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Abstract
Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. 
After infection, disease progression relies on the complex interplay between the host immune response and the microorgan-
ism evasion strategies. The host’s survival depends on its ability to mount an efficient protective anti-microbial response 
to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive 
inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effec-
tor antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and 
adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.
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Abbreviations
ADA  Adenosine deaminase
ADO  Adenosine
ADORA  Adenosine receptors
ADP  Adenosine diphosphate
AIDS  Acquired immunodeficiency syndrome
AMP  Adenosine monophosphate
ART   Antiretroviral therapies
ATP  Adenosine triphosphate
BM  Bone marrow
CK-MB  Creatine kinase-myocardial band

CLP  Cecal ligation and puncture
CMV  Cytomegalovirus
CRS  Cytokines release syndrome
DENV  Dengue virus
EBV  Epstein-Barr virus
E-NTPDases  Ectonucleoside triphosphate 

diphosphohydrolases
HBV  Hepatitis B virus
HCC  Hepatocellular carcinoma
HCV  Hepatitis C virus
HDV  Hepatitis D virus
HIV  Human immunodeficiency virus
HPV  Human papillomavirus
IECs  Intestinal epithelial cells
IFN  Interferon
IL  Interleukin
iNOS  Inducible nitric oxide synthase
KO  Knock-out
MDSCs  Myeloid-derived suppressor cells
NECA  5′-N-ethylcarboxamide adenosine
NETs  Neutrophil extracellular traps
NO  Nitric oxide
PAMPs  Pathogen-associated molecular patterns
Tfh  T follicular helper cells
TLR  Toll-like receptors
TNF  Tumor necrosis factor
Tr1  Type-1 regulatory T cells
Treg  Regulatory T cell
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VL  Visceral leishmaniasis
WT  Wild-type

Introduction

The immune response is a biological process to protect the 
host from infections. A healthy immune system can recog-
nize and differentiate self-antigens and antigens belonging to 
microorganisms such as parasites, fungi, viruses and bacte-
ria. As such, immunity pursues pathogen clearance and pre-
serves tissue homeostasis through a wide range of complex 
networks that involve cellular and humoral components with 
regulatory feedback systems [1]. A variety of inflammatory 
and suppressive responses are generated following infection 
or injury to restore the homeostatic conditions. The host 
exerts intrinsic control between both responses to achieve 
pathogen elimination while simultaneously preventing col-
lateral damage.

The purinergic system has the dual function of modu-
lating the host immune response and triggering effector 
mechanisms [2–4]. Adenosine triphosphate (ATP), adeno-
sine (ADO) and other purine metabolites are the major 
representative mediators of purinergic signaling cascades 
(Fig. 1) [5]. The release of intracellular ATP in response 
to hypoxic or inflamed conditions by intact, activated or 
dying cells is the first step of purinergic signaling [6]. 
Extracellular ATP can activate and initiate a puriner-
gic signaling cascade through purinergic receptors, a 
concept introduced by Geoffrey Burnstock in the early 
1970 [7]. Extracellular ATP triggers multiple immune 

effector functions to inhibit infections and is primarily a 
pro-inflammatory metabolite [8], which can act at both 
paracrine and autocrine level activating two types of P2 
receptors [9]. P2X receptors are plasma membrane chan-
nels that mediate influx or efflux of various cations, such 
as  Ca+2. P2Y are G-protein-coupled receptors that modu-
late signaling events of secondary messengers [10]. The 
life span of extracellular ATP is determined by purinergic 
ectoenzymes that coordinate a two-step enzymatic pro-
cess of ATP hydrolysis into the potent anti-inflammatory 
ADO. The family of ectonucleoside triphosphate diphos-
phohydrolases (E-NTPDases), the largest family of ecto-
nucleotidases consisting of eight E-NTPDases, hydrolyze 
nucleotide triphosphates (e.g., ATP) and diphosphates 
(e.g., adenosine diphosphate ADP) to generate nucleotide 
monophosphates (e.g., AMP). The most studied is the 
ENTPD1, also known as ecto-apyrase CD39 [11]. The 
second and limiting enzymatic step for ADO production 
involves converting AMP mediated by 5’-ectonucleotidase 
(NT5E), commonly known as CD73. Extracellular ADO 
exerts a central role in restricting tissue inflammation, as 
it is considered a retaliatory metabolite that inhibits ATP-
driven pro-inflammatory effects due to its recognition by 
P1 receptors [12]. There are 4 types of purinergic G-cou-
pled receptors ADO receptors (ADORA): ADORA1, 
ADORA2a, ADORA2b and ADORA3, which bind ADO 
with different affinity and exert various functions. It should 
be noted that ADO half-life in the extracellular compart-
ment is extremely short, as it is metabolized by adenosine 
deaminase (ADA) between 15 seconds to a couple of min-
utes, depending on the host [13].

Fig. 1  Components of the purinergic signaling pathway. Stimula-
tion of specific surface immune cell receptors that recognize patho-
gens, antigens, cytokines or chemokines triggers the release of ATP 
through connexin or pannexin hemichannels. ATP in the extracellular 
space can stimulate the P2X or P2Y receptors to trigger an inflam-
matory response. The ecto-apyrase (CD39) catalyzes the hydrolysis 

of ATP to ADP/AMP, and consecutively, the enzyme 5'-ectonucleoti-
dase (CD73) catalyzes the limiting step of conversion to adenosine 
(ADO), which is the ligand for P1 receptors promoting anti-inflam-
matory responses. ADO can be removed by nucleoside transporters, 
which facilitates its cellular absorption, or by adenosine deaminase 
(ADA), which converts ADO to inosine
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Although dampening inflammation is beneficial for pre-
venting tissue damage ensuring host survival, it may also 
be detrimental for pathogen clearance after infection. The 
failure in the fine control of the immune response balance 
can alter pro-inflammatory/regulatory microenvironments, 
which eventually lead to pathophysiological conditions, 
such as chronic infectious diseases. In this regard, protec-
tive immune responses in some instances are the counter-
measures that prevent disease, but not necessarily infection. 
Besides immune cells, several pathogens also utilize or 
possess purinergic machinery to foster their persistence or 
disrupt the host immune response.

Purinergic modulation of immune response

Purinergic signaling involves various mechanisms used by 
innate and adaptive immune cells to modulate their functions 
and adapt to local microenvironment [14]. During inflam-
matory conditions, the purinergic signaling pathways are 
activated to initiate immune cell chemotaxis toward inflamed 
tissue and fine-tuned control local inflammation. Initially, 
ATP release to the extracellular environment is mediated by 
pannexin or connexin hemichannels to regulate cell func-
tions in an autocrine or paracrine manner [8]. The first cell 
to arrive at the inflammation site is the neutrophil, which 
employ an extracellular ATP-dependent mechanism to gen-
erate a chemotactic gradient and orientate its migration [15, 
16]. Remarkably, the purinergic system regulates many 
effector functions of neutrophils, such as phagocytosis, 
oxidative burst, degranulation and neutrophil extracellular 
traps (NETs) formation [17]. After its death, apoptotic neu-
trophils release ATP to stimulate mononuclear phagocytic 
cell influx and promote engulfment and clearance functions 
[18]. The local microenvironment composed by ATP and 
the consequent metabolization to ADO by CD39 and CD73 
ectoenzymes influence host–pathogen interaction by meta-
bolic reprogramming of the innate and adaptive immune 
cells [19, 20]. Among myeloid cells, macrophages are the 
most studied cells in terms of phenotype and function modi-
fied by the purinergic system [21]. Several studies reported 
that ADO can reprogram monocyte and macrophages from a 
microbicidal and pro-inflammatory profile (classically acti-
vated—M1-like phenotype) to an alternatively activated and 
anti-inflammatory (M2-like) phenotype via ADORA recep-
tors [22]. Macrophages have high plasticity capacity and 
can undergo profound metabolic modifications when rec-
ognizing pathogen-associated molecular patterns (PAMPs) 
mediated by Toll-like receptors (TLR)-stimulation. Indeed, 
macrophages induce the production of ATP and rapid extra-
cellular degradation to control their activation state in an 
autoregulatory mechanism [23]. CD39 deficiency in mac-
rophages promotes a sustained inflammatory activation state 

and inhibits the switch to an immunosuppressive phenotype 
[24]. ADO stimuli of ADORA2a and ADORA2b recep-
tors in macrophages increase the expression of M2 mac-
rophage markers and diminish the expression of inflamma-
tory genes [25, 26]. In addition, ADO has been reported to 
induce the production of anti-inflammatory cytokines such 
as IL-10 and VEGF and suppress the production of pro-
inflammatory cytokines (TNF-α and IL-6) by macrophage 
[27]. ADORA2b-inhibited and IFN-γ-treated macrophages 
extend their microbicidal and pro-inflammatory activities 
with increased IL-12 and TNF-α production in response to 
TLR stimulation [28].

Regarding adaptive immunity, the purinergic system has 
been reported as a modulator of the induction of different 
T helper profiles. T cell antigen receptor (TCR) ligation 
initiates T cell activation by increasing cytosolic calcium 
and the release of ATP via pannexin-1 mechanism. Extra-
cellular ATP acts in an autocrine manner via P2X recep-
tors to induce IL-2 production and cell proliferation. The 
absence of this purinergic pathway leads to T cell anergy 
with increased expression of anergy-associated genes 2 and 
3 (Erg2 and Erg3) [29]. In line with this, ATP-dependent 
activation of P2X7R inhibits suppressive functions of T 
regulatory (Treg) cells, inducing the Th17 differentiation 
[30]. Furthermore, P2X7R plays a role in generating long-
lived memory CD8 + T cells, regulating their mitochondrial 
fitness and promoting the differentiation and survival of 
resident memory subsets via TGF-β signaling [31, 32]. On 
the other hand, ADORA2a receptor signal inhibits Th1 cell 
generation and IFN-γ production, triggering the induction of 
FoxP3 + Treg cell subset and the production of TGF-β [33, 
34]. ATP catabolism and generation of retaliatory metabolite 
ADO is a typical suppression mechanism of regulatory cells 
involving Treg, type-1 regulatory (Tr1) T cells and myeloid-
derived suppressor cells (MDSCs) [35, 36]. These regula-
tory cells express CD39 and CD73 to abrogate ATP-related 
effects and enable the inhibitory properties [37–40].

Relevance of the purinergic immune 
modulation in infectious diseases

The purinergic system has acquired a fundamental role 
in cellular and tissue microenvironment modulation upon 
damage to promote system regeneration and homeostasis 
[2, 3]. Remarkably, immune cell regulation mediated by 
purinergic signaling pathways has taken great therapeutic 
relevance in carcinogenic and inflammatory processes. The 
role of purinergic signaling in the immunomodulation in 
these contexts was reviewed elsewhere [41, 42]. Several 
recent studies suggest that a precisely orchestrated puriner-
gic mechanism defines effector functions on immune cells 
and, thus, the result of host–microbe interaction [3, 11, 14, 
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43, 44]. However, a clear understanding of its relevance 
in the pathogenesis of infectious diseases and the possible 
therapeutic approaches still requires future research. Here, 
we focused on understanding the regulation of immune 
cell effector functions driven by purinergic signaling in the 
context of parasitic, viral and bacterial infections and their 
effects on pathogen clearance. This review aims to com-
prehensively summarize the current literature regarding the 
purinergic modulation of the immune response to pathogens 
and the impact on the development and progression of infec-
tious diseases.

Parasitic infections

Leishmaniases comprise a wide range of diseases caused 
by the infection with the protozoan parasite Leishmania 
transmitted by the bite of infected female phlebotomine 
sandflies. Infection clinical presentation may be asymp-
tomatic or may manifest as cutaneous or muco-cutaneous 
disease, which if left untreated may result in disfiguring 
scars; or the visceral form that may be lethal if untreated. 
The lack of a vaccine against human leishmaniasis and the 
diverse response to treatment make this disease a signifi-
cant worldwide health problem. Several studies suggest a 
potential contribution of purinergic nucleotidases in Leish-
mania immune responses [45]. Indeed, Leishmania para-
sites augment ectonucleotidases activity to increase ADO 
production and consequently establish a chronic infection 
through purinergic immunoregulatory mechanisms [46]. 
Patients with visceral leishmaniasis (VL) present increased 
levels of ADA and ADO [47]. Increased ADO levels were 
further confirmed and associated with disease's pathogenic-
ity, diminishing with the successful treatment. Moreover, 
the frequency of CD73 + CD39 + double-positive cells is 
augmented in VL active disease compared with treated VL 
patients and healthy controls[48]. Additionally, circulating 
monocytes exhibit upregulated levels of ADORA2b recep-
tor, which shows direct association with parasite load. ADO 
signaling in L. donovani-infected monocytes inhibits IL-10 
production and nitric oxide (NO) release, promoting immune 
downmodulation and parasite survival [49]. Besides, bone 
marrow (BM) from VL patients shows increased ADA levels 
compared to the non-infected BM, which inversely corre-
lated with the local parasite load [50]. Recently, it was dem-
onstrated that murine macrophages release ATP and increase 
CD39 and CD73 expression upon in vitro L. donovani infec-
tion. Thus, the resulting extracellular ADO promotes an anti-
inflammatory microenvironment crucial for parasite persis-
tence through ADORA2a and ADORA2b signaling [51]. 
On the other hand, L. infantum parasites utilize ADORA2a 
signaling pathway to successfully colonize the host and 
promote parasite surveillance. Indeed, ADORA2a-deficient 

mice present robust Th1 adaptive immune response in 
infected organs with augmented neutrophil infiltration and 
decreased Treg cells and IL-10 production. In accordance, 
infected ADORA2aKO mice show reduced parasite bur-
dens in liver and spleen compared to infected wild-type 
(WT) mice [52]. Furthermore, after L. amazonensis infec-
tion, murine macrophages are significantly more sensitive 
to extracellular ATP-induced pore opening and show aug-
mented P2X7R expression. ATP treatment inhibits parasite 
growth in an apoptosis-dependent mechanism [53]. Interest-
ingly, L. amazonensis elimination mediated by P2X7R and 
LBT4 is dependent on non-canonical NLRP3 inflammasome 
and IL-1β signaling activation, as well as ROS production 
[54]. A crosstalk between P2Y2R and P2X7R is evidenced 
by the fact that both receptors cooperate to trigger a potent 
protective response against L. amazonensis infection [55]. 
However, Countinho-Silva and colleagues proposed another 
protective role for P2X7R since infected P2X7R-deficient 
mice show increased IFN-γ and reduced TGF-β production 
suggesting that an exacerbated pro-inflammatory response 
could increase the susceptibility to infection. In fact, P2X7R 
abrogation results in increased L. amazonensis parasite load 
and lesion size [56]. Altogether, these studies suggest that 
purinergic signaling plays a critical role in host immune 
response and parasite interaction; however, the fine balance 
of those signals would determine the outcome of infectious 
diseases.

Notably, several reports established a close relationship 
between the E-NTPDase and ecto-5’-nucleotidase activities 
to the virulence in different species of Leishmania genus 
[57]. The virulent parasite L. amazonensis hydrolyzes higher 
amounts of purinergic nucleotides compared to other spe-
cies. Addition of ADO at the time of infection results in 
augmented skin lesion size and parasite load. In the same 
line, ADORA2b receptor inhibition decreases injury size 
and parasitism. Thus, ADO immunomodulatory properties 
contribute to the establishment of Leishmania infections 
[58]. Previous studies reported that L. amazonensis employs 
ADORA2b receptor signaling to suppress dendritic cell acti-
vation as an evasion mechanism. Blockade of ADORA2b 
receptor by PSB1115 treatment in vivo reduces lesion size 
and tissue parasitism, as well as increases IFN-γ levels [59].

Toxoplasmosis is caused by the infection with the proto-
zoan parasite Toxoplasma gondii and is one of the most com-
mon human zoonoses, infecting about a third of the world’s 
population. The disease is generally benign and often goes 
unnoticed in immunocompetent individuals; however, the 
infection also has health-threatening and fatal implications 
in immunocompromised individuals. In immunodeficiency 
conditions, reactivation of a latent infection might result in 
encephalitis, which is potentially fatal if not treated properly. 
Susceptibility to this infection is determined by the inability 
of the host immune response to control parasite replication. 
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Toxoplasma gondii-infected Wistar rats present increased 
E-NTPDase and E-ADA activities in circulating lympho-
cytes at early days post-infection, showing a positive cor-
relation with the number of lymphocytes [60]. Likewise, the 
infection causes increment in the purine levels in the brain 
with the exception of inosine, which was diminished due 
to diminished ADA activity [61]. Treatment of T. gondii-
infected Swiss mice with resveratrol, a non-flavonoid poly-
phenol, decreases ATP and AMP hydrolysis by NTPDase 
and CD73 and increases ADA activity in the cerebral cortex 
compared with non-treated infected groups [62]. Neverthe-
less, several studies assign a protective role to the purinergic 
ectoenzymes against T. gondii infection. CD73 genetic defi-
ciency in mice infected with T. gondii increases their suscep-
tibility to acute toxoplasmosis, with augmented neutrophils 
and T cell infiltration into the peritoneal cavity and increased 
levels of pro-inflammatory cytokines. Because of this, the 
ADO receptor agonist (NECA) treatment protects CD73-
deficient mice against T. gondii-induced immunopathology 
[63]. In the same line, CD73-dependent ADO production 
and ADORA2a/2b activation protect the host from devel-
oping lethal pathology. Acute T. gondii infection induces 
the reduction of CD73 + cells in several infected tissues and 
increases immune-mediated pathology in the gastrointestinal 
tract and mucosa [64].

In contrast to the acute infection, during chronic toxoplas-
mosis CD73-generated ADO has a detrimental role because 
it is essential for T. gondii bradyzoite differentiation and cyst 
formation in the central nervous system. Indeed, CD73-defi-
cient mice are more resistant to chronic infection and present 
reduced parasite burden in the brain compared to WT mice 
[65]. Accordingly, it is of ultimate importance to consider 
the radical differences between host immune response dur-
ing the acute or chronic phases of the infection to therapeuti-
cally promote parasite eradication. Alternatively, the P2X7R 
was widely studied as a host mechanism of resistance to 
infection. P2X7R deficiency in oral T. gondii-infected mice 
leads to higher susceptibility to cerebral toxoplasmosis, with 
an increased number of cysts, less inflammatory infiltrates 
and reduced pro-inflammatory cytokine levels [66]. In this 
sense, it was demonstrated that P2X7R activation inhibits 
T. gondii replication in macrophages by canonical NLRP3 
inflammasome activation, which in turn produced IL-1β 
leading to increased mitochondrial ROS production [67]. 
These findings are consistent with other reports confirming 
that P2X7R activation in macrophages mediates the kill-
ing of tachyzoites [68, 69]. Furthermore, P2X7R signaling 
in epithelial cells mediates CCL5 chemokine responses to 
promote the recruitment of CD11c + CD103 + dendritic cell 
in the intestinal epithelium promoting the initiation of the 
immune response [70]. Besides, activation of P2Y recep-
tors in infected macrophages mediated by UTP and UDP 
induces early egress of tachyzoites and these parasites have 

reduced infectivity in subsequent infections [71]. The role 
of purinergic signaling in T. gondii infection was recently 
summarized in [72].

Chagas disease is caused by the infection with the pro-
tozoan parasite Trypanosoma cruzi. About 6 million peo-
ple are estimated to be infected worldwide, mostly in Latin 
America. Chronic cardiomyopathy represents the most fre-
quent and serious complication of this infectious disease. 
To date, there is no effective chemotherapy or prophylac-
tic vaccine. Our group has reported that Chagas patients 
in the indeterminate stage show diminished frequencies of 
circulating CD39 + and CD73 + lymphocytes and increased 
plasma ATP levels [73]. In line with this, peripheral mono-
cytes exhibit long-lasting functional phenotypic changes 
evidenced by increased expression of HIF-1α (the master 
regulator of metabolic adaptation to hypoxia), pro-inflam-
matory cytokines (IL-1β, IL-6), and pro-oxidative capacity. 
Strikingly, Chagas patients show augmented frequency of 
CD39 + monocytes and increased expression of CD73 per 
cell compared to healthy donors [74]. Thus, it is plausible 
that circulating monocytes promote ATP degradation to 
dampen the inflammatory microenvironment. Besides, leu-
kocytes within cardiac explant from terminal Chagas disease 
patients exhibit a strong expression of CD73 and HIF-1α, 
which positively correlates with the myocarditis degree and 
the local parasite burden (Fig. 2B) [75]. Regarding ATP 
receptors, the gene and protein expression of P2X7R are 
unaltered in circulating lymphocytes from patients with 
indeterminate form of Chagas disease [76].

In experimental models of Chagas disease, infected Swiss 
mice increase NTPDase and E-ADA activities in circulat-
ing lymphocytes and augment E-ADA activity in cardiac 
homogenates, although a reduction on tissue CD73 activity 
is found in the acute phase compared to uninfected controls 
[77]. Furthermore, E-NTPDase and E-ADA activities are 
higher in splenic lymphocytes of acutely T. cruzi-infected 
mice compared to uninfected controls. The prophylac-
tic treatment with avian IgY (polyclonal immunoglobu-
lins against T. cruzi parasite) prevents these alterations in 
ectoenzyme activities and reduces the parasitemia [78]. 
Similarly, our group has previously reported that transient 
pharmacological specific inhibition of CD73 in the murine 
acute phase of infection enhances the microbicidal M1-like 
macrophage subset, promotes a pro-inflammatory environ-
ment and diminishes cardiac parasite load. Likewise, T. cruzi 
infection of CD73KO mice leads to an enhanced cardiac 
antimicrobial immune response as it augments the fre-
quency of M1-like macrophages with enhanced production 
of IL-12 and the microbicidal metabolite NO. Additionally, 
C73-deficient mice presented increased CD8 + T cell effec-
tor functions which induces protection as observed by the 
reduced cardiac parasite burden compared to their WT coun-
terpart (Fig. 2A) [79]. Thus, CD73 inhibition ameliorates the 
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outcome of chronic Chagas cardiomyopathy as it diminishes 
biochemical myocardial-specific injury marker (CK-MB) 
and improves the electrocardiographic characteristics [80].

It must be taken into account that parasites have catabolic 
ATP machinery which can affect the host's immune response 
favoring their virulence and persistence. In fact, different 
strains of T. cruzi parasites exhibit distinct levels of ATP-
Dase hydrolytic activities. After treatment with ATPDase 
inhibitors, a marked reduction of trypomastigotes infectiv-
ity is observed in in vitro culture. Likewise, infection with 
Ecto-NTPDase-inhibited trypomastigotes leads to lower 
levels of parasitemia and higher mouse survival than infec-
tion with non-inhibited parasites [81]. Analogue products 
of purines (3’deoxyadenosine and deoxycoformycin) were 
used as antiparasitic treatments, and the observed therapeu-
tic effect is due to an inability of trypanosomes to engage in 
new purine synthesis [82]. Hence, more studies are needed 
to elucidate whether it is possible to promote anti-T. cruzi 
immune response and at the same time inhibit parasite viru-
lence factors.

Malaria is caused by five species of eukaryotic Plasmo-
dium parasites transmitted by the bite of Anopheles spp. 
mosquitoes to humans. Malaria remains one of the most 
severe infectious diseases; it is responsible for hundreds 
of thousands of deaths predominantly among children in 
Africa. Purine signaling modulation seems to have rel-
evant importance for Plasmodium parasites infectivity and 
malaria blood stage. Several studies have shown E-NTPDase 
to be involved in the infectivity of P. falciparum due to its 

relevance for parasite life cycle [83]. Inhibition of purinergic 
signaling by apyrase inhibitors impairs P. falciparum rep-
lication and reduces red blood cells (RBC) infection [84]. 
Indeed, mammalian RBCs express ADORA2b and several 
P2Y and P2X receptors on their surface [85]. In experimen-
tal cerebral malaria the expression of several P2X and P2Y 
receptors is altered after P. berghei infection [86]. How-
ever, to date little is known about purinergic modulation 
of malaria-specific immune response. Recent studies sug-
gest that the expression of P2X7R in CD4 + T cells could 
be critical for Th1 profile development and IL-2 and IFN-γ 
production during chronic P. chabaudi infection, while 
increasing the T follicular helper (Tfh) cell population [87]. 
P2X7R-deficient mice present increased susceptibility to 
infection, which is associated with impaired Th1 response. 
Furthermore, infected children with severe malaria show 
augmented expression of CTLA-4 and PD-1, while children 
with uncomplicated malaria show increased CD39 + and 
Granzyme B + CD4 + T cells, indicating that distinctive 
regulatory mechanisms are triggered and may influence the 
clinical outcome of acute malaria [88].

Helminthiases are heterogeneous diseases caused by hel-
minths, which are large multicellular pathogens that affect 
one-quarter of the human population. On the other hand, 
helminths are mainly controlled and eradicated by a canoni-
cal type 2 immune response [89]. The mammalian immune 
system needs to initiate rapid and effective anti-helminth 
mechanisms while simultaneously organizing the repair of 
inflicted mechanical damage to re-establish homeostasis 

Fig. 2  Ectonucleotidases regulation of immune response against 
Trypanosoma cruzi infection. T. cruzi infection manipulates the 
expression of purinergic enzymes. (A) T. cruzi-infected CD73KO 
mice have an enhanced cardiac microbicidal immune response. CD73 
abrogation diminishes IL-10 production of M2-like macrophages 
(M2 Mac) and augments the effector response (IL-12 and nitric 
oxide; NO) of M1-like macrophages (M1 Mac). CD73KO mice pre-
sent augmented cytotoxic and pro-inflammatory (CD107a and IFN-

γ) CD8 + T cell response, which induces protection as observed by 
the reduced parasite burden. (B) Patients with chronic asymptomatic 
Chagas disease show diminished ectonucleotidases expression (CD73 
and CD39) in circulating lymphocytes and increased expression in 
monocytes. In human cardiac tissue, the augmented expression of 
CD73 positively correlates with the myocarditis severity and the car-
diac parasite burden
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and prevent immunopathology. Although two antiparasitic 
drugs (moxidectin in 2018 and triclabendazole in 2019) have 
been recently approved by the FDA to treat helminthiases, 
these infectious diseases continue to be an important health 
problem, mainly among the poorest population[90]. Regard-
ing purinergic modulation of anti-helminth type 2 immune 
responses, ADO is reported to play a protective role. Patel and 
colleagues reported that ADO signaling through ADORA2a 
induces Heligmosomoides polygyrus worm expulsion and a 
robust associated development of type-2 immune response. 
Mice genetically deficient in ADORA2a receptor exhibit 
increased H. polygyrus parasite load, decreased M2 mac-
rophages and eosinophils recruitment and reduced IL-4 and 
IL-13 production against the tissue-dwelling parasites [91]. 
On the other hand, CD39 ectoenzyme activity has a contro-
versial role in filariasis, a chronic helminth infection. Patients 
infected with filarial nematodes, such as Mansonella ozzardi, 
exhibit augmented frequency of circulating CD39 + CD4 + T 
cells compared to control donors, which correlates with the 
filarial parasite load. Infected patients also present decreased 
plasma TNF, IL-8 and IL-6 levels than their non-infected 
counterparts. Besides, CD39 inhibition decreases lymphocyte 
proliferation in vitro and pro-inflammatory cytokine response 
[92]. Moreover, during murine Schistosoma mansoni infection, 
mesenteric endothelial cells increase the expression of NTP-
Dases 2 and 3 favoring local ATP hydrolysis and mononuclear 
cell adhesion via P2Y1R. This mechanism may contribute to 
mesenteric inflammation and infection morbidity [93]. Some 
authors propose the purinergic signaling as a potential target 
to reduce schistosomiasis morbidity [94]. In fascioliasis, an 
infectious disease caused by Fasciola hepatica, the purinergic 
pathway modulation depends on the phase of infection. In the 
acute phase, a decrease in NTPDase activity in serum and an 
increase in the ectoenzyme activity in the liver are observed. 
In contrast, after the establishment of chronic infection, an 
increase in NTPDase and 5′nucleotidase activities is found 
in both periods of infection. The modulation of purinergic 
environment may generate high ADO levels, which promotes 
host protection due to tissue injury caused by chronic infection 
[95]. Altogether, these findings reveal the direct involvement 
of purinergic pathways in immune response modulation in 
several parasitic infections. Given the current unmet medical 
need for novel pharmacological approaches, further studies are 
needed to deepen the knowledge in the molecular mechanisms 
and provide supporting evidence to evaluate purinergic target 
candidates for the treatment of neglected parasitic disease.

Bacterial infections

Tuberculosis (TB) is one of the most widely spread infec-
tious disease and one of the major causes of mortality, 
since about two million people die annually because of this 

disease. It is caused by Mycobacterium tuberculosis and, less 
frequently, M. bovis. The lung is the portal of M. tubercu-
losis, as transmission occurs upon inhalation of aerosolized 
bacilli coughed from the lungs of infected individuals, so 
TB is primarily a pulmonary disease. However, it has many 
other manifestations, affecting bones, the central nervous 
system, among many other systems. The immune response 
against TB infection has been reported to be modulated by 
the purinergic pathway. TB patients present an increased 
Treg cell population (CD4 +  CD25high CD39 +) with regula-
tory properties. Depletion of CD39 + Treg cells significantly 
augments anti-TB T cell responses in vitro [96]. Likewise, 
CD39 mediates suppressive functions in CD8 + Treg cells 
in patients with active TB [97]. These reports suggest that 
CD39 plays an important role in the immunosuppression 
exerted by human Treg cell populations, possibly contribut-
ing to the balance between immune-mediated suppression 
and immunopathology in patients with TB. The CD73 ecto-
enzyme has also been described to modulate the anti-myco-
bacterial immune response. Indeed, CD73 activity restricts 
the early influx of neutrophils to the infected lungs without 
affecting bacterial load and spreading [98].

Purinergic receptors also have a role in determining the 
outcome of TB. P2X7R signaling in macrophages had a 
detrimental role in severe TB infection. Intracellular pro-
liferation of high-virulent mycobacteria results in massive 
macrophage damage, ATP release and activation of P2X7R 
augment macrophage necrosis and spread the bacilli. There-
fore, infected WT mice exhibit wide lung leukocyte infiltra-
tion and high mortality, in contrast to infected P2X7RKO 
mice, which showed moderate leukocyte infiltrates with 
ameliorated lung pathology [99]. Similarly, P2X7R signal-
ing blockade with the antagonist BBG during experimental 
advanced pulmonary TB prevents the development of severe 
form of TB pathology in mice [100]. Additionally, chimeric 
WT mice with adoptive transfer of P2X7RKO hematopoi-
etic cells show lower lung M. bovis bacterial burden and 
reduced pneumonia compared to WT mice. Lung necro-
sis and bacterial spreading to the spleen and liver are also 
diminished, suggesting that P2X7R in hematopoietic cells 
play a central role in the progression to severe TB [101]. 
In contrast to the results observed with high-virulence M. 
tuberculosis and M. bovis strains [99, 101], another report 
showed that P2X7RKO mice infected with less virulent M. 
tuberculosis exhibit augmented bacillary load in the lungs 
and increased Treg population but decreased B cells com-
pared to WT mice [102]. Additionally, the potentiation of 
P2X7R augments inflammasome activation, resulting in 
the limitation of mycobacterial proliferation [103]. Indeed, 
patients with polymorphism in 1513C allele from P2X7R 
gene have increase susceptibility to extrapulmonary TB 
[104]. Given these results, it is plausible to speculate that 
immune response downstream P2X7R activation depends 
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on the mycobacterial virulence. ATP/P2X7R axis seems to 
be essential in the inflammasome-dependent IL-1β produc-
tion and pathogen clearance in vivo in different bacterial 
infections (Fig. 3) [105, 106]. On the other hand, a critical 
modulatory function was assigned to the ADORA2a recep-
tor during severe TB. AMP regulates macrophage state 
through ADORA2a receptor signaling. After ATP stimula-
tion, it was quickly hydrolyzed to AMP, which downregu-
lates inflammatory response and chemokine family genes, 
as well as strongly upregulates genes related to tissue repair, 
wound healing and angiogenesis [107]. In the same way, caf-
feine treatment, an ADORA2a receptor antagonist, enhances 
accumulation of CD4 + T cells with increased IFN-γ produc-
tion in the lungs and promotes mouse survival during severe 
TB [108].

Streptococcus pneumoniae infection causes different ill-
nesses, such as pneumonia, bacteremia and meningitis. S. 
pneumoniae interferes with the purinergic signaling by the 
induction of P2Y2R internalization in pulmonary epithelial 
cells in vitro, suggesting that bacteria may exert purinergic-
dependent evasion mechanisms to promote infection [109]. 
Nevertheless, the host creates an adenosinergic microen-
vironment to be protected from exacerbated inflammation 
during infection. ADA-inhibited mice exhibit increased 
resistance to infection and ten-thousand-fold diminished 
bacterial load in the lungs and undetectable bacteremia. In 
contrast, CD73 pharmacologic inhibition induces increased 
susceptibility with higher pulmonary bacterial burden and 
increased bacteremia compared to mock-treated mice. The 
mechanism underlying this effect seems to be executed by 
ADO since it downregulates the neutrophil infiltration and 

their bactericidal ability, and the absence of these regula-
tory mechanisms is reported to be detrimental to the host 
[110]. Confirming this speculation, the authors found that 
CD73 augments neutrophil bactericidal activity by inhibit-
ing IL-10 production, which is essential for ROS secretion 
[111]. On the other hand, ADORA1R signaling was reported 
to inhibit bacterial binding to human lung epithelial cells 
increasing host resistance to pulmonary infection [112]. 
Likewise, CD73-dependent ADO production signaling via 
ADORA2a receptor on B cells promotes isotype switch and 
regulates antibody response against S. pneumoniae infection. 
Stimulation of ADORA2a receptor with CGS21680 ago-
nist augments IgG3 antibody protection in vaccinated young 
mice and enhanced survival after challenge [113]. On the 
other hand, ADORA2bR deficiency promotes extracellular 
bactericidal activity in neutrophils, enhancing NETs produc-
tion. Indeed, ADORA2bR-deficient mice show diminished 
lung bacterial load and improved survival [114].

It has been also well-documented that purinergic sign-
aling modulates immunity against enteropathogenic infec-
tions[115]. CD73 is highly expressed in the colonic epithe-
lium, more specifically in the apical surface of intestinal 
epithelial cells (IECs). CD73 knockdown (KD) in IECs 
protects against Salmonella colitis as demonstrated by 
less marked weight loss and decreased colon shortening. 
CD73KD mice also show reduced bacterial translocation 
to the lumen and decreased Salmonella load in mesenteric 
lymph nodes, spleen and liver, suggesting that ADO pro-
motes initial invasion and systemic dissemination [116]. Sal-
monella infection also induces downregulation of CD39 and 
CD73 ectoenzymes in CD4 + T cell population. Inhibition 

Fig. 3  P2X7R dual function in Mycobacterium tuberculosis infec-
tion. P2X7R activation plays a crucial role in control of infectious 
diseases. ATP-induced P2X7R activation may participate in the con-
trol of M. tuberculosis by improving intracellular pathogen killing 
and triggering the assembly and activation of the inflammasome and 
the consequent release of pro-inflammatory cytokines, such as IL-1β. 

However, its role in the host defense against M. tuberculosis infection 
is still controversial, due to its strong pro-inflammatory and cytotoxic 
activity; it may potentiate tuberculosis progression and the associated 
tissue damage. High concentrations of ATP can activate the P2X7R 
and induce the necrosis of infected cells leading to the spread of the 
bacilli and worsening the disease
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of CD73 enzymatic activity in Salmonella whole cell lysate 
(WCL)-treated cells increases pro-inflammatory cytokine 
production, such as IFN-γ, TNF and IL-1β and inducible 
nitric oxide synthase (iNOS), leading to a more efficiently 
elimination of Salmonella bacteria compared to infected 
WT cells [117]. In addition, CD73 inhibition of Salmonella 
WCL-treated macrophages enhances the production of NO, 
pro-inflammatory cytokines IL-1β and TNF. Phagocytosis 
and intracellular killing are significantly higher in the APCP 
(CD73 inhibitor)-treated macrophages and in CD73KO per-
itoneal macrophages than untreated and CD73-competent 
macrophages [118]. Altogether, these results suggest that 
inhibiting ADO formation promotes pro-inflammatory and 
bactericidal functions in macrophage and improves the host's 
resistance to Salmonella infection. On the other hand, it has 
been also reported that P2X7R restricts Tfh cell expansion 
and germinal center reaction in the Peyer’s patches in the 
setting of this infection. Depleting extracellular ATP, via 
administration of exogenous apyrase, increases the induc-
tion of specific IgA in response to Salmonella infection or 
an inactivated oral vaccine providing better protection from 
secondary infection [119]. Thus, preventing ATP accumu-
lation could also be favorable for the improvement of the 
immune response against Salmonella infection.

Sepsis is a severe health condition caused by the exacer-
bated immune response to a microbial systemic infection. 
Extracellular ATP levels are augmented in the mouse model 
of polymicrobial sepsis induced by the cecal ligation and 
puncture (CLP). In this sense, several works have described 
the protective function of macrophages in septic conditions. 
ATP signaling in macrophages via P2X4R mediates a stimu-
latory effect on E. coli bacterial killing through augmented 
ROS production. P2X4R stimulation improves mouse sur-
vival by decreasing bacterial burden, pro-inflammatory 
cytokines, chemokine levels and spleen, liver and kidney 
injury in CLP-induced sepsis. As a logical consequence, 
pharmacological stimulation with ivermectin, a P2X4R 
agonist, protects the host against bacterial dissemination 
and mortality in sepsis [120]. Indeed, ADORA2b-deficient 
macrophages exhibit increased bacteria phagocytosis capac-
ity, while ADORA2bKO mice show decreased peritoneal 
bacterial load and improved survival in a CLP model of sep-
sis [121]. Likewise, accumulation of adenosine by expanded 
CD39 + plasmablast subpopulation impairs macrophage bac-
terial killing and promotes IL-10 production via ADORA2a 
signaling in septic mice [122]. Besides, employing this 
mouse model of sepsis, Haskó and colleagues describe a 
protective role of P2X7R in macrophages by diminishing 
bacterial load and production of pro-inflammatory cytokines 
and chemokines, as well as improving mouse survival [123].

Purinergic signaling is also essential for TLR4-
induced mitochondrial ATP synthesis and autocrine sign-
aling, required for monocyte/macrophage activation, 

inflammasome assembly and IL-1β production[124]. ADP 
protects mice from E. coli-induced peritonitis by enhanc-
ing MCP-1-dependent recruitment of macrophages to the 
infected tissues. Both P2Y12R and P2Y13R deficiency 
inhibit the ADP-mediated immune response and promotes 
E. coli persistence in infected mice [125]. In the same way, 
P2X4R- and P2X7R-deficient mice have enhanced sus-
ceptibility to sepsis induced by uropathogenic E. coli and 
are more prone to die from a severe infection compared 
to WT mice. Higher systemic bacterial burden, plasmatic 
pro-inflammatory cytokines levels and activated coagula-
tion cascade with increased levels of thrombin–antithrom-
bin complexes are associated with their increased mortality 
[126]. Similarly, constant intravenous infusion with P2X1R 
antagonist markedly accelerates development of a septic 
response to E. coli-induced bacteremia. P2X1R antagonist-
treated mice died at early times post-infection with high 
bacteremia and hematuria, substantially elevated plasmatic 
pro-inflammatory cytokines levels, massive intravascular 
coagulation and a concomitant reduction in circulating 
platelets [127]. Conversely, ATP-induced P2XR activation 
in vitro has a key role in the cytotoxic effects of α-hemolysin 
and leukotoxin A on THP-1 human monocytes. Inhibition 
of P2X1R, P2X4R or P2X7R significantly reduce THP-1 
cytolysis protecting macrophage/monocyte phagocytosis 
function [128]. In vitro experiments also revealed that ATP 
signaling via P2X7R inhibits J774 macrophage phagocytosis 
of bio-particles coated with S. aureus or E. coli. A438079, 
an antagonist of P2X7R, partially reverts the effect of ATP 
on bacterial phagocytosis [129].

During Staphylococcus aureus infection, the signaling via 
P2X7R has been described as favorable for the elimination 
of the bacterial infection. Human macrophages internal-
ize antimicrobial peptide LL-37 derived from neutrophils 
via a P2X7R-dependent mechanism, primarily involving 
a clathrin-dependent endocytosis pathway. P2X7R signal-
ing in macrophages enhances intracellular ROS production 
and accumulation of lysosomes, which promote intracellu-
lar S. aureus elimination [130]. Similarly, P2XR inhibitors 
interfere with binding and oligomerization of hemolysin 
A from S. aureus (Hla) with cell membranes. The P2XR 
antagonists restrict the function of a membrane pore-forming 
toxin through non-canonical mechanisms. The data suggest 
the need for a critical revision of the notion that P2XRs 
are enhancers of membrane pore-forming toxin-dependent 
hemolysis. The role of ATP release and P2XR signaling 
in destabilizing the membrane stability and induction of 
pore formation is still controversial [131]. In line with this, 
several selective P2X7R antagonists inhibited Clostridium 
perfringens beta-toxin-induced cytotoxicity in THP-1 cells 
[132]. Finally, it has been shown that several bacteria exploit 
the production of ADO to dampen inflammation and sup-
port their survival during infection [133]. Summing up, the 
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findings described clearly illustrate that different pathogenic 
bacteria may exert their evasion mechanisms based on the 
production of purinergic metabolites, promoting an immu-
nosuppressive microenvironment to persist in the host and 
establish a chronic disease. On the other hand, microbiota 
also can manage the purinergic system to its favor. Further 
investigations are needed to completely visualize the role of 
purinergic signaling in the host–bacteria interplay.

Viral infections

One of the most serious public health problems globally 
is HIV type 1 (HIV-1) infection since 38 million people 
are infected worldwide, and almost two million new infec-
tions occur each year. Antiretroviral therapies (ART) have 
allowed infected people to benefit from a better general state 
of health by significantly increasing their life expectancy 
thanks to the sustained suppression of viremia. Nevertheless, 
infected patients suffer from co-morbidities due to chronic 
inflammation derived from coinfections and immune dysreg-
ulation. Several studies emphasize the role of the purinergic 
pathway in the sustained inflammation and in different cel-
lular processes of the acquired immunodeficiency syndrome 
(AIDS), usually associates with HIV-1 infection [134, 135]. 
HIV-1 infects several immune cells such as CD4 + T cells, 
myeloid dendritic cells and monocyte macrophages, all pop-
ulations sharing the expression of CD4 receptor along with 
the chemokines receptors CCR5 and/or CXCR4. Indeed, 
untreated infected patients present increasing immunodefi-
ciency with decreasing CD4 + T cell counts and a reversed 
CD4 + /CD8 + T cells ratio.

Although it is not fully addressed, ADO contributes to the 
suppression of CD4 + T cell responses during HIV infection. 
Numerous authors had reported that the expression of CD39 
is upregulated in Treg cells compared to activated CD4 + T 
cells in HIV + patients. Regulatory functions of Treg cells 
are diminished by blocking with anti-CD39 antibody in a co-
culture of Treg and CD8 + T cells. Furthermore, it was also 
shown that the expansion of CD39 + Treg cells inversely cor-
relates with CD4 + T cells counts in treated patients [136]. 
In line with this, IL-2 production by activated CD4 + T cells 
is suppressed by CD39 + Treg cells via ADO/cAMP enzy-
matic pathway. Increased expression of ADORA2a recep-
tor and intracellular cAMP levels in CD4 + T cells of HIV-
infected patients diminishes IL-2 production and inhibits T 
cell proliferation [137]. Treg cells serve as viral reservoirs 
during chronic infection. Patients with advanced AIDS 
exhibit increased CD39 expression, and the CD39 + naïve 
Treg frequency directly correlates with HIV DNA levels 
[138]. Altogether, these findings suggest that CD39 path-
way in Treg cells may be playing a deleterious role in the 
progression of HIV infection by suppressing CD4 + and 

CD8 + T cell responses and contributing to chronic inflam-
mation and T cell dysfunction. Another mechanism that 
may be responsible for the AIDS pathogenesis is the sig-
nificantly augmented frequency of CD39 +  CD56bright NK 
cells, observed in untreated HIV patients. This NK cell 
subpopulation is associated with an increased viral load, 
lower CD4 + T cell count and disease progression. Indeed, 
the authors propose CD39 as a marker of a regulatory NK 
subpopulation, since it exhibits increased AhR expres-
sion and IL-10 production [139]. Moreover, CD73 is also 
involved in the regulation of T cell activation. Contrasting to 
CD39 + Treg subset, CD73 + cells do not express FoxP3 and 
CD25 at high levels; thus, CD73 + CD4 + T cells represent 
a phenotypically and functionally different subpopulation 
[140]. CD73 + CD4 + T cell subset is preferentially depleted 
in HIV + patients compared to healthy controls, regardless 
of viral load and treatment. This subset depletion suggests 
the existence of an ADO-diminished microenvironment that 
may be unable to prevent persistent immune activation. Sup-
porting this idea, an inverse correlation was shown between 
the CD73 + CD4 + T cell count and T cell activation, as 
well as plasma C reactive protein levels [141]. Addition-
ally, HIV-infected patients show diminished expression of 
CD73 on CD8 + T cells, which is correlated with disease 
progression and partially reverts after effective ART [142]. 
Besides, CD73 is involved in the expansion of HIV-specific 
CD8 + T cells, whereas CD73 expression is higher in mem-
ory CD8 + T cell subset. The frequency of CD73 + CD8 + T 
cells is inversely associated with cell activation and plasma 
viral load. Interestingly, HIV controllers express high levels 
of CD73 [143]. Besides, untreated chronic patients present 
lower frequency of CD39 + CD73 + B cells compared to 
ART-treated patients and healthy controls. Downregulation 
of CD73 on B cells is associated with augmented expres-
sion Ki67 + and PD-1. In addition, CD73 loss also correlates 
with low CD4 + T cell counts, higher expression of markers 
of cellular proliferation and exhaustion, such as Ki-67 and 
PD-1, and decreased in vitro AMP catabolic activity and 
IgG switch ability dysregulation [144]. All these results in 
HIV + patients are depicted in Fig. 4.

Another component of the purinergic system that is asso-
ciated with increased immune activation is ADA due to its 
potential to reverse immunosuppression driven by extra-
cellular ADO. It has been shown that in both healthy and 
HIV-infected individuals, ADA is associated with increased 
expression of costimulatory molecules CD80, CD83, CD86 
and CD40, promoting the maturation of DCs regardless of 
its enzymatic activity as shown after desalting and treatment 
with  HgCl2. ADA treatment enhances DCs immunogenicity 
and promotes their capacity to stimulate allogenic T cell sub-
populations to proliferate [145]. In line with this, it has also 
been shown that in autologous co-cultures of T cells with 
HIV-1 peptide-pulsed DCs, the addition of ADA leads to a 
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reduction in Treg frequency and to a significant enhancement 
of HIV-1-specific effector CD4 + T cells in a dose-depend-
ent manner. At the same time, ADA addition increases the 
secretion of Th1 inflammatory cytokines and proliferation 
of CD8 + T cells, demonstrating that ADA treatment could 
improve the immune subpopulations involved in the control 
of HIV-1 infection [146]. These results are in agreement 
with previous reports showing that the addition of extracel-
lular ATP to the co-cultures also inhibits the propagation of 
HIV-1 from the immature DCs to autologous CD4 + T lym-
phocytes [147]. ADA-1 modulates the program of circulat-
ing and germinal center Tfh cells, enhancing their function. 
This mechanism promotes effective collaboration between T 
and B cells and the generation of antibodies, by influencing 
the production of IL6/IL-2 and controlling the expression 
of CD26 and the ADORA signaling. The authors suggest 
that ADA represents a potential target for the development 
of Tfh-targeted vaccine strategy [148].

It should be noted that purinergic signaling has been asso-
ciated with both a protective and pathological role in differ-
ent viral infections. The role of adenosine pathway signaling 
in HIV infection has been addressed in[149]. For example, 
HIV infection of CD4 + T cell induces Panx1 hemichannels 
opening, required for effective HIV replication in CD4 + T 
lymphocytes [150]. Furthermore, ATP activates P2Y2R 
and induces activation tyrosine kinase 2 and transient 
depolarization of the plasma membrane, which stimulates 
fusion between the envelope protein and CD4-containing 
membranes [151]. On the other hand, P2X1R inhibition has 
been reported to block HIV-1 entry and replication within 
target cells [152]. Inhibition of P2X1R, P2X7R and P2Y1 

significantly reduces viral replication within human mac-
rophages, whereas P2X1R antagonists block viral entry to 
the cell. The data also indicate that binding gp120 protein 
results in the rapid ATP release from macrophages and 
allows autocrine P2R activation, facilitating HIV infection 
[153]. In the same way, the ecto-ATPase activity increases 
in in vitro HIV-1-infected human macrophages and its block-
ade prevents HIV-1 replication [154]. In fact, it has been 
proven that P2X1R and P2X7R selective antagonists abro-
gate both HIV-1 infection and the subsequent inflammation. 
The purinergic P2X1R and P2X7R antagonists inhibit HIV-1 
infection, but only P2X1R antagonists downregulate IL-1β 
and IL-10 production in ex vivo infection of human tonsil 
[155]. It has been reported that P2X1R antagonist (NF279) 
inhibits the fusion with the HIV-1 cell membrane by block-
ing the virus binding and entrance via CXCR4 and CCR5l 
[156]. Moreover, blockade of P2XR signaling inhibits HIV-1 
membrane fusion [157].

Extracellular ATP is capable of reducing the replication 
of DNA and RNA viruses through activation of P2X7R, 
enhancing the production and release of IFN-β, which is 
crucial in promoting antiviral immunity [158]. This is also 
an essential antiviral mechanism against respiratory viruses. 
Adenovirus and Influenza viruses increase ATP and ADO 
levels in the respiratory tract. The induction of purinergic 
P2X7R signaling plays a key role in generating a robust 
inflammatory response capable of controlling these infec-
tions. If the infection persists, a systemic inflammatory 
response can be triggered, which is associated with higher 
mortality. Disruption of the ATP/P2X7R interaction avoids 
symptoms of acute respiratory distress syndrome (ARDS) 

Fig. 4  Purinergic dysregulation in untreated HIV + patients with high 
viral loads. (A) CD39 + Tregs suppress in  vitro IL-2 production by 
activated CD4 + T cells via adenosine/cAMP enzymatic pathway. (B) 
CD4+ and CD8+ T cells subsets expressing CD73 ectoenzyme are 
preferentially depleted in HIV + patients compared to healthy con-
trols, regardless of viral load and treatment. (C) Untreated chronic 
patients present diminished frequency of CD39 + CD73 + B cells. 

In fact, the downregulation of CD73 expression on B cells is asso-
ciated with augmented cellular proliferation (Ki67 +) and exhaustion 
phenotype (PD-1 +). (D) CD39 +  CD56bright NK cell subset presents 
increased AhR expression and IL-10 production and is associated 
with lower CD4+ T cell counts, higher viral loads and disease pro-
gression.
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associated with less infiltration of neutrophils and mac-
rophages and lower levels of pro-inflammatory cytokines, 
associated with an enhanced survival of mice after infection 
with Adenovirus [159] or Influenza virus [160]. In turn, a 
marked increase in morbidity and mortality is observed in 
P2Y2R-deficient mice in response to lung infection with 
the human respiratory syncytial virus. The lower survival 
of the P2Y2KO mice could be associated with the defec-
tive infiltration and response of Th1 cells and higher viral 
titers, evidencing the protective role of P2Y2 receptor in 
lung infections [161]. On the other hand, ADORA1R activa-
tion significantly contributes to the generation ARDS. Nev-
ertheless, the activity of CD73 is not required to generate 
ARDS [162]; rather, ADO generation is due to the enzy-
matic action of tissue non-specific alkaline phosphatase, an 
enzyme present in the lung parenchyma with low affinity 
but high capacity to metabolize ATP/AMP in a non-specific 
way [163].

In December 2019, the new ARDS-related to Corona-
virus 2 (SARS-CoV-2) infection that causes COVID-19 
disease was reported for the first time in China. As already 
reported, severe cases are associated with hyper-activation 
of the immune system and an excessive release of cytokines 
called cytokines release syndrome (CRS). So far, Ahmadi 
and colleagues showed that circulating cytotoxic cells 
(CD8 + T cells, NK cells and NKT cells) express lower lev-
els of CD73 ectoenzyme in COVID-19 patients compared to 
healthy donors. Furthermore, CD73 + and CD73- subpopula-
tions of CD8 + T cells and NKT cells with different function-
ality are observed in COVID-19 patients. CD8 + T cells and 
NKT cells lacking CD73 exhibit increased cytotoxic effec-
tor capacity compared to their counterpart CD73 + [164]. 
P2X7R hyperactivation has been reported in COVID-19 as a 
key driver of inflammation and NLRP3 inflammasome acti-
vation [165, 166], potentially driving central nervous system 
diseases [165, 167]

Purinergic pathway also has been studied in endemic 
mosquito-borne viral diseases, such as dengue virus 
(DENV) infection. This represents the most common arbo-
viral infection in humans and can generate a wide spectrum 
of clinical manifestations. In severe cases, higher mortality 
is associated with hyper-activation of the immune system. 
Through the addition of specific P2X7R inhibitors, several 
authors demonstrated that P2X7R signaling generates an 
increase in antiviral responses, either by augmenting NO 
and cytokine production in human monocytes [168] or by 
improving human T cell function, which provide an early 
source of IFN-γ and killing DENV-infected cells [169]. 
Dengue hemorrhagic fever is a systemic endothelial dys-
function resulting from the prolonged and exacerbated 
immune response. Many proteins and signaling pathways 
are involved in maintaining the integrity of the endothe-
lial barrier, including the CD73/ADO axis. Probably, the 

endothelial infection with DENV decreases expression 
of CD73 and this could be associated with a recovery of 
endothelial barrier function [170].

Viral infections are the major causes of acute and chronic 
liver diseases such as hepatitis. Hepatotropic virus, such as 
hepatitis B virus (HBV) and hepatitis delta virus (HDV), 
requires the activity of P2XR to infect primary human hepat-
ocytes [171]. In chronic hepatitis C virus (HCV)-infected 
patients, the expression of P2X1R, P2X4R and P2X7R in 
peripheral blood mononuclear cells increases compared 
to control patients. However, it remains to be elucidated 
whether the expression of purinergic receptors is associated 
with an antiviral immunity or participates in the pathophysi-
ology of the disease [172, 173]. Furthermore, in patients that 
develop hepatocellular carcinoma (HCC) induced by a HCV 
infection, the P2X4R expression is increased compared to 
patients with HCC from non-viral causes [174]. Regarding 
the ectoenzymes, recently a population of CD39 + Treg cells 
was identified to be associated with potent immunosuppres-
sive activity and the progression of viral infections. Tang 
and colleagues showed that the proportion of circulating 
CD39 + FoxP3 + Treg cells correlates positively with HBV 
viremia levels and, conversely, negatively correlates with 
markers of liver damage [175].

A prominent role of the purinergic system in intestinal 
function was demonstrated under physiological and patho-
logical conditions. ADO plays a central role in intestinal 
functions, by modulating the interaction between enteric 
nervous system (ENS), smooth muscle and epithelial barrier 
function. Viral-induced ENS neurodysfunction is associated 
with a markedly altered ADO metabolism, with a spatial 
and functional reorganization of all ADORA receptors and 
an increased expression of ADA and CD73 ectoenzyme in 
the gut [176]. On the other hand, the treatment of differ-
ent human cell lines with imiquimod, an antagonist of the 
ADORA1 receptor, suppresses the replication of HSV-1 
[177]. Within the family of herpes viruses, the human 
cytomegalovirus (CMV) is a β-herpes virus that infects a 
large proportion of the population worldwide. Unlike what 
happens in immunocompetent people, it can cause severe 
diseases in immunosuppressed patients. In vitro studies 
show that several components of the purinergic signaling 
system play critical roles within CMV-infected cells. CMV 
infection induces P2Y2R and P2X5R expression in human 
fibroblasts. Whereas P2Y2R enhances CMV performance 
due to its importance for efficient virus gene expression, 
DNA synthesis and production of infectious progeny, the 
P2X5R reduces CMV production [178]. On the other hand, 
the purinergic system may be involved in the carcinogenesis 
of different chronic viral infections, such as Epstein-Barr 
virus (EBV)-associated and human papillomavirus (HPV)-
related carcinomas [179, 180].
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Conclusions and therapeutic perspectives

For several decades, the purinergic system has been exten-
sively studied as possible therapeutic target for inflam-
matory, autoimmune and oncological diseases [181–186]. 
Inflammation drives the expression of purinergic compo-
nents and subsequent, activation of purinergic signaling 
to prevent tissue collateral damage. After infection, extra-
cellular ATP supports the establishment of a set point of 
various signaling pathways and affects the responses of 
immune cells. Therapies targeting increased ATP and P2 
receptor signaling may be fundamental in controlling the 
collateral injury and maintaining healthy tissues for the 
survival of the host in the acute phase of infection. In 
particular, ATP-P2X7R pathway inhibition may be poten-
tially effective for therapeutic development [44]. ATP 
catabolism to ADO remarkably increases as a result of 
the activities of extracellular ecto-apyrases, ecto-ATPases 
and ectonucleotidases. Rapid uptake and metabolism of 
ADO maintains its low levels in healthy and unstressed 
cells or tissues, but during inflammatory conditions this 
equilibrium breaks down and extracellular ADO level rises 
substantially. The imbalance of the purinergic microenvi-
ronment and its signaling mechanism can trigger immune 
exacerbation or suppression. Resulting purinergic micro-
environment and receptor signaling certainly have a fun-
damental role as mediators of host immune response and 
pathogen interaction. Indeed, adenosinergic pathway 
inhibitors may reinvigorate the immune cell effector func-
tions and improve immune response fitness [187]. Better 
understanding of the effect of ADO on both host innate 
and adaptive immune system function in chronic infectious 
diseases is required to avoid the persistence of the microbe 
and the progression of the disease [188].

Ectonucleotidases from the microorganisms are major 
tools to escape from innate and adaptive immunity and 
should be taken into account as potential targets for new 
therapeutic approaches, and also, vaccines development 
[189, 190]. In some cases, the host's own organism gen-
erates an anti-inflammatory microenvironment to prevent 
vital organs damage and promote survival, thus allowing 
the microorganism to replicate without having to hide or 
fight a robust immune response against it. The persistence 
of numerous microorganisms is improved by their ability 
to modulate the release of nucleotides and nucleosides and 
signal host parenchymal and immune cells. Depletion of 
extracellular nucleotides or pharmacological inhibition of 
purinergic receptors during certain infections may represent 
effective strategies to prevent infectious disease. Further 
investigations will precisely define the molecular actors of 
these processes and hence might identify a series of novel 
druggable targets for the treatment of microbial infections.
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