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a b s t r a c t

In a previous paper we have given a general framework for addressing the definition of
quantum chaos by identifying the conditions that a quantum system must satisfy to lead
to non-integrability in its classical limit. In this paper wewill generalize those results, with
the purpose of defining the two lower levels of the quantum ergodic hierarchy: ergodicity
and mixing. We will also argue for the physical relevance of this approach by considering
a particular example where our formalism has been successfully applied.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In spite of the increasing attention that quantum chaos has received in recent times, the usual opinion is that there is
some kind of tension between quantummechanics and chaos. Two general strategies have been used to stress this supposed
tension:

1. The first one is a ‘‘top-down’’ strategy, which consists in the quantization of simple classical chaotic models: the conflict
arises because the resulting quantum models are usually non-chaotic according to some feature considered as an
indicator of chaos. For instance, Ford and his collaborators [1,2] take the notion of complexity as the key concept for
defining chaos: they argue that the quantization of a classical chaotic system has null complexity and, therefore, is
intrinsically non-chaotic. On this basis, these authors consider to have refuted the correspondence principle and conclude
the incompleteness of quantum mechanics as a fundamental theory.

2. The second general strategy consists in seeking the usual indicators of chaos directly in quantum systems and verifying
that those indicators are not present in quantumevolutions. The particular arguments differ from each otherwith respect
to the specific feature to be regarded as the relevant indicator of chaotic behavior.
• When the exponential divergence of trajectories is focused, the usual claim is that quantum mechanics suppresses
chaos because it is not possible to define precise trajectories in quantumevolutions as a consequence of the uncertainty
principle (see Refs. [3,4]).
• Since a necessary condition for chaos in classical systems is non-linearity, the fact that quantum evolutions are
solutions of the linear Schrödinger equation has led some authors to conclude that quantum systems are necessarily
non-chaotic (see Refs. [5,6]). One way out to this conclusion is the attempt to recover quantum chaos by introducing
non-linear terms in the Schrödinger equation, for instance, by means of non-linear operators (see Ref. [7]).
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• Another feature that has been used to explain the relative scarcity of quantum chaos is the unitarity of the evolutions
described by the Schrödinger equation. On this basis, some authors have seek theway to quantum chaos in non-unitary
approaches to quantum mechanics (e.g. the GRW theory [8]). A different path is followed by the authors who search
for chaotic behavior in open quantum systems [9–11].

However, these two strategies donot take into account that the real conflict, whichwould pose a threat to the correspondence
principle, would arise only if the classical limit of quantum systems did not display chaotic behavior. But the results obtained from
the quantization of classical chaotic models are, at least, inconclusive, since at present it is well known that the explanation
of the classical limit of quantum mechanics involves certain elements that are much more subtle than the inverse of the
traditional quantization. On the other hand, the fact that the usual indicators of chaos are not present in quantum evolutions
does not prove yet the absence of chaos in the classical description emerging as the result of the classical limit: only if the
transference of those indicators from the quantum level to the classical level is assumed in advance, the scarcity of chaos in
quantum systems could be considered a real problem in the light of the ubiquity of classical chaos.
For these reasons, following other authors [12,13] we will study the problem of the emergence of classical chaos (and

of other levels of instability in the ergodic hierarchy) from quantum descriptions of physical systems. Therefore, although
different characterizations of quantum chaos may be useful for other purposes, in the context of the supposed threat to the
correspondence principle we will consider the problem of quantum chaos as a particular aspect of the more general issue of
the classical limit of quantummechanics, that is, how classical behavior can emerge from the quantum realm. In the context
of this particular problem, the relevant definition of quantum chaos reads: a quantum system is chaotic if its classical limit
exhibits chaos.
In the light of this idea, and on the basis of our previous works on decoherence and the classical limit of quantum

mechanics [14–24], in paper [25] we have presented a general framework for addressing the definition of quantum chaos by
identifying the conditions that a quantum systemmust satisfy to lead to non-integrability in the classical limit. In paper [26]
we have discussed the conceptual foundations of our approach in the context of Belot–Earman’s program (see Ref. [27]),
which proposes four requirements that any definition of quantum chaos should fulfil: (i) that it possess generality and
mathematical rigor, (ii) that it agree with common intuition, namely, the natural idea that we have of chaos, (iii) that it be
clearly related to the criteria of classical chaos, and (iv) that it be physically relevant.
In this paper, our aim is to carry our approach a step further by defining the two lowest levels of the ergodic hierarchy

for non-integrable quantum systems: quantum ergodicity and quantummixing. For this purpose, wewill have to generalize
the results obtained in our previous works on non-integrability. In the light of this general aim, the paper is organized as
follows. In Section 2, wewill introduce amathematical background necessary for the development of the following sections.
In Section 3, wewill generalize the results obtained in Ref. [25] for decoherence in quantum systemswith continuous energy
spectrum to the case of a discrete+continuous spectrum. Section 4 will be devoted to obtain the classical statistical limit of
the systems treated in the previous section through the Wigner transformation. In Section 5 we will apply the Ehrenfest
theorem to obtain the classical limit with trajectories in phase space. On the basis of these results, in Section 6 we will
define quantum ergodicity and quantum mixing. In Section 7 we will argue for the physical relevance of our approach by
discussing the Casati–Prosen model, which can be successfully treated with our formalism. Finally, in the conclusions we
will explain in what sense our approach satisfies the four requirements of Belot–Earman’s program.

2. Mathematical background

2.1. Weak and Cèsaro limits

Our presentation is based on the algebraic formalism of quantum mechanics [28,29]. Let us consider an algebra A of
operators, whose self-adjoint elements O = OĎ are the observables belonging to the space O. The states ρ are functionals
belonging to the dual space O′, and they satisfy the usual conditions: self-adjointness, positivity and normalization. IfA is
a C*-algebra, it can be represented by a Hilbert space (GNS theorem). IfA is a general nuclear algebra, it can be represented
by a rigged Hilbert space, as proved by a generalization of the GNS theorem [30,31]. In this case, the van Hove states with
singular diagonal can be properly defined (see Ref. [32]; for a rigorous presentation of the formalism, see also Refs. [33,34]).
If we write the action of the functional ρ on the vector O as (ρ|O), then we can say that:

• The evolution Utρ = ρ(t) has aWeak-limit if, for any O ∈ O and any ρ ∈ O′, there is a unique ρW
∗
such that

lim
t→∞

(ρ(t)|O) = (ρW
∗
|O). (1)

We will symbolize this limit as

W - lim
t→∞

ρ(t) = ρW
∗
. (2)

• The evolution Utρ = ρ(t) has a Cèsaro-limit if, for any O ∈ O and any ρ ∈ O′, there is a unique ρC
∗
such that

lim
τ→∞

1
τ

∫ τ

0
dt (ρ(t)|O) = (ρC

∗
|O). (3)
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We will symbolize this limit as

C- lim
t→∞

ρ(t) = ρC
∗
. (4)

• If the evolution ρ(t) has a Weak-limit according to Eq. (1), it has a Cèsaro-limit according to Eq. (3):Weak-convergence
implies Cèsaro-convergence.

2.2. Riemann–Lebesgue theorem

The idea of destructive interference is embodied in the Riemann–Lebesgue theorem, according to which, if f (ν) ∈ L1,
then

lim
t→∞

∫ b

a
f (ν)e−iνtdν = 0. (5)

• If we can express the action of the functional ρ(t) ∈ O′ on the vector O ∈ O as

(ρ(t)|O) =
∫ b

a
[A δ(ν)+ f (ν)] e−iνtdν (6)

with f (ν) ∈ L1, then

lim
t→∞

(ρ(t)|O) = lim
t→∞

∫ b

a
[A δ(ν)+ f (ν)] e−iνtdν = A = (ρW

∗
|O). (7)

We will call this result ‘‘Weak Riemann–Lebesgue limit ’’.
• If we can express the action of the functional ρ(t) ∈ O′ on the vector O ∈ O as

(ρ(t)|O) =
∑
j

fj e−iνjt +
∫ b

a
[A δ(ν)+ f (ν)] e−iνtdν (8)

with f (ν) ∈ L1, then1

lim
τ→∞

1
τ

∫ τ

0
dt

[∑
j

fj e−iνjt +
∫ b

a
[A δ(ν)+ f (ν)] e−iνtdν

]
= A = (ρC

∗
|O). (9)

We will call this result ‘‘Cèsaro Riemann–Lebesgue limit ’’.

2.3. Generalized projection

As it is well known, in order to describe an irreversible process in terms of a unitary evolution it is necessary to break
the underlying unitarity by means of some sort of projection, which retains the ‘‘relevant’’ information and discards the
‘‘irrelevant’’ information about the system. In this section we will generalize this idea in two senses.
i.- In its traditional form, the action of a projection is to eliminate some components of the state vector corresponding to

the finer description (see Ref. [35]). If this idea is generalized, the action of a functional ρ ∈ O′ on a vector O ∈ O can be
conceived as the result of a generalized projection. In fact, we can define a projectorΠW belonging to the spaceO⊗O′ such
that

•ΠW $ (•|O) ρo (10)
where ρo ∈ O′ satisfies (ρo|O) = 1.2 Therefore, the action of ρ ∈ O′ on O ∈ O involves a projection leading to a state ρP
such that

(ρ|O) ρo = ρΠW $ ρP . (11)

1 In fact, the integral of Eq. (9) reads∑
j

lim
τ→∞

1
τ

∫ τ

0
dt fje−iνj t + lim

τ→∞

1
τ

∫ τ

0
dt
∫ b

a
[A δ(ν)+ f (ν)] e−iνtdν.

The second term is equal to A because Weak-convergence implies Cèsaro-convergence. The first term vanishes since

lim
τ→∞

1
τ

∫ τ

0
dtfje−iνj t = lim

τ→∞

i
νjτ
fi
(
e−iνjτ − 1

)
= 0.

2 In fact,ΠW is a projector since

•Π2W = (•|O) ρoΠW = (•|O) (ρo|O)ρo = (•|O)ρo = •ΠW .
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If the evolution ρ(t) has a Weak-limit, we can guarantee that (see Eq. (1))

lim
t→∞

ρP(t) = lim
t→∞

ρ(t)ΠW = lim
t→∞

(ρ(t)|O)ρo = (ρW∗ |O)ρo = ρ
W
∗
ΠW = ρ

W
P∗ (12)

where ρWP∗ is the projection of the final functional ρ
W
∗
.3

When ρ denotes a state and O denotes an observable, this result means that the expectation value of the observable O
in the state ρ, 〈O〉ρ = (ρ|O), can be conceived as a projected magnitude that provides the partial description of ρ from the
perspective given by O.
ii.- A further projection can be defined by introducing a time integration on the state ρP(t). Let us define a time-projected

state ρτ (t) such that

ρτ (t) $ ρP(t)Πτ (13)

where the projectorΠτ is the integral4

•Πτ $
1
τ

∫ τ

0
•dt. (14)

Then,

ρτ (t) = ρP(t)Πτ = ρ(t)ΠWΠτ = (ρ(t)|O) ρoΠτ =
1
τ

∫ τ

0
(ρ(t)|O) ρo dt. (15)

If the evolution ρ(t) has a Cèsaro-limit, we can guarantee that (see Eq. (3))

lim
t→∞

ρτ (t) = lim
t→∞

ρP(t)Πτ = lim
τ→∞

1
τ

∫ τ

0
(ρ(t)|O) ρo dt = (ρC∗ |O)ρo = ρ

C
∗
ΠW = ρ

C
P∗ (16)

where, again, ρCP∗ is the projection of the final functional ρ
C
∗
.

When ρ denotes a state and O denotes an observable, the time integration involved in the Cèsaro-limit can be endowed
with a physical meaning. As it is well known, in any realistic measurement themeasuring apparatus is a macroscopic device
with a certain inertia that delays and averages the result of the measurement. Let us consider, for instance, an evolution
ρ(t) = B(t) + A sinωt , where the oscillation period τω = 2π

ω
is much smaller than the time variation of B(t). If τ is the

characteristic time of the measuring apparatus and τ � τω , then the result of the measurement can be computed bymeans
of the limit τ → ∞ as in Eq. (16), where the term A sinωt vanishes. This means that the Cèsaro-limit can be conceived as
yielding the result of a measurement performed by a macroscopic apparatus.

2.4. Weyl–Wigner–Moyal mapping

Let Γ = M2(N+1) ≡ R2(N+1) be the phase space. The functions over Γ will be called f (φ), where φ symbolizes the
coordinates of Γ , φ = (q1, . . . , qN+1, p1q, . . . , p

N+1
q ). If f̂ ,̂g ∈ Â and f (φ), g(φ) ∈ Aq, where Â is the quantum algebra and

Aq is the ‘‘classical-like’’ algebra, theWigner transformation reads (see Refs. [36–38])

symb̂f $ f (φ) =
∫
〈q+∆| f̂ |q−∆〉ei

p∆
h̄ dN+1∆. (17)

We can also introduce the star product (see Ref. [39]),

symb(̂f ĝ) = symb f̂ ∗ symb ĝ = (f ∗ g)(φ), (f ∗ g)(φ) = f (φ) exp
(
−
ih̄
2
←−
∂ aω

ab−→∂ b

)
g(φ) (18)

and theMoyal bracket, that is, the symbol corresponding to the quantum commutator

{f , g}mb =
1
ih̄
(f ∗ g − g ∗ f ) = symb

(
1
ih̄
[f , g]

)
. (19)

It can be proved that (see Ref. [36])

(f ∗ g)(φ) = f (φ)g(φ)+ 0(h̄), {f , g}mb = {f , g}pb + 0(h̄2). (20)

3 This notion of generalized projection can be applied to the environment-induced decoherence (where the projected state is the result of the tracing
over the environmental degrees of freedom, see Refs. [10,11]) as to the self-induced decoherence (where the expectation value approaching a final value
can be viewed as a projected magnitude, see Refs. [14,18,20,22]).
4 The operatorΠτ is a projector since

Π2τ =
1
τ

∫ τ

0
Πτ dt = Πτ .



M. Castagnino, O. Lombardi / Physica A 388 (2009) 247–267 251

To define the inverse symb−1, we will use the symmetrical orWeyl ordering prescription, namely,

symb−1[qi(φ), pj(φ)] $
1
2

(̂
qîpj + p̂ĵqi

)
. (21)

Therefore, by means of the transformations symb and symb−1, we have defined an isomorphism between the quantum
algebra Â and the algebraAq,

symb−1 : Aq → Â, symb : Â→ Aq . (22)

The mapping so defined is theWeyl–Wigner–Moyal symbol.5
The Wigner transformation for states is

ρ(φ) = symb ρ̂ = (2π h̄)−(N+1) symb(for operators) ρ̂. (23)

As it is well known, an important property of theWigner transformation is that it yields the correct expectation value of any
observable Ô in a state ρ̂,

〈̂O〉ρ̂ = (̂ρ |̂O) = (symb ρ̂ | symb Ô) =
∫
dφ2(N+1)ρ(φ)O(φ). (24)

This means that the definition of ρ̂ ∈ Â′ as a functional on Â is equivalent to the definition of symb ρ ∈ A′q as a functional
onAq.

3. Decoherence in non-integrable systems

In this section we will generalize the results obtained in Ref. [25] for Ĥ with continuous spectrum to the case of a
discrete+continuous energy spectrum. This task will be essential for explaining quantum ergodicity and quantummixing in
the following sections.

3.1. Local CSCO

This subsection is a short version of the corresponding subsection of paper [25].
a.- In Ref. [25] we have proved that, when the quantum system is endowed with a CSCO of N + 1 observables containing

Ĥ , that defines an eigenbasis in terms of which the state of the system can be expressed, the corresponding classical system
is integrable. In fact, if the CSCO is {Ĥ, Ĝ1, . . . , ĜN}, the Moyal brackets of its elements are

{GI(φ),GJ(φ)}mb = symb
(
1
ih̄
[̂GI , ĜJ ]

)
= 0 (25)

where I, J = 0, 1, . . . ,N , Ĝ0 = Ĥ , and φ ∈M ≡ R2(N+1). Then, when h̄→ 0, from Eq. (20) we know that

{GI(φ),GJ(φ)}pb = 0. (26)

Thus, since H(φ) = G0(φ), the set {GI(φ)} is a complete set of N + 1 constants of motion in involution, globally defined all
overM; as a consequence, the system is integrable.
b.- We have also proved (see Ref. [25]) that, when the CSCO has A + 1 < N + 1 observables, a local CSCO

{Ĥ, Ĝ1, . . . , ĜA, Ôi(A+1), . . . , ÔiN} can be defined for each domain Dφi around any point φi ∈ Γ ≡ R2(N+1), where Γ is
the Wigner phase space of the system. In this case the system is non-integrable.
In order to prove this assertion, we have to recall the Carathèodory–Jacobi theorem (see Ref. [40], Theorem 16.29)

according to which, when a system with N + 1 degrees of freedom has A + 1 global constants of motion in involution
{G0(φ),G1(φ), . . . ,GA(φ)}, then N − A local constants of motion in involution {Ai(A+1)(φ), . . . , AiN(φ)} can be defined in a
maximal domainDφi around φi, for any φi ∈ Γ ≡ R2(N+1).
Let us consider the particular case of a classical system with N + 1 degrees of freedom, and whose only global constant

of motion is the Hamiltonian H(φ). The Carathèodory–Jacobi theorem tells us that, in this case, the system has N local
constants of motion AiI(φ), with I = 0, . . . ,N , in the domainDφi around φi, for any φi ∈ Γ . If we want to translate these
phase space functions into the quantum language, we have to apply the transformation symb−1; this can be done in the case
of the Hamiltonian, Ĥ = symb−1H(φ), but not in the case of the AiI(φ) because they are defined in a domainDφi ⊂ Γ and
the Weyl–Wigner–Moyal mapping can be applied only on phase space functions defined on the whole phase space Γ . To
face this problem, we can introduce a positive partition of the identity (see Ref. [41]),

1 = I(φ) =
∑
i

Ii(φ) (27)

5 When h̄→ 0, thenAq → A, whereA is the classical algebra of observables over phase space.
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where each Ii(φ) is the characteristic or index function

Ii(φ) =
{
1 if φ ∈ Dφi
0 if φ 6∈ Dφi

(28)

and Dφi ⊂ Dφi , Dφi ∩ Dφj = ∅,
⋃
i Dφi = Γ . Then we can define the functions OiI(φ) as

6

OiI(φ) = AiI(φ) Ii(φ). (29)

Now the OiI(φ) are defined for all φ ∈ Γ ; so, we can obtain the corresponding quantum operators as

ÔiI = symb−1OiI(φ). (30)

Since the original functionsAiI(φ) are local constants ofmotion in the domainDφi , theymake zero the corresponding Poisson
brackets in such a domain (see Eq. (26)) and, a fortiori, inDφi ⊂ Dφi . Thismeans that theOiI(φ)make zero the corresponding
Poisson brackets in the whole space space Γ : for φ ∈ Dφi , because OiI(φ) = AiI(φ) , and trivially for φ 6∈ Dφi . We also know
that, in the macroscopic limit h̄ → 0, the Poisson brackets can be identified with the Moyal brackets, that is, the phase
space counterpart of the quantum commutator (see Eq. (20)). Therefore, we can guarantee that all the observables of the set{
Ĥ, ÔiI

}
commute to each other:[
Ĥ, ÔiI

]
= 0

[̂
OiI , ÔiJ

]
= 0 (31)

for I, J = 1 to N and for each Dφi . As a consequence, we will say that the set
{
Ĥ, Ôi1, . . . , ÔiN

}
is the local CSCO of N + 1

observables corresponding to the domain Dφi ⊂ Γ . If Ĥ has a continuous spectrum 0 ≤ ω <∞, a generic observable Ô can
be decomposed as

Ô =
∑
imiI m′iI

∫
∞

0
dω
∫
∞

0
dω′ ÕimiI m′iI (ω, ω

′) |ω,miI〉〈ω′,m′iI | (32)

where the |ω,miI〉 = |ω,mi1, . . . ,miN〉 are the eigenvectors of the local CSCO
{
Ĥ, ÔiI

}
corresponding to Dφi . Since it can be

proved that (see Ref. [25]), for i 6= j,

〈ω,miI |ω,mjI〉 = 0 (33)

the decomposition of Eq. (32) is orthonormal, and it generalizes the usual eigen-decomposition of the integrable case to
the non-integrable case. Therefore, any ÔiI corresponding to the domain Dφi commutes with any Ôj J corresponding to the
domain Dφj , with i 6= j,

7[̂
OiI , Ôj J

]
= δij δIJ . (34)

3.2. Decoherence in the energy

Let us consider a quantum system endowed with a CSCO consisting only of the Hamiltonian Ĥ . In order to complete the
basis, we can add the observables belonging to the local CSCO as defined in the previous subsection. Thus, we have the set{
Ĥ, ÔiI

}
, with I = 1 to N and i corresponding to all the domains Dφi obtained from the partition of the phase space.

a.- In paper [25] we have considered the case with continuous spectrum 0 ≤ ω <∞ for Ĥ and discrete spectramiI ∈ N
for the ÔiI . Here we need to generalize that case by considering that the energy spectrum has a discrete part {wα} and a
continuous part 0 ≤ w <∞. In the eigenbasis of Ĥ , the elements of any local CSCO can be expressed as (see Eq. (32))

Ĥ =
∑
imiI

(∑
α

wα |wα,miI〉〈wα,miI | +
∫
∞

0
w |w,miI〉〈w,miI |dw

)
(35)

ÔiJ =
∑
imiI

(∑
α

miI |wα,miI〉〈wα,miI | +
∫
∞

0
miI |w,miI〉〈w,miI |dw

)
(36)

6 In paper [25], we have used a ‘‘bump’’ smooth function Bi(φ)with values belonging to [0, 1] in a boundary zone of the corresponding domain, and we
have defined OiI (φ) = AiI (φ) Bi(φ). This strategy guarantees smooth connections between the functions OiI (φ) defined in adjacent domains; in particular,
it can be shown that any possible discontinuity in the boundary zones introduces just a 0(h̄2), which vanishes when h̄ → 0 and, therefore, the Moyal
brackets can be replaced with Poisson brackets in such a limit (see Ref. [25]).
7 In this paper we have slightly changed the notation of paper [25], because we consider that the present notation in more explicit than that one.
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where miI is a shorthand for mi1, . . . ,miN , and
∑
imiI
is a shorthand for

∑
i
∑
mi1
· · ·
∑
miN
. In order to simplify the

expressions, we will symbolize the energy spectrum with ω = (wα, w) and write Eqs. (35) and (36) as

Ĥ =
∑
imiI

(∑
α

+

∫
∞

0
dw

)
ω |ω,miI〉〈ω,miI | (37)

ÔiJ =
∑
imiI

(∑
α

+

∫
∞

0
dw

)
miI |ω,miI〉〈ω,miI | (38)

where the sum
∑

α corresponds to the discrete spectrum and the integral
∫
∞

0 dw corresponds to the continuous spectrum.
With this notation,

Ĥ |ω,miI〉 = ω |ω,miI〉, ÔiI |ω,miI〉 = miI |ω,miI〉 (39)

where the set of vectors {|ω,miI〉}, with I = 1 to N and i corresponding to all the Dφi , is an orthonormal basis (see Eq. (33)):

〈wα,miI |wβ ,m′iI〉 = δαβ δmiI m′iI , 〈w,miI |w′,m′iI〉 = δ(w − w
′) δmiI m′iI

, 〈wα,miI |w,m′iI〉 = 0. (40)

b.- In the orthonormal basis {|ω,miI〉}, a generic observable reads (see Eq. (32))

Ô =
∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)(∑
β

+

∫
∞

0
dw′

)
ÕimiI m′iI (ω, ω

′) |ω,miI〉〈ω′,m′iI | (41)

where ÕimiI m′iI (ω, ω
′) is a generic kernel or distribution in ω,ω′. As in paper [25], we will restrict the set of observables by

considering only the van Hove observables (see Ref. [32]) such that

ÕimiI m′iI (ω, ω
′) = OimiI m′iI (ω) δ(ω − ω

′)+ OimiI m′iI (ω, ω
′) (42)

where δ(ω − ω′) = δαβ for the sums, δ(ω − ω′) = δ(w − w′) for the integrals, and the discrete–continuous cross-terms
vanish. The first term in the r.h.s. of Eq. (42) is the singular term and the second one is the regular term since theOimiI m′iI (ω, ω

′)

are ‘‘regular’’ functions of the variables ω and ω′ (where the precise meaning of ‘‘regular’’ will turn out to be clear below).
Therefore, the observables of our algebra Â read

Ô =
∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)
OimiI m′iI (ω) |ω,miI〉〈ω,m

′

iI |

+

∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)(∑
β 6=α

+

∫
∞

0
dw′

)
OimiI m′iI (ω, ω

′) |ω,miI〉〈ω′,m′iI |. (43)

Since the observables are the self-adjoint operators of the algebra, ÔĎ = Ô, they belong to a space Ô ⊂ Â whose basis
{|ω,miI ,m′iI), |ω,ω

′,miI ,m′iI)} is defined as

|ω,miI ,m′iI) $ |ω,miI〉〈ω,m′iI |, |ω,ω′,miI ,m′iI) $ |ω,miI〉〈ω′,m′iI |. (44)

c.- The states belong to a convex set included in the dual of the space Ô, ρ̂ ∈ Ŝ ⊂ Ô′. The basis of Ô′ is
{(ω,miI ,m′iI |, (ω, ω

′,miI ,m′iI |}, whose elements are defined as functionals by the equations

(ω,miI ,m′iI | η, niI , n
′

iI) $ δ(ω − η) δmiI niI δm′iI n
′

iI

(ω, ω′,miI ,m′iI | η, η
′, niI , n′iI) $ δ(ω − η) δ(ω′ − η′) δmiI niI δm′iI n

′

iI

(ω,miI ,m′iI | η, η
′, niI , n′iI) $ 0 (45)

and the remaining (•|•) are zero. Then, a generic state reads

ρ̂ =
∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)
ρimiI m′iI

(ω)(ω,miI ,m′iI |

+

∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)(∑
β 6=α

+

∫
∞

0
dw′

)
ρimiI m′iI

(ω, ω′)(ω, ω′,miI ,m′iI | (46)
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where the functions ρimiI m′iI (ω, ω
′) are ‘‘regular’’ functions of the variables ω and ω′. We also require that ρ̂Ď

= ρ̂, i.e.,

ρimiI m′iI
(ω, ω′) = ρim′iI miI

(ω′, ω) (47)

and that the ρimiI miI (ω, ω) $ ρimiI (ω) be real and non-negative, satisfying the total probability condition,

ρimiI (ω) ≥ 0, tr̂ρ = (̂ρ |̂I) =
∑
imiI

(∑
α

+

∫
∞

0
dw

)
ρimiI (ω) = 1 (48)

where Î =
∑
imiI

(∑
α +

∫
∞

0 dw
)
|ω,miI〉〈ω,miI | is the identity operator in Ô.

d.- On the basis of these characterizations, the expectation value of any observable Ô ∈ Ô in the state ρ̂(t) ∈ Ŝ can be
computed as

〈̂O〉ρ̂(t) = (̂ρ(t)|̂O) =
∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)
ρimiI m′iI

(ω)OimiI m′iI (ω)

+

∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)(∑
β 6=α

+

∫
∞

0
dw′

)
ρimiI m′iI

(ω, ω′) ei(ω−ω
′)t/h̄ OimiI m′iI (ω, ω

′) (49)

where we can develop the second term as∑
imiI m′iI

∑
β 6=α

ρimiI m′iI
(wα, wβ) ei(wα−wβ )t/h̄ OimiI m′iI (wα, wβ)

+

∫
∞

0
dw

∫
∞

0
dw′ ρimiI m′iI (w,w

′) ei(w−w
′)t/h̄ OimiI m′iI (w,w

′)

+

∑
α

∫
∞

0
dw′ ρimiI m′iI (wα, w

′) ei(wα−w
′)t/h̄ OimiI m′iI (wα, w

′)

+

∫
∞

0
dw

∑
β

ρimiI m′iI
(w,wβ) e

i(w−w′β )t/h̄ OimiI m′iI (w,wβ). (50)

The requirement of ‘‘regularity’’ for the involved functions means that ρimiI m′iI (wα, w
′)OimiI m′iI (wα, w

′) ∈ L1 in variable w′,
ρimiI m′iI

(w,wβ)OimiI m′iI (w,wβ) ∈ L1 in variablew, and ρimiI m′iI (w,w
′)OimiI m′iI (w,w

′) ∈ L1 in the variable ν = w−w′. Then,
when we take the limit for t →∞, we can apply the Cèsaro Riemann–Lebesgue limit as introduced in Eq. (9):

lim
t→∞

1
τ

∫ τ

0
(̂ρ(t)|̂O) dt = lim

t→∞

1
τ

∫ τ

0
〈̂O〉ρ̂(t) dt =

∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)
ρimiI m′iI

(ω)OimiI m′iI (ω) = (̂ρ∗ |̂O) (51)

which, according to Eq. (4) can be expressed as

C- lim
t→∞

ρ̂(t) =
∑
imiI m′iI

(∑
α

+

∫
∞

0
dw

)
ρimiI m′iI

(ω) (ω,miI ,m′iI | = ρ̂∗. (52)

Since only the singular diagonal terms remain in ρ̂∗, we can say that the system has decohered alla Cèsaro in the energy.

Remarks. • It is clear that this kind of decoherence involves a generalized projection. As we have seen in Section 2.3,
expectation values and time integrals are projected magnitudes that restrict the maximum information given by the
quantum state. It is precisely this projectionwhat breaks the unitarity of the underlying quantumevolution (for a detailed
discussion, see Refs. [20,24]).
• Theoretically, decoherence takes place at t → ∞. Nevertheless, for the continuous spectrum case and for atomic
interactions, the characteristic decoherence time is tD = 10−15 s. For macroscopic systems at room temperature this time
is even smaller (e.g. 10−37 − 10−39 s, see Ref. [22]). Models with two characteristic times (decoherence and relaxation)
can also be considered (see Refs. [22,42]).
• On the basis of the presentation of this subsection, it is also clear that this kind of decoherence strictly obtains when
the Hamiltonian has a continuous spectrum. Nevertheless, the process also leads to decoherence in quasi-continuous
models, that is, discrete models where (i) the energy spectrum is quasi-continuous, i.e., has a small discrete energy
spacing, and (ii) the functions of energy used in the formalism are such that the sums in which they are involved can
be approximated by Riemann integrals (see Ref. [42]). This condition is rather weak: the overwhelming majority of the
physical models studied in the literature on dynamics, thermodynamics, quantummechanics and quantum field theory
are quasi-continuous, and the well-known strategy for transforming sums in integrals is applied (see Ref. [43]). We will
return on this point in Section 7, when the Casati–Prosen model will be discussed.
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3.3. Decoherence in the remaining variables

Up to this point, ρ̂∗ is diagonal in the variables ω and ω′, but in general not in the remaining variables. A further
diagonalization of ρ̂∗ in variablesmiI andm′iI can be obtained through a unitarymatrixU , which performs the transformation

ρimiI m′iI
(ω)→ ρipiI p′iI

(ω) δpiI p′iI
$ ρipiI (ω)δpiI p′iI

. (53)

Such a transformation defines a new orthonormal basis {|ω, piI〉}, where piI is a shorthand for pi1, . . . , piN , and piI ∈ N.
This basis corresponds to a new local CSCO

{
Ĥ, P̂iI

}
. Therefore, in each Dφi , the final pointer basis for the observables is

{|ω, piI , p′iI), |ω,ω
′, piI , p′iI)}, defined as in Eq. (44) but with the indices p instead of m, and the corresponding final pointer

basis for the states is {(ω, piI , p′iI |, (ω, ω
′, piI , p′iI |}.

a. When the observables P̂iI have discrete spectra, in the new basis the van Hove observables of our algebra Âwill read

Ô =
∑
ipiI

(∑
α

+

∫
∞

0
dw

)
OipiI (ω)|ω, piI)

+

∑
ipiI p′iI

(∑
α

+

∫
∞

0
dw

)(∑
β 6=α

+

∫
∞

0
dw′

)
OipiI p′iI (ω, ω

′) |ω,ω′, piI , p′iI) = ÔS + ÔR (54)

where ÔS is the singular part and ÔR is the regular part of Ô. The states, in turn, will have the following form

ρ̂ =
∑
ipiI

(∑
α

+

∫
∞

0
dw

)
ρipiI (ω) (ω, piI |

+

∑
ipiI p′iI

(∑
α

+

∫
∞

0
dw

)(∑
β 6=α

+

∫
∞

0
dw′

)
ρipiI p′iI

(ω, ω′)(ω, ω′, piI , p′iI | = ρ̂S + ρ̂R (55)

where, again, ρ̂S is the singular part and ρ̂R is the regular part of ρ̂. Therefore, when we apply the Cèsaro Riemann–Lebesgue
limit of Eq. (52), the regular part vanishes and only the singular part remains:

C- lim
t→∞

ρ̂(t) =
∑
ipiI

(∑
α

+

∫
∞

0
dw

)
ρipiI (ω)(ω, piI | = ρ̂∗ = ρ̂S . (56)

b. In the case of observables P̂iI with continuous spectra, Eq. (54) becomes

Ô =
∑
i

∫
piI
dpNiI

(∑
α

+

∫
∞

0
dw

)
Oi(ω, piI)|ω, piI)

+

∑
i

∫
piI
dpNiI

∫
p′iI

dp′NiI

(∑
α

+

∫
∞

0
dw

)(∑
β 6=α

+

∫
∞

0
dw′

)
Oi(ω, ω′, piI , p′iI)|ω,ω

′, piI , p′iI) = ÔS + ÔR (57)

and Eq. (55) becomes

ρ̂ =
∑
i

∫
piI
dpNiI

(∑
α

+

∫
∞

0
dw

)
ρi(ω, piI)(ω, piI |

+

∑
i

∫
piI
dpNiI

∫
p′iI

dp′NiI

(∑
α

+

∫
∞

0
dw

)(∑
β 6=α

+

∫
∞

0
dw′

)
ρi(ω, ω′, piI , p′iI)(ω, ω

′, piI , p′iI | = ρ̂S + ρ̂R. (58)

In this case, through the Cèsaro Riemann–Lebesgue limit we obtain

C- lim
t→∞

ρ̂(t) =
∑
i

∫
piI
dpNiI

(∑
α

+

∫
∞

0
dw

)
ρi(ω, piI) (ω, piI | = ρ̂∗ = ρ̂S . (59)

It is worth stressing that the state ρ̂(t) always evolves unitarily and, as a consequence, its off-diagonal terms never vanish
through the evolution. Nevertheless, the Cèsaro-limit means that a projectorΠ = ΠWΠτ can be defined (see Eqs. (10) and
(14)), such that the time-projected state ρ̂τ (t) = ρ̂(t)ΠWΠτ has a strong limit (see Eq. (16))

lim
t→∞

ρ̂τ (t) = lim
t→∞

ρ̂(t)ΠWΠτ = ρ̂∗. (60)
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Since ρ̂τ (t) does not denote a quantum state but a projected state, there is no reason that prevents it from evolving non-
unitarily: the evolution of ρ̂τ (t) turns out to be analogous to the familiar case of classical unstable systems, where it is
completely natural to obtain a non-unitary projected evolution from an underlying unitary dynamics.
In the following sections we will work with the case of observables P̂iI with continuous spectra; the case of P̂iI with

discrete spectra is completely analogous.

4. The classical statistical limit

In order to obtain the classical statistical limit, it is necessary to compute the Wigner transformation of observables and
states. In paper [25] we have done it in the case of Ĥ with continuous spectrum. Here we will generalize that result for the
case of a discrete+continuous energy spectrum.
If we develop the expression of the state of Eq. (58), we find that ρ̂ has a discrete part ρ̂(D), where only the sums in wα

are involved, and a continuous part ρ̂(C) including the integrals inw:

ρ̂ = ρ̂(D) + ρ̂(C) (61)

where ρ̂(D) and ρ̂(C) read

ρ̂(D) =
∑
i

∫
piI
dpNiI

∑
α

ρi(wα, piI)(wα, piI | +
∑
i

∫
piI
dpNiI

∫
p′iI

dp′NiI
∑
α

∑
β 6=α

ρi(wα, wβ , piI , p′iI)(wα, wβ , piI , p
′

iI | (62)

ρ̂(C) =
∑
i

∫
piI
dpNiI

∫
∞

0
dw ρi(w, piI)(w, piI |

+

∑
i

∫
piI
dpNiI

∫
p′iI

dp′NiI

∫
∞

0
dw

∫
∞

0
dw′ ρi(w,w′, piI , p′iI)(w,w

′, piI , p′iI |. (63)

Therefore, Eq. (59) can be written as

C- lim
t→∞

ρ̂(t) = C- lim
t→∞

(̂
ρ(t)(D) + ρ̂(t)(C)

)
= ρ̂∗ = ρ̂S = ρ̂

(D)
S + ρ̂

(C)
S (64)

where ρ̂S is the singular component of ρ̂, resulting from the Cèsaro Riemann–Lebesgue limit,

ρ̂S =
∑
i

∫
piI
dpNiI

(∑
α

+

∫
∞

0
dw

)
ρi(ω, piI)(ω, piI | (65)

and ρ̂(D)S and ρ̂(C)S are the discrete and the continuous parts of ρ̂S ,

ρ̂
(D)
S =

∑
i

∫
piI
dpNiI

∑
α

ρi(wα, piI)(wα, piI | (66)

ρ̂
(C)
S =

∑
i

∫
piI
dpNiI

∫
∞

0
dw ρi(w, piI)(w, piI |. (67)

It is easy to see that, in Eq. (64), the limit of ρ̂(t)(D) is ρ̂(D)S and the limit of ρ̂(t)(C) is ρ̂(C)S . But whereas in the discrete case the
Cèsaro Riemann–Lebesgue limit applies, in the continuous case the regular part vanishes as a consequence of the stronger
Weak Riemann–Lebesgue limit (as in the particular case studied in Ref. [25]):

C- lim
t→∞

ρ̂(t)(D) = ρ̂(D)S (68)

W - lim
t→∞

ρ̂(t)(C) = ρ̂(C)S . (69)

Now, the task is to find the classical distribution ρ∗(φ) = ρS(φ) resulting from applying the Wigner transformation to
ρ̂S in the limit h̄→ 0,

ρ∗(φ) = ρS(φ) = symb ρ̂S = symb ρ̂
(D)
S + symb ρ̂

(C)
S = ρ

(D)
S (φ)+ ρ

(C)
S (φ) (70)

where (see Eqs. (66) and (67))

ρ
(D)
S (φ) = symb ρ̂(D)S =

∑
i

∫
piI
dpNiI

∑
α

ρi(wα, piI)symb(wα, piI | (71)

ρ
(C)
S (φ) = symbρ̂(C)S =

∑
i

∫
piI
dpNiI

∫
∞

0
dw ρi(w, piI)symb(w, piI |. (72)

So, the problem is reduced to compute symb(wα, piI | and symb(w, piI |.
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As it is well known, in its traditional form the Wigner transformation yields the correct expectation value of any
observable in a given state when we are dealing with regular functions (see Eq. (24)). In previous papers [23,25] we have
extended theWigner transformation to singular functions in order to apply it to functions as (w, piI |. Herewewill generalize
that result to the discrete+continuous case in two steps: first,wewill consider the transformation of observables and, second,
wewill study the transformation of states. This taskwill allowus to study the convergence of the classical distributionρ(φ, t)
in phase space.

4.1. Transformation of observables

As we have seen (see Eq. (57)), our van Hove observables Ô ∈ Ô have a singular part ÔS and a regular part ÔR. We will
direct our attention to the singular operators ÔS , since the regular operators ÔR ‘‘disappear’’ from the expectation values
after decoherence, as explained in Section 3:

ÔS =
∑
i

∫
piI
dpNiI

(∑
α

+

∫
∞

0
dw

)
Oi(ω, piI)|ω, piI) = Ô

(D)
S + Ô

(C)
S (73)

where Ô(D)S and Ô
(C)
S are the discrete and the continuous parts of ÔS ,

Ô(D)S =
∑
i

∫
piI
dpNiI

∑
α

Oi(wα, piI)|wα, piI) (74)

Ô(C)S =
∑
i

∫
piI
dpNiI

∫
∞

0
dw Oi(w, piI)|w, piI). (75)

Then, the Wigner transformation of ÔS can be computed as

OS(φ) = symb ÔS = symb Ô
(D)
S + symb Ô

(C)
S = O

(D)
S (φ)+ O

(C)
S (φ) (76)

where (see Eqs. (74) and (75))

O(D)S (φ) = symb Ô
(D)
S =

∑
i

∫
piI
dpNiI

∑
α

Oi(wα, piI)symb |wα, piI) (77)

O(C)S (φ) = symb Ô
(C)
S =

∑
i

∫
piI
dpNiI

∫
∞

0
dw Oi(w, piI)symb |w, piI). (78)

In paper [25] we have proved that, in the case of Ĥ with continuous spectrum (that is, when ÔS = Ô
(C)
S ), the function

symb |w, piI) can be computed as

symb |w, piI) = δ(H(φ)− w) δN(PiI(φ)− piI). (79)
By a completely analogous argument (see Appendix A), it can be proved that, for the discrete part,

symb |wα, piI) = δH(φ)wα δ
N(PiI(φ)− piI). (80)

4.2. Transformation of states

As in papers [23,25], in order to compute the symb for (wα, piI | and (w, piI | we will define the Wigner transformation
of the singular operator ρ̂S on the basis of the only reasonable requirement that such a transformation leads to the correct
expectation value of any observable also for singular states; that is (see Eq. (24)),

(symb ρ̂S | symb ÔS) $ (̂ρS | ÔS). (81)
In particular,

(symb ρ̂(D)S | symb Ô
(D)
S ) = (̂ρ

(D)
S | Ô

(D)
S ) (82)

(symb ρ̂(C)S | symb Ô
(C)
S ) = (̂ρ

(C)
S | Ô

(C)
S ). (83)

These equations must hold also in the particular case in which Ô(D)S = |wβ , p
′

iI), ρ̂
(D)
S = (wα, piI | and Ô

(C)
S = |w

′, p′iI),
ρ̂
(C)
S = (w, piI |, for some φi (see Eq. (33)):

(symb(wα, piI | | symb |wβ , p′iI)) = (wα, piI | wβ , p
′

iI) (84)

(symb(w, piI | | symb |w′, p′iI)) = (w, piI | w
′, p′iI) (85)

and all the remaining cross-terms are zero for any domain Dφj , with j 6= i. But from Eqs. (80) and (79) we know how to
compute symb |wβ , p′iI) and symb |w

′, p′iI), respectively. Moreover, from the definition of the cobasis (see Eq. (45)) we know
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that

(wα, piI | wβ , p′iI) = δwαwβ δ
N(piI − p′iI) (86)

(w, piI | w′, p′iI) = δ(w − w
′) δN(piI − p′iI). (87)

Therefore, from Eqs. (79) and (80),

(symb(wα, piI | | δH(φ)wβ δ
N(PiI(φ)− p′iI)) = δwαwβ δ

N(piI − p′iI) (88)

(symb(w, piI | | δ(H(φ)− w′) δN(PiI(φ)− p′iI)) = δ(w − w
′) δN(piI − p′iI). (89)

From Eq. (89), in paper [25] we have proved that, in the continuous case,

symb(w, piI | =
δ(H(φ)− w) δN(PiI(φ)− piI)

Ci(H, PiI)
(90)

where Ci(H, PiI) is the configuration volume of the region ΓH,PiI ∩ Dφi , being ΓH,PiI ⊂ Γ the hypersurface defined by
H = const . and PiI = const . From Eq. (88), by an analogous argument (see Appendix B) it can be proved that

symb(wα, piI | =
δH(φ)wα δ

N(PiI(φ)− piI)
Ci(H, PiI)

. (91)

This result shows that the discrete and the continuous parts have an analogous behaviour.

4.3. Convergence in phase space

Finally, we can introduce the results of Eqs. (91) and (90) into Eqs. (71) and (72), respectively, in order to obtain the
classical distributions ρ(D)S (φ) and ρ(C)S (φ):

ρ
(D)
S (φ) =

∑
i

∫
piI
dpNiI

∑
α

ρi(wα, piI)
Ci(H, PiI)

δH(φ)wα δ
N(PiI(φ)− piI) (92)

ρ
(C)
S (φ) =

∑
i

∫
piI
dpNiI

∫
∞

0
dw

ρi(w, piI)
Ci(H, PiI)

δ(H(φ)− w) δN(PiI(φ)− piI). (93)

As a consequence, the Wigner transformation of the limits of Eqs. (68) and (69) can be written as

C- lim
t→∞

ρ(φ, t)(D) = ρ(D)S (φ) =
∑
i

∫
piI
dpNiI

∑
α

ρi(wα, piI)
Ci(H, PiI)

δH(φ)wα δ
N(PiI(φ)− piI) (94)

W - lim
t→∞

ρ(φ, t)(C) = ρ(C)S (φ) =
∑
i

∫
piI
dpNiI

∫
∞

0
dw

ρi(w, piI)
Ci(H, PiI)

δ(H(φ)− w) δN(PiI(φ)− piI). (95)

5. The classical limit

Up to this point we have obtained the classical distribution ρ∗(φ) = ρ
(D)
S (φ)+ρ

(C)
S (φ) to which the system converges in

phase space. This distribution defines hypersurfaces H(φ) = ω, PiI(φ) = piI corresponding to the ‘‘momentum’’ variables.
But such a distribution does not define the trajectories on those hypersurfaces, that is, it does not fix definite values for
the ‘‘configuration’’ variables (the variables canonically conjugated to H(φ) and PiI(φ)). This is reasonable to the extent that
definite trajectories would violate the uncertainty principle: we know that, if Ĥ and P̂iI have definite values, the values of
the observables that non-commute with them will be completely undefined.
Nevertheless, trajectory-like motions can be recovered by means of the Eherenfest theorem, applied to the constants

of motion and their conjugated variables. Let us call Ĵ the ‘‘momentum’’ variables Ĥ and P̂iI , and Θ̂ the corresponding
conjugated ‘‘configuration’’ variables, all of them in the domain Dφi . The equations of motion in the Heisenberg picture
read

d̂J
dt
=
i
h̄
[Ĥ, Ĵ]

dΘ̂
dt
=
i
h̄
[Ĥ, Θ̂] (96)

where [Ĥ, Ĵ] = 0 and [̂J, Θ̂] = −ih̄. If Ĥ = Ĥ (̂J) =
∑
n An̂J

n is a convergent series, we can compute [Ĥ, Θ̂] and obtain

d̂J
dt
= 0

dΘ̂
dt
=
dĤ

d̂J
= F (̂J) (97)
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which are the quantum version of Hamilton equations. Since dĤ
d̂J
= F (̂J) is constant in time, by integration of these equations

we obtain

Ĵ(t) = Ĵ(0) (98)

Θ̂(t) = Θ̂(0)+ F (̂J) t. (99)
Now we can consider a wavepacket ρ̂ and compute the mean values in ρ̂ to obtain the Ehrenfest theorem:

d〈̂J〉
dt
= 0

d〈Θ̂〉
dt
=

〈
dĤ

d̂J

〉
=
〈
F (̂J)

〉
. (100)

If, following the assumption of the Eherenfest theorem, we can approximate the average of the function F (̂J) with the
function of the average of Ĵ ,8〈

F (̂J)
〉

≈ F
(〈
Ĵ
〉)

(101)
then Eq. (100) can be replaced by

d〈̂J〉
dt
= 0

d〈Θ̂〉
dt
=

〈
dĤ

d̂J

〉
≈ F

(〈̂
J
〉)

(102)

and, by integration we obtain〈̂
J(t)

〉
=
〈̂
J(0)

〉
(103)〈

Θ̂(t)
〉
=
〈
Θ̂(0)

〉
+ F

(〈
Ĵ
〉 )
t. (104)

These equations show that the mean values
〈̂
J
〉
and

〈
Θ̂
〉
also obey the Hamilton equations: the wavepacket ρ̂ will follow a

classical trajectory. In fact, since the Wigner transformation preserves the mean values (see Eq. (24)), in the phase space
representation Eqs. (103) and (104) become

〈J(φ, t)〉 = 〈J(φ, 0)〉 (105)
〈Θ(φ, t)〉 = 〈Θ(φ, 0)〉 + F (〈J(φ)〉) t. (106)

But here we are interested in the behavior of the system in the macroscopic limit h̄→ 0. In this limit, and in the case of
almost point-like wavepackets, the deviations from the mean values of J(φ) andΘ(φ) are zero:

δJ(φ) = J(φ)− 〈J(φ)〉 = 0 (107)
δΘ(φ) = Θ(φ)− 〈Θ(φ)〉 = 0. (108)

Therefore,
J(φ, t) = J(φ, 0) (109)
Θ(φ, t) = Θ(φ, 0)+ F(J(φ)) t. (110)

If we now come back to the original variables, calling τ(φ), θiI(φ) the conjugated variables corresponding to H(φ), PiI(φ)
respectively, these equations become

H(φ) = ω PiI(φ) = piI (111)

τ(φ, t) = τ 0 + ω t θiI(φ, t) = θ0iI + piI t. (112)
Thus, at any fixed t we can write∑

i

∫
τ0

∫
θ0iI

δ(τ (φ, t)− τ 0 − ω t) δ(θiI(φ, t)− θ0iI − piI t)dτ
0dθ0iI = 1 (113)

and we can include this 1 in the decomposition of Eqs. (94) and (95)

ρ∗(φ) = ρ
(D)
S (φ)+ ρ

(C)
S (φ) =

∑
i

∫
piI
dpNiI

∫
τ0
dτ 0

∫
θ0iI

dθ0iI

(∑
α

+

∫
∞

0
dw

)
ρi(ω, piI)
Ci(H, PiI)

× δ(H(φ)− ω) δN(PiI(φ)− piI) δ(τ (φ, t)− τ 0 − ω t) δ(θiI(φ, t)− θ0iI − piI t). (114)
This means that, in the macroscopic limit, the classical distribution ρ∗(φ) can be expressed as a sum of classical trajectories
weighted by ρi(ω,piI )

Ci(H,PiI )
. This fact is what, in the next section, will allow us to appeal to the definition of the system in terms

of a time evolution represented in the phase space by a one-parameter family of invertible transformations with group
properties, Tt : Γ → Γ (t ∈ R+).

8 This approximation is exact when the function F (̂J) is a linear function of Ĵ , as in the case of a free particle or a harmonic oscillator, or in the case of an
almost point-like wavepacket.



260 M. Castagnino, O. Lombardi / Physica A 388 (2009) 247–267

6. Towards the quantum ergodic hierarchy

Although the existence of chaos in classical mechanics has been rigorously proved only in highly idealized systems, the
behavior of many classical systems exhibits features that can be interpreted as symptoms of chaos. In the Introduction we
have explained why this fact contrasts with the common opinion that chaos in quantum systems seems to be the exception
rather than the rule and that the relative scarcity of quantum chaos poses a severe threat to the correspondence principle.
As we have said, we will conceive the problem of quantum chaos as the problem of the emergence of classical chaos from
quantum descriptions of physical systems. In this sense, we will say that a quantum system is non-integrable (ergodic,
mixing, or K) if its classical limit leads to a non-integrable (ergodic, mixing, or K) classical system.
On the basis of this idea and with the formal tools developed in the previous sections, in this section we will define

the two lowest levels of the ergodic hierarchy in quantum mechanics. Our strategy will be to identify the conditions that
a quantum system must satisfy to lead to the ergodic properties in the classical limit. In order to formulate the classical
ergodic properties, the first step is to introduce some necessary definitions.

Definition 1. A dynamical system S is a triple (Γ , Tt , µ)where:
– Γ is a phase space with a σ -algebraA of µ-measurable sets.
– Tt : Γ → Γ (t ∈ R+) is a one-parameter family of invertible transformations with group properties.
– µ : A→ R+ is a measure invariant under the transformation Tt : for all A ∈ A, µ(Tt(A)) = µ(A).

Definition 2. Given a dynamical system S: (Γ , Tt , µ), the Frobenius–Perron operator Ut corresponding to Tt is a unitary
evolution operator such that, for any integrable function f : Γ → R, Ut(f (x)) = f (Tt(x)).

These definitions refer to an abstract dynamical system,whose dynamics is defined on an abstract phase spaceΓ . In order
to apply them to a physical system as treated in the context of classical mechanics, a relevant contextualization is needed. In
fact, in a Hamiltonian system represented in a phase space Γ , only a part of the entire Γ is accessible: the accessible space
ΓA ⊂ Γ is the hypersurface defined by the global constants of motion of the system. Therefore, it is important to remember
that the definitions of all the levels of the ergodic hierarchy on physical systems have to be referred to the corresponding
hypersurface ΓA.

6.1. Quantum non-integrability

In paper [25] and in the previous sections, we have explained how non-integrability may arise from the classical limit of
a quantum system. Those explanations were based on the particular case of a CSCO consisting only of the Hamiltonian Ĥ . In
this section we will generalize the results obtained for that particular case.
Given a quantum system which would require N + 1 quantum numbers for defining its states, two kinds of observables

can be distinguished:

• The A + 1 (0 ≤ A ≤ N) observables ĜK , including Ĥ , that we will call ‘‘global’’ because they lead to the global
constants of motion in the classical limit described in Γ = R2(N+1). These are the observables belonging to the CSCO{̂
G0 = Ĥ, Ĝ1, . . . , ĜA

}
of the system.

• The observables L̂iI , with I = 1 to N − A, that we will call ‘‘local’’ because in the classical limit they lead to the local
constants of motion in each domain Dφi of the phase space Γ = R2(N+1). These are the observables that constitute, with
the ĜK , the local CSCO

{̂
G0 = Ĥ, . . . , ĜA, L̂i1, . . . , L̂i(N−A)

}
corresponding to the domain Dφi .

On the basis of this characterization, we can distinguish two cases:

• A = N . This means that the quantum system has a total CSCO
{̂
G0 = Ĥ, . . . , ĜN

}
, whose observables turn out to be the

N+1 global constants ofmotion in the classical description onR2(N+1) resulting from the classical limit. As a consequence,
such a classical description will be integrable, and we will say that we have an integrable quantum system.
• A < N . This means that the quantum system has a partial CSCO

{̂
G0 = Ĥ, . . . , ĜA

}
, whose observables turn out to be

the A + 1 global constants of motion in the classical description on R2(N+1) resulting from the classical limit. But since
A+1 < N+1, such a classical description will be non-integrable, andwewill say that we have a non-integrable quantum
system.

Let us consider each case in more detail.
In the case of quantum integrability, if

{̂
G0 = Ĥ, . . . , ĜN

}
is the preferred total CSCO of the system, the classical

distribution ρ∗(φ) = ρS(φ) resulting from the classical limit can be expressed as

ρ∗(φ) =

∫
gK
dgN+1K ρ(gK )

∏
K

δ(GK (φ)− gK ) (115)

where K = 1 to N , GK (φ) = symb ĜK , and for simplicity we have considered that all the ĜK have continuous spectra
0 ≤ gK < ∞ and that the volume C(GK ) is normalized to 1 (see Eqs. (94) and (95)). The N + 1 global constants of
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motion GK (φ) = gK foliate the phase space Γ = R2(N+1) into submanifoldsM(gK ) of dimension N , labeled by the constants
gK = (g0 = ω, g1, . . . , gN). If the emergent classical system is endowed with action-angle variables, those submanifolds
are the tori on which the trajectories are confined. Therefore, the classical system is integrable.
In the case of quantum non-integrability, if

{̂
G0 = Ĥ, . . . , ĜA

}
is the preferred partial CSCO of the system, the classical

distribution ρ∗(φ) reads

ρ∗(φ) =
∑
i

∫
liI
dl(N−A)iI

∫
gK
dgA+1K ρi(gK , liI)

∏
K

δ(GK (φ)− gK )
∏
I

δ(LiI(φ)− liI) (116)

where K = 0 to A, I = 1 to N − A and for simplicity we have considered that all the L̂iI have continuous spectra 0 ≤ liI <∞
(see Eqs. (94) and (95)). In this case, the emergent classical system has A + 1 global constants of motion GK (φ) = gK and
N − A local constants of motion LiI(φ) = liI in each domain Dφi of the phase space Γ = R2(N+1). As in the previous case, the
A + 1 global constants of motion foliate the phase space into submanifoldsM(gK ) = M(g0 = ω, g1, . . . , gA), but now the
submanifolds have dimension N − A+ 1. Therefore, the classical system is non-integrable.
These considerations were based on the assumption that all the ĜK have continuous spectra, but the same conclusions

can be drawn when the spectrum ω of Ĥ has a discrete partwα ∈ N and a continuous partw ∈ R: the phase space will also
result foliated by the labels gK = (g0 = ω, g1, . . . , gA), where g0 = ω has the discrete value wα or the continuous value w.
This foliation is particularly relevant because each submanifoldM(gK ), with K = 0 to A, will be the accessible hypersurface
of Γ to which the ergodic properties will have to be referred to.
Summing up, a quantum system is quantum non-integrable if its classical limit leads to a classical non-integrable system,

that is, if the system (i) has a well-defined classical limit, and (ii) has a partial CSCO, that is, a CSCO that is not sufficient to
define an eigenbasis in terms of which the system’s states can be expressed.

6.2. Quantum non-integrable ergodicity

The lowest level of the ergodic hierarchy is ergodicity (see Ref. [44]).9

Definition 3. A dynamical system S : (Γ , Tt , µ) is ergodic if every invariant A ∈ A, i.e. Tt(A) = A, is a trivial subset of the
phase space, i.e. µ(A) = 0 or µ(Γ − A) = 0.

Theorem 1. Given a dynamical system S : (Γ , Tt , µ) and the Frobenius–Perron operator Ut corresponding to Tt , S is ergodic iff,
for any integrable functions f : Γ → R and g : Γ → R,, there is a unique function f∗ : Γ → R such that the evolution Ut f is
Cèsaro-convergent to f∗:

lim
τ→∞

1
τ

∫ τ

0
dt (Ut f |g) = (f∗|g).

When this theorem referred to abstract dynamical systems is to be applied to the quantum case, the involved functions
acquire physical meaning and the relevant property has to be restricted to the accessible region of the phase space
corresponding to the quantum system. In particular, the functions f and g represent the states ρ and the observables O of
the system, respectively, usually belonging to L2(Γ , µ), and the accessible region is the region ΓA ⊂ Γ defined by the A+1
global constants of motion of the system. Therefore, when Theorem 1 is restated in the language of states and observables
used in the previous sections, it plays the role of a definition of ergodicity for quantum systems:

Definition A. Given a dynamical system S : (Γ , Tt , µ) and the Frobenius–Perron operatorUt corresponding to Tt , S is ergodic
iff, for any ρ,O ∈ L2(Γ , µ), the evolution ρ(t) = Utρ is Cèsaro-convergent to ρ∗:

lim
τ→∞

1
τ

∫ τ

0
dt (ρ(t) |O) = (ρ∗|O)

where ρ∗ is the final equilibrium value of the state ρ, and it is unique on the hypersurface ΓA ⊂ Γ defined by the global
constants of motion of the system.

As we have seen, when a quantum system with definite classical limit has a partial CSCO of A+ 1 < N + 1 observables,
and the spectrum of its Hamiltonian has a discrete part and a continuous part, the evolution of the classical distribution
ρ(φ, t) is Cèsaro-convergent to a final distribution ρ∗(φ) (see Eqs. (94) and (95), and remember that Weak-convergence
implies Cèsaro-convergence):

C- lim
t→∞

ρ(φ, t) = C- lim
t→∞

(
ρ(φ, t)(D) + ρ(φ, t)(C)

)
= ρ

(D)
S (φ)+ ρ

(C)
S (φ) = ρ∗(φ) (117)

9 For a rigorous presentation of the properties of ergodicity and mixing from a mathematical viewpoint, see Ref. [45].
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where

ρ
(D)
S (φ) =

∑
i

∫
liI
dl(N−A)iI

∫
gK
dgAK

∑
α

ρi(wα, gK , liI) δH(φ)wα
∏
K

δ(GK (φ)− gK )
∏
I

δ(LiI(φ)− liI) (118)

ρ
(C)
S (φ) =

∑
i

∫
liI
dl(N−A)iI

∫
gK
dgAK

∫
∞

0
dw ρi(w, gK , liI) δ(H(φ)− w)

∏
K

δ(GK (φ)− gK )
∏
I

δ(LiI(φ)− liI). (119)

In turn, in Section 3.1 we have proved that the elements of the partial CSCO
{̂
G0 = Ĥ, . . . , ĜA

}
turn out to be the global

constants of themotion of the corresponding classical system; then, the accessible region ΓA will be the submanifoldM(gK )
of dimension N − A + 1. This means that the requirement of the unicity of ρ∗(φ) on the hypersurface ΓA = M(gK ) (see
Definition A) becomes the requirement of the unicity of ρ∗(φ) for each set of values of the observables of the preferred CSCO.
It is easy to prove that this requirement is satisfied by showing that ρ∗(φ) depends only on the global variables GK (φ) and
is independent of the local variables LiI(φ) since they are averaged out. In fact, Eqs. (118) and (119) can be written as

ρ
(D)
S (φ) =

∫
gK
dgAK

∑
α

δH(φ)wα

∏
K

δ(GK (φ)− gK )
∑
i

∫
liI
dl(N−A)iI ρi(wα, gK , liI)

∏
I

δ(LiI(φ)− liI) (120)

ρ
(C)
S (φ) =

∫
gK
dgAK

∫
∞

0
dw δ(H(φ)− w)

∏
K

δ(GK (φ)− gK )
∑
i

∫
liI
dl(N−A)iI ρi(w, gK , liI)

∏
I

δ(LiI(φ)− liI). (121)

If we call

ρ̃(ω, gK ) =
∑
i

∫
liI
dl(N−A)iI ρi(ω, gK , liI)

∏
I

δ(LiI(φ)− liI) (122)

where ω = wα in the discrete case and ω = w in the continuous case, then Eqs. (120) and (121) are given by

ρ
(D)
S (φ) =

∫
gK
dgAK

∑
α

ρ̃(wα, gK ) δH(φ)wα
∏
K

δ(GK (φ)− gK ) (123)

ρ
(C)
S (φ) =

∫
gK
dgAK

∫
∞

0
dw ρ̃(w, gK ) δ(H(φ)− w)

∏
K

δ(GK (φ)− gK ) (124)

and we can see that ρ(D)S (φ) and ρ(C)S (φ) are only dependent of the global variables. In other words, when the observables
of the preferred CSCO have the set of values {g0 = ω = a0, gK = aK }, the diagonal coordinates of the initial state ρ̂ read

ρi(ω, gK , liI) = ρ ′i (liI) δ(ω − a0)
∏
K

δ(gK − aK ) (125)

and, as a consequence,

ρ̃(ω, gK ) = δ(ω, a0)
∏
K

δ(gK − aK ) (126)

where δ(ω, a0) stands for δwαa0 in the discrete case and for δ(w− a0) in the continuous case. Therefore, in the discrete case
ω = wα , ρ∗(φ) = ρ

(D)
S (φ)+ ρ

(C)
S (φ)will acquire onM(aK ) the unique value

ρ∗(φ) = ρ
(D)
S (φ)+ 0 = δH(φ)a0

∏
K

δ(GK (φ)− aK ) (127)

and in the continuous case ω = w,

ρ∗(φ) = 0+ ρ
(C)
S (φ) = δ(H(φ)− a0)

∏
K

δ(GK (φ)− aK ). (128)

Therefore, in each hypersurfaceM(gK = aK ), the evolution ρ(φ, t) is Cèsaro-convergent to a unique distribution ρ∗(φ):

C- lim
t→∞

ρ(φ, t) = ρ∗(φ) = δ(H(φ), a0)
∏
K

δ(GK (φ)− aK ). (129)

This means that, in spite of the unitary evolution of ρ(φ, t), a time-projected state ρτ (φ, t) = ρ(φ, t)ΠWΠτ can be defined
(see Eqs. (11) and (13)), such that it evolves non-unitarily with a strong limit

lim
t→∞

ρτ (φ, t) = ρ∗(φ) = δ(H(φ), a0)
∏
K

δ(GK (φ)− aK ). (130)

Summing up, a quantum system is quantum non-integrable ergodic if its classical limit leads to a classical ergodic system,
that is, if the system (i) is quantum non-integrable, and (ii) the spectrum of its Hamiltonian has a discrete part and a
continuous part. Let us note that this condition agrees with the spectral condition for the Liouville operators in classical
ergodic systems (see Ref. [46], Proper Value Theorem, p. 34).
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6.3. Quantum mixing

The next higher level of the ergodic hierarchy is mixing (see Ref. [44]).

Definition 4. A dynamical system S : (Γ , Tt , µ) ismixing if, for any A, B ∈ A,

lim
t→∞

µ(A ∩ TtB) = µ(A) µ(B).

Theorem 2. Given a dynamical system S : (Γ , Tt , µ) and the Frobenius–Perron operator Ut corresponding to Tt , S ismixing iff,
for any integrable functions f : Γ → R and g : Γ → R,, there is a unique function f∗ : Γ → R such that the evolution Ut f is
Weak-convergent to f∗:

lim
τ→∞

(Ut f |g) = (f∗|g).

Analogously to the previous case, when Theorem 2 is restated in the language of states and observables, it plays the role
of a definition of mixing for quantum systems:

Definition B. Given a dynamical system S : (Γ , Tt , µ) and the Frobenius–Perron operatorUt corresponding to Tt , S ismixing
iff, for any ρ,O ∈ L2(Γ , µ), the evolution ρ(t) = Utρ is Weak-convergent to ρ∗:

lim
τ→∞

(ρ(t) |O) = (ρ∗|O).

where ρ∗ is the final equilibrium value of the state ρ, and it is unique on the hypersurface ΓA ⊂ Γ defined by the global
constants of motion of the system.

As we have seen, when a quantum system with definite classical limit has a partial CSCO of A+ 1 < N + 1 observables,
the evolution of the classical distribution ρ(φ, t) = ρ(φ, t)(D) + ρ(φ, t)(C) is Cèsaro-convergent in its discrete part and
Weak-convergent in its continuous part (see Eqs. (94) and (95)),

C- lim
t→∞

ρ(φ, t)(D) = ρ(D)S (φ) (131)

W - lim
t→∞

ρ(φ, t)(C) = ρ(C)S (φ). (132)

In the particular case that the system’s Hamiltonian has continuous spectrum, ρ(D)S (φ) = 0. Then, the classical distribution
ρ(φ, t) = ρ(C)S (φ) turns out to be Weak-convergent to ρS(φ) = ρ

(C)
S (φ)

W - lim
t→∞

ρ(φ, t) = ρS(φ) = ρ∗(φ) (133)

where (se Eq. (119), withw = ω)

ρ∗(φ) = ρS(φ) =
∑
i

∫
liI
dl(N−A)iI

∫
gK
dgAK

∫
∞

0
dω ρi(ω, gK , liI) δ(H(φ)− ω)

×

∏
K

δ(GK (φ)− gK )
∏
I

δ(LiI(φ)− liI). (134)

By means of an argument analogous to that of the previous subsection but restricted to the continuous case, it can be
proved that ρ∗(φ) is unique on each hypersurfaceM(gK = aK ), that is, for each set of values {g0 = ω = a0, gK = aK } of the
observables of the preferred CSCO (see Eq. (128)):

ρ∗(φ) = ρS(φ) = δ(H(φ)− a0)
∏
K

δ(GK (φ)− aK ). (135)

Therefore, in each hypersurfaceM(gK = aK ), the evolution ρ(φ, t) is Weak-convergent to a unique distribution ρ∗(φ):

W - lim
t→∞

ρ(φ, t) = ρ∗(φ) = δ(H(φ)− a0)
∏
K

δ(GK (φ)− aK ). (136)

In this case, a projected state ρP(φ, t) = ρ(φ, t)ΠW can be defined (see Eq. (11)). Then, in spite of the unitary evolution of
ρ(φ, t), ρP(φ, t) evolves non-unitarily with a strong limit

lim
t→∞

ρP(φ, t) = ρ∗(φ) = δ(H(φ)− a0)
∏
K

δ(GK (φ)− aK ). (137)

It can be expected thatρ∗(φ) be independent of the local variables (that is, Eqs. (136) and (137) hold)when the local variables
have strong fluctuations in the phase space in comparison with the variation of the functions O(φ). In this situation, the
expectation value 〈O(φ)〉ρ∗(φ) averages out the local variables and mixing is obtained.
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Summing up, a quantum system is quantum mixing if its classical limit leads to a classical mixing system, that is, if the
system (i) is quantumnon-integrable, and (ii) its Hamiltonian has continuous spectrum. Let us note that this condition agrees
with the spectral condition for the Liouville operators in classical mixing systems (see Ref. [46], Mixing Theorem, p. 39, and
Ref. [47], Wiener–Khinchin Theorem, p. 81).

7. Physical relevance

As we have seen in the Introduction, according to Belot–Earman’s program, one of the requirements that any definition
of quantum chaos should fulfil is physical relevance. In this section we will argue for the physical relevance of our approach
by showing that it can be applied to explain the behavior of the Casati–Prosen model [48] in a conceptually precise
way.
The Casati–Prosen model combines a typical case of classical chaos – the Sinai billiard – with a paradigmatic quantum

phenomenon – the double slit experiment. The model consists in a triangular upper billiard with perfectly reflecting walls
and two slices in its base, placed on the top of a box, the radiating region,with a photographic film in its base and absorbent
walls (see Fig. 1 of Ref. [48]). A quantum state with a Gaussian wavepacket as initial condition ‘‘bounces’’ inside the triangle
and produces two centers of radiation in the two slices, which radiate from the billiard to the radiating zone. The question
is to explain the results obtained in the photographic film.
Casati and Prosen explain the results in terms of kinematical averages by means of computer simulations. They show

that, when the billiard is perfectly triangular and, therefore, integrable (see full lines in Fig. 1 of Ref. [48]), then interference
fringes appear in the film (full lines in Fig. 2 of Ref. [48]). But when the billiard is a Sinai billiard (see dotted lines in Fig. 1 of
Ref. [48]), the system decoheres and interference vanishes (dotted lines in Fig. 2 of Ref. [48]). According to the authors, the
behavior of this model shows that complexity may produce decoherence in a closed system, that is, without the interaction
with an environment or with external noise.
We have applied our theoretical framework to the Sinai billiard in Ref. [25] and have used it to explain the Casati–Prosen

model in Ref. [49]. In these papers we have represented the walls of the billiard by three potential walls Ui(x, y), with i = 1
to 3, which produce the bounces of the wavepacket. The CSCO of the system is given by the Hamiltonian Ĥ , which, strictly
speaking, has a discrete spectrum because the system is finite. Nevertheless, this is the case of a quasi-continuous model
in the sense of the third Remark of Section 3.2: the energy spectrum is quasi-continuous, and the functions of energy used
in the formalism are such that the sums in which they are involved can be approximated by Riemann integrals (see a full
discussion of this point for the Casati–Prosenmodel in Ref. [49]). Therefore, for timesmuch shorter than the recurrence time,
the dynamics of the system can be modeled with a Hamiltonian with continuous spectrum. The other relevant magnitudes
are the momenta P̂x and P̂y which, for the same reason, can be treated as having continuous spectra. In this model, four
domains can be distinguished (see Appendix A of Ref. [25]):

• D0 corresponds to the interior of the triangle, and its local CSCO is
{
Ĥ, P̂x

}
(or
{
Ĥ, P̂y

}
since H = 1

2m (̂P
2
x + P̂

2
y )).

• D1 corresponds to the horizontal wall U1(x, y), and its local CSCO is
{
Ĥ, P̂x

}
.

• D2 corresponds to the vertical wall U2(x, y), and its local CSCO is
{
Ĥ, P̂y

}
.

• D3 corresponds to the third wall U3(x, y) = U(ax+ by), and its local CSCO is
{
Ĥ, P̂xy

}
, where P̂xy is a linear combination

of P̂x and P̂y.

In paper [49] we have showed that, so defined, this model satisfies the conditions required for the Weak-convergence
of its state to a final value ρ∗, where ρ∗ acquires a unique value for each value of Ĥ . However, there is a relevant difference
between the case of a triangular billiard and the case of a Sinai billiard. In fact, the decoherence time tD turns out to be
proportional to r2, where r is the radius of the third wall (see Ref. [49]). Therefore,

• When the billiard is perfectly triangular, r → ∞ and, then, tD → ∞. This means that the initial Gaussian wavepacket
remains forever bouncing inside the billiard with no modification of its initial shape and, as a consequence, interference
fringes appear on the photographic film.
• When the billiard is a Sinai billiard, r 6= ∞ and, then, the system has a finite decoherence time tD proportional to r2. In
this case, if the distance between the two slits is macroscopic, interference vanishes through the destructive interference
embodied in the Riemann–Lebesgue theorem.

In this way, in paper [49] we have explained the computational results obtained by Casati and Prosen by means of
our theoretical framework, which is capable of describing systems with partial CSCOs: the non-integrability of the system
supplies a necessary condition for the higher levels of instability and complexity. The results of the present paper allow
us to carry our conclusions a step further. To the extent that the model is quasi-continuous, that is, it can be modeled
with a Hamiltonian with continuous spectrum, the evolution of the quantum state has a Weak-limit that guarantees the
Weak-convergence of the classical distribution obtained though the classical limit to a final equilibrium state. Therefore,
the resulting description is mixing, and we can say that the model is a quantum mixing system.
It is quite clear that this approach can be applied to any model where different domains can be distinguished, each one

with its local CSCO. Such a framework supplies a conceptually useful tool for the understanding of the unstable classical
behavior emerging from physically relevant quantum systems.
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8. Conclusions

If quantum mechanics is a fundamental theory, it should be capable of describing any kind of systems, even those
macroscopic systems that can also be adequately described bymeans of classical theories; in particular, quantummechanics
should be able to account for macroscopic chaotic behavior. In this context it has been argued that there is some kind
of tension between quantum mechanics and chaos. In order to face this problem, one has to find out which properties a
quantumsystemmust possess to lead to chaotic behavior in the classical limit.When this is the question at issue, the relevant
task is not to search for the usual indicators of classical chaos in the quantum domain; what really matters is whether the
quantum system possesses the right properties necessary to manifest chaotic behavior in the appropriate classical limit.
From this perspective, the claim that quantumchaos puts pressure on the correspondence principle is not legitimatewithout
a clear and precise account of the classical limit of quantum mechanics, since this is the key element for explaining how
classical properties can emerge from quantum systems.
On the basis of the general problem of the emergence of the ergodic hierarchy from quantum descriptions, in this paper

we have proposed a general theoretical framework to treat quantum systems with unstable behavior in their classical
limit. In particular, we have showed that, when the quantum system is endowed with a CSCO whose observables define
an eigenbasis for the system’s states, the emerging classical description is integrable and, therefore, non-unstable. This
result has led us to search for instability in quantum systems with partial CSCOs, that is, CSCOs that are not sufficient to
define an eigenbasis of the Hilbert space of the system: in these cases, the classical limit results in a classical non-integrable
description characterized by global and local constants of motion. In this situation, the Cèsaro-convergence of the resulting
classical distribution (a necessary and sufficient condition for ergodicity) obtains when the quantum Hamiltonian of the
system has a discrete+continuous spectrum; in turn, the Weak-convergence of that distribution (a necessary and sufficient
condition for mixing) obtains when the quantum Hamiltonian has a continuous spectrum.
We consider that our approach satisfies the four requirements proposed by Belot–Earman’s program for any definition

of quantum chaos or, in general, of quantum instability:

• It possesses generality in the sense that it supplies general criteria to decidewhen a quantum system is ergodic ormixing.
It possesses mathematical precision (of course, as understood in a physical context) since it is based on a general account
of decoherence and of the classical limit of quantum mechanics.
• It agrees with common intuition to the extent that it recovers the characterization of ergodicity and mixing, not only in
terms of measurable sets in abstract dynamical systems, but mainly in terms of the different forms of convergence of the
system’s evolution.
• It is clearly related with the criteria of classical instability because it shows how the features that define classical
instability may arise from quantum descriptions without challenging the correspondence principle.
• It is physically relevant since it provides a useful tool for explaining, from a theoretical viewpoint, the results obtained
in interesting physical systems by numerical means.

Of course, this work does not exhaust a problem as complex as that of the quantum ergodic properties. Our aim for a
future work is to extend the approach presented in this paper in order to complete the quantum ergodic hierarchy with the
characterization of the higher levels of instability in the quantum domain.
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Appendix A. Wigner transformation of observables

From Eq. (74) we can write

Ô(D)S =
∑
i

∫
piI
dpNiI

∑
α

Oi(wα, piI) |wα, piI). (A.1)

If we Wigner transform this last equation, we obtain

symb Ô(D)S =
∑
i

∫
piI
dpNiI

∑
α

Oi(wα, piI)symb|wα, piI). (A.2)

If we consider, as usual, that Oi(wα, piI) is a polynomial, we know that

Ô(D)S =
∑
i

Oi(Ĥ, P̂iI). (A.3)
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Since Ĥ and the P̂iI commute to each other, we can Wigner transform this last equation as

symb Ô(D)S =
∑
i

symbOi(Ĥ, P̂iI) =
∑
i

Oi(H(φ), PiI(φ))+ 0(h̄2). (A.4)

where 0(h̄2) vanishes in the macroscopic limit h̄→ 0. Therefore, in such a limit, Eq. (A.2) reads∑
i

∫
piI
dpNiI

∑
α

Oi(wα, piI) symb|wα, piI) =
∑
i

Oi(H(φ), PiI(φ)). (A.5)

In the particular case that

Oi(wα, piI) = δwαwβ δ
N(piI − p′iI), (A.6)

Eq. (A.5) becomes∑
i

∫
piI
dpNiI

∑
α

δwαwβ δ
N(piI − p′iI) symb |wα, piI) =

∑
i

δH(φ)wβ δ
N(PiI(φ)− p′iI). (A.7)

Therefore, from Eq. (A.7) we can conclude that

symb |wα, piI) = δH(φ)wα δ
N(PiI(φ)− piI) (A.8)

as advanced in Eq. (80).

Appendix B. Wigner transformation of states

Form Eq. (88) we know that

(symb(wα, piI | | δH(φ)wβ δ
N(PiI(φ)− p′iI)) = δwαwβ δ

N(piI − p′iI) (B.1)
which can be computed as∫

Dφi

dφ2(N+1)i symb(wα, piI | δH(φ)wβ δ
N(PiI(φ)− p′iI)) = δwαwβ δ

N(piI − p′iI). (B.2)

Since ρ̂(D)S is always time-invariant, the same holds in the particular case that ρ̂(D)S = (wα, piI |. As a consequence,
symb(wα, piI | must also be time-invariant, that is, a function of the local constants of motion {H(φ), PiI(φ)} in the
corresponding domain Dφi :

symb(wα, piI | = f (H(φ), PiI(φ)). (B.3)
Thus, in each domain Dφi we can define local action-angle variables (θiI , JiI) = (θi0, θi1, . . . , θiN , Ji0, Ji1, . . . , JiN), where
Ji0 = H(φ) and the JiI = PiI(φ) for I = 1 to N . If we make the canonical transformation φi → (θiI , JiI) = (θi0, θi1,H, PiI), we
obtain

dφ2(N+1)i = dθN+1iI dHdPNiI . (B.4)
Now we can introduce the change of variables given by Eq. (B.3) and Eq. (B.4) into Eq. (B.2) to obtain∫

Dφi

dθN+1iI dHdPNiI f (H(φ), PiI(φ)) δH(φ)wβ δ
N(PiI(φ)− p′iI) = δwαwβ δ

N(piI − p′iI). (B.5)

The integration of the l.h.s. of this equation leads us to∫
Dφi

dH dPNiI Ci(H, PiI) f (H(φ), PiI(φ)) δH(φ)wβ δ
N(PiI(φ)− p′iI) = δwαwβ δ

N(piI − p′iI) (B.6)

where we have integrated the angular variables θiI , obtaining the configuration volume Ci(H, PiI) of the region ΓH,PiI ∩ Dφi ,
being ΓH,PiI ⊂ Γ the hypersurface defined by H = const . and PiI = const . Therefore, from Eq. (B.6) we can conclude that

Ci(H, PiI) f (H(φ), PiI(φ)) = δH(φ)wα δ
N(PiI(φ)− piI). (B.7)

If we recall that fH(φ), PiI(φ) = symb(wα, piI | (see Eq. (B.3)), we finally obtain

symb(wα, piI | =
δH(φ)wα δ

N(PiI(φ)− piI)
Ci(H, PiI)

(B.8)

as advanced in Eq. (91).

References

[1] J. Ford, G. Mantica, G.H. Ristow, The Arnol’d cat: Failure of the correspondence principle, Physica D 50 (1991) 493–520.
[2] J. Ford, G. Mantica, Does quantum mechanics obey the correspondence principle? Is it complete? Amer. J. Phys. 60 (1992) 1086–1098.



M. Castagnino, O. Lombardi / Physica A 388 (2009) 247–267 267

[3] H.G. Schuster, Deterministic Chaos, VCH, Weinheim, 1984.
[4] R.W. Batterman, Chaos, quantization and the correspondence principle, Synthese 89 (1991) 189–227.
[5] M.V. Berry, Quantum chaology, not quantum chaos, Phys. Scr. 40 (1989) 335–336.
[6] M.V. Berry, Some quantum-to-classical asymptotics, in: M.J. Giannoni, A. Voros, J. Zinn-Justin (Eds.), Chaos and Quantum Physics, North Holland,
Amsterdam, 1991.

[7] S. Weinberg, Testing quantum mechanics, Ann. Phys. 194 (1989) 336–386.
[8] G.C. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34 (1986) 470–491.
[9] W.H. Zurek, J.P. Paz, Decoherence, chaos and the second law, Phys. Rev. Lett. 72 (1994) 2508–2511.
[10] J.P. Paz, W.H. Zurek, Environment-induced decoherence and the transition from quantum to classical, in: D. Heiss (Ed.), Lecture Notes in Physics, vol.

587, Springer, Heidelberg, Berlin, 2002.
[11] W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Rev. Modern Phys. 75 (2003) 715–776.
[12] K. Nakamura, Quantum Chaos, Cambridge University Press, Cambridge, 1993.
[13] H.J. Stockmann, Quantum Chaos, Cambridge University Press, Cambridge, 2000.
[14] M. Castagnino, R. Laura, Functional approach to quantum decoherence and the classical limit, Phys. Rev. A 62 (2000) 022107.
[15] M. Castagnino, R. Laura, Functional approach to quantumdecoherence and the classical limit: TheMott and cosmological problems, Internat. J. Theoret.

Phys. 39 (2000) 1737–1765.
[16] M. Castagnino, M. Gadella, R. Id Betan, R. Laura, The Gamow functional, Phys. Lett. A 282 (2001) 245–250.
[17] M Castagnino, M. Gadella, R. Laura, R. Id Betan, Gamow functionals on operators algebras, J. Phys. A 34 (2001) 10067–10083.
[18] M. Castagnino, O. Lombardi, The self-induced approach to decoherence in cosmology, Internat. J. Theoret. Phys. 42 (2003) 1281–1299.
[19] M. Castagnino, A. Ordoñez, The algebraic formulation of quantum decoherence, Internat. J. Theoret. Phys. 43 (2004) 695–717.
[20] M. Castagnino, O. Lombardi, Self-induced decoherence: A new approach, Stud. Hist. Philos. Mod. Phys. 35 (2004) 73–104.
[21] M. Castagnino, The classical-statistical limit of quantum mechanics, Physica A 335 (2004) 511–517.
[22] M. Castagnino, O. Lombardi, Decoherence time in self-induced decoherence, Phys. Rev. A 72 (2005) 012102.
[23] M. Castagnino, M. Gadella, The problem of the classical limit of quantummechanics and the role of self-induced decoherence, Found. Phys. 36 (2006)

920–952.
[24] M. Castagnino, O. Lombardi, Self-induced decoherence and the classical limit of quantum mechanics, Philos. Sci. 72 (2005) 764–776.
[25] M. Castagnino, O. Lombardi, The classical limit of non-integrable quantum systems, a route to chaos, Chaos Solitons Fractals 28 (2006) 879–898.
[26] M. Castagnino, O. Lombardi, Non-integrability andmixing in quantum systems: On theway to quantum chaos, Stud. Hist. Philos. Mod. Phys. 38 (2007)

482–513.
[27] G. Belot, J. Earman, Chaos out of order: Quantummechanics, the correspondence principle, and chaos, Stud. Hist. Philos.Mod. Phys. 28 (1997) 147–182.
[28] G. Emch, Mathematical and Conceptual Foundations of 20-th Century Physics, North Holland, Amsterdam, 1984.
[29] R. Haag, Local Quantum Physics (Fields, Particles, Algebras), Springer Verlag, Berlin, 1993.
[30] S. Iguri, M. Castagnino, The formulation of quantum mechanics in terms of nuclear algebras, Internat. J. Theoret. Phys. 38 (1999) 143–164.
[31] S. Iguri, M. Castagnino, Some remarks on the Gelfand-Naimark-Segal representation of topological algebras, J. Math. Phys. 49 (2008) 033510.
[32] L. van Hove, Energy corrections and persistent perturbations effect in continuous spectra, Physica 21 (1955) 901–923; Energy corrections and

persistent perturbations effect in continuous spectra II, Physica, 22 (1956) 343–354.
[33] I. Antoniou, Z. Suchanecki, Quantum systems with diagonal singularity, Adv. Chem. Phys. 99 (1997) 299–332.
[34] I. Antoniou, Z. Suchanecki, R. Laura, S. Tasaki, Intrinsic irreversibility of quantum systems with diagonal singularity, Physica A 241 (1997) 737–772.
[35] M. Mackey, The dynamic origin of increasing entropy, Rev. Modern Phys. 61 (1989) 981–1015.
[36] M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Distribution functions in physics, fundamentals, Phys. Rep. 106 (1984) 121–167.
[37] M. Gadella, Moyal formulation of quantum mechanics, Fortschr. Phys. 43 (1995) 229–264.
[38] G. Dito, D. Sternheimer, Deformation quantization: Genesis, development and metamorphoses. Available from: arXivmath.QA/0201168, 2002.
[39] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization II. Physical applications, Ann. Phys. 110 (1978)

111–151.
[40] R. Abraham, J.E. Mardsden, Foundations of Mechanics, Benjamin, New York, 1967.
[41] F. Benatti, Deterministic Chaos in Infinite Quantum Systems, Springer Verlag, Berlin, 1993.
[42] M. Castagnino, S. Fortin, R. Laura, O. Lombardi, A general theoretical framework for decoherence in open and closed systems, Classical Quantum

Gravity 25 (2008) 154002.
[43] F Gaioli, E. García-Álvarez, J. Guevara, Quantum Brownian motion, Internat. J. Theoret. Phys. 36 (1997) 2167–2207.
[44] A. Lasota, M.C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, Cambridge, 1985.
[45] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. 2, Springer-Verlag, Berlin, 1997.
[46] P. Halmos, Lectures on Ergodic Theory, Chelsea Publishing, New York, 1956.
[47] P. Gaspard, Chaos, Scattering, and Statistical Mechanics, Cambridge University Press, Cambridge, 1998.
[48] G. Casati, T. Prosen, Quantum chaos and the double-slit experiment, Phys. Rev. A 72 (2005) 032111.
[49] M. Castagnino, The equilibrium limit of the Casati–Prosen model, Phys. Lett. A 357 (2006) 97–100.

http://arxiv.org/arXivmath.QA/0201168

	Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing
	Introduction
	Mathematical background
	Weak and Cèsaro limits
	Riemann--Lebesgue theorem
	Generalized projection
	Weyl--Wigner--Moyal mapping

	Decoherence in non-integrable systems
	Local CSCO
	Decoherence in the energy
	Decoherence in the remaining variables

	The classical statistical limit
	Transformation of observables
	Transformation of states
	Convergence in phase space

	The classical limit
	Towards the quantum ergodic hierarchy
	Quantum non-integrability
	Quantum non-integrable ergodicity
	Quantum mixing

	Physical relevance
	Conclusions
	Acknowledgements
	Wigner transformation of observables
	Wigner transformation of states
	References


