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Abstract

The global impact of COVID-19 has challenged health systems across the world. This situa-

tion highlighted the need to develop policies based on scientific evidence to prepare the

health systems and mitigate the pandemic. In this scenario, governments were urged to pre-

dict the impact of the measures they were implementing, how they related to the popula-

tion’s behavior, and the capacity of health systems to respond to the pandemic. The

overarching aim of this research was to develop a customizable and open-source tool to

predict the impact of the expansion of COVID-19 on the level of preparedness of the health

systems of different Latin American and the Caribbean countries, with two main objectives.

Firstly, to estimate the transmission dynamics of COVID-19 and the preparedness and

response capacity of health systems in those countries, based on different scenarios and

public policies implemented to control, mitigate, or suppress the spread of the epidemic.

Secondly, to facilitate policy makers’ decisions by allowing the model to adjust its parame-

ters according to the specific pandemic trajectory and policy context. How many infections

and deaths are estimated per day?; When are the peaks of cases and deaths expected,

according to the different scenarios?; Which occupancy rate will ICU services have along

the epidemiological curve?; When is the optimal time increase restrictions in order to pre-

vent saturation of ICU beds?, are some of the key questions that the model can respond,

and is publicly accessible through the following link: http://shinyapps.iecs.org.ar/modelo-

covid19/. This open-access and open code tool is based on a SEIR model (Susceptible,

Exposed, Infected and Recovered). Using a deterministic epidemiological model, it allows to

frame potential scenarios for long periods, providing valuable information on the dynamics
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of transmission and how it could impact on health systems through multiple customized con-

figurations adapted to specific characteristics of each country.

Introduction

The global impact of COVID-19 has challenged health systems across the world. The public

health threat it represents is the most serious seen in a respiratory virus since the 1918 H1N1

influenza pandemic. Since the beginning of the COVID-19 epidemic in China, warnings have

been made about the ability of the SARS-CoV-2 virus to spread and its possible impact in dif-

ferent countries [1–3].This situation showed the necessity to develop policies based on scien-

tific evidence to prepare the health systems to mitigate the pandemic.

By July 2021, SARS-Cov-2 worldwide reported cases reached one hundred and ninety mil-

lion cases and more than four million deaths. Latin America and the Caribbean (LA&C) is one

of the regions with the highest death toll, and almost all countries faced a second and a third

wave by the time this paper was being written.

As different countries are taking different public health measures to face the pandemic, it is

necessary to predict the extent to which their healthcare systems are prepared to respond to

this challenge, since they have become hotspots of the COVID-19 pandemic, exacerbated by

weak social protection, fragmented health systems, and profound inequalities.

According to the World Bank, the health crisis sharply contracted regional growth, with a

GDP decline of 6.7 percent [4]. This has had an enormous social and economic impact, given

that it occurred after several years of slow economic growth and limited progress in social

indicators.

Several health policies, like hygiene, masks and social distancing, non-essential business

and schools’ closure, self-isolation for risk groups, whole-of-society quarantine, or testing-trac-

ing-isolation strategies, have been implemented with different degrees of success. On the other

hand, vaccines are becoming increasingly available during 2021, although access and vaccina-

tion rates are very heterogeneous among different countries.

The first published models showed the potential consequences of the expansion of the epi-

demic through dynamic mathematical models of transmission, commonly used to estimate

the spread of infectious diseases. They highlighted the risks of not implementing adequate mit-

igation and control policies, leaving the transmission dynamics to its natural evolution [5,6].

In this scenario, governments were urged to predict the impact of the policies they were about

to implement, their link with the population’s behavior, and the capacity and resilience of

health systems to respond to the pandemic.

In 2020, the Institute for Clinical Effectiveness and Health Policy, through the Center for

Implementation and Innovation in Health Policy and the Health Technology Assessment and

Economic Evaluation Department, developed a model to estimate the impact of the expansion

of COVID-19 on the level of preparedness of the health systems of different Latin American

and the Caribbean countries. This project, supported by the Interamerican Development Bank

(IBD), had two main objectives: 1) to estimate the transmission dynamics of COVID-19 and

predict the preparedness and response capacity of health systems in Latin American and

Caribbean countries, based on different scenarios and public policies implemented in each

country to control, mitigate or suppress the spread of the epidemic, and 2) to facilitate policy

makers’ decisions, by allowing a fluid interaction with the model adjusting its parameters

according to the specific pandemic trajectory and policy context in each country, and therefore
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predicting the potential impact of public health interventions to allow healthcare systems to

respond timely and appropriately. The 26 countries included in the projections were the so-

called Regional Member Countries which, as of June 30, 2020, had about two million cases of

COVID-19 reported in their epidemiological surveillance systems and about 120000 deaths,

representing a cumulative incidence of approximately 3100 cases per million population and a

mortality rate of 180 deaths per million population.

In this paper we describe the development process of this model and its characteristics.

Methods

The COVID-19 preparedness and response model estimate the impact of the pandemic on the

health systems of 26 Latin American and Caribbean countries. It includes epidemiological,

health resources, and public policy data from the selected countries. It is oriented towards

decision-makers and technical analysts of national or subnational governments in the region.

Using a deterministic epidemiological model, allows to frame potential scenarios for long peri-

ods [7], providing valuable information on the dynamics of transmission and the impact on

health systems through multiple customized configurations adapted to specific characteristics

of each country. The different stages for model building (from conceptualization to program-

ming, calibration, validation, transparency, and reporting) followed international modeling

good practices for models in general [8–11] and dynamic modeling [12]. Our model is fed

with updated daily country-specific COVID-19 mortality statistics to calibrate the pandemic

dynamics and better estimate its future trajectory.

The open-access and open code tool is based on a SEIR model (Susceptible, Exposed,

Infected and Recovered), commonly used to study the transmission dynamics of infectious

diseases [13–16].

This model divides the population in four compartments: "susceptible" (S), "exposed" (E),

"infected" (I) and "recovered" (R). To be able to stratify by clinical severity, infected individuals

are also grouped into "mild" (I), "severe" (Is) and "critical" (Ic) cases. Recovered individuals

can be "immunized" or "deceased."

The COVID-19 preparedness and response model describe the trajectory of the epidemic

per day t, where the number of individuals in each compartment-state is given by the following

system:

St ¼ St� 1 � St� 1a

Et ¼ Et� 1 þ St� 1a � Et� 1g

It ¼ It� 1 þ Et� 1g � It� 1d

Rt ¼ Rt� 1 þ It� 1d

N ¼ St þ Et þ It þ Rt

The transition rates from S to E, from E to I and from I to R, are expressed with the Greek

letters α, γ and δ. The first one is:

a ¼ R0d
It� 1

Nt� 1

The last two are modeled as the inverse of the average duration λE and λI in each compart-

ment E and I, and all of them are assumed as constant. Duration on state I comes from the
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weighted average duration that each infected subject stays in the mild, severe, and critical

stages.

Our model supports two mechanisms to fit existing data: 1) in countries where individual

death records with age-group data are available, the total number of infected cases for that par-

ticular country is calculated based on age-specific infectious fatality rates (IFR) arising from

countries’ seroprevalence surveys when available, or systematic reviews published in peer-

review journals, and 2) where only summary death counts are available, with no age informa-

tion, a global IFR value is applied to all deaths.

In addition, the model performs simulations that start from an initial state (17 days prior to

the model update). The total number of individuals in compartments S, E, I and R are esti-

mated as follows: the quantity of new infected (it) in the first 17 days of the simulation is

inferred from the deaths that occurred 17 days later (length of the interval for critical cases)

and the infectious fatality rate (f), according to the following formula:

it ¼
dtþ17

f
:

This methodology assumes that there is less underreport for deaths than they are for cases,

that it is less affected by the country testing strategy, and that fatality remains constant

throughout the pandemic (although there is some evidence of the possible underestimation of

the deaths, this evidence is heterogeneous and non-conclusive, without known direction and

size). From the estimate of daily new cases described in the previous paragraph, the rest of the

compartments are estimated forthe first 17 days of the simulation, except for the stock of

exposed:

Et ¼ itþ1 � lE

In this stage (where it is not possible to estimate the newly infected retrospectively from the

number of deaths) the basic reproduction number R0, which estimates the average number of

infections generated by a person during the infectious period, is calculated using the average of

the last 5 days with the estimated incidence, with the following formula:

R0 ¼ ðEtþ1 � Et þ
Et
lE
Þ lIN=ItStð Þ

Where t is the next to last day with information, λE the mean pre-infectious period, λI the

mean duration of infection and N the total population.

The purpose of this methodology is to project the rate of exposed individuals and, conse-

quently, the incidence, prevalence, and mortality of COVID-19 for a given period. The same

procedure is used to project the transmission dynamics of the epidemic in the simulations that

are presented by default in the interactive platform.

The source of the information on daily new infections and reported daily deaths is a dataset

published daily by the European Center for Disease Prevention and Control [17].

In the case of the countries that are at the initial stages of the pandemic and with a low num-

ber of deaths, the number of infected subjects (I) was estimated from the reported cases, esti-

mating a variable level of under-reporting according to the different testing-tracing strategies.

Table 1 describes the equations for the main model outputs in three different stages: stage A

(from the initial day of the epidemic to the day of the beginning of the simulation minus 18

days), stage B (first 17 days of simulation), stage C (simulated period).
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The epidemiological and clinical parameters used to simulate the initial scenario of each

country came from rapid and "live" systematic bibliographic searches performed fortnightly,

given the speed of appearance of new evidence in the initial stage of the pandemic.

A living targeted rapid systematic search was carried out through the main bibliographic

databases as Medline, Embase, Scopus, Lilacs), Google Scholar, databases of preprints such as

Medrxiv, Biorxiv, Arxiv, and ChinaXiv. This search was completed by including references

used to populate main simulation models used globally, gray literature from generic search

engines on the Internet, reference lists of relevant articles, specialized media, social networks

and websites of various relevant scientific societies and organizations. The strategies used for

the PubMed search (adapted for other databases) for each of the parameters are detailed in S1

Text. Specific criteria were defined for the selection of the relevant bibliography to select the

key parameters to populate the model. These were the existence of a reproducible definition, a

central estimate with its informed uncertainty (dispersion measures) from reliable sources

(e.g., countries’ official records or recognized research bodies) and a high methodological qual-

ity, after applying an appropriate scoring tool for each type of study design. We prioritized

data collected in primary research over simulations and reviews. Also, we considered their

applicability to Latin America. Data was extracted in a template developed ad-hoc. The specific

methodological aspects of the bibliographic review are described by Argento et al [18].

Information available on critical human and structural resources in each country (number

of doctors and ICU doctors, ICU and hospital nurses, physiotherapists, ICU beds, and ventila-

tors), was obtained through different sources of information. These sources include open gov-

ernment data, official COVID-19 monitoring boards, National Ministries of Health, Intensive

Care Societies, Nursing Associations or Societies, Medical Associations, Societies and Colleges,

Universities, among others. In addition, consultations with experts were performed to analyze

the discrepancies, validate, and preselect the data. Thus, the final validation of the data was car-

ried out through key informants selected by each country.

Table 1. Equations for the main model outputs in different stages.

Model outputs Stage A Stage B Stage C

Daily new

infected (it)
it ¼

dtþ17

f
it ¼

Et� 1

lE
it ¼

Et� 1

lE

Daily new

deceases (dt)
dt = itf it ¼

Et� 1

lE
it ¼

Et� 1

lE

Severe cases (gt) gt = gt−1+it−5s−it−13s

where s = percentage of severe cases

gt = gt−1+it−5s−it−13s

where s = percentage of severe cases

gt = gt−1+it−5s−it−13s

where s = percentage of severe cases

Critical cases

(ct)
ct = ct−1+it−5u−it−21u
where u = percentage of critical cases

ct = ct−1+it−5u−it−21u
where u = percentage of critical cases

ct = ct−1+it−5u−it−21u
where u = percentage of critical cases

Critical care

beds used (k)
kt = ct�d/h
where d = days of hospitalization in the

intensive care unit for critical cases and h =

total days of hospitalization for critical cases

kt = ct�d/h
where d = days of hospitalization in the

intensive care unit for critical cases and h =

total days of hospitalization for critical cases

kt = ct�d/h
where d = days of hospitalization in the

intensive care unit for critical cases and h =

total days of hospitalization for critical cases

Ventilators used

(v)
vt = kt�j
where j = number of estimated ventilators per

critical care bed

vt = kt�j
where j = number of estimated ventilators per

critical care bed

vt = kt�j
where j = number of estimated ventilators per

critical care bed

Intensive care

physicians (m)

mt = kt�l
where l = estimated number of physicians days

per critical care bed

mt = kt�l
where l = estimated number of physicians days

per critical care bed

mt = kt�l
where l = estimated number of physicians days

per critical care bed

Nurses (e) e = kt�o
where o = estimated number of nurses day per

critical care bed.

e = kt�o
where o = estimated number of nurses day per

critical care bed.

e = kt�o
where o = estimated number of nurses day per

critical care bed.

https://doi.org/10.1371/journal.pgph.0000186.t001
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For the entry of the basic reproduction number by the user, which allows the simulation of

scenarios of impact of different public policies, we used the model developed by the University

of Oxford (http://epidemicforecasting.org/), to estimate the level of mitigation of R0 according

to each policy applied and its level of compliance by the population.

The model runs on an interactive public access web platform using the statistical software R

[19], through the Shiny framework [20], where the expected scenarios for 26 Latin American

and The Caribbean countries can be accessed by any user. The default simulation scenario pre-

sented by the platform for each country is fed by the information available on incidence and

mortality from COVID-19, the systematic review of clinical and epidemiological parameters,

and the validated information on health resources for each country. Besides this default sce-

nario, users can customize the model with personalized estimates that may better adjust to the

epidemiological and health services context in each country at the time of interest.

The default simulation presented by the platform for each country is fed by the information

available on incidence and mortality from COVID-19, the systematic review of clinical and

epidemiological parameters, and the validated information on health resources for each coun-

try, previously mentioned.

Main model results can be visualized in the platform and include, among other secondary

results: accumulated and daily numbers of new infected subjects and deaths, occupancy levels

of ICU beds, ventilators, and number of critical human resources (ICU physicians and

nurses).

The project also conveyed a scientific advisory group to provide inputs and feedback on the

model results. The group members were selected for their expertise in health decision making,

model building, infectious diseases epidemiology, intensive care, and hospital management.

They provided advice on the potential impact of COVID-19 epidemics and public health inter-

ventions on transmission dynamics and key health parameters. In addition, their advice

allowed to validate the main model assumptions, the questions to be answered, and the general

relevance. Furthermore, in the model design process, discussions were held with other model-

ing working groups such as "The COVID-19 Multi-model Comparison".

Results

The model is publicly accessible through the following link: http://shinyapps.iecs.org.ar/

modelo-covid19/. By default, the platform shows the results of an initial simulation of the

selected country, based on the parameters collected through the systematic review of the litera-

ture and the SEIR model described above.

To illustrate the results of the model, those from Argentina were selected from among the

figures of the 26 countries included. The results are graphically presented on three scenarios: a

base case scenario and an “optimistic" and "pessimistic" scenarios based on a percentage varia-

tion (customizable by the user) of a group of critical parameters. The infectious fatality rate

(IFR) is the key parameter to derive the number of infected subjects and the percentage of

patients requiring admission to a critical care unit as well as the length of stay in days in the

critical care unit per patient. Fig 1 shows the simulation of the evolution of the new daily

infected for Argentina from July 2020 to September 2020, using the described methodology.

The visualization of the trajectories in the same graph allows to evaluate two alternative

dynamics of the epidemic, because the SEIR model culminates with 100% of the population

infected (since it assumes that the entire population is susceptible). The configuration of three

variable parameters (IFR, probability of severe case and percentage of critical care days) result

in a scenario that reaches the peak in a shorter period accompanied with a steeper decline
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("worse" scenario) and another with a slower distribution of infections over time determining

a more flattened curve ("best” scenario).

Additionally, the user can visualize different scenarios that can be defined in three ways. 1)

the first, called "Public Health Interventions" allows to establish the basic reproduction number

(R0) on which the simulation will be based. This gradient of R0 are shown with a traffic light

scale ranging from red (high R0) to green (low R0). One of the modalities contemplated to

establish the R0 parameter based on the identification of intervention policies that are associ-

ated a priori to known R0 values in the bibliography, based on themitigation calculator for pol-
icymakers from the University of Oxford [21]. The selected R0 may vary over the projected

period, as shown in Fig 2.

2) The second mode of setting scenarios in "Public Health Interventions" consists of the

manual entry of R0 values for each period defined by the user. The configuration of the sce-

nario can be simplified in this case by adopting predefined strategies: constant R0 with default

policies unchanged throughout the entire projection), oscillating R0 (this resemble an intermit-

tent valve where scenarios of hardness and flexibility of public health interventions, with their

corresponding R0, are set between two values specified by the user, in configurable periods of

time) and finally, gradual release of interventions (where the value of R0 is gradually increased

from an initial value to a final value). Fig 3 shows the projected scenarios for Argentina under

the simulation with a constant R0 of 2.3, Fig 4 shows intermittent valve oscillating between 1.9

and 2.5 every 15 days, and Fig 5 shows an scenario with reduction gradual intervention from

an R0 of 2.3. In this example case it was observed that the first strategy predicted that 180 days

Fig 1. Simulation of the evolution of the new daily infected from July 2020 to September 2021 (Argentina).

https://doi.org/10.1371/journal.pgph.0000186.g001

Fig 2. Traffic light of political interventions associated to R0 values.

https://doi.org/10.1371/journal.pgph.0000186.g002
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after the forecast Argentina would accumulate 100530 deaths, while the second scenario 98957

and the last one 101189.

3) The R0 is established by defining a target intensive care bed occupancy rate that triggers

more restrictive intervention policies. In this mode, the user must also enter the value of R0

expected from the intervention and for how long it would be maintained, and the output gives

the user a projection of the dates and the number of restriction periods that would be required

to maintain the ICU occupancy rate below the target. This option is of great interest for the

projection of possible scenarios of health systems use and saturation. Figs 6 and 7 shows the

simulation of the use of intensive care beds for Argentina based on a scenario of constant R0 of

2.8 without intervention and with a triggered intervention of R0 = 2 upon reaching 70% occu-

pancy of intensive care beds. The same simulation can estimate the need of respirators, inten-

sive care physicians and intensive care nurses.

The model platform provides the user with a summary of the main results to assess in each

scenario set, since it estimates the dates when the highest number of new daily cases, deaths,

maximum use of critical care beds and of ventilators will occur, with the corresponding values.

It also estimates the number of days that have elapsed since -or will elapse- until those critical

dates. The percentage of occupancy of critical beds and use of ventilators can also be observed.

In addition to the interactive visualization, the user can download a pdf file with the sum-

mary report of the parameters used, the results and the main graphics of the simulation.

Discussion

In the present paper, we describe the process and main technical features of an open source,

“user friendly” and publicly available model. This model was built through a collaborative

project that involved an international team of public health researchers and decision makers,

designed to be able to adequately depict the pandemic trajectory, and assess key policy

Fig 3. Simulation of the evolution of the new daily infected from July 2020 to September 2021 with constant R0 (Argentina).

https://doi.org/10.1371/journal.pgph.0000186.g003

Fig 4. Simulation of the evolution of the new daily infected from July 2020 to September 2021 with oscilating R0 (Argentina).

https://doi.org/10.1371/journal.pgph.0000186.g004
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questions in the 26 Latin America and The Caribbean countries. The model can help to

respond to several key questions like a) how many total new infections and how many deaths

are estimated per day?; b) when are the peaks of cases and deaths expected, based on the differ-

ent scenarios?; c) what degree of occupancy rate will ICU services have along the epidemiologi-

cal curve and the different scenarios?; d) to what extent will critical human resources, ICU

beds or ventilators be used?; e) when is the optimal time to start a period of increased restric-

tions in order to prevent saturation of ICU beds?. The model not only projects the outcomes

of the epidemic and health system capacity according to different scenarios; and mix and strin-

gency of non-pharmacological interventions (NPIs) policies implemented, but also let local

users “customize” its main parameters according to the specific context of the country, and

fully interact with the model to improve local policy relevance and uptake. In addition, it also

allows users to select a degree of intensity of local interventions and policies (traffic light with

R0 depending on the stringency of the implementation for each public policy and each mea-

sure) which can be used at both national and sub-national level if there is a minimum set of

epidemiological, policy and health resources data.

Several other models were developed to predict the trajectory of the pandemic in countries

and sub-national areas. Multiple methodologies are commonly used for forecasting, such as

probabilistic and stochastic models, machine learning, etc. The Institute for Health Metrics

and Evaluation (IHME) projections are available online (https://covid19.healthdata.org/) and

allow observing alternative scenarios in the evolution of the pandemic at a regional and coun-

try level. The platform includes projections of cases, deaths and the use of hospital and health-

care resources. For the projections of cases and deaths, the model allows multiple scenarios

incorporating different levels of use of masks and variants in the vaccination campaigns. The

Imperial College of the UK projects the total number of cases, the expected number of deaths

Fig 5. Simulation of the evolution of the new daily infected from July 2020 to September 2021 with reduction gradual

intervention (Argentina).

https://doi.org/10.1371/journal.pgph.0000186.g005

Fig 6. Simulation of the use of intensive care beds for Argentina based on a scenario of constant R_0 without intervention

(Argentina).

https://doi.org/10.1371/journal.pgph.0000186.g006
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following the infection, the number of people who will require mechanical ventilation and the

impact of the public policies and interventions implemented by the countries. The model esti-

mates scenarios at a national level adding age or income level segments or compartments

(https://mrc-ide.github.io/). The OpenABM-Covid19 is a model developed by Oxford Univer-

sity to simulate the spread of the COVID-19 epidemic in cities, stratified by age and based on

contacts between people. This model allows prediction of the impact contact tracing as a non-

pharmaceutical intervention [22].

Additionally, we have undertaken a “living” rapid targeted systematic review to have the

best set of parameters together with their uncertainty to better inform model parameters [23].

It should be noted that, although there are models that include predictions for Latin Amer-

ica and the Caribbean, they are not focused on the region and, do not include customized

parameter estimates or scenarios to be used by analysts or decision makers.

Based on the possibility of modifying parameters by the user, the LA&C Health Systems

Preparedness and Response Model for COVID-19 constitutes a valuable tool for simulating

possible scenarios in the countries, considering expected dynamics in the maturation of the

epidemic and potential government interventions. As an effect of the customization of key

parameters, the model provides strategic results for decision-making by those who must man-

age public policies in this context: expected number of new infections and accumulated infec-

tions, expected number of deaths and accumulated deaths, use and occupancy rate of critical

resources, both physical and human. On the other hand, the customization of the scenarios is

carried out through a simple platform available online, oriented towards a user profile compat-

ible with research analysts or decision makers.

Other models available online offer projections of critical variables for the evolution of the

epidemic [24–26] such as the rate of reproduction, the speed of duplication of cases, incidence,

mortality and variables of the demand for health systems. However, they do not offer customi-

zation that allow the projections to be adapted by defining the epidemiological parameters, the

expected level of reproduction and the availability of resources. In this sense, the main differ-

ence between this model and those indicated above, lies in the fact that it constitutes a tool that

is completely adaptable to a user who, based on the knowledge of the local context, can fine-

tune it and adapt it to have better local estimates through a simple and intuitive user interface.

It is important to highlight that the model is transparent for the user due to its accessible meth-

odology and modifiable parameters.

A relevant element that arises from the review of available models is the treatment of uncer-

tainty. Our model incorporates uncertainty in different ways. Besides the base-case scenario,

we built two alternative simulations applying a variation of the parameters, resulting in a more

favorable transmission dynamic and a less favorable one than the base case projection.

Fig 7. Simulation of the use of intensive care beds for Argentina based on a scenario of constant R_0 with a triggered

intervention upon reaching 70% occupancy of intensive care beds (Argentina).

https://doi.org/10.1371/journal.pgph.0000186.g007
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Additionally, most of the parameters have a base-case value and a recommended uncertainty

range (i.e 95% CI) and the user can assess deterministic scenarios with the best set of available

local parameters. Other models [27,28] use probabilistic methodologies where multiple scenar-

ios are simulated according to the estimated or reference distribution on relevant parameters,

summarizing the trajectories in an expected range of values.

The main advantages of our model lie in its ability to predict configurable scenarios that are

easy and quick to interpret for decision makers. It allows to establish the impact of the epi-

demic according to different scenarios and interventions implemented, and to anticipate when

to intervene to avoid the collapse of critical services. On the other hand, it allows the parame-

terization of variables according to a specific context.

Additionally, being Open-Source, the source code is available in a public repository, the

model can be customized for any population for which the necessary data is available, and can

be executed on free on any computer. In this way, it is permanently available to technicians

and decision-makers around the world, in a collaborative environment, where changes or

improvements can be suggested and contributed.

The model also has some limitations. The real number of cases is estimated from the num-

ber of registered deaths and the IFR or a multiplier, which may represent errors and inaccura-

cies because the IFR values have considerable levels of uncertainty [29]. On the other hand, to

derive total cases from deaths using IFR is more objective and transparent, not mentioning

that it is better reported and less sensitive to local testing strategies. Another limitation is that

interactions between people occur in the same way between all population groups and thus the

overall fatality is the same in populations with different demographic structures but our model

is currently incorporating age group compartments to the differential impact of vaccination

strategies on the epidemic trajectory in countries in the region. In addition, the next versions

of the model will also be subjected to calibration processes, which have been postponed in the

first versions, more oriented to provide accessible tools for decision making.Another element

to consider is that there may be different criteria in the countries regarding the determination

of the cause of death in epidemiological surveillance systems.

It is important to emphasize that the aim of the model was not to accurately predict the

course of the epidemic in a country, or the detailed impact of possible specific interventions

(eg, to predict the local effect of lockdowns, opening or closing schools, restaurants, etc.), but

to provide decision makers with different scenarios according to policies in different stages of

the epidemic.

Conclusion

In conclusion, our user friendly, transparent, and interactive model was developed to facilitate

policy makers’ decisions, by allowing the user to modify its parameters according to the spe-

cific pandemic trajectory and policy context in each country, and therefore to ‘adjust’ the

potential impact of public health interventions. Epidemiological models play a fundamental

role in decision-making and public policies implementation, evaluation, and monitoring. The

LA&C Health Systems Preparedness and Response Model to COVID-19 is a tool that frames

scientific knowledge, empirical evidence and public policies in a fully transparent framework.
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Methodology: Adrián Santoro, Alejandro López Osornio, Ivan Williams, Martı́n Wachs, Fed-

erico Augustovski, Andrés Pichón Riviere.

Project administration: Cintia Cejas.

Resources: Ariel Bardach.

Supervision: Andrés Pichón Riviere, Adolfo Rubinstein.

Validation: Alejandro López Osornio.
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