
Potential Analysis
https://doi.org/10.1007/s11118-021-09903-6

From A1 to A : NewMixed Inequalities for Certain
Maximal Operators

Fabio Berra1

Received: 8 July 2020 / Accepted: 21 January 2021 /
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract
In this article we prove mixed inequalities for maximal operators associated to Young func-
tions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc.
147(10), 4259–4273, 2019). Concretely, given 1, 1, and a Young
function with certain properties, we have that inequality

holds for every positive . As an application, we furthermore exhibe and prove mixed
inequalities for the generalized fractional maximal operator , where 0 and
is a Young function of log type.

Keywords Young functions Maximal operators Muckenhoupt weights
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1 Introduction

One of the most classical and extensively studied problems in Harmonic Analysis is the
characterization of all the functions for which the Hardy-Littlewood maximal operator is
bounded in , for 1 . This problem was first solved by B. Muckenhoupt in
[17], where the author proved that the inequality

(1.1)

holds for 1 if and only if . Later on, this result was extended to higher
dimensions and even to spaces of homogeneous type.
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It is well known that, for the limiting case 1, the inequality above is not true. Instead,
the estimate

holds if and only if 1.
In [21] Sawyer proved that if are 1 weights, then the estimate

(1.2)

holds for every positive . From now on, we will refer to this type of inequality as
mixed because of the interaction of two different weights in it. This estimate can be seen
as the weak 1 1 type of the operator , with respect to the measure

. One of the motivations to study this kind of estimate was the fact
that inequality (1.2) combined with the Jones’ factorization theorem and the Marcinkiewicz
interpolation theorem allows to give, in a very easy way, a proof of Eq. 1.1 when we assume

.
The proof of Eq. 1.2 is, however, a bit tricky. Since can be seen as the product of

two functions, this produces a perturbation of the level sets of by the weight . So it is
not clear that classical covering lemmas or decomposition techniques work in this case. To
overcome this difficulty, the author uses a decomposition of level sets into an adequate class
of intervals with certain properties, called “principal intervals”, an idea that had already
been used to prove some weak estimates previously in [18].

It was also conjectured in [21] that an analogous estimate to Eq. 1.2 should still hold for
the Hilbert transform. That conjecture was settled twenty years later by Cruz-Uribe, Martell
and Pérez in [8]. In this paper mixed weak inequalities were given, generalizing Eq. 1.2
to , not only for but also for Calderón-Zygmund operators (CZO) and proving the
conjecture made by Sawyer. The authors considered two different types of hypotheses on
the weights and : 1 and 1 and . For the first condition, the proof
follows similar lines as in [21]. On the other hand, the second condition is more suitable,
since it implies that the product belongs to and therefore is a doubling measure. This
allows to apply classical techniques, like Calderón-Zygmund decomposition to achieve the
estimate.

It is also convenient to use sparse domination techniques [7] and it also has been explored
to provide quantitative estimates [19] and results in the multilinear setting [16].

Another conjecture arose from [8]: the authors claimed that the mixed estimate

should still hold under the weaker assumption 1 and . It is easy to note that
both conditions on the weights above imply it. This conjecture was recently proved in [15],
where the authors apply the “principal cubes” decomposition with adequate modifications
to avoid the use of an 1 condition on the weight .

Mixed weak estimates have also been explored for a more general class of maximal
functions, such as the operator associated to the Young function and defined by

sup
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where the supremum is taken over averages of Luxemburg type (see Section 2 for details).
For instance, in [4] it was proved that if 1 log , with 1 and 0,

0, with and 1 1 then the estimate

holds for every positive .
The same estimate is true if we consider this family of Young functions and two weights

and such that 1. This result is contained in [2], and generalizes the corresponding
estimate given in [8] for the case . However, this inequality turns out to be non-
homogeneous in the weight . This problem was overcome in [3], where the authors proved
that under the same condition on the weights and even for a more general class of Young
functions the inequality

(1.3)

holds for every positive . In the same way that inequality (1.2) allows to obtain a different
proof of the boundedness of , the estimate above can be used to give an alternative proof
of the boundedness of , when is a Young function of log type.

By virtue of the extension proved in [15] and of the discussed results above, a natural
interrogant arises: does inequality (1.3) hold in the more general context 1 and

? This fact is an improvement of a conjecture established in [2], which remained open
until now.

In this paper we answer the question positively. We will be dealing with a family of
Young functions with certain properties, as follows. Given 1 we say that a Young
function belongs to the family F if is submultiplicative, has lower type and satisfies
the condition

0 log for

for some constants 0 0, 0 and 1. Concretely, our main result is the following.

Theorem 1 Let 1 and F . If 1 and then there exists a positive
constant such that the inequality

holds for every positive .

The key for the proof of this inequality is to combine some ideas that appear in [15] with
a subtle Hölder inequality that allows to split the expression into . The
proof also follows the “principal cubes” decomposition introduced by Sawyer in [21].

Since we can obtain, as a consequence of the theorem above, the following
result.

Corollary 2 Under the assumptions in Theorem 1 we have that

.
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This estimate will be useful to derive, as an application, mixed inequalities for certain
fractional maximal operators. Notice that when 1 the operator defined by Sawyer
in [21] is equivalent to

.

For the case of , it can be proven that when 1. Therefore inequality
(1.3) can be rewritten as follows

. (1.4)

It is not difficult to see that the operator defined by Sawyer in [21] is bounded in
under the assumptions on these weights. The same statement is true if we consider

the operator that appears in Eq. 1.3 and the space , but this is
not clear when we have . However, if we modify the operator by considering the
variant

we have an alternative operator that is bounded in when we only assume .
This new operator seems to be a good extension for the case since it is continuous
in , a property that will be useful later.

We consider now the modified operator , which coincides with when belongs to
1. The advantage of dealing with it is that we can give a version of Corollary 2 where we

weaken a bit the assumption on . That is, if is an arbitrary Young function that behaves
like one in the family F but only for large , we have the following result.

Corollary 3 Let 1, F , 1 and . Let be a Young function that
verifies , for every 0. Then, there exist two positive constants 1 and

2 such that the inequality

1
2

holds for every 0.

Corollary 3 will play a fundamental role in obtaining mixed inequalities for a fractional
version of the operators considered above. That is, as an important application of these
results we can give mixed estimates for the generalized fractional maximal operator ,
defined by

sup

where 0 and is a Young function.
When we consider the family of functions 1 log , for 1 and 0,

the operator is bounded from to if and only if , for
0 , and 1 1 . This result was set and proved in [1],
and generalizes the strong type of between Lebesgue spaces when we consider

1 and 0. As it occurs with , this estimate fails in the limit case . In [12]
it was proved an endpoint weak type estimate for this operator in the setting of spaces of
homogeneous type. The corresponding inequality for the Euclidean case is

(1.5)
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where 1 log and 1 log .
In [6] we study mixed inequalities for this operator when a power of the weight belongs

to 1. These inequalities arose from the fact that those mixed inequalities allow to obtain
an alternative proof of the continuity properties of discussed above (see Section 4.3
in [6] for further details). The proof relies on a pointwise estimate that relates the operators

and (see Proposition 10 in Section 3) and it is a generalization of a Hedberg type
inequality used in [5] to give mixed estimates for the fractional maximal operator , when
0 .

The following two theorems contain mixed inequalities for for the cases
and the limiting case , respectively. In the particular case in which the power of

belongs to 1, both results were established and proved in [6].

Theorem 4 Let 1 log , with 1 and 0. Let 0 ,
and 1 1 . If 1 and 1 1 , then we have that

1 1
1

1
1

where 1 log .

Theorem 5 Let 1 log , with 1 and 0. Let 0 and
1 1 . If 1 and , then there exists a positive constant such that

1

where 1 log , 1 log 1 and
1 log .

Since when 1 log , as an immediate consequence of
Theorem 5 we have that

1 .

Remark 1 These two last theorems are very important since they give good extensions to
many results concerning to mixed inequalities.

In [5] we use mixed inequalities for proved in [8] to give the corresponding estimates
for the fractional maximal operator . A stronger version can be obtained if we use
in the proof the mixed estimate for given in [15]. However, this can only be done for
the limiting case 1 and , since the proof for the remaining cases
1 depends heavily on an auxiliary lemma which uses 1 condition of .
We can use Theorem 4 to overcome this problem. Indeed, if we set 1 and 0 we
have . Therefore , and we obtain the corresponding extension of
Theorem 1 in [5] for the case , for every 1 .
If we assume 1 1

1 in Theorem 4, then . In this case we precisely
obtain Theorem 4.9 in [6]. If we furthermore set 1 and 0, then

. This recovers Theorem 1 in [5], for the case 1.
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Theorem 5 extends the limiting case 1 and for in [5] when we
set .
If we assume 1 in Theorem 5, we recover Theorem 4.11 in [6].
When we take 1 in Theorem 5 we obtain an estimate similar to Eq. 1.5.

The remainder of this paper is organized as follows: in Section 2 we give the required
preliminaries and basic definitions. Section 3 contains some auxiliary results that will be
useful in the main proofs. In Section 4 we prove both Theorem 1 and Corollary 3. Finally,
we prove Theorem 4 and Theorem 5 in Section 5, as an application of the main result.

2 Preliminaries and Definitions

We shall say that if there exists a positive constant such that . The
constant may change on each occurrence. If we have and , this will be
denoted as .

Given a function , we will say that if is locally integrable. In the case
, the corresponding space is the usual 1 .

By a weight we understand a function that is locally integrable, positive and finite in
almost every . Given 1 , the -Muckenhoupt class is defined to be the set of
weights that verify

1 1 1
1

for some positive constant and for every cube . We shall consider cubes in
with sides parallel to the coordinate axes. In the limiting case 1, we say that 1 if
there exists a positive constant such that for every cube

1
inf

where inf denotes the essential infimum of in .
The smallest constants for which the corresponding inequalities above hold are

denoted by , 1 and called the characteristic constants of .
Finally, the class is defined as the collection of all the classes, that is,

1 . It is well known that the classes are increasing on , that is, if then
. For further details and other properties of weights see [10] or [13].

There are many conditions that characterize (see [11] for a detailed account). In this
paper we will use the following one: if there exist positive constants and such
that, for every cube and every measurable set we have

where .
Every Muckenhoupt weight satisfies a reverse Hölder condition. That is, if for

some 1 , then there exist positive constants and 1 that depend only on the
dimension , and , such that

1 1
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for every cube . We write RH to indicate that the inequality above holds, and we
denote by RH the smallest constant associated to this condition. It is easy to see that
RH RH , for every 1 .

Given a locally integrable function , the Hardy-Littlewood maximal operator is defined
by

sup
1

.

We say that 0 0 is a Young function if it is convex, increasing, 0 0
and when . Given a Young function , the maximal operator is
defined, for loc, by

sup

where denotes the Luxemburg type average of the function in the cube , defined
by

inf 0
1

1 .

Given a weight , we can also consider the weighted Luxemburg type average
to be defined as

inf 0
1

1 .

It is easy to check that from the definition above we have

1
1.

When , the measure given by is doubling. Thus, by following
the same arguments as in the result of Krasnosel’skiı̆ and Rutickiı̆ ([14], see also [20]) we
can get that

inf
0

. (2.1)

A Young function is submultiplicative if there exists a positive constant such that

for every 0. We say has lower type , 0 if there exists a positive constant
such that

for every 0 1 and 0. Also, has upper type , 0 if there exists a
positive constant such that

for every 1 and 0. As an immediate consequence of these definitions we have that,
if has lower type then has lower type , for every 0 . Also, if has upper
type , then it has upper type , for every .

Given a function 0 0 we define the generalized inverse of as
1 inf 0

with the convention that inf .
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The generalized Hölder inequality establishes that if and are Young functions
satisfying

1 1 1

for every 0 then there exists a positive constant such that

. (2.2)

In this article we shall deal with Young functions of the type 1 log ,
where 1, 0 and log max 0 log . It is well known that this class of functions
are submultiplicative, have a lower type and have upper type , for every . Moreover,
we have (see, for example, Proposition 1.18 in [6] or p.105 in [9]) that

1 1 1 log . (2.3)

The proof of the main result can be reduced to studying the dyadic version of the operator
involved. By a dyadic grid we understand a collection of cubes of that satisfies the
following properties:

(1) every cube in has side length 2 , for some ;
(2) if then or ;
(3) 2 is a partition of for every , where denotes

the side length of .

The dyadic maximal operator D associated to the Young function and to the dyadic
grid is defined in a similar way as above, but the supremum is taken over all cubes in .
It can be shown that

3

1
D (2.4)

where are fixed dyadic grids.

3 Auxiliary Results

The following lemma gives us the decomposition of level sets of dyadic generalized max-
imal operators into dyadic cubes. A proof of this result can be found in ([2], Lemma 2.1);
see also Proposition A.1, p.237, in [9].

Lemma 6 Given 0, a bounded function with compact support, a dyadic grid and
a Young function , there exists a family of maximal cubes of that satisfies

D

and for every .

The next lemma is purely technical and gives a fundamental fact that will be crucial in
the main proof.

Lemma 7 Let be the function defined in 0 by

1 1 1
if 0

1 if 0.
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Then we have that 1 1 , for every 0.

The following proposition establishes that if and are equivalent Young functions for
large, then they have equivalent Luxemburg norm on every cube . As a consequence, we

have that .

Proposition 8 Let and be Young functions that verify for every 0
0. Then , for every cube .

Proof Fix loc. By hypothesis there exist two positive constants 1 and 2 such that

1 2

for 0. Thus, given 0 we have that

1 1

0

1

0

0
2 .

If we set then

1
0 2

which implies that max 1 0 2 . By interchanging the roles of
and we can obtain the other inequality.

The next result gives a version of Jensen inequality for Luxemburg averages.

Lemma 9 Let be a Young function, loc and 1. Then there exists a positive
constant such that for every cube

.

Proof Notice that if 1, then 1 . Picking 1 we can estimate

1
dy

1
dy

1
dy

1
1 1

1
1

1 1

and therefore
1 .

The following proposition provides a pointwise estimate between the operators
and , where the functions involved are related in certain way. This result can be seen as
a Hedberg type estimate for generalized maximal operators.
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Proposition 10 Let 0 , 1 and 1 1 . Let be
Young functions verifying 1 1 , for every 0 0. Then, for every
nonnegative functions and we have that

for every .

Proof Define 1 and let . Then

1.

Fix and a cube such that . By using generalized Hölder inequality (2.2) we obtain

1

1 1

1 1

1

.

4 Proof of theMain Result

We devote this section to the proof of Theorem 1 and its corollary. We shall present and
prove some auxiliary results that will be useful to this purpose. Recall we are dealing with
a function F , where 1 is given. By Eq. 2.4, it will be enough to prove that

D

where is a given dyadic grid. We can also assume that 1 and that is a
bounded function with compact support. Then, for a fixed number 2 , we can write

D 1 D 1 1

.

For every we consider the set

D

and by virtue of Lemma 6, there exists a collection of dyadic cubes that satisfies
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and for each . By maximality, we have

2 for every . (4.1)

We proceed now to split for every , as in [15], the obtained cubes in different classes.
If 0, we set

1 1

and also

1
1

.

The next step is to split every cube in the family 1 . Fixed 1 , we perform

the Calderón-Zygmund decomposition of the function at height . Then we obtain,

for each , a collection of maximal cubes, , contained in and which satisfy

1
2 for every . (4.2)

We now define, for every 0 the sets

1 0

and also

1 1 and 1 0 .

Since , we can estimate

0

1

1

1 .

If we can prove that given a negative integer , there exists a positive constant ,
independent of , for which the following estimate

0

1

1

1

(4.3)
holds, then the proof would be completed by letting .

In order to prove Eq. 4.3 we need some auxiliary results. The two following lemmas deal
with the family of cubes defined above. Both were set and proved in [15]. However, we
include the proof of the second one since there are slight changes because we work with
Luxemburg averages.
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Lemma 11 ([15], Lemma 2.3) If 0 and , then there exist two positive
constants 1 and 2, depending only on and such that

1
2 . (4.4)

Lemma 12 If is a cube in 1 , then there exists a positive constant
, independent of , such that

.

Proof We shall first prove that if or or or ,
then . By maximality, for the first case we have

from where we easily deduce that . The second case can be reduced to the first, since
. For the third case, notice that . Therefore, we must have or

. If the first condition held, we would have . Then

1 1

and . This is absurd because is a maximal cube that verifies

1
.

Then we must have and this implies that . Finally, the fourth case follows
from the third since .

With this fact in mind consider a cube in , say, . We want to estimate

.

Note that if , then the level of is greater than . Therefore

.

Since we have that

1
1

or equivalently .

On the other hand, since 2 we have

1

2
1 or equivalently

2
.
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By combining these inequalities together with the convexity of we obtain

2
2

2
2

2

2

1
.

Proof of Theorem 1 We shall write some parts of the proof as claims, which will be proved
at the end, for the sake of clearness. Recall that we have to estimate the two quantities

0

1

and

1

1

by , with independent of .
We shall start with the estimate of . Fix 0 and let . We define a

sequence of sets recursively as follows:

0 is maximal in in the sense of inclusion

and for 0 given we say that 1 if there exists a cube in which verifies

1 2
(4.5)

and it is maximal in this sense, that is,

1 2
(4.6)

for every .

Let 0 , the set of principal cubes in . By applying Lemma 11 and the
definition of we have that

0

1

0

1
1 2

0

1
2 1 .
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Let us sort the inner double sum in a more convenient way. We define

and is the smallest cube in that contains it .

That is, every is not a principal cube, unless . Recall that
implies that there exist two positive constants and verifying

(4.7)

for every cube and every measurable set of .
By using Eq. 4.6 and Lemma 12 we have that

A

2

A

A

.

Therefore,

0

1

0

2

0

2 .

Claim 1 Given 0 and , there exists a positive constant , independent
of , such that

. (4.8)

Using this claim, we obtain

0

1

0

2
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0

2

0

2
1

Claim 2 There exists a positive constant , independent of , that satisfies 1 .

With this claim at hand, we can obtain

where does not depend on .
Let us center our attention on the estimate of . Fix 0 , where is the number

appearing in Eq. 4.7. We shall build the set of principal cubes in 1 1 . Let

1
0 is a maximal cube in 1 in the sense of inclusion

and, recursively, we say that 1
1, 0, if there exists a cube 1 such

that
1

(4.9)

and it is the biggest subcube of that verifies this condition, that is

1
(4.10)

if . Let 1
0

1, the set of principal cubes in 1. Similarly
as before, we define the set

1
1 and is the smallest cube in 1 that contains it .

We can therefore estimate as follows

1

.
1 A 1

.
1 A 1

.

Fixed , observe that

A 1 A 1

2 .
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Combining this inequality with the condition of we have, for every , that

A 1

A 1

.

Thus,

.
1

.
1

.
1

.

Claim 3 If 1 then there exists a positive constant such that

.

We can proceed now as follows

1

1

.
1

.
1

.
1

2 .

Claim 4 There exists a positive constant , independent of , that verifies 2 ,
for almost every .

This claim allows to obtain the desired estimate for . This completes the proof.

In order to conclude, we give the proof of the claims.

Proof of Claim 1 Fix 0 and a cube . We know that or,

equivalently, 1. Denote with and ,

where is the number verifying that if , then

0 log .
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Then,

1 .

This inequality implies that either 1 2 or 1 2. If the first case holds, since F

we have that

1
1 2

2

1

and from here we can obtain

.

On the other hand, if 1 2 then again

1
1 2

2 0
1

log

since F . This implies that

2 0

where log .

Since , there exists 1 such that RH . Let 0 max 1 and fix
0 0, where

0 min
1

0
1

RH 1

log 2

log 2 2 0
2

.

Now we define 1 , therefore 1 1 . By applying Hölder’s inequality with
and with respect to the measure , we get

2 0
1

[ ]

1
1

1

.

(4.11)
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Let us analyze the third factor. From the well-known fact that log 1 for every
0 and applying Hölder’s inequality with and we have

1
1

1
log

1

1
1

0

1
1

1
1

1 1

0
1

RH

1

0
1

RH
1

2

2

by virtue of the election for and Lemma 7.
Returning to Eq. 4.11 we have that

1
[ ]

1

where 2 0
2 . By denoting , we have that the second factor is

. Using Eq. 2.1 we have that for every 0

1

[ ]

1

[ ] .

Pick 1 2 and observe that with this choice

2
and 1 2 2

by virtue of the definition of . Thus,

4
[ ]

for every 0 0, with independent of . The dominate convergence theorem allows
to conclude the thesis by letting 0.
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Proof of Claim 2 Fix 0 and such that . We shall consider a sequence
of nested principal cubes in that contain . Let 0 be the maximal cube (in the sense of
inclusion) in that contains . In general, given we denote with 1 the maximal
principal cube in that contains . This so-defined sequence has only a finite number of
terms. If not, for every we would have

1
0 0

1

2

1 1

2

or equivalently

2
0 0

1

and we would get a contradiction by letting . Therefore, can only belong to a
finite number of these cubes. Thus,

0

1

0

2
1

1

0

2

1 2 2 1 1

2 1 .

Proof of Claim 3 This proof is similar to the given for Claim 1, with some obvious changes
since the average of over is not equivalent to . Following the same notation as

in Claim 1, since 1, we have that either 1 2 or 1 2. If 1 2, we

obtain the thesis exactly in the same way as in this claim. On the other hand, if 1 2,
we have that

where log .

Fix 0 0, where

0
1

RH 0 1

and set 1 . We apply Hölder’s inequality with and with respect to to obtain

1
[ ]

1
1

log

1

(4.12)
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Recall that satisfies 1 . Thus, we can estimate the third factor as

follows

1
log

1

1
1

0 1
1

1
1 1

RH 0
1

2

2

from the choice for and Lemma 7. Returning to Eq. 4.12 we obtain

1
[ ]

1

with 2 . Similarly as we did in the proof of Claim 1 we can conclude that

1

[ ]

1

[ ]

for every 0. Picking 1 2 we get

2
y 1 2 2 .

Therefore,

4 2

[ ]

for every 0 0. Again, the constant does not depend on . Letting 0 we obtain
the thesis.

Proof of Claim 4 Let us fix and assume that . For every level , there
exists at most one cube such that . If this cube does exist, we denoted it by .
Let . Since , is bounded from below. Then there exists 0, the
minimum of . We shall build a sequence of elements in recursively: having chosen ,
with 0, we pick 1 as the smallest element in greater than and that verifies

1
1 1

2
. (4.13)
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Observe that if y 1, then

1 2
. (4.14)

This sequence has only a finite number of terms. Indeed, if it was not the case, we would
have

1

1 2
0 0

for every 0. By letting we would arrive to a contradiction. Then

0. Denoting 1 , and using Eq. 4.14 we can write

2
1 0

2

F 1

.

We shall prove that there exists a positive constant , independent of , such that

F 1

. (4.15)

If this inequality holds, we get that

2 2
0

1

2
0

2
1

2 1 2
0

2

4 1

which completes the proof of the claim. To finish, let us prove Eq. 4.15.
Fix 0 and observe that if 0, then

1

1.

Let 1. If , then we must have , otherwise we

would have , a contradiction. Let the smallest principal cube that contains
(this cube does exist because we are assuming 0). By applying Eq. 4.9 and Eq. 4.10 we
conclude that

1

and also
1

.
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Combining these two estimates with Eq. 4.14 we obtain that, for almost every

1

1

inf inf

1

1

2 1

1
.

Then

2 2
1

1
.

Since 1 , there exist two positive constants and for which the inequality

holds for every cube and every measurable subset of . Therefore,

1

1

2 2
1

.

If , we have and in this case

1

1
inf

inf
1

1

1

2 1

which is the corresponding estimate obtained above, with . Thus,

F 1

2 1

which proves Eq. 4.15.
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In order to prove Corollary 3 we need the following result. A proof can be found in [3].

Lemma 13 Let be a measure, a sub-additive operator, and a Young function. Assume
that

for some positive constants and , and every 0. Also assume that
0 . Then

2 0

2
.

Proof of Corollary 3 The equivalence between and imply that there exist positive
constants and such that

for . Proposition 8 establishes that there exist two positive constants and such
that

for almost every . By applying Corollary 2 and setting 1 max 1 we have
that

1

1 .

Observe that

which directly implies since the measure given by
is absolutely continuous with respect to the Lebesgue measure. We now apply

Lemma 13 with , 0 1, and the measure given above to obtain

2

2 1

1

2

2

1

2

2

1
2 .

5 Applications: Mixed Inequalities for the Generalized Fractional
Maximal Operator

We devote this section to proving Theorem 4 and Theorem 5.
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Proof of Theorem 4 Define

1 1

and let be the auxiliary function given by

if 0 1
1 log if 1.

By virtue of Eq. 2.3 we have that

1
1

1 log

1

1 log
1

for every 1. Observe that 1: indeed, since we have and thus
1 . On the other hand, 1 . By combining these two inequalities

we have 1. Applying Proposition 10 and Lemma 9 with we can conclude that

0 0
1

0 . (5.1)

Also observe that
1

a.e. . (5.2)

Indeed, it is clear that . Given and a fixed cube containing it, we can write

1 1

1

which directly implies the estimate.
Notice that is equivalent to a Young function in F , for 1. Since 1 1
, if we set 0 , then we can use inequalities Eq. 5.1 and Eq. 5.2 and Corollary 3

to estimate

1

0

0

1 2

1

1

1

where

2

1
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1 y . By definition of we have that

.

If we set 1 1 1 1, then

2

2
1 1 .

Observe that
1 1 1 1 1 1

1 .

Also, notice that
1 1 .

Therefore,

2 1 1

2 1
1

2 1 .

On the other hand, 1 over and since has an upper type , we can estimate the
integrand by . Then we can conclude the estimate by proceeeding like we did in
part . Thus, we obtain

1 1
1

1
1

.

Proof of Theorem 5 Set 1 log , where . Thus 1

1 . By applying Proposition 10 with we have that

0 0
0 .

By setting 0 we can write

0

0

0

.

Since F , we can use the mixed estimate for which leads us to

0 0 . (5.3)
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The argument of above can be written as

0 0 1

1 .

Observe that for 0 1, , and for 1,

1 log

1 log

which implies 1 log . Then we can estimate as follows

0 0 1

1

Returning to Eq. 5.3 and setting 1 , the right hand side is bounded by

1 .

Notice that 1 . Therefore, the expression above is bounded by

1 1 .

To finish, observe that
1 1 log 1 log .
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9. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weights, extrapolation and the theory of Rubio de Fran-
cia. Operator Theory: Advances and Applications, 215. Birkhäuser/Springer Basel AG, Basel (2011).
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