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Abstract

In this article we prove mixed inequalities for maximal operators associated to Young func-
tions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc.
147(10), 42594273, 2019). Concretely, given r > 1, u € A1, vV € A and a Young

function ® with certain properties, we have that inequality
M
uv” ({x eR": Malfv)(x) > t}) < C/ @ (If(x)l) u(x)v"(x)dx
v(x) n t
holds for every positive t. As an application, we furthermore exhibe and prove mixed

inequalities for the generalized fractional maximal operator M, ¢, where 0 < y < n and ®
is a Young function of L log L type.

Keywords Young functions - Maximal operators - Muckenhoupt weights -
Fractional operators

Mathematics Subject Classification (2010) 26A33 - 42B25

1 Introduction

One of the most classical and extensively studied problems in Harmonic Analysis is the
characterization of all the functions w for which the Hardy-Littlewood maximal operator is
bounded in L?(w), for 1 < p < oo. This problem was first solved by B. Muckenhoupt in
[17], where the author proved that the inequality

/(Mf(x))Pw(x) dx < c/ ) Pw () dx (L)
R R

holds for 1 < p < oo if and only if w € A,. Later on, this result was extended to higher
dimensions and even to spaces of homogeneous type.
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It is well known that, for the limiting case p = 1, the inequality above is not true. Instead,
the estimate

w({x eR" : Mf(x) > 1}) < %/ | £ ()| w(x) dx
Rll

holds if and only if w € Aj.
In [21] Sawyer proved that if u, v are A| weights, then the estimate

uv ({x eR: M > t}) < g/ [ f)|ux)v(x)dx (1.2)
v(x) t Jr

holds for every positive . From now on, we will refer to this type of inequality as
mixed because of the interaction of two different weights in it. This estimate can be seen
as the weak (1, 1) type of the operator Sf = M(fv)/v, with respect to the measure
du(x) = u(x)v(x)dx. One of the motivations to study this kind of estimate was the fact
that inequality (1.2) combined with the Jones’ factorization theorem and the Marcinkiewicz
interpolation theorem allows to give, in a very easy way, a proof of Eq. 1.1 when we assume
weE A

The proof of Eq. 1.2 is, however, a bit tricky. Since S can be seen as the product of
two functions, this produces a perturbation of the level sets of M by the weight v. So it is
not clear that classical covering lemmas or decomposition techniques work in this case. To
overcome this difficulty, the author uses a decomposition of level sets into an adequate class
of intervals with certain properties, called “principal intervals”, an idea that had already
been used to prove some weak estimates previously in [18].

It was also conjectured in [21] that an analogous estimate to Eq. 1.2 should still hold for
the Hilbert transform. That conjecture was settled twenty years later by Cruz-Uribe, Martell
and Pérez in [8]. In this paper mixed weak inequalities were given, generalizing Eq. 1.2
to R”, not only for M but also for Calderén-Zygmund operators (CZO) and proving the
conjecture made by Sawyer. The authors considered two different types of hypotheses on
the weights u and v: u, v € Ay andu € Aj and v € A (u). For the first condition, the proof
follows similar lines as in [21]. On the other hand, the second condition is more suitable,
since it implies that the product uv belongs to A, and therefore is a doubling measure. This
allows to apply classical techniques, like Calderén-Zygmund decomposition to achieve the
estimate.

It is also convenient to use sparse domination techniques [7] and it also has been explored
to provide quantitative estimates [19] and results in the multilinear setting [16].

Another conjecture arose from [8]: the authors claimed that the mixed estimate

uv <{x eR": M) > t}) < g/ | f () |u(x)v(x)dx
U(x) t Jrn

should still hold under the weaker assumption u € Aj and v € A. It is easy to note that
both conditions on the weights above imply it. This conjecture was recently proved in [15],
where the authors apply the “principal cubes” decomposition with adequate modifications
to avoid the use of an A condition on the weight v.

Mixed weak estimates have also been explored for a more general class of maximal
functions, such as the operator Mg associated to the Young function ® and defined by

Mg f(x) = sup || fllo 0,

0>x
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where the supremum is taken over averages of Luxemburg type (see Section 2 for details).
For instance, in [4] it was proved that if ®(r) = " (1 + log+ t)‘S, withr > 1l and § > O,
u>0,v=|x|? with < —nand w = 1/®(1/v) then the estimate

uw ({x eR": Mo (fV)) > t]) < C/ ®<M) Mu(x) dx
U()C) n t

holds for every positive 7.

The same estimate is true if we consider this family of Young functions and two weights u
and v such that u, v" € A;. This result is contained in [2], and generalizes the corresponding
estimate given in [8] for the case ®(t) = r. However, this inequality turns out to be non-
homogeneous in the weight v. This problem was overcome in [3], where the authors proved
that under the same condition on the weights and even for a more general class of Young
functions & the inequality

uv” ({x eR": Mo (f0)() > t}) < C/ ] <M> u(x)v" (x)dx (1.3)
v(x) n t

holds for every positive 7. In the same way that inequality (1.2) allows to obtain a different
proof of the boundedness of M, the estimate above can be used to give an alternative proof
of the boundedness of M¢, when @ is a Young function of LlogL type.

By virtue of the extension proved in [15] and of the discussed results above, a natural
interrogant arises: does inequality (1.3) hold in the more general context u € A| and v" €
Ao ? This fact is an improvement of a conjecture established in [2], which remained open
until now.

In this paper we answer the question positively. We will be dealing with a family of
Young functions with certain properties, as follows. Given r > 1 we say that a Young
function belongs to the family §, if ® is submultiplicative, has lower type r and satisfies
the condition

Q)

tr

< Co(logr)?, fort > t*
for some constants Cyp > 0,8 > 0 and #* > 1. Concretely, our main result is the following.

Theorem 1 Letr > 1 and ® € §,. If u € Ay and vV" € A then there exists a positive
constant C such that the inequality

uv” ({x eR": Mo(fu)(x) > t}) < C/ @ (If(x)|> u(x)v"(x)dx,

v(x) t

holds for every positive t.

The key for the proof of this inequality is to combine some ideas that appear in [15] with
a subtle Holder inequality that allows to split the expression @ (| f|v) into (| f|)v". The
proof also follows the “principal cubes” decomposition introduced by Sawyer in [21].

Since Mgv = v we can obtain, as a consequence of the theorem above, the following
result.

Corollary 2 Under the assumptions in Theorem I we have that

uv” ([x eR": Mo (fV)(x) > t}) < C/ d (lf(x)l) u(x)v" (x)dx.
Mopv(x) n t
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This estimate will be useful to derive, as an application, mixed inequalities for certain
fractional maximal operators. Notice that when v € A; the operator S defined by Sawyer
in [21] is equivalent to
M(fv)(x)

Muv(x)
For the case of Mg, it can be proven that Mpv =~ v when v € A|. Therefore inequality
(1.3) can be rewritten as follows

uv’ <{x cgr; MoV zD < C/ @ ('f(x”) w () dx.  (14)
Mgpv(x) n t

It is not difficult to see that the operator Sf defined by Sawyer in [21] is bounded in
L°°(uv) under the assumptions on these weights. The same statement is true if we consider
the operator So = Mo (fv)/v that appears in Eq. 1.3 and the space L°>°(uv”), but this is
not clear when we have v € A. However, if we modify the operator by considering the

variant Mo (fo)(x)
. [ V)X
Tof(x) = TMov(x)

we have an alternative operator that is bounded in L®° (uv") when we only assume v" € Aqo.
This new operator seems to be a good extension for the case v € Ay since it is continuous
in L*(uv"), a property that will be useful later.

We consider now the modified operator T¢, which coincides with S¢ when v” belongs to
A1. The advantage of dealing with it is that we can give a version of Corollary 2 where we
weaken a bit the assumption on ®. That is, if W is an arbitrary Young function that behaves
like one in the family §, but only for large ¢, we have the following result.

Tfx) =

Corollary 3 Letr > 1, ® € §,, u € A; and vV" € Aco. Let V be a Young function that
verifies W (t) = ®(t), for every t > t* > 0. Then, there exist two positive constants C| and
C» such that the inequality

uv” <{x eR": My (fO)(x) > t}) < C1/ v <M> u(x)v" (x) dx
Myv(x) n t

holds for every t > 0.

Corollary 3 will play a fundamental role in obtaining mixed inequalities for a fractional
version of the operators considered above. That is, as an important application of these
results we can give mixed estimates for the generalized fractional maximal operator M, ¢,
defined by

My o fx)=sup Q1" fllo.o.
Q>x

where 0 < y < n and ® is a Young function.

When we consider the family of functions ®(r) =" (1 + logJr t)‘s, forr >1andd > 0,
the operator My, ¢ is bounded from L”(w?) to L(w?) if and only if w" € Ay 4/, for
O<y<n/r,r<p<n/yandl/q =1/p— y/n. This result was set and proved in [1],
and generalizes the strong (p, g) type of M, between Lebesgue spaces when we consider
r = land § = 0. As it occurs with M,,, this estimate fails in the limit case p = r. In [12]
it was proved an endpoint weak type estimate for this operator in the setting of spaces of
homogeneous type. The corresponding inequality for the Euclidean case is

w({x eR": M, of(x)> t}) <Cop </n ® <|f(x)|

t

)W(Mw(x)) dx> , (1.5)
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where W () = "7V (1 + log™ t="7/™)% and () = (t(1 + log™ ¢7v/m)8)yn/(n=ry),

In [6] we study mixed inequalities for this operator when a power of the weight v belongs
to A1. These inequalities arose from the fact that those mixed inequalities allow to obtain
an alternative proof of the continuity properties of M, ¢ discussed above (see Section 4.3
in [6] for further details). The proof relies on a pointwise estimate that relates the operators
M, ¢ and Mg (see Proposition 10 in Section 3) and it is a generalization of a Hedberg type
inequality used in [5] to give mixed estimates for the fractional maximal operator M, , when
O0<y<n.

The following two theorems contain mixed inequalities for M,, ¢ for the cases r < p <
n/y and the limiting case p = r, respectively. In the particular case in which the power of
v belongs to A1, both results were established and proved in [6].

Theorem 4 Let &(¢t) = " (1 + log™ 0, withr > 1and 8§ > 0. Let 0 < y < n/r,
r<p<n/yandl/q=1/p—y/n. Ifu € A and viA/P+1r) e AL then we have that

w1/ p+1/r") ({x eR": My.o(F0)() > t})l/q
Myv(x)

P 1/p
SC[/ <|f(t7x)|> u”/"(X)(v(x))“”’/’/dx} :

where n(t) = 14/P+4/7 (1 + log™ 1)/ (1=rv),

Theorem 5 Let ®(t) = t"(1 + log™ 1), withr > 1 and 8 > 0. Let 0 < y < n/r and
1/g=1/r—y/n. Ifu € A1 and v! € A, then there exists a positive constant C such that

uv? <{x cR": W > z}) < (/n o, (@) \/ (ul/q(x)v(x)) dx),

where (1) = [t(1 + log™ 1)°19/", W(t) = " (1 + log* (¢1=4/))y/=rv) and @, (1) =
& (1)1 + log™t 1)drv/(=ry),

Since M,v > v when n(t) = t4(1 + log™ )"*/"="7)_ as an immediate consequence of
Theorem 5 we have that

uv? ({x eR": %f;}x))(x) > t}) <¢ </n ®, <|f(tX)|> v (ul/q(x)v(x)) dx).

Remark 1 These two last theorems are very important since they give good extensions to
many results concerning to mixed inequalities.

® In[5] we use mixed inequalities for M proved in [8] to give the corresponding estimates
for the fractional maximal operator M, . A stronger version can be obtained if we use
in the proof the mixed estimate for M given in [15]. However, this can only be done for
the limiting case p = 1 and ¢ = n/(n — y), since the proof for the remaining cases
1 < p < n/y depends heavily on an auxiliary lemma which uses A condition of v?/7.
We can use Theorem 4 to overcome this problem. Indeed, if we setr = 1 and § = 0 we
have ®(¢) = t. Therefore M, ¢ = M,,, and we obtain the corresponding extension of
Theorem 1 in [5] for the case v?/? € Ao, for every l < p <n/y.

e If weassume v7(/P+1/") ¢ A in Theorem 4, then M, v ~ v. In this case we precisely
obtain Theorem 4.9 in [6]. If we furthermore set ¥ = 1 and § = 0, then M,p =
My, pv ~ v. This recovers Theorem 1 in [5], for the case v/P € Aj.
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® Theorem 5 extends the limiting case p = 1 and ¢ = n/(n — y) for M,, in [5] when we
set d(r) =1t.
If we assume v? € A; in Theorem 5, we recover Theorem 4.11 in [6].
When we take v = 1 in Theorem 5 we obtain an estimate similar to Eq. 1.5.

The remainder of this paper is organized as follows: in Section 2 we give the required
preliminaries and basic definitions. Section 3 contains some auxiliary results that will be
useful in the main proofs. In Section 4 we prove both Theorem 1 and Corollary 3. Finally,
we prove Theorem 4 and Theorem 5 in Section 5, as an application of the main result.

2 Preliminaries and Definitions

We shall say that A < B if there exists a positive constant C such that A < CB. The
constant C may change on each occurrence. If we have A < B and B < A, this will be
denoted as A ~ B.

Given a function ¢, we will say that f € Ll"i) .
@(t) = t, the corresponding space is the usual Llloc.

By a weight w we understand a function that is locally integrable, positive and finite in
almost every x. Given 1 < p < o0, the A,-Muckenhoupt class is defined to be the set of

weights w that verify
1 1 A
(e ) (@ ) =
101 Jo 101 Jo

for some positive constant C and for every cube Q C R”. We shall consider cubes in R”
with sides parallel to the coordinate axes. In the limiting case p = 1, we say that w € Ay if
there exists a positive constant C such that for every cube Q

1
—/ w < Cinfw,
101 Jo 0

where infp denotes the essential infimum of w in Q.

The smallest constants C for which the corresponding inequalities above hold are
denoted by [w]a,, 1 < p < oo and called the characteristic A, constants of w.

Finally, the A class is defined as the collection of all the A, classes, that is, Ax =
U p>1 A, It is well known that the A, classes are increasing on p, that is, if p < g then
A, € Ay. For further details and other properties of weights see [10] or [13].

There are many conditions that characterize A (see [11] for a detailed account). In this
paper we will use the following one: w € A if there exist positive constants C and € such
that, for every cube Q € R” and every measurable set E C Q we have

w(E) -c (|E|>s
w(Q) ~ lo1/)
where w(E) = [, w.

Every Muckenhoupt weight satisfies a reverse Holder condition. That is, if w € A, for
some 1 < p < oo, then there exist positive constants C and s > 1 that depend only on the
dimension n, p and [w]Ap, such that

1 s ¢
—_— $ d — d
<|Q|/Qw 0 x) =Tol J,

if ¢ (] f|) is locally integrable. In the case
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for every cube Q. We write w € RH; to indicate that the inequality above holds, and we
denote by [w]rn, the smallest constant C associated to this condition. It is easy to see that
RH; € RHy, forevery 1 < g <'s.

Given a locally integrable function f, the Hardy-Littlewood maximal operator is defined
by

M (x) = sup — / Wl dy
AT

We say that ¢ : [0, c0) — [0, oo] is a Young function if it is convex, increasing, ¢(0) = 0
and ¢(#) — oo when t — oo. Given a Young function ¢, the maximal operator M, is
defined, for f € L} . by

My f@)=suplflyo-
Q0>x

where || fl,, o denotes the Luxemburg type average of the function f in the cube Q, defined

by
||f||¢Q_1nf{A>O |Q|/ ('f(y)|)dy§1}.

Given a weight w, we can also consider the weighted Luxemburg type average || f |l 0 w
to be defined as

1y 0.0 = mf{x>0 (Q)/ ('f(y)')w(wdysl}.

It is easy to check that from the definition above we have

! £
—_— —_— d 1.
w(0) fgg” (||f||¢,Q,w) o=

When w € A, the measure given by diu(x) = w(x) dx is doubling. Thus, by following
the same arguments as in the result of Krasnosel’skii and Rutickii ([14], see also [20]) we

can get that
||f||wa%mf{f+w(Q)/ ('f( ”)w(x)dx}. 2.1)

A Young function ¢ is submultiplicative if there exists a positive constant C such that

@(st) < Co(s)e(t)

for every s, t > 0. We say ¢ has lower type p, 0 < p < oo if there exists a positive constant
C) such that

p(st) < CpsPo(t),
forevery 0 < s < 1 and r > 0. Also, ¢ has upper type q, 0 < q < oo if there exists a
positive constant Cy such that

p(st) < Cys?o(t),

for every s > 1 and ¢ > 0. As an immediate consequence of these definitions we have that,
if ¢ has lower type p then ¢ has lower type p, for every 0 < p < p. Also, if ¢ has upper
type ¢, then it has upper type g, for every g > q.

Given a function ¢ : [0, co) — [0, oo] we define the generalized inverse of ¢ as

¢~ 1(t) = inf{s > 0: ®(s) > 1},

with the convention that inf J = oo.
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The generalized Holder inequality establishes that if ¢, ¥ and ¢ are Young functions
satisfying
v 0T 0 ST

for every ¢ > t* > 0 then there exists a positive constant C such that

lfellg.0 < Cliflly.oligls.o- (2.2)

In this article we shall deal with Young functions of the type ¢(1) = " (1 + log* 1)?,
where r > 1,8 > 0 and log™ t = max{0, log¢}. It is well known that this class of functions
are submultiplicative, have a lower type r and have upper type ¢, for every g > r. Moreover,
we have (see, for example, Proposition 1.18 in [6] or p.105 in [9]) that

o ') ~ V(1 +logt )7 (2.3)

The proof of the main result can be reduced to studying the dyadic version of the operator
involved. By a dyadic grid D we understand a collection of cubes of R” that satisfies the
following properties:

(1) every cube Q in D has side length 2k for some k € Z;

2) fPNQ#Wthen P C QorQ C P;

3) Dr={0eD:4Q)=2}isa partition of R” for every k € Z, where £(Q) denotes
the side length of Q.

The dyadic maximal operator M, p associated to the Young function ¢ and to the dyadic
grid D is defined in a similar way as above, but the supremum is taken over all cubes in D.

It can be shown that
3’[

Mo f(x) < C Y Mg pi f(x), 24)
i=1
where D@ are fixed dyadic grids.

3 Auxiliary Results

The following lemma gives us the decomposition of level sets of dyadic generalized max-
imal operators into dyadic cubes. A proof of this result can be found in ([2], Lemma 2.1);
see also Proposition A.1, p.237, in [9].

Lemma 6 Given A > 0, a bounded function f with compact support, a dyadic grid D and
a Young function @, there exists a family of maximal cubes {Q ;} of D that satisfies

xeR": Mypf(x)>A}= U Qj,
j

and ||f||(p,Qj > A for every j.

The next lemma is purely technical and gives a fundamental fact that will be crucial in
the main proof.

Lemma 7 Let f be the function defined in [0, co) by

X

f(x)=[(1+)lf>m if x>0,
1 if x=0.
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Then we have that 1 < f(x) < el/e, for every x > 0.

The following proposition establishes that if ¥ and & are equivalent Young functions for
t large, then they have equivalent Luxemburg norm on every cube Q. As a consequence, we
have that My ~ M.

Proposition 8 Let ® and WV be Young functions that verify ®(t) ~ W (t) for everyt > ty >
0. Then ||-lo,0 ~ lI-llw, @, for every cube Q.

Proof Fix f € L 1 o BY hypothesis there exist two positive constants Cy and C; such that
Y@ =@ <= CL¥(@),

for t > ty. Thus, given A > 0 we have that

[f] 1 [f] 1 [f1
= — () o —
101 / ( ) 1O J oy fi<ior) ( ) 1ol 1O Jon{ f1>01) ( A )

G Lf1

If we set A = || f]lw, o then
|f|>
- ® Cy,
|m/ < =+

which implies that || f|l¢, 0 < max{1, ®(f) + C2}|l f |y, ¢- By interchanging the roles of ®
and W we can obtain the other inequality. O

The next result gives a version of Jensen inequality for Luxemburg averages.

Lemma 9 Let ® be a Young function, f € LY and r > 1. Then there exists a positive

constant C such that for every cube Q
15,0 < Cllf llo,0-

loc

Proof Notice that if t > 1, then ®(¢'/") < ®(¢). Picking A = || f" ||;/ ' We can estimate

L/ d)(lf(y)I) dy:i (If(y)|>d+ ®<|f(y)|>d
191 Jo A Q1 Jonqif1=a) A 1Ol Jon{| f1>2) A

I umryﬁ
<o)+ — Ol —— d
M @Immﬂ1<“ﬂhg g

1 qu)
< d(1 —_— b ——— ) d
D+1a1 ), Qﬂhg y

<o) +1,
and therefore

1fle.0 < CILF Ny L

The following proposition provides a pointwise estimate between the operators M, o
and Mg, where the functions involved are related in certain way. This result can be seen as
a Hedberg type estimate for generalized maximal operators.
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Proposition 10 Ler 0 < y < n, 1 p <n/yand 1/q = 1/p — y/n. Let ,& be
Young functions verifying t¥/"£=1(t) < C®~ (1), for every t > ty > 0. Then, for every
nonnegative functions w and f € LP we have that

f frla y/n
M, o (;) (x) = CM; (T) (x) (./1;" FEA6)) d)’> ,

for every x € R".

=
=

Proof Defines = 1 +¢/p’ andlet g = fP/Sw=4/5_ Then

L = g¥/Pyt/P—1,

w
Fix x and a cube Q such that x € Q. By using generalized Holder inequality (2.2) we obtain
|Q|V/" i — |Q|)//" gS/qu/Pflu
2,0 2.0
— vin || ,1=y/n,s/p+y/n—=1,,qy/n
o1 g 8 w 0.0
< clop/m || g1=v/m ‘ s/pty/n=1,,qy/n
= clor gt e W o

v/n
el (fQ £7O) dy)

fm) ( p )W
CMs( ” (x) /Rnf (y)dy . -

4 Proof of the Main Result

IA

We devote this section to the proof of Theorem 1 and its corollary. We shall present and
prove some auxiliary results that will be useful to this purpose. Recall we are dealing with
a function ® € §,, where r > 1 is given. By Eq. 2.4, it will be enough to prove that

uv’ ({x eR": Mo.p{fv)(x) > t}) < Cf d (If(x)l) u(x)v" (x)dx,
v(x) n t

where D is a given dyadic grid. We can also assume that # = 1 and that g = |f|v is a
bounded function with compact support. Then, for a fixed number a > 2", we can write

uv” ({xeR” : w>l}) = Zuvr <{x : M>l,ak<v§ak+l}>
v(x) = v(x)

= Zuvr(Ek).

keZ

For every k € Z we consider the set
Q= {x eR": My pg(x) > a},

and by virtue of Lemma 6, there exists a collection of dyadic cubes {Q’j.} j that satisfies

@ =J 05,
J

@ Springer



From A to Axo: New Mixed Inequalities for Certain Maximal Operators

and [ gll4 ok > a* for each Jj. By maximality, we have
i
a" < lgllg ok < 2"a*,  forevery j. 4.1)
=

We proceed now to split for every k € Z, as in [15], the obtained cubes in different classes.
If £ € Np, we set

Agp =10k attor < L[y gurernrl
' 1051 J ok

and also

1
Al,k:{Q’]‘-:k v’<ak’}.
|Qj| ok

The next step is to split every cube in the family A_ ;. Fixed Q’; € A_jk, we perform

the Calderén-Zygmund decomposition of the function v" X ok atheight a*” . Then we obtain,
J

for each k, a collection of maximal cubes, {Q'/‘ i} , contained in Q’J‘. and which satisfy
i

1
ok < — v <2"a* ) forevery i. 4.2)
1071 J ok,

We now define, for every ¢ > 0 the sets
Tox = {Q’J‘ € Apg: ‘Q’; N {x cak < < akHH > 0},
and also
', = [Ql;,i : Qlj‘- € A_jk and ‘Q’;’i N {x cadf < v < ak'H” > 0}.
Since E; C 2, we can estimate

D uv (B = ) uv (Ex N )

keZ keZ
=YY w'(Exn QY
keZ j
=33 > a*u@EnohH+>0 >0 a* et ).
keZ £20 gker, keZ i:Qk er iy

If we can prove that given a negative integer N, there exists a positive constant C,
independent of N, for which the following estimate

S a0 noh+ Y Y ekt < C/ o (Lf])
k=N £20 gker, k=N .0k ey 4 Rn
4.3)
holds, then the proof would be completed by letting N — —oo.

In order to prove Eq. 4.3 we need some auxiliary results. The two following lemmas deal
with the family of cubes defined above. Both were set and proved in [15]. However, we
include the proof of the second one since there are slight changes because we work with
Luxemburg averages.
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Lemma 11 ([15], Lemma 2.3) If £ > 0 and Q’; € Ty, then there exist two positive
constants ¢ and ¢y, depending only on u and v" such that

u(Ex N Q%) < cre” " u(0h). (4.4)

Lemma 12 If Q isa cube in I' = Uy=_1 Ug=n D¢k, then there exists a positive constant
C, independent of Q, such that

J o]=clo.
Q'elL,0’CO

Proof We shall first prove that if Q’; C Qlor Q]; c Qi or Q];’l- C Qlor Q];.,l. < Ol
then k > ¢. By maximality, for the first case we have

t k
a <|iglle,gr <a°,

from where we easily deduce that k > . The second case can be reduced to the first, since
t.m & Q. For the third case, notice that Q]; # Q. Therefore, we must have Q% C Q’; or

Q’j‘. C Q. If the first condition held, we would have ¢ > k. Then
1 1
— vaQk =— v >a’ >
1051 Jor i 105 o
and Qj’l. C QF. This is absurd because Qj’l. is a maximal cube that verifies

1
— v > ak
k
1051 /0,

Then we must have Q’; C Q! and this implies that k > ¢. Finally, the fourth case follows
from the third since Q% , C OF.

s,m =
With this fact in mind consider a cube in I', say, Qg. We want to estimate

U of

Qel,0C 0}

Note that if Q C Q, then the level of Q is greater than 7. Therefore

U o/ =>> 104

Qel’,QC 0! k>t j

Since a* < |iglle ot We have that
it/

1 8
1 o (7) , or equivalently |Qk'| < 1 (7) ’
k J o*
a J

. L
ko ak
1041 ot

On the other hand, since [Igllo, 0t < 2"a' we have

1 g . 4
— d>( )<1,ore uivalentl / CD( >< 1.
101 Jor = q y o T\anar) = 1Ol

2nat
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From A to Axo: New Mixed Inequalities for Certain Maximal Operators

By combining these inequalities together with the convexity of ® we obtain

DILIESH I L]

k>t j k>t

Zzznat—k /Qk [ (zfat)
j

k>t j

23 i k‘/Ql (;at)

k>t

21041 Y a'

k>t

IA

IA

IA

on
= |Q l.

O

Proof of Theorem 1 We shall write some parts of the proof as claims, which will be proved
at the end, for the sake of clearness. Recall that we have to estimate the two quantities

Ayi=Y Y Y a®™VuE n oY)

k>N £>0 Ql;eré,k

and

By = Z Z Cl(k+1)ru(Q];,,')

k=N i: 0k el 4

by C [ @ (| f1) uv”, with C independent of N.
We shall start with the estimate of Ay. Fix £ > 0 and let Ay = Ug>nT¢ k. We define a
sequence of sets recursively as follows:

P(f = {Q : Q is maximal in A, in the sense of inclusion}

and for m > 0 given we say that Qlj‘. € P,f; 41 if there exists a cube Qf in P! which verifies

L u > 2 4.5)
1051 Joi - 1Q4]
and it is maximal in this sense, that is,
! / u < 2 u 4.6)
1041 1051 Jor

for every Qk Qk/ Q’
Let Pt = Um>0P,,, the set of principal cubes in A,. By applying Lemma 11 and the
definition of Ay x we have that

Y Y uEngh < DX E ad el
k>N >0 Qlj‘:Erl‘k k>N £>0 Q".el‘g‘k
tr r(1-20) r(Qk k
—cabr v
= ZC@ ? Z Z |Qk| (Q/)
>0 k>N Q]}EF ok

@ Springer



F.Berra

Let us sort the inner double sum in a more convenient way. We define

Afm) = Q? € U Tex: Q% € Q' and Q! is the smallest cube in P* that contains it
k=N

TI’hat.is, every Q’; G_Aft,s) is n.oF a principal cube, unless.Q{; = QL. Recall that v € Ao
implies that there exist two positive constants C and ¢ verifying

v (E) _ C<|E|>8
<c(i=) - @7
(@ = \IQ]

for every cube Q and every measurable set E of Q.
By using Eq. 4.6 and Lemma 12 we have that

v (Q%)
> 2 ;

o e =X 2
k=N kel J

QiePt (k. j):0%eAl,

u(Q%)
|04

v (0)

u(Q") o
2 2 01| 2. Vi@

Ojept (k. j): Qe Al )
k
u(Q! ‘U(k,'):Q"-eAéx Q;
D Ol B
QLePt $ s
u(Q5)
=C Y @)
oo 1051
Therefore,
Cetr — v (Q))
22 2 auENQ) =€) e B, Spntu(e))
k>N £>0 QI;EF“ >0 Q’SGPZ K
< CZE—L‘zﬁr Z a"u(Q;).
£=0 QtepPt

Claim 1 Given £ > 0 and Q’; € Ugsn Tk, there exists a positive constant C, independent
of ¢, such that

r C r
ot < |Q’;|/Q§ ® (1 (0D V' () dx. 4.8)

Using this claim, we obtain

Z Z Z a(k+1)ru(Ek n Q];‘)

k=N 120 gker,

t
<o ear Y MO g gy
Q[

t
=0 orert 1051

K
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From A to Axo: New Mixed Inequalities for Certain Maximal Operators

_ —colr r M(Qi)
=C) e R”CI>(|f(x)|)v I KXot (x) | dx

t
= = 10

cy ‘”ﬂ’/ D (| f (X)) v () (x) dx

>0

Claim 2 There exists a positive constant C, independent of ¢, that satisfies 211 (x) < Cu(x).

With this claim at hand, we can obtain
Ay <C / & (1f (O u ()’ (x) dx,
Rll

where C does not depend on N.
Let us center our attention on the estimate of By. Fix 0 < 8 < ¢, where ¢ is the number
appearing in Eq. 4.7. We shall build the set of principal cubes in A_j = Ukz v =1k Let

PO_1 = {Q : Q is amaximal cube in A_; in the sense of inclusion}

and, recursively, we say that Q’; e P L m >0, if there exists a cube QL ,epP, ! such

m+1°
that
1 / a(k—t)ﬁr /

— u>—- u 4.9)

1051 /o, 1051 Jor,
and it is the biggest subcube of Qg’ ; that verifies this condition, that is

(k—1)pr

%/ ufait/ u (4.10)

|Q j’ ,'/| ,;/,[/ |Qs,l| Q;_,
if Q]J‘l - QI;/ oG Q’ Let P! =Unso0 P, the set of principal cubes in A_;. Similarly

as before, we define the set

(_t’l_‘,’l) = Q";‘i € U Ty Ql;'_i C Q) and Qf ; is the smallest cube in P! that contains it
k=N

We can therefore estimate By as follows

. k)
By = a Z Z |Qk | (iji)
k=N ok el 4 Ji
k
u(Q% ;)
r Uy k
=a Z Z |Qk | v (Qj,i)
Q! ,ep-! k.ji:0% eAyl ) It
u(QL )
AP - oD ULl D SRR}
0 eP™! S kzt j,i:Q];jeA(_/.ls.”

Fixed k > ¢, observe that

Z |Q]j(’,| < Z —/<r r(Qk )<a—kr r(Qt )<2n (t— k)r|Ql |

le E.A(”l) th E.A(,S,)
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Combining this inequality with the Ao, condition of v” we have, for every k > ¢, that

x 1051\
_ le EA“ Jii
Z a(k t)ﬂrvr(Q];',i) < CUr(Qé,[) |Qt( |1)
]lQ GA(,”) 5.1
< Ca(t—k)rsl
Thus,
u(Qf )
BN < C S, vr(Qt ) a(t—k)r(é‘—ﬂ)
,Z,l 10" st kZ
sI1EP ’ >t
v (05 )
=€ 2 o
0;,eP™! st
<C Y a"uQl).
0} ,€P™!
Claim 3 1If Q’; € A_1 then there exists a positive constant C such that
kr c r
a’ < —= @ (| f()) v (x)dx.
|QJ| Q]j(-
We can proceed now as follows
YooY a™Vuby < ¢ Y d"uol))
k=N i:Qk ey 4 Q' ep-!
u(Q5 )
sc ¥ St edrmnrwa
0P o
u(Qy )
< C/R DUV | Y oAy | dx
n s

Q! ep!

C/Rn @ (| f)D V" (D)h2(x) dx.

Claim 4 There exists a positive constant C, independent of N, that verifies h7(x) < Cu(x),
for almost every x.

This claim allows to obtain the desired estimate for By . This completes the proof. [
In order to conclude, we give the proof of the claims.

Proof of Claim I Fix £ > 0 and a cube Q’; € Uiy Te.k- We know that || g]l ok > ak or,
- =

equivalently, > 1. Denote with A = {x € Ql; cv(x) < t*a¥} and B = Q';.\A,

& ||, ot
Lj
where ¢* is the number verifying that if z > ¢*, then

? < Cp (log Z)
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From A to Axo: New Mixed Inequalities for Certain Maximal Operators

Then,

Ve el = Ll

& —I+1I.

i
o0k d>Q" ak "B .0k

This inequality implies that either / > 1/2or /1 > 1/2. If the first case holds, since ¢ € §,

we have that
L / (2|f|v>
IQ"I
O (2t*)
N / 10 (=)

< L aqmv,
a’“|Q’;-|/Q§: she

IA

IA

and from here we can obtain

kr c r
a <|Q’;|/Q’}i®(|f|)v.

On the other hand, if /7 > 1/2 then again

IQ"I/ (Mv) ,

< ‘1)(2)6'0@ [ w7 2 (102 (7)) .

since ® € §,. This implies that

kr @(23{Co
10}

[ earnv.

i

8
where wy (x) = (log (”(X))) Xp(x).
Since v" € A, there exists s > 1 such that v" € RH;. Let § = max{§/r, 1} and fix
0 < ¢ < g9, where

1 log?2
80§min{ o8 }

80s'a D/ [y gy, — 17 log(2® (2)Coe?/ealr)

Now we define y = 1 + ¢, therefore y’ = 1+ 1/¢. By applying Holder’s inequality with y
and y’ with respect to the measure du(x) = v" (x) dx, we get

Ur(Qk) 1 1/y 1 , l/V/
kr ®d(2)C J / [® ]y r - vor )
@ =@ °< 0% )(vf(Qf;) o DT (05 Jor k"

(4.11)
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Let us analyze the third factor. From the well-known fact that logz < &~!t5 for every
t,& > 0 and applying Holder’s inequality with s and s” we have

1 ) 1y
Yo
@m@aéﬁ””>
Y 1/y!
(Ur(Qk) Qk Og(aT‘)) v)
<
)

1 ’
8s'y" Nt v
X (7) v
’(Q ofnp T Na

RN s\ e
Sos / 7/ — T/ V'S
v (0h) 10%1 Jot a 1051 Jor

r 1/
8 |Qk (€+1)r/5‘ [U’ ]RH v (QI;) Y
r@k 10k

I:(SOS/ 1qE+Dr/s' e ]1/)//
e

1y’

IA

/)2/)’

IA

14

=

by virtue of the election for ¢ and Lemma 7.
Returning to Eq. 4.11 we have that

v (QF) | 1y
k<D ! /[MHW’ ,
‘ (|@)<wq>q STy

where D = ®(2)Cpe?/e. By denoting W(¢) = ¢V, we have that the second factor is
1Py ok Using Eq. 2.1 we have that for every t > 0
o]

v pl @ / > (FDY
a
g r@h

< Dra*tor /[MHW
o |%|q !

Pick T = 1/(2Da’") and observe that with this choice

kr
a
Dta*tor = R and t'77 = 2Da")® <2,

by virtue of the definition of ¢. Thus,

4D
d" < — [ 1oy
9

k

104
for every 0 < ¢ < gg, with D independent of €. The dominate convergence theorem allows
to conclude the thesis by letting ¢ — 0. O
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From A to Axo: New Mixed Inequalities for Certain Maximal Operators

Proof of Claim 2 Fix £ > 0 and x € R" such that u(x) < oo. We shall consider a sequence
of nested principal cubes in A that contain x. Let Q(?) be the maximal cube (in the sense of
inclusion) in P that contains x. In general, given Q) we denote with Q1) the maximal
principal cube in Q) that contains x. This so-defined sequence has only a finite number of
terms. If not, for every j we would have

1 11 [ula,

R U< —— u =< -
|Q(0)| 00 2J |Q(./)| o 2J

u(x),
or equivalently

2J
w /Q(O) u < [u]aulx),

and we would get a contradiction by letting j — o0. Therefore, x can only belong to a
finite number J = J(x) of these cubes. Thus,

u(Q}) '
2 g Mo = Liga

QlePt j=0

u
oW

! 1
o) P At e— u
- ]zz(:) 10D Jow

IA

J
[ula,u(x) Yy 2777
Jj=0

[ula,u()2 27— 1)
2[ula u(x). 0

IANIA

Proof of Claim 3 This proof is similar to the given for Claim 1, with some obvious changes
since the average of v over Q’; is not equivalent to a X7 Following the same notation as

in Claim 1, since ‘ > 1, we have that either / > 1/2or Il > 1/2.If I > 1/2, we

8
e
r=j
obtain the thesis exactly in the same way as in this claim. On the other hand, if /7 > 1/2,
we have that

C

kr r

a" < — | (fD) v wy,
1051 /o

where wy; = (log ((1%>)(S Xp.

Fix 0 < ¢ < gp, where
- 1
& - -
0= [v"]rH, S0s" — 1

and set y = 1 + ¢. We apply Holder’s inequality with y and y’ with respect to v” to obtain

r 17y 1/y
PR (2 N A / . 1 N
¢ —— | sy —— | (log(— X
=T \wah Jp T (0 Q§(°g<ak)) v X
(4.12)
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Recall that Q’j‘. satisfies IQ];I’1 f 0% v" < a*. Thus, we can estimate the third factor as
h J

1 o\
(75 /Boog<;k>> /)
85’y v , e
vr(Q) 7 )

805y IQ" 1/ o\ 1/ s
< _ I Urs
| ov@h 105 Jor av 1051 J o

( ’

(

6

follows

17y’

Q;
1y

IA

v TRu, S0s'y")
)2/V

IA

IA

from the choice for ¢ and Lemma 7. Returning to Eq. 4.12 we obtain

o < p 2 ;/ [© (f DI o "
10k \veh) Je ’

with D = Ce?/¢. Similarly as we did in the proof of Claim 1 we can conclude that

%)
kr DU J / Y
=D {r @ Sy [P }

< D'L'akr + DW‘/ [q) (|f|)]y

for every t > 0. Picking Tt = 1/(2D) we get

Dtd" = — y 177 =@2D)* <2D.

Therefore,

4D?
k’s—/ [@(If]" v
0] Jou DT

forevery 0 < ¢ < g9. Again, the constant D does not depend on ¢. Letting ¢ — 0 we obtain
the thesis. O

Proof of Claim 4 Let us fix x € R" and assume that u(x) < oo. For every level 7, there
exists at most one cube QF such that x € Q. If this cube does exist, we denoted it by Q'.
Let G = {t : x € Q'}. Since t > N, G is bounded from below. Then there exists £y, the
minimum of G. We shall build a sequence of elements in G recursively: having chosen #,,,
with m > 0, we pick #,+1 as the smallest element in G greater than #,, and that verifies

1 2

—_ u>— u 4.13)
|th+l | Q’m+1 | th | Qm
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From A to Axo: New Mixed Inequalities for Certain Maximal Operators

Observe thatifr e Gy t,, <t < ty41, then
1 2
[0 Q’ IQ”"I Q’m

This sequence has only a finite number of terms. Indeed, if it was not the case, we would

have
1
[ula u(x) > W /th ‘= @ /Q’0 !

for every m > 0. By letting m — oo we would arrive to a contradiction. Then {z,,} =
{tm}":fzo. Denoting F,, = {t € G : t,, <t < ty+1}, and using Eq. 4.14 we can write

(4.14)

u(Q' ) M2 u(Q' )
ha(x)= > : ng(x)52<— u> >y =
Qé,zeP—l |Q§| m=0 1™ Qrm 1€Fm 5,1:0% P! u(Q"

We shall prove that there exists a positive constant C, independent of m, such that

u(Qy )
> X o =¢ (4.15)

1€Fm 5.1:Q! ;P!

If this inequality holds, we get that

ha(x) < 2C
IZ th| Qfm

1
20 2 M
n;) | QM|

M
2C[u] 4 ux)2~M Y " om

m=0

IA

u
oM

IA

IA

4C[u] g u(x),

which completes the proof of the claim. To finish, let us prove Eq. 4.15.
Fix 0 < m < M and observe that if t = 1y, then

t
)3 u(Qy ) <1
u(Q"

s.:0% eP!

Lett, <t < tygr. If Q’l’”l N Q’ # (J, then we must have Q’ - Q/ ;» otherwise we

would have 1,, > 7, a contradiction. Let Q, ;+ the smallest principal cube that contains Q
(this cube does exist because we are assumlng t > to). By applying Eq. 4.9 and Eq. 4.10 we

conclude that
1 at=tOrp
A u > l‘i// , u
|Qs,l| Qé,/ |Qj/7,'/| Q;’,i’

1 altm=t)rp
tm 1, u S t ! u
|Qj’,'| o7 |Qj/,,'/| Q_t/'/,i/

and also

@ Springer



F.Berra

Combining these two estimates with Eq. 4.14 we obtain that, for almost every y € Q' |

1 a(tflm)rﬂ
u(Mula, = —— u > 7/
"ol Mo, 1071 Jom
> a7 inf y > a7 inf y
le' le
i
a(l_tm)rﬁ 1
> — u
[u]a, |Qtm | Qtm
a(f_tm)r/3 1
> u
2[ula, 10! Jor
Then
a(t—l‘m)rﬂ 1
u(y) > =:

———— | u
20uly, 101 /o

Since u € A1 € A, there exist two positive constants C and v for which the inequality

u(E) <C<|E|>v
u(Q) ~ o1/’

holds for every cube Q and every measurable subset E of Q. Therefore,

u(Q"

u{y € 0" 1u(y) > 1)
Z ”(Q;l) =< (0"

5,1:0% ep~!

c (I{y € Q’|:Qut|(y) > ?»}I) (0"

1 v
Cu(Q) (?»IQ’I /Q ")

¢ (213, a% %) u(@".

If t = t,,, we have Q! | = 0™ and in this case

Joi
1 .
u(Wlula, = —— u>infu
10l Jor, o
. 1
> inffu>—— u

om 7 [ula, 1Q™ Jom
1

> u
T 2[ula 197 Jor

which is the corresponding estimate obtained above, with ¢ = t,,. Thus,

t
LE, i = D)

El

1€Fm 5.1:Q" ep~! 1>ty
< C Z atm=0rpv
1=t
= C’
which proves Eq. 4.15. O
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In order to prove Corollary 3 we need the following result. A proof can be found in [3].

Lemma 13 Let 1 be a measure, T a sub-additive operator, and ¢ a Young function. Assume
that
clf @l

t

MHWU@WHDSQ@w( )dmm

Jor some positive constants C and ¢, and every t > 0. Also assume that | T f || () <
C() ||f||LOC(M) Then

muwnun>msc/

(2c|f ()]
o (1
{x:| f(0)|>1/(2Co)} !

) du(x).

Proof of Corollary 3 The equivalence between ® and W imply that there exist positive
constants A and B such that

AV(t) = ®(1) = BY(1),

for t > t*. Proposition 8 establishes that there exist two positive constants D and E such
that
DMo(fv)(x) = My (fv)(x) = EMa(fv)(x),

for almost every x. By applying Corollary 2 and setting ¢; = E max{® (t*) + B, 1} we have

that
uvr<{xeR”:M>t}) < uvr({xeR”:M> i})
Myv(x) Mgv(x) c1
< C/ d><c]|f|>uvr
< ) ; .
Observe that
M
I1Ta fle = | IOy e,
Y Lo

which directly implies || Ty f | L@y < | f oo @or) since the measure given by du(x) =
u(x)v”"(x) dx is absolutely continuous with respect to the Lebesgue measure. We now apply
Lemma 13 with T = Ty, Cyg = 1, ¢ = ® and u the measure given above to obtain

uv” ({x ceR": M>t}> < Cf o) (M) u(x)v" (x)dx
Myv(x) el FO01>1/2) t
c 2t*| f(x)|
<Co(— / o] <7> u(x)v" (x)dx
(f*> {1 f0l>1/2) t

ol 20| £ () ,
< BC® (ti*) /{x:‘f(x)|>t/2] v (f) u(x)v" (x)dx

<(C _/,, \\ (M) u(x)v" (x)dx. -

5 Applications: Mixed Inequalities for the Generalized Fractional
Maximal Operator

We devote this section to proving Theorem 4 and Theorem 5.
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Proof of Theorem 4 Define

nr nd q<1 1>
o = s V= s IB:— — 4+ — s
n—ry n—ry o\p 1

and let £ be the auxiliary function given by

t1/P, if 0<t<1,
§0) =1 o N
t?(1 4+ log™ )", if t> 1.
By virtue of Eq. 2.3 we have that
1/o+y/n 1/r
t t
QUL = ~ o),

(1 +logtr)v/o (1 +logtt)d/r
for every + > 1. Observe that § > 1: indeed, since p > r we have ¢ > o and thus
q/(or’) > 1/r'. On the other hand, ¢/(po) > 1/r. By combining these two inequalities
we have B > 1. Applying Proposition 10 and Lemma 9 with § we can conclude that

PBl4 /8 y/n
My<1><f)(x)<c|:Ms<f )(x)} ([#oa) . oo

Also observe that

(Me ) ()'"? < Myv(x),  ace.x. (5.2)

Indeed, it is clear that & (z# ) < n(t). Given x and a fixed cube Q containing it, we can write
o Lyt (i) = Lo (i)
10 ||v||ﬁ 101 Jo " \lvl0

which directly implies the estimate.
Notice that & is equivalent to a Young function in §,, forz > 1. Since g(1/p + 1/r") =
Bo, if we set fo = | f|wv, then we can use inequalities Eq. 5.1 and Eq. 5.2 and Corollary 3

to estimate
%+% ({ : My o(fu)(x) - t})
Myv(x)

o ([  Myo(fv)(x) >t})
Mgvﬁ(x)) (Mevf ()P

Mgvﬁ(x) ~ (1 folr) P77

B/ Bp/q—1) y/np
o f ¢ ( LR R A T

c f EOuve?
R}’l

c ( f EOuvP + / s<x>uv"ﬂ>,
A B

pB/q Bp/q—1) v/nB
. C2|f| (wv) 17 (w)? ’
tP Rn

IA

N

| /\

I/\

where
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A={xeR":A(x) <1}y B = R*"\A. By definition of £ we have that
f EQ U [vx)17P dx = f NP u(x)[v(x)]1°f dx.
A A
If we set w = u!/9y1/P+1/r"=1 then

14 qy/n
A/Byyof = Cg/ﬂ%(wv)p_q |:/ |f|P(wv)P] uv®®
R’l

qy/n
Cg/ﬁ |{q|p [/ |f|P(wv)P] uP/4yoB+(p=)/p+1/r')
RVI

Observe that

11 11 11 p
Gﬂ+(p—q)<*+7>=q(*+7)+(1)—q)<*+7)=1+7
P r P r P r r

Also, notice that
(wv)P = uPlay! e/ =ptp — yplaylte/r

Therefore,
C‘I//S r qqy/n ,
/s(x)uv“ﬁ < = / | fIPuPlate/” [/ |f|PuP/qv1+P/r]
A 19 LJge i R
q/B ¢ ql4qy/n
_G / | FPurlayi+pl
19 LJge i
ci/Br q4/p
— 2 / | f|Pullaytte/r
tq n

On the other hand, A(x) > 1 over B and since & has an upper type ¢ /8, we can estimate the
integrand by A9/uv°#. Then we can conclude the estimate by proceeeding like we did in
part A. Thus, we obtain

1/q 14 1/p
wot vy (L e ge . MyeUn&) <C / m> e
M,]v(x) - n t

Proof of Theorem 5 Set £(t) = t9(1 + log* 1)V, where v = 8¢q/r. Thus t¥/"¢71(r) <
®~1(¢). By applying Proposition 10 with p = r we have that

r/q y/n
M, o (%) x)=<cC |:M§ (f(zv):| x) (/R" fo d)’) .

By setting fo = | f|wv we can write

' v(x) - : U(X)

(] MG
= : Mgv(x) (f for)y/n .

Since & € §,, we can use the mixed estimate for Mg which leads us to

r/q r\v/n
uv? ({X:M>t}> SC/ ég-(f()(ff())>mﬂ_ (5.3)

v(x) wvt

@ Springer



F. Berra

The argument of £ above can be written as

U N TIPS
B <T) (wv) 1</R (7) “‘“’))

r Jar) 74
(e (L)

Observe that for0 <t < 1, é;'(tr/‘f) =t",and fort > 1,

£ = 1" (1 +logt™/?)”

v
= <1+ 10gt>,
q

which implies £(#"/9) < @, (t) = " (1 + log™ #)". Then we can estimate as follows

r/q (Jge fo)y/n | f] 1—q/r L\ . vq/(nr)
§ (wvt) D, ((t) (wv) 71 (An (T) (wv) ) )
/(nr)
o[ (o (i

Returning to Eq. 5.3 and setting w = 1!/, the right hand side is bounded by

/(nr)
@, ([/n @, <|f|> wv)ri|yq )A; o, <|f|( U)l_q/r> (wv)4.

Notice that ®,, (#t179/7y¢9 < W (). Therefore, the expression above is bounded by

/(nr)
o G T VR C B

To finish, observe that

1@, (1790 < A plogt )Y = 197 (1 4+ logt )% = o(1). 0

IA
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