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Energy loss of protons in Au, Pb, and Bi using relativistic wave functions
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We present a theoretical study on proton energy loss in solid targets of atomic number greater than 54. Fully
relativistic wave functions and binding energies are obtained by solving numerically the Dirac equation. Ab
initio calculations are developed for the first (stopping) and second (straggling) moments of the energy trans-
ferred from the ion to the target electrons. The shellwise local plasma approximation is employed for the inner
shells, and the Mermin dielectric function is employed for the valence electrons. The dielectric response of
each subshell is calculated separately, including in this way the screening among the electrons of the same
binding energy. Results for stopping and straggling cross sections of protons in Au, Pb, and Bi are compared
with the available experimental data. The theoretical stopping results are very good in the case of Au, repro-
ducing the experimental data in an extensive energy region (10 keV-100 MeV). For Pb and Bi, the stopping
results agree with the measurements for energies above 300 keV, for which the inner shells play a major role.
However, we found some difficulties around the stopping maximum. For the energy-loss straggling, we ob-

tained reasonably good agreement with the experiments for the three targets studied.
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I. INTRODUCTION

The stopping power of ions is a necessary ingredient of
many parts of basic science, of medical and technological
applications [1,2]. It is an average of the ion energy loss per
unit path length. At intermediate to high impact velocities,
this energy loss is related to excitation or ionization of target
electrons. The higher the ion energy, the deeper the excited
electrons. In the case of metals, it means that at intermediate
and high impact energies, the description of the stopping
power due to excitation of the free-electron gas (FEG) is not
enough, and target bound electrons must be included.

Different experimental methods are used to determine
stopping powers [3] and important collections of data and
statistics of the results are available in the web [4,5]. Many
semiempirical [6-9] and theoretical models [10-15] have
been developed. However, the description of very heavy tar-
gets, i.e., those with the close 4f shell with its 14 electrons,
remains a heavy task for ab initio theoretical calculations.

In the last years we have explored the possibilities and
ranges of validity of the shellwise local plasma approxima-
tion (SLPA) [16-18]. This is a many-electron model espe-
cially suitable for multielectronic targets. The SLPA is based
on Lindhard and Scharff’s seminal work [19], the local
plasma approximation (LPA), which has been widely used
and improved since then [20,21], mainly with the fully di-
electric formulation [22-24], instead of the logarithmic high-
energy limit.

In the LPA the response of bound electrons, even local,
considers the electronic cloud as a whole by using the total
density of electrons. The SLPA introduces two main changes
to this approach: a separate dielectric response for each shell
and the explicit inclusion of the ionization thresholds using
the Levine and Louie [25] dielectric function. Physically, this
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independent shell approximation means that when an elec-
tron of the nl-subshell is ionized only the other ni-electrons
are included in the screening of the ion potential. A previous
proposal of independent shells within de LPA is the orbital
LPA by Meltzer et al. [26]; however this approach uses the
logarithmic high-energy limit for the stopping power.

The wave functions and binding energies of target elec-
trons are the only input for the SLPA. So far, we have em-
ployed this model with good results [16-18] for elements
with atomic number Z;= 54, using the well-known Hartree-
Fock wave functions for neutral atoms reported by Bunge
[27] or Clementi-Roetti [28].

The aim of this work is to present and discuss theoretical
calculations of energy loss and energy-loss straggling for
protons in targets with atomic number Z;>54. The descrip-
tion of these atoms requires the solution of the relativistic
Dirac equation instead the nonrelativistic Schrodinger equa-
tion. To this end we made fully relativistic ab initio calcula-
tions by employing the HULLAC [29,30] and the GRASP
[31,32] computer packages. These two codes evolved and
have been widely used over the years, representing the state-
of-the-art in atomic structure calculations.

This fully relativistic study allows us to extend the field of
application of the SLPA to heavier atoms. On the other hand,
this many-electron model is especially suitable for the de-
scription of shells such as the 4f, for which the shielding
effects are expected to be important.

We present here total stopping and straggling cross sec-
tions for protons in Pb, Bi, and Au. In the case of Pb and Bi,
in spite of their technological and medical applications
[33,34], the stopping cross sections are not well defined ex-
perimentally, especially around the stopping maximum. On
the other hand, to our knowledge, no previous ab initio cal-
culations have been developed for these systems. The case of
Au is just the opposite. It has been extensively studied, being
the element with the greatest number of stopping measure-
ments (66 groups of data [4] since those by Bitzner in 1936
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[35]). This makes Au a good benchmark for any theoretical
description.

We describe the theoretical formulation in Sec. II. In Sec.
I, our results are compared with the experimental data
available [4,5], with the semiempirical SRIM 2008 values [5]
and, in the case of Gold, with recent theoretical results by
Heredia-Avalos et al. [36].

II. THEORETICAL CALCULATIONS

A. Densities and binding energies

We have explored two set of semirelativistic wave func-
tions generated by the AUTOSTRUCTURE code [37-39] and
two fully relativistic calculations obtained with the HULLAC
[29,30] and the GRASP [31,32] computer packages. Details
are presented next. We anticipate that, for the present stop-
ping and straggling calculations, the GRASP results were em-
ployed because they provide the most reliable description of
the binding energies as compared with experimental data.
Nevertheless the difference using the HULLAC or the GRASP
results was found to be less than 5% in the total stopping and
negligible in the energy-loss straggling.

1. Semirelativistic method

The AUTOSTRUCTURE code [37-39] is used to calculate
multiconfiguration intermediate coupling energy levels. The
code can make use both of nonrelativistic and semirelativis-
tic wave functions [40]. It represents the core of the atomic
data and analysis structure (ADAS) set [41] for modeling the
radiating properties of ions and atoms for plasmas ranging
from the interstellar medium through the solar atmosphere
and laboratory thermonuclear fusion devices to technological
plasmas (see [42], for example).

In order to keep the problem of calculating energy levels
and spectra as simple as possible, it is worthwhile seeking
some approximate method of incorporating the major relativ-
istic effects within the format of the nonrelativistic approach.
The AUTOSTRUCTURE code generates the semirelativistic
bound orbital functions, following the work of Cowan and
Griffin [43]. Within this approach, the mass velocity and
Darwin terms of the Pauli equation for one-electron atoms
have been added to the usual nonrelativistic one-electron
Hartree-Fock differential equations. Perturbation theory is
used to evaluate the remaining one-body (namely, nuclear
spin- orbit) and two-body fine-structure interactions (spin-
orbit, spin-other-orbit and spin-spin) and two-body non-fine-
structure interactions (i.e., contact spin-spin two-body Dar-
win and orbit-orbit operators).

The code also allows us to generate two set of semirela-
tivistic wave funcions. In the first set, the core radial func-
tions were determined using an N-electron Thomas-Fermi-
Dirac-Amaldi (TFDA) model potential. In the second set,
radial wave functions are calculated in Hartree potential
evaluated with Slater-type orbital (STO) functions. In both
cases, the orbitals are Schmidt orthogonalized. All the calcu-
lations have been produced in intermediate coupling approxi-
mation.
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2. Relativistic approach

Two different sets of fully relativistic calculations for the
atomic structure were performed by using the HULLAC
[29,30] and the GRASP [31,32] codes.

The HULLAC code [29,30] is used in structure and cross-
section calculations for collisional and radiative atomic pro-
cesses. The theoretical framework of this code is the first-
order perturbation theory with a central field. The zero-order
wave functions are solutions of the Dirac equation. The
Hamiltonian is diagonalized on the basis of these wave func-
tions (configuration interaction). The first-order perturbation
theory contribution from the Breit interaction energies is also
included in the calculations, as well as quantum electrody-
namics corrections. In this package, the detailed level ener-
gies are calculated using the fully relativistic multiconfigu-
rational RELAC code [44], based on the parametric potential
model [45]. The main idea of the parametric potential
method is to describe simply the screening of some sensible
parametrized charge distribution. This is done by the intro-
duction of a central potential as an analytic function of
screening parameters which are determined by minimizing
the first-order relativistic energy of a set of configurations.
This optimized potential is used to calculate all one-electron
orbitals and energies, relativistic multiconfiguration bound
states and their energies, continuum orbitals, and all the re-
quired transition rates. This code is focused on heavy ionized
atoms with several open shells but can be applied to other
atomic systems, as in the present work.

The GRASP code, developed by Grant er al. [31,32] is
based on the multiconfiguration Dirac-Hartree-Fock
(MCDHF) method. It is a fully relativistic code, based on the
Jjj scheme, which includes also Breit interactions and QED
effects. The MCDHF equations are derived by using the
variational approach on an energy functional, defined as a
linear combination of energy eigenvalues. In the variational
part of the calculations, the Dirac-Coulomb Hamiltonian is
written as

I:IDC=E<aipic+Bicz_§>+2l~ (1)

i i#j ij

The binding energies are a very sensitive parameter of the
method employed. In Fig. 1 we display the atomic binding
energies of Au, Pb, and Bi obtained with the four different
methods, the semirelativistic using the AUTOSTRUCTURE
code, in STO and TFDA, and the fully relativistic GRASP and
HULLAC codes. Semirelativistic results have no spin-orbit
split in energy E, ;-1 (hereafter nl=), so we plot each
value twice, the same for both levels, just to make the com-
parison easier. As Fig. 1 shows, we found an important dif-
ference between STO results and the TFDA or both fully
relativistic calculations. The relative difference increases for
the outer shells, but in absolute value this effect appears even
for the K shell. The semirelativistic TFDA energies are in
good agreement with the fully relativistic ones, except for
the 4f shells which are systematically deeper bound than the
Ss shells in the three elements, as can be observed in Fig. 1.

Figure 1 also includes the experimental data for the bind-
ing energies in solids compiled by Williams [46]. Those
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FIG. 1. (Color online) Electronic binding energies of Au, Pb, and Bi. Symbols: stars, semirelativistic STO; hollow squares, semirelativ-
istic TFDA; up-filled triangles, relativistic GRASP; down hollow triangles, relativistic HULLAC; hollow circles, experimental data in solids

[46].

shells whose electrons are part of the solid FEG can be dis-
tinguished because no experimental binding energies are
plotted. The gas-solid difference is found only in the outer
shells, as expected. The GRASP and HULLAC results are in
very good agreement with the experimental binding energies.
We found an important experimental-theoretical difference
only for the 5d subshell of Pb and Bi. In these cases the
GRASP results provide more reliable values as compared with
experimental data. On this basis, we employed the GRASP
results for the energy-loss and straggling calculations. It is
worth mentioning that the comparison of both fully relativ-
istic methods showed the difference in total stopping cross
sections to be less than 5%, and in the energy-loss straggling
less than 1%.

B. Stopping and straggling calculations

The energy loss by the impinging ion due to ionization of
target bound electrons is calculated by employing the SLPA
[16—18]. As mentioned before, the electronic density of each
shell and its binding energy are the only inputs. If they are
available, the SLPA calculation let us to describe any target
with the same degree of complexity. Furthermore, the more
electrons the shell has, the more suitable the method is. On
the other hand, this model works within the dielectric for-
malism, so dynamic screening effects among electrons be-
longing to the same shell are included. This is of particular
interest for the case of the f shells treated in this work.

Within the SLPA, the energy moment of order ¢ (r=0
cross section, f=1 stopping, and t=2 square of the strag-
gling) associated with the ionization of at least one electron

of the nl subshell due to the interaction with an ion of impact
velocity v is expressed as [18]

273 (“ dk (® -1
St() = —gJ —f ' Im[—]dw (2)
mJy kJy gk, )
where
-1 Ryys -1
Im| ——— =47TJ Im| ————— | dr.
8nl(k’ w) 0 S(k, w, 5nl(r)’Enl)
(3)

Equation (2) is the usual expression in the dielectric formal-
ism. Equation (3) is the space mean-value over the atomic
dimensions [(%WR ws) "' =6, the atomic density] for an inho-
mogeneous gas of electrons of density &,,(r) and ionization
gap E,;. The dielectric function employed is the Levine-
Louie one [25], which includes explicitly the energy gap of
each shell [17,18]. It keeps up the characteristics of Lindhard
dielectric function [47], such as linear response and electron-
electron correlation to all orders, and satisfies the f-sum rule
(particle number conservation).

In this work the densities and binding energies are ob-
tained from the fully relativistic wave functions described in
the previous subsection. Total stopping or square straggling
are calculated adding the independent shell contributions.

We considered together those electrons of the same bind-
ing energy E;+ AE,, with AE; being the quantum uncertainty
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TABLE I. FEG parameters for Au, Pb, and Bi from their optical
data of energy-loss function [52-54]: Ne, number of electrons; rg,
Seitz radius; w,, plasma frequency; and vy, width. All of them in
atomic units.

Element Ne s w, y
Au 17.0 1.17 1.37 1.37
Pb 3.7 2.37 0.47 0.15
Bi 5.6 2.17 0.54 0.28
h  ho
AE = —=—
A (x)

and (x); being the mean radius of the shell. If the spin-orbit
split between n/+ and nl/- is less than the quantum uncer-
tainty in energy, the electrons are considered to react together
shielding the projectile; i.e., the 14 electrons of the 4f sub-
shell as a whole and not the 8 electrons 4f+ and the 6 elec-
trons 4f— separately. In all cases the screening among elec-
trons reduces the stopping cross section. In the three cases
studied (Au, Pb, and Bi), this reduction due to screening
between nl=* shells was found to be appreciable for energies
above the stopping maximum (i.e., 5%-10% in the energy
range 0.2-3 MeV) and tends to be negligible for very high
energies (above 4 MeV).

Different works about the binding energies of H ions in-
side an electron gas consider that, at low velocities, the
screening of the H* nucleus is strong enough to have very
loose or directly no bound electron [48—50]. In what follows
we calculate stopping and straggling in multielectronic tar-
gets just considering H™.

III. RESULTS

In order to compare with the experimental data available
we present total results for the stopping and square straggling
cross sections. To this end we have added the contribution of
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the FEG to that of bound electrons calculated with the SLPA.
It was done within the perturbative approximation using the
Mermin dielectric function [51]. The characteristic plasmon
frequencies w, and widths y of the FEG were obtained from
the optical data of Au [52], Pb [53], and Bi [54], considering
the first important peak in the energy-loss function. These
values were also tested with another tabulation of experi-
mental plasmon frequencies by Isaacson [55]. The values
employed in this work are displayed in Table I.

The perturbative calculation for the FEG using Mermin
dielectric function [51] is expected to describe the experi-
mental data for energies above 50 keV. Nonperturbative re-
sults for the FEG contribution can be added to the present
SLPA to have a better description at low energies.

A. Gold

The atomic binding energies of Au were included in Fig.
1. For solid Au, the atomic 5p°, 5d'°, and 6s' electrons were
considered as the homogeneous FEG (see the values in Table
I), so the first shell of bound electrons is the 4f subshell with
its 14 electrons (the 5s is the second one).

In Fig. 2 we display our theoretical results for the stop-
ping cross section together with the large amount of experi-
mental data available [4] and the SRIM 2008 values [5]. We
also include in this figure the theoretical curve by Heredia-
Avalos et al. [36].

Our total stopping cross section describes the data quite
well in the whole energy range. There is an important dis-
persion of experimental values, mainly around the stopping
maximum. In order to analyze the results, we have classified
the data chronologically. Only the stopping measurements of
the last 20 years [56—64] are displayed separately in the fig-
ure. This arbitrary classification allowed us to note that, ex-
cept for the results by Martinez-Tamayo et al. [56], the latest
stopping measurement tend to be close to a single curve. The
semiempirical SRIM 2008 code [5] gives a curve in accor-
dance with these latest experimental data.

FIG. 2. (Color online) Stop-
ping cross section of Au for pro-
tons. Curves: dashed-line, present
SLPA calculation for the bound
electrons; dotted-line, FEG contri-
bution using the Mermin dielectric
function [51]; black solid line, to-
tal stopping as the addition of the
previous two contributions; gray
solid line, SRIM 2008 [5];
dashed-dotted line, recent theoret-
ical calculation by Heredia-Avalos
et al. [36]. Symbols: experimental
data [4,56—64] as indicated in the
figure.
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FIG. 3. (Color online) Squared
straggling of Au for protons nor-
malized to Bohr high-energy
limit. Curves: solid-lines, our
SLPA results for the different
shells of bound electrons; dotted
line, contribution of the FEG us-
ing the Mermin dielectric function
[51]; dashed line, total LPA results
by Chu [67]. Symbols: experi-
mental data [68,69,76—78] as indi-
cated in the figure.
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The contributions of the FEG and the bound electrons are
displayed separately in Fig. 2. The FEG contribution in gold
is the main one but cannot explain the total results for ener-
gies above 100 keV.

The total stopping cross section shows a maximum at 130
keV, shifted with respect to SRIM, and in rather good agree-
ment with the measurements by Martinez-Tamayo et al. [56],
and to previous ones by Kreussler er al. [65] and Santry and
Werner [66]. Very similar theoretical results were obtained in
Ref. [36].

The square energy-loss straggling of protons in Au is dis-
played in Fig. 3, which fits the experimental data very well.
We also include in this figure the theoretical results by Chu
[67] using the LPA with Hartree-Fock densities but consid-
ering the electronic density as a whole. The difference be-
tween our results and those by Chu is due to the independent
shell approximation considered in the present SLPA.

The theoretical square energy-loss straggling, calculated
as the second moment of the energy by Eq. (2), describes
only the statistical straggling. However, the measured strag-
gling includes the contribution due to surface roughness and
inhomogeneity in the foil thickness [68-75]. Some straggling
measurements are corrected by subtracting this contribution
from the experimental measurements. Instead, other publica-
tions add this contribution to the statistical calculations
[76,77]. In Fig. 3 we have included only those experimental
sets of data that explicitly take into account the roughness
and inhomogenity of the sample. In the case of the experi-
mental data by Andersen et al. [76], they have been corrected
in 10% due to the estimation of this contribution in Ref. [76].
The data by Moller et al. [77] shows asymmetric error bars
that correspond to Fig. 5 in Ref. [77].

The theoretical square straggling plotted in Fig. 3 is nor-
malized to the Bohr high-energy limit [79]. The total values
displayed are calculated as the addition of the FEG and the
different shells contributions. In Fig. 3 we add the nl/ sub-
shells just for simplicity and show the total L, M, and N
shells. It is interesting to note that the total square straggling
tends to the Bohr limit—proportional to the total number of

electrons in the target, all active in the high-energy collision.
In the same way, at high energies the contribution of the FEG
and every shell tends to the number of electrons in them. To
stress this point, we scaled the right axis as the number of
active electrons N(v)=Z; Q*(v)/ Qé. At certain energy all
the electrons of the subshell are active and the contribution
to the straggling saturates to almost a constant.

The total straggling tends to Bohr from below and do not
show the overshooting around the energy of maximum stop-
ping power predicted by the binary collision formalisms
[80,81]. Nevertheless, we note that each shell contribution
grows with increasing proton velocity, reaching values above
the saturation limit at certain energies. This effect does not
appear in the total straggling.

B. Lead

In Fig. 4 we display our theoretical results for the total
stopping cross section of protons in Pb, showing also the
partial contributions from the FEG and from the bound
shells. In this case the contribution of bound electrons plays
a major role. The comparison with the experimental data
available shows good agreement for energies above 300 keV
(overestimation of 7% at 2 MeV with respect to the data by
Ogino [57]). In this high-energy region the different experi-
mental data agree nicely, but near the stopping maximum the
data by Bader er al. [82], measured in 1956, differs in about
10% from the more recent data by Eppacher and Semrad [60]
or Sirotonin [83]. Note that the SRIM results [5] follow the
maximum measured by Bader et al. [82]. Our theoretical
results have an undesirable two-peak shape around the stop-
ping maximum; however it is 5% above and below the data
by Eppacher and Semrad [60].

A nonperturbative description of the FEG contribution
could be very useful in this case. The high Seitz radius of
lead (r;=2.30 a.u.) suggests an important difference be-
tween the non-perturbative and the linear response calcula-
tions for the FEG [90]. In the low energy, the lack of experi-
mental data below 30 keV leaves the description of the
stopping of protons in lead still open.
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FIG. 4. (Color online) Stop-
ping power of Pb for protons.
Curves: as in Fig. 2. Symbols: ex-
perimental data [57,59,60,82-89]
as indicated in the figure.
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The energy-loss straggling for protons in Pb is displayed
in Fig. 5. The general behavior of the theoretical results is
the same as that obtained in Fig. 3 for Au. Again we plotted
separately the contributions of the FEG and the different
bound shells. Only one set of experimental data, by Mal-
herbe and Alberts [91], was found for this system, and the
theoretical-experimental agreement is reasonable, at least
above 800 keV.

C. Bismuth

The theoretical results for stopping of protons in Bi are
displayed in Fig. 6. As can be observed, they tend to describe
the experimental data for energies above 300 keV (with an
overestimation of 10% at 2 MeV with respect to Ogino mea-
surements [57]). Our calculations in Bi show the same diffi-
culty around the maximum as in the case of Pb. Again, we
have the two-peak shape following the FEG and SLPA
curves. On the other hand, our results are near the latest
measurements of stopping in Bi by Eppacher [92]. This data

has a maximum at the same energy (100 keV) but 15% be-
low the data by Krist and Mertens [93] or Eckardt [94] and
the SRIM curve. It would be desirable to have new measure-
ments in this energy region (30-400 keV).

In Fig. 7 we compare our theoretical straggling with the
experimental measurements by Eckardt [94], with very good
agreement in the whole energy range. We also include more
recent measurements by Eckardt and Lantschner [69] but
only at 200 keV. As in the case of gold, we include in this
figure the theoretical results by Chu [67] using the LPA with
all the shells together. As expected, this curve is always be-
low the SLPA.

In the three cases studied (Au, Pb, and Bi) we reproduce
Bethe high-energy limit for the stopping power within 2%
for impact energies above 3 MeV. However, a systematic
overestimation of the experimental data in about 5% is found
for energies of a few MeVs. This indicates that perhaps more
complex mechanisms not included in our calculation should
be considered.

— 100

FIG. 5. (Color online) Normalized squared
straggling of Pb for protons. Curves: as in Fig. 3.
Symbols: experimental data by Malherbe et al.
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FIG. 6. (Color online) Stop-
ping power of Bi for protons.
Curves: as in Fig. 2. Symbols: ex-
perimental data [57,89,92-95] as
indicated in the figure.
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IV. CONCLUDING REMARKS

We present in this work ab initio calculations of stopping
and energy-loss straggling cross sections of protons in Au,
Pb, and Bi. We employed the dielectric formalism and linear
response for the FEG and the SLPA for the inner shells. The
SLPA considers the local free-electron-gas approximation of
the LPA, but within the independent shell approximation for
the electronic response, and the Levine and Louie dielectric
function including the ionization threshold of each shell.
Fully relativistic electronic densities and binding energies
were calculated numerically by employing the HULLAC and
the GRASP codes and are compared with experimental bind-
ing energies in solids with very good agreement.

The theoretical stopping values are very good in the case
of gold even at lower energies than the expected ones for a
perturbative method. For lead and bismuth, the stopping re-
sults are good for energies above 300 keV, for which the

inner shells play a major role. However, we found some
difficulties around the stopping maximum. An overestima-
tion of the experimental data in about 5% is found for ener-
gies of a few MeVs, indicating the presence of mechanisms
not included in this formalism. Our straggling results de-
scribe the experimental data in the three cases reasonably
well, approaching the Bohr high-energy limit from below.

We want to stress that we have dealt with multielectronic
targets (with 79 up to 83 bound electrons). These atoms have
the complete 4f subshell as one of the outer ones, playing an
important role in the stopping calculations. The SLPA does
not use any external parameter, but the fully theoretical den-
sities and binding energies. We think that the SLPA can be
considered as a reliable approximation to treat very heavy
elements.
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