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General relativity dynamics can be derived from different actions—which depart from the Einstein-
Hilbert action in boundary terms—and for different choices of the dynamical variables. Among them, the
teleparallel equivalent of general relativity is a torsion-based theory for the tetrad field. More general
torsion-based theories have been built in the last years, intending to supersede general relativity. There are
two current ways to formulate such theories; one includes a spin connection and the other does not. We
discuss the notion of Lorentz gauge invariance in such theories, and give a simple but important proof that
both formulations are physically equivalent.
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I. INTRODUCTION

Fernparallelismus or teleparallelism is firstly known
as an attempt by Einstein to base a unified theory of the
electromagnetic and gravitational fields on the mathemati-
cal structure of absolute teleparallelism. In this framework,
spacetime is characterized by a curvatureless connection
together with a metric tensor field, both defined in terms of
a dynamical tetrad or vierbein field (a field of orthonormal
tangent-space bases). This was an episode in Einstein’s
research that lasted for three years from 1928 to 1931.
Although the pertinent mathematical structures had been
developed before by Cartan and Weitzenböck, they were
introduced just as mathematical concepts, and the search
for field equations for the tetrads was the novelty, efforts
which eventually were abandoned [1].
The concepts of teleparallelism were not further explored

until three decades later, when Møller [2] revived Einstein’s
original idea, but in order to find a tensorial complex for
the gravitational energy-momentum density. After this, the
Lagrangian formulation for teleparallel gravity was written
by Pellegrini and Plebianski [3]. Later, Hayashi and Shirafuji
[4] proposed the new general relativity (NGR), a teleparallel
theory based on the curvatureless Weitzenböck connection
(which is linear in first derivatives of the tetrad). The NGR
Lagrangian combines the three quadratic invariants

emerging from the decomposition of the Weitzenböck
torsion in its irreducible parts. Three parameters enter the
NGR Lagrangian, which can be fixed to render NGR
the teleparallel equivalent of general relativity (TEGR).
The equivalence between TEGR and GR lies in the fact that
TEGR dynamics for the tetrad yields the GR dynamics for
the metric whenever the tetrad is thought as an orthonormal
basis in the tangent space, so linking the tetrad to the metric.
The orthonormality property is clearly invariant under local-
Lorentz transformations of the tetrad. The equivalence
between TEGR and GR would suggest that the TEGR
Lagrangian should exhibit such a gauge invariance.
Actually, TEGR Lagrangian is not invariant but pseudoin-
variant [5]: a local-Lorentz transformation of the tetrad
produces a boundary term in the TEGR action, which does
not affect the dynamics.
In the middle of the 2000’s, Ferraro and Fiorini proposed

a nonlinear extension of TEGR theory that consisted
in replacing the torsion scalar T in the Lagrangian with
a convenient function of it. For a Born-Infeld-like
Lagrangian, they have shown that the inflationary early
Universe is a solution for ordinary sources such as radiation
or dust [6]. This opened the study of the so-called fðTÞ
theories of modified teleparallel gravity [7–9]. We should
notice that, although pseudoinvariance works like a full
invariance at the level of the TEGR equations of motion,
this feature is lost when passing to fðTÞ gravity. The
divergence associated with the boundary term now remains
encapsulated within the argument of the function fðTÞ in
the Lagrangian. Thus the equations of motion are no longer
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invariant under local-Lorentz transformations of the tetrad
(however, they remain invariant under global Lorentz
transformations). The loss of this gauge freedom implies
that fðTÞ theories contain some degrees of freedom (d.o.f.)
associated with the local orientation of the tetrad field (i.e.,
with the parallelization of the spacetime). How many extra
d.o.f. are involved in fðTÞ and other modified teleparallel
gravities is a subject under study; but given the nonlinear
background-dependent nature of its constraints, it can be
expected that the extra d.o.f. will depend on the point in the
phase space [10–15]. As long as the matter couples just to
the metric, or even the Levi-Civita connection, the sole
possibility of observing these elusive extra d.o.f. would be
via changes of gravitational dynamics, but not at the level
of the motion of matter in a given spacetime.
The loss of the Lorentz gauge freedom can be avoided

from the beginning, by providing the TEGR Lagrangian
with a divergence term to guarantee its full local-Lorentz
invariance. However, this would lead to a sort of fðRÞ
theory (nonlinear extension of the GR Lagrangian), which
would depart from the teleparallel foundations. A different
strategy consists of improving theWeitzenböck connection,
by replacing it with a more general one that is able to
provide a better behavior under local-Lorentz transforma-
tions. In this way, we endow the theory with a full Lorentz
gauge invariance. For reasons that will be clearer in the next
section, this strategy is called covariantization.
In recent years we have been witnessing intense dis-

cussions about the local-Lorentz invariance in modified
teleparallel theories of gravity, such as fðTÞ [16]. Some
authors object the covariantization procedure as inconsis-
tent since the components of the more general curvatureless
connection cannot be fixed by varying the covariantized
action [17,18]. Therefore the connection must be chosen by
resorting to some criterion, which is not very different to
directly adopting the Weitzenböck connection. Of course,
there might be some preferences based on symmetry
considerations, but those would often be not unique, neither
available in cases of no symmetry.
Some others view the local-Lorentz-covariant represen-

tations as the only consistent approach [19,20], by assum-
ing that the fundamental tetrad variable of teleparallel
gravity must be regarded as the frame an observer is free
to choose, and with the spin connection somehow related to
inertial effects. In such case, the Lorentz gauge freedom is
frozen by parallelizing according to some physical cri-
terion. But if one thinks of the tetrad as a geometric object
to describe gravity, just a set of orthonormal vectors
without caring about observers, then such a “physical”
criterion becomes meaningless. In any case, the extra d.o.f.
will enter into play and they turn out to be rather unhealthy,
at least for the standard fðTÞ theory [21,22] and
NGR [23,24].
All these disagreements seem odd, as there is evidence

that the covariant and the (original) pure-tetrad approaches

would be equivalent [16,25]. Moreover, the general curva-
tureless connection introduces trivial primary constraints in
the Hamiltonian analysis [26,27] which are evidently first
class [28]. For instance, the so-called preferred frame
effects or “frame-dependent artifacts” are resolved only
very superficially [19,20,29]. In a covariantized model one
is allowed to choose absolutely any available tetrad for a
given metric, but at the price of taking an appropriate spin
connection. On the other hand, two different solutions for
the same metric ansatz of the pure-tetrad approach would
also give two different solutions in the covariantized
version, in disguise of two different possible choices of
the spin connection for a given frame [25].
It is not to say that the covariant approach has no

physical meaning, since for example, it naturally comes
from taking teleparallel gravity as a gauge theory of
translations [30]. Of course, this gives good hope for
formulating conserved quantities such as energy, for
authors who believe that these quantities should be well
defined for gravity despite that there is no fundamental
symmetry which would make it justified, so that in a really
canonical way one gets rather a holographic notion of
conserved quantities, necessarily paying attention to
boundary terms [31].
Leaving aside the controversies, the covariant methods

can be used for more convenience of doing calculations
[25]. However, what we will show in this article is that the
formulation is precisely the same as simply taking the
gauge invariant variables in the covariant version, for any
teleparallel model which is globally Lorentz invariant. This
is yet another, very simple and direct proof that the two
versions have no physical difference.

II. TELEPARALLEL AND MODIFIED
TELEPARALLEL GRAVITY

In its standard formulation, teleparallel gravity is built
from the Weitzenböck connection, which is the connection
that makes the tetrad ebν , and its inverse eμb, parallel
transported as 0 ¼ ∇μebν ¼ ∂μebν − Γα

μνebα. Then, its com-
ponents are

Γα
μν ≡ eαa∂μeaν : ð1Þ

The Weitzenböck connection is compatible with the metric
gμν ¼ ηabeaμebν , or gμνe

μ
aeνb ¼ ηab (the basis feag is ortho-

normal). Γα
μν results to be a curvatureless connection whose

torsion is

Tα
μν ¼ Γα

μν − Γα
νμ ¼ eαað∂μeaν − ∂νeaμÞ: ð2Þ

The torsion scalar

T ¼ 1

4
TαβμTαβμ þ 1

2
TαβμTβαμ − TμTμ; ð3Þ
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where Tμ ¼ Tα
αμ is the torsion vector, is directly related to

the Levi-Civita curvature scalar R
∘
of the metric gμν (that is

the GR Lagrangian),

eR
∘ ¼ −eT þ ∂μð2eTμÞ; ð4Þ

where e ¼ det eaμ ¼ ð− det gμνÞ1=2. On this basis, the
TEGR Lagrangian density is taken equal to �eT , with
the sign depending on the chosen signature. Thus we obtain
a TEGR Lagrangian quadratic in first derivatives of the
tetrad. The second derivatives contained in the GR
Lagrangian have been cornered in the boundary term of
Eq. (4), which is not relevant for the dynamics.
In Eq. (4), the lhs depends just on the metric, which is

invariant under local-Lorentz transformations of the tetrad,

eaμ → La
cðxÞecμ ⇒ gμν → gμν; ð5Þ

where La
c is a matrix belonging to the Lorentz group (so it is

ηabLa
cLb

d ¼ ηcd). We remark that we are not talking about
the behavior under diffeomorphisms, since each term in the
rhs of Eq. (4) is separately a scalar density. Indeed the
expression (1) transforms as an affine connection under
coordinate changes, which implies that Tα

μν in Eq. (2) really
transforms as the components of a tensor. We are focusing
our analysis on the behavior of the rhs of Eq. (4) under local
changes of the orientation of the tetrad. Of course, if the lhs
of Eq. (4) possesses local-Lorentz invariance, then the rhs
will possess it too. However, separately each term in the
rhs is only globally Lorentz invariant. This is because
the components of the torsion in Eq. (2) are made of the
components ∂μeaν − ∂νeaμ of the exterior derivative of the
tetrad dea, which changes as

dea → La
c dec þ dðLa

cÞ ∧ ec: ð6Þ

Only if the Lorentz transformation is global, then the 1-forms
dðLa

cÞ will be zero; thus dea will behave as a 2-form valued
in the tangent space. In a more prosaic language, only for
global transformations, the label “a” in dea will behave as a
“contravariant” index under Lorentz transformations of the
tetrad, in the sense that dea will transform like ea.
The violation of the local-Lorentz invariance does not

show up in the equations of motion of TEGR since its
Lagrangian density differs only by a boundary term B ¼
∂μð2eTμÞ from the GR one. This makes TEGR pseudoin-
variant under local-Lorentz transformations of the tetrad
[32]. Pseudoinvariance is a rather low price to be paid for
substituting the GR Lagrangian, which contains second
derivatives of the metric, with the simpler TEGR
Lagrangian that is built from first derivatives of the tetrad.
However, there are many generalizations, such as NGR,
fðTÞ gravity, or even higher derivative ones, which do
violate the local-Lorentz invariance at the level of equations

of motion. The most popular higher derivative models are
fðT ;BÞ ones, even though they do not go much beyond the
more usual modified gravities and fðTÞ gravity. Due to the
basic relation (4), they can obviously be represented as

simply fðR∘ ; TÞ, apparently inheriting all the potential
problems that fðTÞ could have [21,22].

III. LORENTZ COVARIANTIZATION

The components of the torsion in Eq. (2) will become
invariant under local-Lorentz transformations of the tetrad
if the ordinary exterior derivative dea is covariantized by
endowing it with a spin-connection term:

Dea ≡ dea þ ωa
b ∧ eb: ð7Þ

The 1-forms ωa
b must accompany the change of the tetrad

by transforming as components of a spin connection to
absorb the undesirable term in Eq. (6):

ea → La
c ec; ωa

b → La
cω

c
dðL−1Þdb − ðL−1Þcb dðLa

cÞ: ð8Þ

Thus it turns out to be Dea → La
cðxÞDec.

When talking about invariance or covariance, it is very
important to precisely specify what kind of transformations
are being considered, since the invoked property is not only
about the algebraic structure of the involved group but also
about how it acts. Let us introduce the following two
definitions:
Definition 1: If a teleparallel theory is Lorentz invari-

ant under the simultaneous transformations of the tetrad
field and the spin connection of Eq. (8), then it will be
called Lorentz invariant of type I.
Definition 2: If a teleparallel theory is Lorentz invari-

ant under the transformation (5) of the tetrad field (alone),
then it will be called Lorentz invariant of type II.
Remark: Naturally, if a theory violates the Lorentz

invariance only at the boundary, the word “pseudo” is
added to the above definitions.
Any theory with an explicitly introduced spin connection

is usually Lorentz invariant of type I, in the full meaning of
that, without the prefix pseudo. However, in case of
teleparallel models, the type II is at best a “pseudoinvar-
iance” which gets broken by almost every modification
away from TEGR. On the other hand, given the fulfillment
of type I invariance, the transformations of type II can
equivalently be viewed as transformations of the spin
connection alone.
In its pure-tetrad formulation, TEGR uses the

Weitzenböck spin connection ωa
b ¼ 0. But a teleparallel

theory covariantly formulated should be built from the
(Lorentz-invariant) torsion Tα

μν ¼ eαaðDeaÞμν.1 Since

1Ta ¼ Dea is the 1st Cartan’s structure equation. It defines the
relation between torsion and connection.
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teleparallelism uses curvatureless connections, so implying
that gravity comes exclusively from the torsion field, the
spin connection should be chosen within the family of
curvatureless spin connections to which the Weitzenböck
connection belongs. The more general connection of this
type can be obtained by local-Lorentz transforming the
Weitzenböck connection (modulo possible global issues of
cohomology type)

ωa
b ¼ −ðΛ−1Þcb dΛa

c; ð9Þ

where the Λ’s are matrices belonging to the Lorentz group.2

We use “Λ” instead of “L” because they are new variables
of the theory, characterizing the spin connection, while “L”
indicates the local-Lorentz transformations of the variables.
Now the (type I) simultaneous Lorentz transformation

(8) can be displayed as

eaμ → La
cðxÞecμ; Λa

b → La
cðxÞΛc

b: ð10Þ

As explained above, any (modified) teleparallel model
which is globally Lorentz invariant in its pure-tetrad
formulation (every model discussed in the literature we
know) becomes locally Lorentz invariant upon this cova-
riantization procedure, though with respect to the (type I)
simultaneous transformation (8).
For many popular models, it has been shown that the

equation of motion for the spin connection, which results
from varying the action with respect to the Λ’s variables,
just reproduces the antisymmetric part of the tetrad equa-
tions. Why this happens is rather evident [16]: in the
Lorentz-covariant action, the antisymmetric variation of
the tetrad gets precisely compensated by variation of
the spin connection (keeping it inside the flat metric-
compatible class).
Therefore, in the covariant version we can always choose

the ωa
b ¼ 0 gauge, even right inside the action which

otherwise is not always a harmless choice to do, which
brings us back to the pure-tetrad formalism.
Moreover, any gauge choice does not influence the value

of the torsion tensor, therefore it is not only that this choice
does not influence the physical contents of equations of
motion, but it does not change the global quantities, like the
full value of the action, either. If we found some solution in
the covariant version, we can choose a gauge and make it a
pure-tetrad solution, with the same metric and the same
torsion tensor.

IV. LORENTZ GAUGE-INVARIANT VARIABLES

Now, when we know that any globally Lorentz-invariant
modified teleparallel model can be covariantized by replac-
ing the partial derivatives of the tetrad for the Lorentz-
covariant ones, let us make a simple rewriting of the
covariant derivative (7) with the connection (9):

ðDeaÞμν ¼ 2 ∂ ½μeaν� − 2ðΛ−1Þcbð∂ ½μΛa
cÞ ebν�

¼ 2 ∂ ½μeaν� þ 2Λa
cð∂ ½μ ðΛ−1ÞcbÞebν�

¼ Λa
c 2

h
ðΛ−1Þcb∂ ½μebν� þ ð∂ ½μðΛ−1ÞcbÞebν�

i

¼ Λa
c 2 ∂ ½μẽcν�; ð11Þ

which means that Dea ¼ Λa
c dẽc, where

ẽc ≡ ðΛ−1Þcb eb ð12Þ

is a Lorentz-invariant quantity which does not change at all
under the simultaneous local-Lorentz transformations (10).
Thus the Lorentz-covariant torsion tensor is

Tα
μν ¼ eαaðDeaÞμν ¼ ẽαað∂μẽaν − ∂νẽaμÞ; ð13Þ

which is the torsion for the Weitzenböck connection
associated with ẽa. Then, the covariant formulation is
dynamically equivalent to a pure-tetrad formulation. The
only dynamical object of the covariant formulation is ẽa:

Lcovariantðe;ΛÞ ¼ Lpure tetradðẽÞ; ð14Þ

and therefore the locally Lorentz-invariant variables (12)
simply satisfy the equations of motion of the pure-tetrad
version of the model. Thus, conclusions made in the pure-
tetrad formulation also apply to the covariant formulation,
and it is evident that the spin connection contains purely
gauge degrees of freedom.
The formula (14) is valid for any modified teleparallel

model which can be written in terms of the metric (and its
Levi-Civita connection) and the spacetime components of
the torsion tensor. Indeed, the metric is obviously invariant
under any kind of the Lorentz transformations, be it type I
or type II, while for the torsion tensor we have

Tα
μνðe;ωðΛÞÞ ¼ Tα

μνðẽ; 0Þ:

Therefore, it includes fðTÞ models as well as NGR and its
nonlinear generalizations, and even models of fðT ;BÞ and
many other types.
What we have shown here is that taking the ωa

b ¼ 0

gauge is equivalent to a simple change of the variables.
Very similarly, a Lagrangian of the form

2The basis feag will no longer be parallel transported if the
Weitzenböck connection is replaced with (9), but the connection
will be still metric. Anyway, the “parallelization” can be always
retrieved by passing to the Weitzenböck connection through a
local-Lorentz transformation.
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Lðϕ;ψÞ ¼ 1

2
∂μðϕ − ψÞ∂μðϕ − ψÞ

can be transformed to Lðχ;ψÞ ¼ 1
2
ð∂μχÞð∂μχÞ by a simple

change of variable ϕ → χ ¼ ϕ − ψ which removes its
dependence on ψ . It is nothing but rewriting the
Lagrangian in gauge-invariant variables.
A source of concern might be eligibility of restricting

to gauge-invariant variables only, inside the action. For
example, using the vector potential is important for the
action principle of electrodynamics. In fact, its gauge-
invariant quantities Fμν ¼ ∂μAν − ∂νAμ depend on deriv-
atives of the fundamental variables. The variation of L ¼
− 1

4
FμνFμν with respect to Fμν would give the trivial

equation Fμν ¼ 0 while its variation with respect to Aν

gives the correct result of ▿
∘
μFμν ¼ 0.

The reason is that the condition of δA vanishing at
infinity is stronger than the same condition for δF. This is
not about a precise type of asymptotic behavior, the same is
true for vanishing everywhere outside a big enough ball.
For example, vanishing of an otherwise arbitrary function
xðtÞ both in the past and in the future means also that _xðtÞ
integrates to zero, what gives a nontrivial condition on
admissible functions _xðtÞ even if the boundary contribu-
tions are totally neglected. In other words, the usual
variational principle in terms of Aμ imposes extra restric-
tions on the allowed variations of Fμν.
The stronger condition on admissible variations means

that the action must be stationary with respect to a smaller
class of variations. It makes the corresponding equations
admit more solutions. Note also that the vanishing field
strength is of course a particular case of the divergenceless
one. This is a common effect which plays, for example, an
important role in understanding mimetic gravity models [33].
However, this is not the case with the choice of variables

presented in this work; covariant and pure-tetrad formula-
tions are equivalent at the level of the action too. This is
because the gauge-invariant variables (12) do not depend
on any derivatives of the fundamental quantities; we have
presented a purely algebraic relation which imposes no
restriction on the class of variations of gauge-invariant
variables.
There are two different sides of the traditional under-

standing of the role of spin connection [20]. One assumes a
particular spin connection for a given tetrad, which removes
inertial effects. This assumption that one could objectively
separate gravity from inertia goes against all experimental
evidence. And it is related to the picture of (fictional) global
translations being gauged, and requires some, necessarily
voluntary, choice of the reference tetrad. By now, it is known
that the standard recipes [20] of determining the spin
connection can give nonunique results [34], and beyond
the simplest cases they might even easily get wrong, with
equations of motion not being satisfied if not in TEGR [35].

Secondly, there are opinions in the literature concerned
about making the action and other global quantities finite,
and it has been sometimes claimed that the spin connection
plays a regularizing role. However, our change of variables
is performed directly at the level of all the fundamental
geometrical quantities, and does not involve neglecting any
boundary term. It means that the action, or some conserved
quantities, can be regularized in the pure-tetrad approach
with no less success than in the covariant one. And in fact,
if there is a finite-action covariant solution, we can always
make a type I (simultaneous) Lorentz transformation which
brings this particular solution, preserving all its physical
properties, to the zero spin connection case.
To state it once more, there are different types of the

local-Lorentz (pseudo-)invariance in the case of TEGR.
One way is to write the action fully in terms of the Lorentz-
covariant derivatives. Then we have the type I invariance, in
practically any model we might think of, in these terms. On
the other hand, if we think of the tetrad as four vectors
composing the fundamental degrees of freedom, then there
is no reason to want this full-fledged local-Lorentz
invariance.
However, even the pure-tetrad action of TEGR appears

to possess some invariance which goes beyond the explic-
itly maintained diffeomorphism invariance. This is the type
II Lorentz pseudoinvariance. And this is the invariance that
gets lost in most generalizations. Even though it is different
from what most experts in general metric-affine gravity are
used to call local-Lorentz invariance, it is algebraically
related with the same group, the Lorentz group. Note also
that the influence of all these symmetries of the action can
be seen in the Hamiltonian analysis at the level of the
primary constraints [28].
Of course, what we get in models of fðTÞ gravity is

nontrivial dependence on which tetrad to choose. But this is
not an obstacle, since it grants a new model with more
degrees of freedom. These are represented by the tetrad, a
fundamental variable which carries more information than
what the metric does. The covariantization procedure is
equivalent to formally rewriting the very same model in
locally Lorentz-invariant terms. This is done by simply
sharing the extra modes with the newly introduced vari-
ables, the components of the spin connection. However it
does not get rid of the very fact that the model does have
some new dynamical content which a metric alone cannot
provide. Getting something more on top of the metric is the
essence of the local-Lorentz symmetry (type II) violation,
and the covariant version simply rewrites it in differ-
ent terms.

V. CONCLUSIONS

We have proven that the covariant and pure-tetrad
formulations of teleparallel theories are fully equivalent,
as long as matter is not coupled to the Lorentzian extra
degrees of freedom. Due to the nature of the (curvatureless
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and metric) Weitzenböck connection (1), its torsion can be
covariantized by replacing the tetrad ea with the “gauge-
invariant” tetrad ẽa [see Eq. (13)], which is equivalent to
splitting the original tetrad into two factors [see Eq. (12)].
This splitting introduces six new variables—the Lorentz
matrices Λa

b—deprived of independent dynamics; they are
clearly spurious variables that will have an impact on the
constraint algebra. Since the covariantized torsion is the
Weitzenböck torsion of the tetrad ẽa, then ẽa satisfies
the same dynamics as the original variables ea. Therefore,
although the covariant formulation is Lorentz invariant of
type I, it is not dynamically different from the pure-tetrad
formulation.
When the Lorentz invariance of type II is broken in the

pure-tetrad formulation, it gives rise to new dynamics. This
dynamics also appears in the covariant formulation,
because the Lorentz type II breaking is also present.
Certainly, a pure-tetrad Lorentz rotation is no longer an
obvious symmetry once nonzero spin connection terms are
added. Therefore, what is broken by generalizations of the
covariant TEGR would rather be a “type ĨI” invariance,
which represents local-Lorentz rotations of our Lorentz-
invariant variables (12).
The results here exposed are rooted in the fact that

Weitzenböck connection (1) has already the most general
form for a curvatureless connection. From this perspective,
there is a one-to-one relation between tetrads and curva-
tureless tetrad-compatible connections (up to global linear
transformations and possible topological obstructions).

This is analogous to the (metric based) GR formulation,
where there exists a one-to-one relation between metrics
and torsionless metric-compatible (Levi-Civita) connec-
tions. However, since the relation tetrad metric is not one-
to-one but is subject to a local-Lorentz invariance, the
teleparallel formulations are expected to be endowed with
such invariance. This expectation seems to come from
considering the metric as more fundamental than the
tetrad. However, such invariance is not mandatory for
building a dynamical theory of tetrads, since both the
gravity Lagrangian and the coupling matter gravity can be
written only in terms of tetrads (without prejudice to those
matter Lagrangians that in fact exhibit a local-Lorentz
invariance).
Our findings are applicable to the entire class of tele-

parallel theories built from the torsion tensor, which include
TEGR, fðTÞ, NGR, fðTax; Tvec; T tenÞ, fðT ;BÞ, teleparallel
Horndeski gravity, among others.
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