic approximation and variance formulas to conduct power
calculations for general clustered experimental designs allowing for multiple treatments, general

forms of intra-cluster correlation, and cluster size heterogeneity.

One of the main methodological contributions of the analysis is to provide variance and power

8Table 4 confirms that spillover effects are driven by blocks with baseline compliance above the median in high
saturation blocks (80% treated). Spillover effects are more muted and insignificant in medium (50% treated) and
low (20% treated) saturation blocks, however. Reassuringly, the first two columns also show no effects for the
pre-intervention bill of September 2020 either above or below the median.

YNote that nudging individuals to sign up to e-billing was an explicit content of the letter (see Figure A.1).
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formulas that account for cluster size heterogeneity, which is typically ignored when designing
experiments. When clusters vary in size, the variance of treatment effect estimators contains an
adjustment factor that depends on the average and the variance of cluster size. Ignoring this
adjustment factor underestimates the variance of the estimators of interest, which in turn results
in overestimating power and underestimating MDEs. We illustrate this issue based on data from
four published studies conducting two-stage experiments. The corrected MDEs can be about 20%
and up to 30% larger than the ones that fail to account for cluster heterogeneity. To incorporate
cluster heterogeneity into the experimental design, we consider a double-array asymptotic setting
where both the number of clusters and the cluster sizes grow with the sample size, which nests the
commonly analyzed case with fixed cluster size and/or equally sized clusters. We then apply our
results to the design of partial population experiments for estimating spillover effects and use our
results to derive formulas for optimal group-level assignment probabilities. Our formulas and design

are easy to adapt to other experimental settings.

In our application, we estimate total and neighborhood spillover effects of a randomized commu-
nication campaign on property tax compliance in a large municipality of Argentina where neighbors
must pay a monthly bill on their real estate. We estimate total effects on monthly payments, and
also analyze whether the campaign creates spillover effects on neighbors that live nearby within a

treated block but that do not receive a letter.

We find compelling graphical evidence of total effects and spillover effects on property tax
payment rates. Our results reveal higher payment rates of treated and untreated accounts relative
to neighbors in pure control blocks where nobody received the communication letter. We find that
these indirect or spillover effects are much stronger in city street blocks that exhibited a higher

degree of tax compliance in the pre-treatment period.

The results have clear implications for the design of partial population experiments. Spillovers
and other indirect effects must be accounted for and incorporated not only in terms of being reg-
istered in a pre-analysis plan, but also and most importantly in terms of accounting for them in

power calculations.

In terms of the design of tax collection policies, we find evidence of interactions in tax payment
behavior. While our results do not point out to substantial savings in communication costs by relying
on word of mouth and indirect effects, they still point out that there is some degree of interactions
between taxpayers that could be taken into account for the design of optimal communication and

tax enforcement policies.
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6 Figures and Tables

Figure 2: Distribution of accounts per block
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Notes: This figure shows the distribution of accounts per block using data from the year 2019. We use these data to
design the experiment. Our sample size consists of 68,808 accounts distributed in 3,982 blocks.
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Figure 3: Payment rates: Treated groups vs Pure control blocks

(a) Payment rates in levels
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Notes: These figures show the effect of the intervention on payments of the October 2020 bill for treated groups.
Panel (a) shows the cumulative share of individuals paying the October 2020 bill over time. The brown dashed line
shows the payment rate for pure control units. The blue dashed line corresponds to treated units in group 7, =1
(blocks with 20% treated). The black dashed line corresponds to treated units in group T, = 2 (blocks with 50%
treated). The red solid line corresponds to treated units in group Ty = 3 (blocks with 80% treated). Panel (b)
shows, for each calendar date, the difference between each treated group and the pure control group (treatment effect
coefficients). The letters were delivered between September 28th and October 7th. The first vertical bar denotes the
start of the intervention. The due date was October 9th and is indicated with another vertical bar.
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Figure 4: Payment rates: Untreated groups vs Pure control blocks

(a) Payment rates in levels
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Notes: These figures show the effect of the intervention on payments of the October 2020 bill for untreated groups.
Panel (a) shows the cumulative share of individuals paying the October 2020 bill over time. The brown dashed line
shows the payment rate for pure control units. The blue dashed line corresponds to untreated units in group 7, =1
(blocks with 20% treated). The black dashed line corresponds to untreated units in group T, = 2 (blocks with 50%
treated). The red solid line corresponds to untreated units in group T, = 3 (blocks with 80% treated). Panel (b)
shows, for each calendar date, the difference between each untreated group and the pure control group (treatment
effect coefficients). For comparison, the gray solid line shows the treatment effects for treated units (pooled from
T, =1,2,3). The letters were delivered between September 28th and October 7th. The first vertical bar denotes the
start of the intervention. The due date was October 9th and is indicated with another vertical bar.
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Figure 5: Direct effects on treated accounts and spillover effects on untreated accounts
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Notes: These figures show the coefficients and 95% confidence intervals from a saturated regression that computes,
at each calendar day, the payment rate difference between each treated and untreated group relative to the pure
control group (i.e., blocks where no accounts were treated). The top panel shows the effect on treated (left) and
untreated (right) units in blocks with 80% treated (7, = 3). The middle panel shows the effect on treated (left) and
untreated (right) units in blocks with 50% treated (T, = 2). The bottom panel shows the effect on treated (left)
and untreated (right) units in blocks with 20% treated (T, = 3). These point estimates coincide with those reported
in panel (b) of Figures 3 and 4. Standard errors are clustered by block. The first vertical bar denotes the start of
the intervention. The due date for the October 2020 bill was October 9th and is indicated with another vertical bar.
The letters were delivered between September 28th and October 7th.
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Figure 6: Heterogeneity of total and spillover effects on property tax payments in blocks below and
above median compliance in 2019. Blocks with 80% treated.
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Notes: These figures show the coefficients and 95% confidence intervals from a saturated regression that computes,
at each calendar day, the payment rate difference between treated and untreated groups relative to the pure control
group (i.e., blocks where no accounts were treated). We focus the attention to blocks where 80% of the units
were treated. The top figures show the effect on treated (left) and untreated (right) units in blocks with baseline
compliance above the median. The bottom figures repeat this in blocks with baseline compliance below the median.
We define compliance as the share of bills paid by block in 2019. The median compliance is 0.56 (see Figure A.5).
Standard errors are clustered by block. The first vertical bar shows the due date for the September 2020 bill. This
corresponds to a bill issued and due for payment before our intervention began, thus serving as a placebo. The

second vertical bar indicates the start of the intervention. The letters were delivered between September 28th and
October Tth.
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Table 2: Descriptive statistics in 2019 (baseline year)

Blocks Obs Mean SD ICC
Paid the twelve bills in 2019 3,981 68, 808 0.449 0.497 0.062
Paid at least one bill in 2019 3,981 68, 808 0.650 0.477 0.071
Paid six bills or more in 2019 3,981 68, 808 0.572 0.495 0.073

Notes: This table shows descriptive statistics about the frequency of payments in 2019. This is the baseline year

we used for the randomization, power calculations, and simulations. The data set is restricted to blocks with size

between 8 and 50 accounts. Figure 2 shows the distribution of accounts per block. Our sample size consists of 68,808

accounts distributed in 3,982 blocks. The frequency of payments is very polarized. About 45 percent of the accounts

paid the twelve bills and about 35 percent did not pay any bill. We call these two core groups always payers and

never payers, respectively. The perfect compliance rate of 45 percent is presumably low and, therefore, leaves room

for potential behavioral responses from non-compliant and partially-compliant neighbors.
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Table 3: Total and spillover effects on property tax payments

Dependent variable: Placebo bill: Intervention bill:
Pr(pay the bill) Sep’20 Early By Oct 31

(1) (2) (3)

A. Blocks with 80% treated

Treated 0.12 0.96*** 4.55%F*
(0.69) (0.28) (0.74)
Untreated -0.30 1.10%* 0.79
(0.95) (0.43) (1.01)
B. Blocks with 50% treated
Treated 0.76 1.077#%* 4 .87+
(0.88) (0.41) (0.93)
Untreated 0.26 -0.02 -0.10
(0.88) (0.34) (0.91)
C. Blocks with 20% treated
Treated 0.85 0.69* 4.97F**
(0.93) (0.42) (0.99)
Untreated 0.07 0.11 -0.18
(0.68) (0.26) (0.72)
Payment Rate of Pure Control 29.70 5.15 34.37
Observations 68,806 68,806 68,806
Number of clusters (blocks) 3,981 3,981 3,981

Notes: This table shows the results from saturated OLS regressions (equation 6 in the text). Each column corre-
sponds to a separate regression. The omitted category corresponds to blocks where no accounts were treated (pure
control). Panel A shows the results for blocks where 80% were treated, panel B for blocks with 50% treated, and
panel C for blocks with 20% treated. The dependent variable in each column is: (1) an indicator for paying the
September 2020 bill by September 15th (pre intervention); (2) an indicator for paying the October 2020 bill by
October 3rd (early payments); (3) an indicator for paying the October 2020 bill by October 31st (includes early,
on time, and overdue payments). The first column corresponds to a pre-intervention bill and considers payments
made before the letters were delivered (placebo). The estimates correspond exactly to the numbers shown in Figure
(5). The letters were delivered between September 28th and October 7th. The due date for the October 2020 bill
was October 9th. The row Payment Rate of Pure Control displays the constant of each regression, corresponding
to the average payment rate in blocks with no treated units). Standard errors clustered by blocks are reported in
parentheses. * p<0.10, ** p<0.05, *** p<0.01
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Table 4: Heterogeneity of total and spillover effects on property tax payments in blocks below and
above median compliance in 2019

Placebo bill: Intervention bill:
Sep’20 Early By Oct 31
Below Above Below Above Below Above
Median Median Median Median Median Median

(1) (2) (3) (4) (5) (6)
A. Blocks with 80% treated
Treated 0.10 0.28 0.86** 1.06** 4.12%** 5.09%**
(0.73) (0.81) (0.34) (0.42) (0.79) (0.81)
Untreated -1.55 0.78 0.55 1.58%* -1.25 2.56**
(1.09) (1.24) (0.50) (0.67) (1.16) (1.27)
B. Blocks with 50% treated
Treated 1.54 0.69 1.24** 1.02 4.81*%* 5.67F**
0.99)  (1.12)  (0.50) (0.62) (1.07)  (1.08)
Untreated 0.81 0.36 0.10 -0.03 1.34 -0.76

(0.94) (1.15) (0.43) (0.50) (1.00) (1.14)
C. Blocks with 20% treated

Treated 1.32 0.27 0.85% 0.52 5.41%%* 4.40%**
(1.11) (1.24) (0.52) (0.63) (1.21) (1.27)

Untreated 0.27 -0.32 0.68** -0.42 0.61 -1.09
(0.72) (0.80) (0.33) (0.38) (0.77) (0.82)

Payment Rate of Pure Control 20.05 38.19 3.63 6.49 23.53 43.91
Observations 32,361 36,445 32,361 36,445 32,361 36,445
Number of clusters (blocks) 2,013 1,968 2,013 1,968 2,013 1,968

Notes: This table shows the results from saturated OLS regressions (equation (6) in the text) in which we break
the main results from Table (3) for blocks below and above median compliance in 2019. We define compliance as
the share of bills paid by block in 2019 with median value of 0.56 (see Figure A.5). The dependent variable in each
column is: (1) and (2) an indicator for paying the September 2020 bill by September 15th (pre intervention); (3)
and (4) an indicator for paying the October 2020 bill by October 3rd (early payments); (5) and (6) an indicator for
paying the October 2020 bill by October 31st (includes early, on time, and overdue payments). The letters were
delivered between September 28th and October 7th. The due date for the October 2020 bill was October 9th. The
row Payment Rate of Pure Control displays the constant of each regression, corresponding to the average payment
rate in blocks with no treated units). Standard errors clustered by blocks are reported in parentheses. * p<0.10, **
p<0.05, *** p<0.01
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A Additional Material and Results

A.1 Additional Material

Figure A.1: Example of the intervention letter

a DIGITAL

1D: XXXXX

TITULAR:

DIRECCION: CAP. MADARIAGA N° LOCALIDAD: 11 de Septiembre
C.P.: 1657

PARTIDA: XXXXXX/7

PARTIDA: XXXXX/7

Cuota 10 vencimiento 10 de octubre 2020: 347,29
Deuda afio en curso*: 1.702,58
Deuda aios anteriores*: 289,54
* AI15/09/2020
&COMO PAGAR?
. R\
Ingresando a tasas.tresdefebrero.gov.ar completd los datos:
B B 1) Podés pagar ONLINE con
O PAGA TU BOLETA
i mercado ] r
- @ ercac — Enel momento desde
nuestra web.
e pagoltis @) —b Oorenienco o csdligo de
pago electrénico para
m pagar desde la plataforma
de tu banco o cajero
automdtico.
£ RECIBIR LA BOLETA POR MAIL
2) Pockés pagar en EFECTIVO en
CLICKEA ESTE BOTON
yrecibiatodos los {E rapipago —p DESCARGALA O levaitu
NUMERO DE PARTIDA.
ara
g miboletatresdefebrero gov.ar )

Por dudas comunicate con nosotros a reclamos.mistasas@tresdefebrero.gov.ar
Si esta carta llegd por error a tu domicilio, informanos en ese mismo correo electrénico

iMuchas gracias!

Notes: This figure shows an anonymized example of the letters sent during the intervention between September 28th
and October 7th, 2020. The headline reads: “Your municipal tazes are now available on the electronic bill.” The
information below the headline contains the name of the account holder, the address, and the account number. The
main text of the letter reads: “We would like to tell you that now in Tres de Febrero your municipal General Service
Fee (TSG) bill is 100% digital. In other words, paper is no longer used. You can access it and pay for it from your
cell phone or computer. In this way, we take care of each other by reducing circulation and we also take care of
the environment. It is a difficult situation and we appreciate the effort you are making to keep up with your tazes,
because that translates directly into constructions and services that do not stop in your neighborhood. We inform you
of the status of your account and show you how easy it is:” The table below this text shows the account number,
the amount due in the October 2020 billing period, the amount of past due debt from previous months of 2020, and
the amount of past due date from earlier years. The large box below the table explains: (1) how to sign up for the
electronic billing, and (2) how to pay the bill and the different means of payment (online or in person). Finally,
below the box, the text reads: “In case of doubts, contact us at reclamos.mistasas@tresdefebrero.gov.ar. If this letter
arrived by mistake at your address, inform us in that same email. Many thanks!”



Figure A.2: Map of the municipality with the experimental design

0%

20%
—50%
—80%

— Not assigne

Notes: This figure shows a map of the municipality where the 2-level randomized communication campaign took
place. We highlight the group-level assignment of blocks (cuadras) with different colors: pure control blocks with
0% treated (light green), blocks with 20% treated accounts (green), blocks with 50% treated (blue), and blocks with
80% treated (dark blue). We use gray for blocks that were not part of the experiment (e.g., industrial or commercial
blocks).



Figure A.3: Distribution of payment date for treated, untreated, and pure control (October 2020
billing period)

(a) Treated vs. Pure Control
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Notes: These figures show the fraction of individuals paying the October 2020 bill before and after the due date
(October 9th, 2020). Panel (a) shows the distribution of payments for treated units (in blue) relative to pure control
units (in red). We pool together treated units from Ty = 1,2,3. Panel (b) shows the distribution of payments for
untreated units (in blue) relative to pure control units (in red). We pool together untreated units from T, = 1,2, 3.
The area of each histogram integrates to one. A larger bar in a particular date means that the payment frequency
of the corresponding group is higher than the other group.
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Figure A.4: Placebo. Direct and spillover effects for the pre-intervention Sep’20 bill
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Notes: These figures show the coefficients and 95% confidence intervals from a saturated regression that computes, at
each calendar day, the payment rate difference between each treated and untreated group relative to the pure control
group (i.e., blocks where no accounts were treated). The top panel shows the effect on treated (left) and untreated
(right) units in blocks with 80% treated (T, = 3). The middle panel shows the effect on treated (left) and untreated
(right) units in blocks with 50% treated (T, = 2). The bottom panel shows the effect on treated (left) and untreated

(right) units in blocks with 20% treated (T, = 3).

Standard errors are clustered by block. The first vertical bar

shows the due date for the September 2020 bill. This corresponds to a bill issued and due for payment before our

intervention began, thus serving as a placebo. The second vertical bar indicates the start of the intervention. The
letters were delivered between September 28th and October 7th.
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Figure A.5: Distribution of bill payments in 2019 for individuals and blocks
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Notes: Panel (a) shows the distribution of the 68,806 accounts by the number of bills paid in 2019. The distribution
is bi-modal with a core group of neighbors not paying any bill (35%) and another group paying all of them (45%).
Panel (b) uses the information from panel (a) to compute the share of total bills paid in 2019 for each block. We
use this measure of block-level compliance for the heterogeneity analysis, to split our sample into blocks below and
above the median of 0.56 (see Table 4). These two figures and values look very similar for the year 2018.



Figure A.6: Compliance in the first nine months of 2018, 2019, and 2020
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Notes: These figures show compliance in the first 9 billing periods of the year. For each block we compute the share
of total bills paid out of 9. Panel (a) compares 2018 and 2019 and panel (b) compares 2019 and 2020. We restrict the
analysis to the first 9 bills because our intervention takes place in October. To make it comparable, the numerator
excludes overdue payments (i.e., payments made after the due date of each month). The figure suggests that 2018
and 2019 are comparable in terms of compliance and that compliance decreases substantially in 2020 because of the
pandemic.



Figure A.7: Payment rates in 2020 decreased more in blocks with higher compliance in 2019

1 45° line
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Notes: This figure compares compliance in 2018 or 2020 (vertical axis) relative to 2019 (horizontal axis) at the block
level. To that end, we split the sample of blocks into ten evenly-spaced groups using the share of payments in 2019
(horizontal axis). For each bin, we then compute the average share of payments in 2018, 2019, and 2020. The red
triangles compare 2018 against 2019 and the blue circles compare 2020 against 2019. The 45° line corresponds to
the situation where compliance remains unchanged over time. The figure suggests that the drop in compliance in
2020 highlighted in Figure A.6 is more prominent for higher levels of baseline compliance. That is, blocks that had
high compliance in 2019 are those where the payment rate decreased the most in the first nine months of 2020.
In contrast, 2018 and 2019 display similar levels of compliance. This stylized fact suggests that blocks with high
compliance in 2019 (and low compliance in 2020) are more likely to be nudged by our intervention and, thus, where
spillovers are more likely to manifest.



A.2 Balance checks

We run balance test checks to verify the comparability of the treated, untreated, and pure control
groups in terms of demographic and account-related characteristics in 2019. We jointly estimate

the parameters of interest through the following saturated OLS regression:

3 3
Xig=a+> 6,1(T, =t)(1 — Diy) + > _mL(T, = t)Diy + &4 (7)
t=1 t=1
where X, is one of the account holder or dwelling characteristics contained in our baseline data.
We allow ¢;, to be correlated within blocks and use a cluster-robust variance estimator. In this
regression, 6, captures the average difference of X;, of untreated units in groups with 7, = t relative
to the pure control group and 7; captures the average difference of X, of treated units in groups
with T, = ¢ relative to the pure control group. The results are reported in Table A1 and reassuringly
confirm that our groups are highly balanced. The null effect on timely payments (i.e., excluding
past-due payments) of the September 2020 bill—the bill prior to our intervention— sheds further
light on the balance between groups (see Figure A.4).
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Table A1l: Balance test saturated regressions

Property  Front House Tenant Tenant Bill N Bills Digital
Value Metres type Male Age amount paid 2019 payment
(1) (2) (3) (4) (5) (6) (7) (8)
A. Blocks with 80% treated:
Treated 0.01 —-8.27 —0.00 —0.00 —0.14 2.81 0.05 —0.00
(0.02) (17.77)  (0.00) (0.01) (0.40) (7.81) (0.09) (0.01)
Untreated 0.00 —1.76 0.00 0.00 —0.53 6.27 —0.06 —0.00
(0.02) (20.70)  (0.01) (0.01) (0.53)  (12.95)  (0.12) (0.01)
B. Blocks with 50% treated:
Treated 0.01 12.65 —0.00  —0.00 —0.47 1.16 0.03 0.00
(0.02) (20.38)  (0.01) (0.01) (0.50) (9.21) (0.11) (0.01)
Untreated 0.01 25.30 —-0.00 —0.00 —0.42 1.88 0.02 0.01
(0.02) (20.66)  (0.01) (0.01) (0.48) (9.66) (0.11) (0.01)
C. Blocks with 20% treated:
Treated 0.02 32.57*  —0.01 0.01 0.10 5.94 0.07 —0.01
(0.02) (16.79)  (0.01) (0.01) (0.54) (9.55) (0.12) (0.01)
Untreated 0.02 19.14 —0.01 —0.01 0.12 1.32 0.00 0.00
(0.02) (14.05)  (0.00) (0.01) (0.40) (7.77) (0.09) (0.01)
Mean Pure Control  13.64 841.50 0.91 0.62 19.15 368.66 6.71 0.35
Observations 64,932 68,808 68,808 46,419 52,714 68,808 68,808 38,112
Number of clusters 3,979 3,981 3,981 3,973 3,976 3,981 3,981 3,968

Notes: This table shows balance test regressions to formally test for differences in observable characteristics between
the treatment and control groups. Each column corresponds to a separate regression (equation (7) in the text). The
dependent variables in each column are: (1) the log of assessed property value; (2) the front metres of the property;
(3) an indicator for the property being a house versus a house with a store; (4) whether the tenant is male; (5) a
proxy for the tenant’s age (first two digits of the ID); (6) the amount paid in the bill corresponding to December 2019
(including zeroes); (7) the number of bills paid in 2019 (the maximum is 12); (8) for those who paid, whether they
did so digitally. The row Mean Pure Control displays the constant of each regression, corresponding to the average
of the dependent variable for accounts in blocks with no treated units (T, = 0). Missing/non-missing indicators for
the dependent variables with missing observations (columns 1, 4, 5 and 8) are also balanced between groups (results

not reported). Standard errors clustered by blocks are reported in parentheses. * p<0.10, ** p<0.05, *** p<0.01
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A.3 Effects on Subscriptions to Electronic Billing

The communication campaign also included information about how to sign up for electronic billing,
a system introduced in June 2020. We briefly analyze the effect of our mailing on subscription to

this service.

We rely on a database that contains the individuals that signed up to the electronic billing
option. This database goes through December 2020 and contains the account number, date of
subscription, and email address. This source is linked with the main data through the unique

account identifier.

We analyze the effect of the intervention on subscriptions to electronic billing. We present
convincing graphical evidence that the tax communication campaign increased the subscriptions to
receive an electronic bill by e-mail. These effects are greater in high-saturation blocks, albeit small

in absolute value.

The results are summarized in Figure A.8, which follows a similar structure as Figure 5 but for
e-bill subscriptions. We run dynamic difference-in-differences comparing subscription rates between
each treated and each untreated group relative to pure control blocks, day by day (fixing September
27, 2020 as the baseline date).

Four important points are worth highlighting: (1) trends are generally parallel, as we estimate
no significant differences between the treatment and control groups prior to the intervention; (2)
the difference in subscription rates between treated accounts and pure control blocks experiences
a noticeable break at the time we started sending letters, which is reassuring and implies that
the effects we estimate are indeed caused by our experiment; (3) total effects are greater in high-
saturation blocks with 50% and 80% treated units relative to low-saturation blocks where only 20%
received the letter. As happened with payment rates, this could be interpreted as a spillover effect,
whereby the intervention creates interference between treated units strengthening the effect of the
letter; and (4) although less clear than the left-hand-side panels for treated units, the right-hand-
side panels of Figure A.8 also suggest the presence of spillover effects in subscriptions to e-billing for
untreated accounts in high-saturation blocks. As was the case with payment rates, these effects are
harder to detect. They are precisely estimated but only significant at the 5% level at the beginning

of the intervention.

Lastly, Table A2 summarizes the corresponding diff-in-diffs estimates reported in Figures A.8,
with the same structure as Table 3.! To benchmark our estimates, in the last row we report the
share of e-bill subscribers in pure control blocks on September 27 (our baseline date). For treated

accounts, the table shows an immediate effect in the three saturation groups that increases over

LColumn (1) validates the experiment by showing a placebo saturated regression that compares subscription rates
between each group and the pure control group on September 17, before the intervention began. None of the
coefficients are statistically significant or large in magnitude.
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time. This effect is higher in blocks with 80% treated units, consistent with interference that
strengthens the effect. In such blocks, the total effect reaches 0.86 percentage points by the end of
October. Although, this represents about 20% of the baseline 4.25% share of e-bill subscribers, we
find it striking that so few individuals switched to the digital bill. In the case of untreated accounts,
spillover effects on subscription rates are smaller and therefore much harder to detect than in the
analysis of payment rates. The clearest effect arises in blocks with 50% treated accounts with a
spillover effect of 0.25 percentage points, significant at the 10% level. The somewhat absence of
spillovers in this case can be explained by the fact that the outcome of analysis (subscription rate)

has very low take up, making it harder for interference between neighbors to emerge.

In sum, we find that our tax communication campaign also generates total effects and spillover
effects among neighbors in subscriptions to electronic billing. These effects are greater in high-

saturation blocks, albeit small in absolute value.
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Figure A.8: Direct effects on treated accounts and spillover effects on untreated accounts (subscrip-
tions to e-billing). Difference in differences
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Notes: These figures show the coefficients and 95% confidence intervals from dynamic difference-in-differences re-
gressions where the outcome of interest is a dummy equal to one if the account is subscribed to an electronic bill. All
the coefficients are estimated with respect to September 27th, 2020 (baseline date) and relative to the pure control
group (i.e., blocks where no accounts were treated). The top panel shows the effect on treated (left) and untreated
(right) units in blocks with 80% treated (T, = 3). The middle panel shows the effect on treated (left) and untreated
(right) units in blocks with 50% treated (T, = 2). The bottom panel shows the effect on treated (left) and untreated
(right) units in blocks with 20% treated (T, = 1). Standard errors are clustered by block. The first vertical bar
denotes the start of the intervention. The due date for the October 2020 bill was October 9th and is indicated with
another vertical bar. The letters were delivered between September 28th and October 7th.
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Table A2: Total effects

and spillover effects for subscriptions to e-billing

Dependent variable: Placebo: Intervention:
Pr(subscribe to e-bill) By Sep 20 Early By Oct 31
(1) (2) (3)
A. Blocks with 80% treated
Treated -0.02 0.31%%* 0.86%**
(0.04) (0.06) (0.12)
Untreated 0.04 0.11 0.08
(0.03) (0.08) (0.15)
B. Blocks with 50% treated
Treated 0.03 0.18%* 0.81%%*
(0.03) (0.08) (0.18)
Untreated -0.07 0.10 0.25%*
(0.05) (0.06) (0.13)
C. Blocks with 20% treated
Treated -0.04 0.15* 0.57*%*
(0.05) (0.08) (0.19)
Untreated -0.01 0.05 -0.09
(0.03) (0.04) (0.09)
Mean of Pure Control at baseline 4.25 4.25 4.25
Observations 137,612 137,612 137,612
Number of clusters (blocks) 3,981 3,981 3,981

Notes: This table shows the results from a saturated dynamic difference-in-differences regression where the dependent
variable is an indicator for subscribing to electronic billing. The regression computes the outcome difference between
each of the treated and untreated groups relative to the pure control group for each calendar date relative to September
27th, 2020 (baseline date). The estimates correspond exactly to the numbers shown in Figure (A.8). Column (1)
shows the results for e-bill subscriptions made before the letters were delivered (placebo); Column (2) shows the
results for early subscriptions right after the letters started to be delivered (by October 3); Column (3) shows the
results for subscriptions made up to the end of October 2020. The letters were delivered between September 28 and
October 7. The due date for the October 2020 bill was October 9th. The row Mean of Pure Control displays the
constant of the regression, corresponding to the average susbcription rate for units in blocks with no treated units
on September 27, 2020. Standard errors clustered by blocks are reported in parentheses. * p<0.10, ** p<0.05, ***

p<0.01
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A.4 Timing of Payments and Due Bills

For completeness, we analyze the effects of the intervention on backward and forward payments
corresponding to billing periods before and after month 10, the month of our intervention. These

results are summarized in Figure A.9.

Intuitively, neighbors can pay their property tax bill at any time before or after the due date
and, hence, payments from previous billing periods can also be affected by our intervention.? To
illustrate this, the left panels of Figure A.9 only consider timely payments, defined as bills paid
before the 27th of the corresponding month. We set any payment made after the 27th as unpaid
in our data. Hence, pre-intervention bills mechanically exclude any past-due payment triggered
by our intervention. In contrast, the right panels of Figure A.9 consider timely as well as past-
due payments made until December 2020 and, thus, capture backward payments triggered by our
intervention (e.g., individuals that decide to pay the October 2020 bill as well as previous unpaid

bills after receiving the letter).

The top figures show payment rates in levels for treated units (black line) and pure control units
(gray line), for 24 consecutive monthly bills between January 2019 and December 2020. Treated
units are pooled from groups T, = 1,2,3. The bottom figures report total treatment effects—i.e.,
the difference between treated and pure control units—and 95% confidence intervals for the 24
billing periods. The first vertical bar denotes the start of the COVID-19 pandemic in Argentina
and the second vertical bar flags the October’20 bill targeted by our intervention.

Four important points are worth noting: (1) Overall, payment rate levels are low. The top left
panel shows that about 48% of households pay their bill before the 27th of each month. This share
is relatively constant until March 2020 when the COVID-19 pandemic hit Argentina and payment
rates decreased sharply to 23%; (2) a similar pattern emerges when we consider timely and past-due
payments. The reason why levels are higher and decrease over time is that as time goes by it is more
likely that individuals cancel unpaid bills; (3) placebo direct effects (red line), based on payment
rates constructed with timely payments only, are precisely estimated and not different from zero
for the 21 pre-intervention bills. For the October 2020 bill, however, timely payments are 4.4 p.p.
higher in treated units relative to control blocks. This is reassuring and implies that our sample is
balanced and that the effects we estimate are indeed caused by our experiment; and (4) when we
account for past-due payments, the blue line shows that our intervention nudged some individuals
to catch up with unpaid bills. The difference in payment rates between treated and pure control
accounts experiences a noticeable increase in the pandemic billing periods from April 2020 onward.
Although the October bill when the intervention took place presents the highest effect (4.2 p.p.),

the letters also had some residual positive effect in November and December too.

2The treatment letter included past due balances and could therefore induce neighbors to make backward payments
to cancel debt.
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Figure A.9: Total effects on pre- and post-intervention bills
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Notes: These figures show the effect of the communication campaign on payment rates of pre- and post-intervention
bills. The left panels only consider timely payments, defined as bills paid before the 27th of the corresponding month
(i.e., any payment made after the 27th is considered unpaid). Hence, pre-intervention bills mechanically exclude any
past-due payment triggered by our intervention. The right panels consider timely as well as past-due payments made
until December 2020 and, thus, capture backward payments triggered by our intervention (e.g., individuals that after
receiving the letter pay the October 2020 bill as well as previous unpaid bills). The top figures show payment rates
in levels for treated units (black line) and pure control units (gray line), for 24 consecutive monthly bills between
January 2019 and December 2020. Treated units are pooled from groups Ty = 1,2,3. The bottom figures report
total treatment effects—i.e., the difference between treated and pure control units—and 95% confidence intervals for
the 24 billing periods. The letters were delivered between September 28th and October 7th. The vertical bar denotes
the start of the COVID-19 pandemic in Argentina. Each coefficient is estimated in separate regressions. Standard
errors are clustered at the block level. The red line shows no difference on timely payments for pre-intervention
bills. In contrast, when we account for past-due payments, the blue line shows that our intervention nudged some
individuals to catch up with unpaid bills from April 2020 onwards.
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B Experimental Design: Additional Material

B.1 Choice of ¢; and power calculations

For simplicity, we assume that the assignment probabilities are the same across groups and that treatment
is assigned independently within groups. The “hardest” effect to estimate correspond to the assignments
(d,t) = (1,1), i.e. treated in 20% groups, and (d,t) = (0,3), i.e. controls in 80% groups. To ensure the

variance of these estimators is similar to the variance of the (d,t) = (0, 2) estimator, and using that ¢ = g3,

we need: 20,3 - 2(0.9 -
7 (0.3) {1+0-2P0303 <n2 — 1>} _ (0.2 {1+0‘5ﬂ0202 (nQ — 1)} '
0.2q3 ’ n 0.5¢2 ’ n
where ng = 3, ng. We will assume that all the variances are the same, ¢%(0,3) ~ ¢2(0,2) = 02 and that

all the intraclass correlations are the same and equal to 0.1, which is slightly larger than the one estimated

for the baseline data. After some simplifications we have that:

@ {1 10.02 (% - 1)} — 0.4¢3 {1 +0.05 (% - 1)} .

Using the sample sizes from the baseline data and setting L = 25,000 gives the assignment probabilities
shown below:

{q0,q1,q2,q3} = {0.273,0.282,0.162,0.282}

The final sample sizes depicted in Table 1 respond to logistical and other practical considerations. For

power calculations, Figure B.10 plots the power function for each estimator, using the following parameters:

e 0%(d,t) = 0.25 for all (d,t). This gives a conservative estimate because 0.25 is the upper bound for

the variance of a binary variable.

o ICC = 0.1 which is close to (but larger than) the estimated intraclass correlation of the baseline

outcome.

e The sample and group sizes given by the baseline data.

The power calculations give a minimum detectable effect between 2.6 and 3.3 percentage points.

Due to logistical restrictions, our final sample sizes had to be adjusted. We report our effective sample
sizes in Table 1 in the main paper. It is important to clarify that, given our large sample size, this

adjustment had a negligible effect on power and MDEs.
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Power functions

Figure B.10
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B.2 Simulations for power calculations

We conduct a simulation study to confirm our analytical power calculations. We assume (71,75, ...,71¢)

are iid with distribution: P[T, = t] = ¢; and the variable is constructed as:
Tg=1(qo < Uy <q0+q1) +21(q0+ 1 < Uy <qo+q +q2) +3L(Ugs > q+q1 + q2)
with Uy ~ Uniform(0, 1). The individual treatment indicator is assigned according to the rule:
Dig =1(U}}, < 0.2)1(Ty = 1) + L(U;, < 0.5)1(T, = 2) + L(U;}, < 0.8)1(T, = 3)

where Ui’fq ~ Uniform(0, 1) for k£ = 1,2, 3, independent of each other.

We construct seven potential outcomes Yjq4(d,t) for d = 0,1 and ¢t = 0,1,2,3. Based on the baseline

June 2019 outcome Y;Zase, the potential outcomes are constructed in the following way:

Yig(0,0) = Y5
Vig(d,t) = 1(Ugs < car)(1 — Yig(0,0)) + 1(Ugs < car + k)Yig(0,0)

for (d,t) # (0,0), where Uy and Uy are independent uniforms. According to this model,

E[Yig(0,0)] = po
E[Yig(d, t)] = cqt + ok
Cov(¥ig(0,0), Yig (ds 1)) = kpo(1 — o)

Therefore, we can set:
cot =0+ no(l —k), cip =7+ po(l —k)

and
P

I —
po(1 — o)

where p is some specified level for the covariance.

Finally, we set po = Y?%¢ ~ 0.568 and p = 0.2. A value of p = 0.2 implies a correlation between
Yig(0,0) and Yj4(d,t) between 0.6 and 0.8. The implied intraclass correlation for all potential outcomes is

approximately 1CC = 0.05.

In each simulation, we use the baseline outcome from June 2019 as the potential outcome for pure
controls, and construct the remaining potential outcomes adding the corresponding direct or spillover
effects. See the appendix for details. The results are shown in Table A3. The last parameter is set to zero

to simulate the probability of type I error.

The simulation results are in line with the analytical calculations in the previous section, with slightly
lower MDEs because some statistics such as the ICC are in fact lower in the sample. The last row in the

table confirms that the probability of incorrectly rejecting the null of no effect is around 5%, as expected.
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Table A3: Simulation results

True value Prob(reject)

01 0.021 0.812
) 0.026 0.798
05 0.027 0.791
T 0.028 0.801
T2 0.026 0.800
T3 0.000 0.045

C Swupplemental Econometric Appendix

C.1 Numerical Illustration

Table A4 summarizes the distribution of group sizes in four published studies employing partial population
designs: Giné and Mansuri (2018), Haushofer and Shapiro (2016), Ichino and Schiindeln (2012) and Imai,
Jiang and Malani (2021).

Table A4: Sample sizes in existing literature

Sample size No. of groups Ave. group size Sd. group size

Giné and Mansuri (2018) 2,736 67 39.4 16.7
Haushofer and Shapiro (2016) 1,440 123 23.4 14.8
Ichino and Schiindeln (2012) 868 39 22.3 9.6
Imai, Jiang and Malani (2021) 10,030 434 23.1 15.5
Mean 3,769 165.8 27.05 14.2
Median 2,088 95 23.3 15.2

For our numerical illustration, we calculate the estimators standard errors and minimum detectable
effects based on our formulas from Section 3 using the group distribution of these four studies. We refer
to these magnitudes as “adjusted” standard errors and MDEs, since they are adjusted for group size
variation. For comparison, we also calculate the “unadjusted” standard errors and MDEs using average
group size and assuming that the variance of group size is equal to zero, that is, ignoring cluster size
heterogeneity. To make the results comparable, we consider a design with four saturations, pg = O,
p1 = 0.2, po = 0.5, p3 = 0.8, and calculate optimal probabilities {qo, ¢1, g2, g3} based on Proposition 2. We
assume for simplicity that outcomes are homoskedastic with o2(dt,dt) = 1 for all d,t so that effects are
measured in standard deviations, and consider three values for the intraclass correlation, p € {0.1,0.5,0.8}.

The parameter of interest is the spillover effect on untreated units in groups with 80% treated.

The results are shown in Table A5. When the intraclass correlation is low (p = 0.1), accounting for
group size heterogeneity increases standard errors and MDEs between 6.8% and 14.5%. The problem
worsens for larger intraclass correlations. When p = 0.5, adjusted standard errors and MDEs are between
8.3% and 19.6% larger, and between 8.5% and 20.2% larger when p = 0.8.
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Table A5: Numerical results

Standard error MDE
Adj.  Unadj. Ratio Adj.  Unadj. Ratio

p=0.1
GM  0.1262 0.1181 1.0687 0.3536 0.3308 1.0689
HS 0.1053 0.0932 1.1307 0.2951 0.2610 1.1307
IS 0.1768 0.1667 1.0608 0.4954 0.4670 1.0608
IJM  0.0569 0.0497 1.1453 0.1595 0.1393 1.1450
p=0.5
GM  0.2593 0.2393 1.0835 0.7265 0.6705 1.0835
HS 0.2098 0.1783 1.1761 0.5877 0.4997 1.1761
IS 0.3437 0.3171 1.0840 0.9630 0.8884 1.0840
IJM  0.1136 0.0950 1.1961 0.3183 0.2661 1.1962
p=0.8
GM  0.3252 0.2997 1.0851 0.9112 0.8397 1.0851
HS 0.2622 0.2218 1.1818 0.7345 0.6215 1.1818
IS 0.4284 0.3941 1.0869 1.2002 1.1042 1.0869
IJM  0.1420 0.1181 1.2024 0.3979 0.3309 1.2025

Figure 1 plots the ratio of adjusted to unadjusted standard errors and the adjusted and unadjusted
MDEs as a function of the intraclass correlation using the median values from Table A4 for the group size
distribution. The ratio of standard errors increases rapidly for values of p, and stabilizes between 1.15
and 1.2, suggesting that even for moderate intraclass correlations, the adjustment factor due to group size
heterogeneity may be substantial. Panel (b) shows how the difference between adjusted and unadjusted

MDEs becomes larger as the intraclass correlation grows.

C.2 Within-Group Assignment Mechanisms
C.2.1 Fixed Margins

The within-group treatment is often assigned by choosing a fixed number of treated units within each
group. Given T, = t, suppose the researcher wants to assign a proportion p; of, or a total of nyp;, units
to treatment. Assigning exactly ngp; units to treatment is not possible when ngp; is not an integer. We

propose the following procedure to deal with this issue. Define a binary random variable £, and let:
N; = |ngpe) + & L(ngpr ¢ N).

so that £, plays the role of an adjusting factor that randomly rounds the number of treated up or down.

Suppose that, given T, = t, the probability that £, =1 is:

0 ifngptEN
Pg[fg = 1‘Tg - t] = {

ngpr — [ngpe) if ngpr ¢ N.
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This implies that, given T, = t, the expected number of treated units in group g is ngp; and that Py[D;q =
1|Ty = t] = p;. This implies that, given Ty, = t, the expected number of treated units in group g is ngp;
and that Py[D;y = 1|T, = t| = p;. More precisely,

E[N,|Ty = t] = [ngpe] + E[&g|Ty = t]L(ngpe ¢ N)

= |ngpe) + (ngpe — [ngpe])L(ngp ¢ N)

= NgPt
using that |ngp:| = ngpr when ngp, € N. It follows that:

1
E[Ng

T, = t} = Pg[Dig = 1|Tg =tl=p
g

which doesn’t vary across groups conditional on T, = t. On the other hand, defining NV go =ng — N, ;, we
have that:

NO
E [ng T, :t] =Py[Dig =0|Ty =t] =1—p.
g

Next, for this assignment mechanism,

N; (N} —1
Py[Dig=1,Djy = 1T, =t] =E Pl o T, =t
_ E[(N,;)?|Ty = t] — E[N,|Ty = t]
ng(ng —1)
where
E[(Ngl)zyTg = t] = E[(|ngpe] + &g (ngpe ¢ N))Q‘Tg =]
= n;p; 1(ngp; € N)
+ ((Lngpe) + 1)*Pglgy = 11Ty =] + [ngpe|* Pyléy = 0Ty = 1]) L(ngps ¢ N)
= nﬁp?ﬂ(ngpt e N)
+ ((Lngpe) + 1)*(ngpe — [ngpi)) + [ngpe)® (1 = ngpr — |ngpi))) Lngp: ¢ N).
Similarly,
E[(N92|T, =t] — E[NO|T, = ¢
D1 =0, =it =) - BT = ZEINSIT, =0
where

E(N)|T, = 1] = El(ng — N})*|T, = 1] = n2 + EI(N)?IT, = t] - 2n2p,

Notice that even if Py[D;y = d|T, = t| does not change across g, the joint probabilities do. Nevertheless,

these terms can be calculated for any sample using the chosen probabilities p; and the group sizes {ng}ngl.
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C.2.2 Bernoulli Trials

Alternatively, the within-group treatment may be assigned to each unit independently as a “coin flip” with

probability p;. Under this mechanism, independence between treatment indicators implies that:

Pg[Dig = 1|Ty = t] = P[Dig = 1|Ty = t] = p
Py[Diy = d,Djy = d|T, = t] = P[D;, = d|T, = t]*.

which do not vary over g. It follows that:

2 ng(ng — 1)Pg[Dig = d, Djg = d|Ty = ] _.d 1-d [ 2g n?]
=D (1 - pt) -1
g nglPg[Dig = d|T, = t]

Then the variances are approximated by:

? nZ o? n2
VENES M {1 + pot(1 — p) (Zi g — 1)} + 75500) {1 + poo (Z“;L g — 1>}

o2 2 o2 2
MERES n;;) {1 + puepe (Zing — 1)} + n(;oO) {1 + poo (Zil”g _ 1)} .

C.3 Definitions and Regularity Conditions for Main Results

and

L

Let 1;4(ax) = 1(Aiy = ax) and consider the regression:
K
Yvig = Z Gkﬂig(ak) + Ujg = ]]_/90 + Uig

k=0

where by construction 6y, = E[Yj4|Aiy = ai] and Efu;y|Ag] = 0. The OLS estimator is given by:

-1
- (s1n) S
g 9
where y, = (Yig, Yag, ..., Yn,q)". Next, let ug = (u1g, u2g, . - -, Un,qg)" and define:
Q, = 1 E[1’ !
n= Z [1,uu; 1]
g
1
Wy = > E[1;1,)]
g

Vo =W, Qw1

We introduce the following regularity conditions. In what follows, let A (Q) denote the minimum

eigenvalue of matrix Q).

Assumption 3 (Regularity conditions) The following conditions hold.
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1. There exists a constant C' such that Apin(Wy) > C > 0.
2. There exists a constant A such that Apin(2,) > A > 0.

3. SupIEHYig\lo} < 0.
Z7g

Parts 1 and 2 above ensure that covariance matrices are well-defined. Part 1 ensures that there are no
empty assignment cells. Because W), is diagonal, Part 1 is equivalent to ming, >, ngmg(ax)/n > C>0.If
the assignment probabilities are equal across groups, this condition reduces to min,, m(ay) > C, so that all
assignment probabilities are bounded away from zero. To get intuition on Part 2, in the case with only two
treatments A;; € {0,1} and homoskedasticity, this requirement reduces to assuming that the intracluster
correlation satisfies |p| < 1. More generally, this condition restricts the amount of intracluster correlation
to ensure that all the elements in the covariance matrix are well-defined. Finally, Part 3 imposes bounded
moments of the outcome. Notice that this assumption is automatically satisfied when the outcome itself

is bounded (e.g. binary), as is the case for most of our outcomes.

C.4 Proof of Proposition 1

We verify the assumptions for Theorem 9 in Hansen and Lee (2019). First, by direct calculation, the

matrices defined in Section C.3 are:

Zg ngﬂ-y(ak)

Wik = — Wk =0, k#1
and
Qe = 02(%)29”5’7”5’(%) + c(ax, ax) 2q 71 _nl)ﬂg(ak’ ak),
Q1 = clar, ar) 2g (g _nl)Wg(ak’ al), k1.
As a result,
A GO

Vot =

)

29N (ng — 1)779(%’%)}
a >og NgTg(ak) {1 e ) 22g Mg (k)
V., 1 = no(ag)o(a;)plag, a 2919 (ng — Dg(ar, )
Vi = no(ax)o(ar)p(ax, Z)Zgngﬂg(ak)zg”gﬂg(“l)’

kL.

Under Assumptions 2, 1 and 3, and Condition (2), the conditions for Theorem 9 in Hansen and Lee
(2019) hold and thus for any sequence of full-rank (K + 1) x J matrices R,,,

(R Vo Ry) Y2 R /(6 — 6) —p N(0,1;).
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Finally, letting:

-1 0
-1 1
R, =|-1 0 7
-1 0 0 O 1)
we obtain:
R,0 =B, R.0=pB, V,=R,V,R,
where:
no?(ay) 2o g(ng — 1)mg(ay, ax)
Vokk = = (1 + plag,a g
Jkk Zg ngﬂ'g(ak) p( k k) Zg ngﬂ-g(ak)
no?(ao) {1 n P(ao,ao)zg ng(ng — 1)779(6107@0)}
Eg ngﬂg(GO) Zg ngﬂg(ao)
> g Ng(ng — 1)mg(ak, ao)
— 2no(ag)o(a ag, a g
(ax)o(ao)pla O)Zg”gﬂg(ak) Zg”gﬂg(ao)
and
n02(a0) > ng(ng - l)ﬂ'g(GOa aop)
Voki = = 1+ plag,a g
M= ngmao) |0 TS (o)

> ng(ng — 1)mg(ak, ar)

Zg ngmg(ar) Zg ngmg(ar)
2y ng(ng — 1)mg(ak, ao)
2g ngmg(ak) 2 ngmg(ao)

Zg ng(ng - 1)779(611’ aO)

> g Mgy (ar) >gMgTg (ao)

+ no(ag)o(ay)p(ak, ar)

— no(ay)o(ao)p(ag, ao)

— no(a)o(ao)p(ar, ao)

which completes the proof. [J

C.5 Proof of Proposition 2
Based on Equation (5), the minimization problem is equivalent to:

o M B, 2mB,
min — 4+

0,q1,-9M 17— Gt qo0

:f(QO’QIw-wQM)

subject to ¢t > 0, >, ¢ = 1 where By and B; are defined in the proposition. The first-order condition for
each g, t > 0 are given by:

df B, 2MB;
dq q? @

0 = ¢ =
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Since Y ;- gt = 1 — qo, this gives:

and thus:

QMB() * V Bt

TS , > 0.
V2MBo + /S0 B ' V2MBo+ /%120 Bt

a0 =

On the other hand, the second-order conditions are given by:

0’f 2By 2MBy O*f  2MBy

ot g} @ ' Oudqy 4

and therefore the Hessian matrix H can be written as:

2B 2B 2M B
H:diag<31,..., 3M>+< 3°>1M1’M
a4y ' 4q0

where 1,7 is an M x 1 vector of ones. Thus, for any non-zero M x 1 vector v,

M 2By22  (2MB M 9B;22  (2MBy) [ ?
vHv = E —i—< 3 >v/1M1’Mv: E +( > E 2| >0
t=1

3 3 3
t=1 N o =1 € o

using that B; > 0 for all ¢ so the Hessian is positive definite as required. [
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