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Abstract. A flat solvmanifold is a compact quotient �\G where G is a simply-connected
solvable Lie group endowed with a flat left invariant metric and � is a lattice of G. Any
such Lie group can be written as G = R

k
�φ R

m with R
m the nilradical. In this article we

focus on 6-dimensional splittable flat solvmanifolds, which are obtained quotienting G by a
lattice � that can be decomposed as � = �1 �φ �2, where �1 and �2 are lattices of R

k and
R
m , respectively. We analyze the relation between these lattices and the conjugacy classes

of finite abelian subgroups of GL(n, Z), which is known up to n ≤ 6. From this we obtain
the classification of 6-dimensional splittable flat solvmanifolds.

1. Introduction

A solvmanifold is a compact quotient �\G of a simply-connected solvable Lie
group G by a discrete subgroup � (such a cocompact discrete subgroup � is called
a lattice). When this solvmanifold carries a flat Riemannian metric (i.e., its Levi–
Civita connection has curvature zero) induced by a flat left invariant Riemannian
metric on G then �\G is called a flat solvmanifold. In this case �\G is a compact
flat manifold and since � = π1(�\G), � is a Bieberbach group.

Questions concerning the classification of flat manifolds and of solvmanifolds
have been studied since the early twentieth century (see the book of Charlap [5] on
flatmanifolds, and for instanceChevalley [6],Malcev [18],Mostow [22],Auslander
[1], on solvmanifolds).

More recently, compact solvmanifolds have been used as a source of examples
and counterexamples in diverse areas of differential geometry. Solvmanifolds gen-
eralize thewell known family of nilmanifoldswhich are defined similarlywhenG is
nilpotent. Many important global properties, such as cohomological properties, of
nilmanifolds cannot be generalized to solvmanifolds. For instance, the well known
Nomizu’s theorem [24] which allows to compute the de Rham cohomology of a
nilmanifold in terms of the cohomology of the Lie algebra does not necessarily hold
for a solvmanifold. Moreover, it is difficult to determine whether a given solvable
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Lie group admits lattices or not. Nevertheless, there is such a criterion for nilpotent
Lie groups and it was given by Malcev in [18].

Solvmanifolds and nilmanifolds have also had several applications in complex
geometry. For instance, theKodaira–Thurston nilmanifoldwas the first example of a
compact non-Kähler symplecticmanifold [15]. The completely-solvableNakamura
manifold is an example of a cohomologically Kähler non-Kähler solvmanifold [8].
The well known Oeljeklaus–Toma manifolds (which are compact complex non-
Kähler manifolds constructed by using number theory in [25]) were described by
Kasuya as solvmanifolds and using this description he proved that they do not admit
any Vaisman metric [13].

On the other hand, compact flat manifolds are well understood due to the classi-
cal Bieberbach’s theorems and they have been used to study different phenomena in
geometry. For instance, questions about isospectrality (see [20] and the references
therein), Kähler flat metrics with holonomy in SU(n) [7], among others.

The class of flat solvmanifolds lies in the intersection between the two well
studied theories of solvmanifolds and compact flat manifolds, and thus provide a
nice interplay between them. Also, this class is rich enough to produce a diverse
collection of examples.

In [2], L. Auslander and M. Auslander characterized the fundamental groups
of compact flat solvmanifolds. In [21], Morgan gave a classification of such man-
ifolds (in the more general case when � is closed but not necessarily discrete) in
dimensions n ≤ 5, except the five-dimensional ones with first Betti number equal
to one.

In a previous paper [27], we studied flat solvmanifolds from the point of view
of the well known Milnor’s characterization of solvable Lie groups which admit a
flat left-invariant metric. We combined this with Bieberbach’s classical theory to
prove some properties of the holonomy group of a flat solvmanifold. Moreover,
we also gave a classification of flat solvmanifolds in dimensions 3, 4 and 5, using
the fact that in these dimensions all these solvmanifolds are quotients of almost
abelian Lie groups, i.e., simply-connected solvable Lie groups whose Lie algebra
has a codimension-one abelian ideal.

The main goal of this article is to continue the study initiated in [27] and, in
particular, to provide the classification of splittable flat solvmanifolds in dimension
6. In Sect. 3 we outline some facts about splittable solvmanifolds. A solvmanifold
�\G will be called splittable if G is a semidirect product G = R

k
�φ N , where N

is the nilradical of G, and the lattice � is splittable, i.e., � = �1 �φ �2 where �1
and �2 are lattices in R

k and N respectively. A flat Lie group G is splittable since
it can be written, according to [19], as G = R

k
�φ R

m where R
m is the nilradical

of G.
After recalling a criterion given by [31] to determine all the splittable lattices

in a splittable Lie group, we embed the holonomy group of a (k +m)-dimensional
splittable flat solvmanifold as a subgroup ofGL(m, Z). From this point of view we
can give a relation between the splittable lattices of a flat Lie group and finite abelian
subgroups of GL(k, Z), which allows us to give a way to classify splittable flat
solvmanifolds. We point out that the classification of finite subgroups ofGL(n, Z)

is known up to n ≤ 6.
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In Sect. 4 we study the 6-dimensional case. In dimension 6 any flat Lie group
is of the form G = R � R

5 or G = R
2

� R
4. In Sect. 4.1 we obtain a complete

classification of 6-dimensional almost abelian solvmanifolds. In this case, we study
the conjugacy classes of matrices of finite order in GL(5, Z) and we obtain the
conjugacy classes of subgroups. We do this by applying the methods developed in
[32], without relying on any known classification, to illustrate a possible way to
tackle the problem in higher dimensions. Finally, in Sect. 4.2 we obtain a complete
classification of 6-dimensional splittable non almost abelian solvmanifolds, by
using the classification of conjugacy classes of finite subgroups of GL(4, Z).

2. Preliminaries on compact flat manifolds and solvmanifolds

A discrete and torsionfree subgroup � of Iso(Rn) ∼= On � R
n with the property

that the orbit space R
n/� is compact is called a Bieberbach group.

An equivalent condition for � to be torsionfree is that the action of � is free.
Moreover, if a subgroup of Iso(Rn) is discrete and acts freely on R

n then the action
is also properly discontinuous (for all x ∈ R

n there exists an open neighborhood
Ux such that gUx ∩ Ux = ∅ for all g �= Id) and the converse also holds. In this
case, R

n/� admits the structure of a differentiable manifold and π1(R
n/�) ∼= �.

An important subgroup of a Bieberbach group � is the subgroup � of pure
translations of �, i.e., the elements (A, v) ∈ � such that A = I. Note that � =
� ∩ R

n .
Bieberbach groups are well described by three classical theorems known as

“Bieberbach’s theorems”. For more details about Bieberbach groups, see [5].

Theorem 2.1. (Bieberbach’s First Theorem) Let � be a Bieberbach subgroup of
Iso(Rn) and � = � ∩ R

n. Then � is a normal free abelian subgroup of rank n
and �/� is a finite group. Furthermore, � is the unique maximal normal abelian
subgroup.

In other words, a Bieberbach group � satisfies an exact sequence 1 → �
ι−→ �

π−→
H → 1, where � is the traslation subgroup of � and H = �/� is a finite group,
called the holonomy group (or point group) of �, which can be identified to p1(�),
where p1 : � → O(n) is the projection into the first factor. Since � is abelian, the
action H on � is given by h · γ = h̃γ h̃−1, where h̃ is any element of � satisfying
π(h̃) = h.

Following [11], the set of data (H,�) := (H,�, ·) is called a crystal class.
More precisely, (H,�) is the set of all n-dimensional Bieberbach groups � that
appear as an extension of H by �. Two crystal classes (H,�) and (H ′,�′) are
arithmetically equivalent if there are isomorphisms ϕ : H → H ′ and α : � → �′
so that

α(h · γ ) = ϕ(h) · α(γ ) for all γ ∈ �. (1)

Choosing a free integral basis for �, a crystal class can be viewed as a one-to-one
homomorphism H → Aut(�) ∼= GL(n, Z). So after choosing such bases for �
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and �′, H and H ′ can be considered as subgroups of GL(n, Z) and the condition
(1) transforms into αHα−1 = H ′, where α ∈ GL(n, Z). Therefore H and H ′
are conjugated in GL(n, Z). The resulting equivalence classes are the arithmetic
crystal classes or Z-classes.

Remark 2.2. Isomorphic Bieberbach groups determine the same arithmetic crystal
class. Indeed, if F : �1 → �2 is an isomorphism, then F(�1) = �2 where �i is
the traslation subgroup of �i . Hence, F induces an isomorphism ϕ : H1 → H2.
Let pi : �i → Hi be the natural projections. Let γ1 ∈ �1 and suppose p1(γ1) =
h1 ∈ H1. By the definition of ϕ, we have p2(F(γ1)) = ϕ(h1). If α := F |�1 then,
for all γ ∈ �1 α(h · γ ) = α(γ1γ γ −1

1 ) = F(γ1)F(γ )F(γ1)
−1 = ϕ(h1) · α(γ ).

Theorem 2.3. (Bieberbach’s Second Theorem) Let f : �1 → �2 be a group
isomorphism of two Bieberbach subgroups of Iso(Rn). Then there exists α ∈ An :=
GLn(R) � R

n such that f (β) = αβα−1 for all β ∈ �1.

Theorem 2.4. (Bieberbach’sThirdTheorem)For each n ∈ N, there are only finitely
many isomorphism classes of Bieberbach subgroups of Iso(Rn).

We can study compact flat manifolds from studying Bieberbach groups. Indeed,
it is well known that a RiemannianmanifoldM is flat if and only ifM is isometric to
R
n/� where � is a subgroup of Iso(Rn) that acts properly discontinuously on R

n .
In conclusion, Bieberbach subgroups of Iso(Rn) are just the fundamental groups
of compact flat manifolds.

Furthermore, the holonomy group of the Riemannian manifold R
n/� can be

identified with the finite group �/� (see for instance [5, page 50]). We will denote
Hol(�) := �/�.

As a consequence of Bieberbach’s Second and Third we have

Theorem 2.5. Let M and N be compact flat manifolds with isomorphic fundamen-
tal groups. Then there exists an affine equivalence1 between M and N. Moreover,
for each n ∈ N there are only finitely many classes of affine equivalence of compact
flat manifolds in dimension n.

We are interested in a special type of compact flat manifolds which arise from
solvable Lie groups equipped with a flat left invariant metric. In [19], Milnor gave
a nice description of such groups.

Theorem 2.6. A left invariant metric 〈·, ·〉 on a Lie group G is flat if and only if the
associated Lie algebra g splits as an orthogonal direct sum g = b ⊕ u, where b is
an abelian subalgebra, u is an abelian ideal and the linear transformation adb is
skew-adjoint for every b ∈ b.

We will call (G, 〈·, ·〉) a flat Lie group and (g, 〈·, ·〉e) will be called a flat Lie
algebra. Using this characterization, Barberis, Dotti and Fino decompose a flat Lie
algebra further in the following way [3, Proposition 2.1].

1 An affine equivalence between twoRiemannianmanifoldsM and N is a diffeomorphism
F : M → N such that f ∗∇M = ∇N , where ∇M (respectively ∇N ) is the Levi–Civita
connection on M (respectively N ).
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Theorem 2.7. Let (g, 〈·, ·〉e) be a flat Lie algebra. Then g splits as an orthogonal
direct sum,

g = b ⊕ z(g) ⊕ [g, g]
where b is an abelian subalgebra, [g, g] is abelian and the following conditions are
satisfied:

1. ad : b → so([g, g]) is injective,
2. dim[g, g] is even, and
3. dim b ≤ dim[g,g]

2 .

As a consequence, since {adX | X ∈ b} is an abelian subalgebra of so([g, g]),
it is contained in a maximal abelian subalgebra. Since these are all conjugate, there
exists an orthonormal basis B of z(g) ⊕ [g, g] and λ1, . . . , λn ∈ b∗ such that for
X ∈ b,

[adX ]B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0s
0 −λ1(X)

λ1(X) 0
. . .

0 −λn(X)

λn(X) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where n = dim[g,g]
2 and s = dim z(g).

Note that a flat Lie algebra (g, 〈·, ·〉e) is 2-step solvable, since [g, g] is abelian,
and unimodular,2 since adX is skew-adjoint for all X ∈ b. Also from this it follows
that the nilradical of g is z(g) ⊕ [g, g].

Wewill look for discrete subgroups of flat Lie groups such that�\G is compact.
This space endowed with the induced flat metric fromG is a compact flat manifold.

In general, if G is a solvable Lie group a discrete and cocompact subgroup �

of G is called a lattice and the quotient �\G is called a solvmanifold. With this
definition, solvmanifolds are always compact, orientable, and parallelizable.

It is well known that every simply-connected solvable Lie group G is diffeo-
morphic to R

n for n = dimG. This implies that the higher homotopy groups of a
solvmanifold vanish and π1(�\G) ∼= �.

Remark 2.8. WhenG is a flat Lie group and� is a lattice ofG then� is a Bieberbach
group, since π1(�\G) = �.

The fundamental group plays an important role in the study of solvmanifolds.
Indeed, Mostow’s Theorem below shows that solvmanifolds are classified, up to
homeomorphism, by their fundamental groups.

2 A Lie algebra g is said to be unimodular if tr adX = 0 for all X ∈ g.
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Theorem 2.9. (Mostow [23]) Let G1 and G2 be simply-connected solvable Lie
groups with �i a lattice in Gi for i = 1, 2. If � : �1 → �2 is an isomorphism
then there exists a diffeomorphism �̃ : G1 → G2 such that �̃|�1 = � and
�̃(γ g) = �(γ )�̃(g) for all γ ∈ �1, g ∈ G1.

Corollary 2.10. Two solvmanifolds with isomorphic fundamental groups are dif-
feomorphic.

In particular, two solvmanifolds are diffeomorphic if and only if they are home-
omorphic.

3. Splittable flat solvmanifolds

We are interested in classifying 6-dimensional flat solvmanifolds (up to homeo-
morphism). However, to determine all the lattices in a given solvable Lie group is a
very difficult task and has only been performed for some special cases, for example
the (2n + 1)-Heisenberg group [10] and the 4-dimensional oscillator group [9].
We will focus on a special type of 6-dimensional flat solvmanifolds, namely the
splittable ones.

Let us begin by recalling some structure theory on solvable Lie groups.
LetG be a simply-connected solvable Lie group, and N the nilradical ofG (i.e.,

the connected closed Lie subgroup of G whose Lie algebra is the nilradical n of g).
Moreover, [G,G] is the connected closed Lie subgroup with Lie algebra [g, g]. As
G is solvable, [G,G] ⊂ N so N\G is abelian, and from the long exact sequence
of homotopy groups associated to the fibration N → G → N\G it follows that
N\G is simply-connected. Therefore N\G ∼= R

k for some k ∈ N and G satisfies
the short exact sequence

1 → N → G → R
k → 1.

G is called splittable if this sequence splits, that is, there is a right inverse homo-
morphism of the projection G → R

k . This condition is equivalent to the existence
of a homomorphism φ : R

k → Aut(N ) such that G is isomorphic to the semidirect
product R

k
�φ N .

Let � be a lattice in a connected solvable Lie group G, and N the nilradical of
G. Then, the following theorem is well known.

Theorem 3.1. (Mostow [22]) � ∩ N is a lattice in N.

Following [31], a lattice � of a splittable Lie group R
k

�φ N will be called
splittable if it can be written as � = �1 �φ �2 where �1 ⊂ R

k and �2 ⊂ N are
lattices of R

k and N respectively. Consequently �\G will be called a splittable
solvmanifold.

Remark 3.2. It is not true that every lattice of a splittable Lie group R
k

�φ N is
splittable, as the next example shows.
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Example 3.3. (A non-splittable lattice in a splittable Lie group)
We owe this example to Prof. Jonas Deré. Consider G = R

2
�φ R

4. Let
B = {e1, e2} and3

[ade1 ]B′ =
(
0 −π

π 0

)
⊕
(
0 0
0 0

)
, [ade2 ]B′ =

(
0 0
0 0

)
⊕
(
0 −π

π 0

)
,

for some basis B′ of R
4. Then

φ(t, s) =
(
cos(π t) − sin(π t)
sin(π t) cos(π t)

)
⊕
(
cos(πs) − sin(πs)
sin(πs) cos(πs)

)
.

In G consider the subset

� =
{
(z1, z2, z3 − z1

2
, z4, z5, z6) | zi ∈ Z

}
.

An easy computation shows that for γ1 = (m1, . . . ,m6), γ2 = (n1, . . . , n6) ∈
�,

γ1γ2 = (m1 + n1,m2 + n2,m3 ± n3 − m1 ± n1
2

,m4 ± n4,m5 ± n5,m6 ± n6)

= (m1 + n1,m2 + n2, (m3 ± n3 + n1
∓1 + 1

2
)

− m1 + n1
2

,m5 ± n5,m6 ± n6) ∈ �,

γ −1
1 = (−m1,−m2,∓m3 ± m1

2
,∓m4,∓m5,∓m6)

= (−m1,−m2,∓m3 + ±m1 − m1

2
+ m1

2
,∓m4,∓m5,∓m6) ∈ �.

Moreover, it is easily seen that � is discrete and cocompact, so � is a lattice of G.
If�were isomorphic to a semidirect productZ2

�Z
4, therewould exist elements

α, β ∈ � with [α, β] = e such that their projections to R
2 generate Z

2. Since not
both α1β2 and α2β1 can be even (otherwise they would not generate Z

2), we can
assume without loss of generality that β2 and α1 are odd. Note that an element
γ = (z1, . . . , z6) ∈ � which commutes with β must satisfy z3 − z1

2 = 0, and thus
this gives us a contradiction with α1 being odd.

In [31], a useful criterion to determine all the splittable lattices in a splittable
Lie group G = R

k
�φ N was given. We restate the theorem and for completeness

we give a proof in our case of interest, i.e., when N is abelian.
Note that, fixing a basis {Xi }ki=1 of R

k , we have

φ

(
k∑

i=1

ti Xi

)
=

k∏
i=1

exp(ti adXi ), ti ∈ R, 1 ≤ i ≤ k. (3)

3 We will denote A ⊕ B the block diagonal matrix

(
A 0
0 B

)
.
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Indeed, we have the following commutative diagram:

R
k gldim N (R)

R
k GLdim N (R)

ad

id exp

φ

,

and exp(adXi ) exp(adX j ) = exp(adX j ) exp(adXi ) because {adX | X ∈ R
k} is an

abelian subalgebra.

Theorem 3.4. Let G = R
k

�φ R
m be a splittable Lie group, where R

m is the
nilradical of G. Then G has a splittable lattice if and only if there exists a basis
{X1, . . . , Xk} of Rk such that exp(adXi ) is similar

4 to an integer matrix for all 1 ≤
i ≤ k. In this case, the lattice is� = (

⊕k
i=1 ZXi )�φ PZ

m where P−1 exp(adXi )P
is an integer matrix.

Proof. ⇐) Let �1 be the lattice
⊕k

i=1 ZXi ⊂ R
k and �2 the lattice PZ

m ⊂ R
m

where Ei := P−1 exp(adXi )P is an integer matrix for all 1 ≤ i ≤ k. If γ ∈ �1
then γ = ∑

mi Xi , mi ∈ Z. Therefore, according to (3),

φ(γ )�2 =
(

k∏
i=1

exp(adXi )
mi

)
PZ

m = P

(
k∏

i=1

Emi
i

)
Z
m ⊂ PZ

m,

so �1 preserves �2 and therefore the semidirect product � = �1 �φ �2 is well
defined. Clearly, � is a discrete subgroup of G. The cocompactness can be seen as
in [31, Theorem 2.4]. Thus, � is a lattice of G.

⇒)Let� = �1�φ �2 be a splittable lattice inG, where�1 ⊂ R
k and�2 ⊂ R

m .
Then there exist a basis B = {X1, . . . , Xk} and a matrix P ∈ GLm(R) such that
�1 = ⊕k

i=1 ZXi and �2 = PZ
m . Moreover, as the semidirect product is well

defined it follows that for γ ∈ �1, φ(γ )PZ
m ⊂ PZ

m . In particular, choosing
γ = Xi for 1 ≤ i ≤ k we get exp(adXi )PZ

m ⊂ PZ
m . Therefore P−1 exp(adXi )P

must be an integer matrix for all 1 ≤ i ≤ k. ��

Remark 3.5. A lattice� = (
⊕k

i=1 ZXi )�φ PZ
m as above is isomorphic as a group

to E1,...,Ek := Z
k

�E1,...,Ek Z
m where the multiplication is given by

(r, t) · (r ′, t ′) = (
r + r ′, t + Er1

1 · · · Erk
k t ′
)
, r = (r1, . . . , rk), r ′ ∈ Z

k, t, t ′ ∈ Z
m .

Indeed, f : � →  given by f (
∑

ri Xi , Pt) = (r, t) is an isomorphism. The
multiplication is well defined because Ei E j = E j Ei for all 1 ≤ i, j ≤ k.

A splittable Lie group G = R
k

�φ R
m with k = 1 is called an almost abelian

Lie group in the literature and also can be defined by saying that its Lie algebra
g has a codimension-one abelian ideal. It follows from [4] that every lattice in an
almost abelian Lie group is splittable. Accordingly, an almost abelian solvmanifold
is a solvmanifold �\G such that G is almost abelian.

4 A n × n matrix A will be said to be similar (or conjugated) to B if there exists P ∈
GLn(R) such that P−1AP = B and integrally similar if P ∈ GLn(Z).



Classification of 6-dimensional splittable flat solvmanifolds

Example 3.6. In this example we show that there exist solvmanifolds S = �′\G ′
with G ′ non almost abelian such that S is diffeomorphic to an almost abelian
solvmanifold, i.e., �′ is isomorphic to a lattice � in an almost abelian Lie group.

Indeed, let g = R
2

� R
4 where

ade1 =
(
0 −π

π 0

)
⊕
(
0 −π

2
π
2 0

)
, ade2 =

(
0 −2π
2π 0

)
⊕
(

0 −2π
2π 0

)
.

There is no codimension-one abelian in g because ade1 and ade2 are linearly inde-
pendent. Therefore g is not almost abelian.

Nevertheless, A = exp(ade1) and B = exp(ade2) are integer matrices so G has
a splittable lattice � which is isomorphic to Z

2
�A,B Z

4. Given that B = A4, the
map (k, �, r1, r2, r3, r4) �→ (�, k + 4�, r1, r2, r3, r4) is an isomorphism between
Z
2

�A,B Z
4 and Z �A Z

5, which is isomorphic to a lattice in an almost abelian
Lie group. This implies by Corollary 2.10 that �\G is diffeomorphic to an almost
abelian solvmanifold.

We will observe next that any flat Lie group is a splittable Lie group and our
purpose will be to classify splittable lattices in flat Lie groups.

Let g = b ⊕ z(g) ⊕ [g, g] be a flat Lie algebra. We may re-write it as g =
R
k

�ad R
s+2n where b ∼= R

k and the nilradical is given by z(g) ⊕ [g, g] ∼= R
s+2n .

Here s = dim z(g) and 2n = dim[g, g]. Fixing {X1, . . . , Xk} a basis of R
k , we can

write the simply-connected group associated to g as G = R
k

�φ R
s+2n where

φ(
∑k

i=1 si Xi ) = ∏k
i=1 exp(si adXi ), where {adXi }ki=1 are as in (2). Therefore

det(φ(X)) = 1 for all X ∈ R
k .

Note that there may be more than one set {E1, . . . , Ek} of integer matrices
to which we can conjugate {exp(adXi )}ki=1. We show next that there is a close
relation between splittable lattices of flat Lie groups and finite abelian subgroups
of GL(s + 2n, Z).

Proposition 3.7. Let G = R
k
�φ R

s+2n be a splittable flat Lie group and � a split-
table lattice given by� = (

⊕k
i=1 ZXi )�φ PZ

s+2n, where Ei := P−1 exp(adXi )P
is integer for 1 ≤ i ≤ k. Then Hol(�\G) ∼= 〈E1, . . . , Ek〉.
Proof. Recall that � ∼= E1,...,Ek = Z

k
�E1,...,Ek Z

s+2n . Define f : E1,...,Ek →
〈E1, . . . , Ek〉 by f (r, t) = Er1

1 · · · Erk
k . It is clear that this map is an epimorphism

and that

Ker f = {(r1, . . . , rk) ∈ Z
k | Er1

1 · · · Erk
k = I} × Z

s+2n .

Therefore �/Ker f ∼= 〈E1, . . . , Ek〉. To finish, it is enough to prove that Ker f is
the maximal abelian normal subgroup � of �. It is clear that Ker f is abelian and
normal, so Ker f ⊂ �. Conversely, let (r, t) ∈ � and (r ′, t ′) ∈ Ker f . As they
commute, we have

(r + r ′, t + Er1
1 · · · Erk

k t ′) = (r ′ + r, t ′ + t).

Varying t ′ ∈ Z
s+2n we get Er1

1 · · · Erk
k v = v for all v ∈ Z

s+2n , and thus
Er1
1 · · · Erk

k = I. ��
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By Remark 2.2, if the Bieberbach groups Z
k

�E1,...,Ek Z
s+2n and Z

k
�F1,...,Fk

Z
s+2n are isomorphic, then their holonomy groups are conjugated in GL(k + s +

2n, Z). Since they are isomorphic to 〈E1, . . . , Ek〉 and 〈F1, . . . , Fk〉 respectively,
these subgroups are conjugated inGL(s+2n, Z). The converse statement does not
hold, as the next example shows.

Example 3.8. We owe this example to Prof. Derek Holt. Let A ∈ GL(36, Z) be
given by

A =
⎡
⎣ v1 v2

01×35
I35
w

⎤
⎦ ,

where

v1 = −(4, 1, 4, 2, 2, 4, 3, 4, 1, 2, 3, 3, 1, 1, 4, 4, 1, 2, 1, 2, 2, 3, 4, 4, 4, 4, 2, 1, 2,

4, 4, 3, 2, 3, 1,−15)t ,

v2 = (149, 4, 133, 64, 42, 130, 76, 143, 24, 53, 86, 103, 35, 9, 113, 144, 20,

69, 22, 61, 54, 82, 119, 120, 116, 132, 68, 26, 45, 118, 124, 100,

47, 110, 7, 120)t

and w = −(1, 1, . . . , 1) ∈ R
35. This matrix satisfies A37 = I36. Using the Magma

function AreGLConjugate, it can be seen that A2 is not integrally similar to A
or A−1. In fact, A is not integrally similar to Ai for all 2 ≤ i ≤ 37. Moreover, 1 is
neither an eigenvalue of A nor of A2. Then, by the following Theorem, A is not
isomorphic to A2 . However 〈A〉 = 〈

A2
〉
.

Theorem 3.9. [28, Corollary 8.9] Let A, B ∈ GL(n, Z) without non-trivial fixed
points (i.e. 1 is not an eigenvalue). Then Z �A Z

n ∼= Z �B Z
n if and only if B is

integrally similar to A or A−1.

Nevertheless, if we forget the matrices and we focus only on the subgroups we
have that two conjugate subgroups give rise to isomorphic lattices, as the following
lemma shows.

Lemma 3.10. Let E1, . . . , Ek, F1, . . . , Fk ∈ GL(s + 2n, Z). If 〈E1, . . . , Ek〉 is
conjugate to 〈F1, . . . , Fk〉 in GL(s + 2n, Z) then E1,...,Ek

∼= F ′
1,...,F

′
k
for some

generating set {F ′
i }ki=1 of 〈F1, . . . , Fk〉.

Proof. Suppose there exists Q ∈ GL(s + 2n, Z) such that Q−1 〈E1, . . . , Ek〉 Q =
〈F1, . . . , Fk〉. Thematrices {Q−1Ei Q}ki=1 generate 〈F1, . . . , Fk〉 and f : E1,...,Ek

→ Q−1E1Q,...,Q−1Ek Q given by f (r, t) = (r, Q−1t) is an isomorphism. ��
Tocomplete our analysis about the relationbetween the subgroups 〈E1, . . . , Ek〉

and the lattices E1,...,Ek we address the case when the cardinality of a minimal
generating set of 〈E1, . . . , Ek〉 is less than k. In order to do sowe need the following
lemma.



Classification of 6-dimensional splittable flat solvmanifolds

Lemma 3.11. Let E1, . . . , Ek ∈ GL(m, Z).

(i) E1,...,Ek
∼= Eσ(1),...,Eσ(k) , for all σ ∈ Sk.

(ii) E1,...,Ek
∼= E1,...,E

−1
i ,...,Ek

for all 1 ≤ i ≤ k.

(iii) E1,...,Ei ,...,E j ,...,Ek
∼= E1,...,Ei ,...,Ei E j ,...,Ek

Proof. (i) Given σ ∈ Sk , an isomorphism is f : E1,...,Ek → Eσ(1),...,Eσ(k) given
by f ((r1, . . . , rk), t) = ((rσ(1), . . . , rσ(k)), t).

(ii) An isomorphism f is given by f ((r1, . . . , ri , . . . , rk), t) = ((r1, . . . ,−ri ,
. . . , rk), t).

(iii) f ((r1, . . . , ri , . . . , r j , . . . , rk), t) = ((r1, . . . , ri − r j , . . . , r j , . . . , rk), t)
is an isomorphism between E1,...,Ei ,...,E j ,...,Ek and E1,...,Ei ,...,Ei E j ,...,Ek . ��

Let A = (ai j )i, j ∈ GL(k, Z) and define Fi = Eai1
1 · · · Eaik

k .
Since Z is a Euclidean domain, A ∈ GL(k, Z) if and only if A can be obtained

from the identity matrix Ik by performing a finite sequence of the following ele-
mentary row operations:

(i) interchange two rows of A;
(ii) multiply a row of A by ±1;
(iii) for r ∈ Z and i �= j , add r times row j to row i .

Remark 3.12. Theprevious lemmaallows topass from 〈E1, . . . , Ek〉 to 〈F1, . . . , Fk〉
by performing elementary operations on the matrix A and preserving the isomor-
phism of the corresponding group .

Nowwe are ready to deal with the question related with the minimal generating
set. We will use the following theorem.

Theorem 3.13. [30] If (a1, . . . , am) = 1 then for all integers n the equations

a1x1 + · · · + amxm = n,

(xi , x j ) = 1, 1 ≤ i < j ≤ m,

have infinitely many solutions.

Proposition 3.14. Suppose that the cardinal of a minimal generating set of
〈E1, . . . , Ek〉 is � < k. Then Z

k
�E1,...,Ek Z

s+2n ∼= Z
�

�H ′
1,...,H

′
�

Z
s+2n+k−�,

where H ′
i =

(
Ik−�

Hi

)
and {Hi }�i=1 is a generating set of 〈E1, . . . , Ek〉.

Proof. By the structure theorem of finitely generated abelian groups the group
〈E1, . . . , Ek〉 must be isomorphic to Zd1 × · · · × Zd�

. Then there are matri-
ces F1, . . . , F� of finite order such that Fm1

1 · · · Fm�

� = Is+2n if and only if
(m1, . . . ,m�) ∈ (ord F1)Z × · · · × (ord F�)Z.

Let ai1, . . . , ai�, b j1, . . . , b jk ∈ Z such that Ei = Fai1
1 · · · Fai�

� and Fj =
E
bj1
1 · · · Ebjk

k . Then we have
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F1 = (Fa11
1 · · · Fa1�

� )b11 · · · (Fak1
1 · · · Fak�

� )b1k

= F
∑k

r=1 ar1b1r
1 · · · F

∑k
r=1 ar j b1r

j · · · F
∑k

r=1 ar�b1r
k

Therefore there exists k1 ∈ Z such that
∑k

r=1 ar1b1r + k1 ord F1 = 1. This means
that gcd(a11, . . . , ak1, ord F1) = 1. By Theorem 3.13 there are x11, . . . , xk1, x1
pairwise coprime such that

∑k
r=1 ar1xr1 + x1 ord F1 = 1.

As gcd(x11, . . . , xk1) = 1, it is known (see for instance [29, Corollary 3.4.9])
that there exists a k × k matrix A in SL(k, Z) with first row equal to (x11 · · · xk1).
Applying Remark 3.12 with A we get E1,...,Ek

∼= G1,...,Gk where each Gi is a
product of powers of the F ′

i s but the power of F1 in G1 is equal to 1. Then, by
applying Lemma 3.11(iii) we can assume that the power of F1 in all Gi is equal to
one. Since the determinant of A is equal to one, 〈G1, . . . ,Gk〉 = 〈E1, . . . , Ek〉 =
〈F1, . . . , F�〉. We can repeat the process with F2 and obtain G ′

1, . . . ,G
′
k where

G ′
3, . . . ,G

′
k do not have powers of F1 and F2.

Continuing like this up to step�wewill getmatricesG(�)
1 , . . . ,G(�)

�−1, F�, Ik, . . . ,

Ik . We rename Hi := G(�)
i , H� := F� and H ′

i :=
(
Ik−�

Hi

)
, then we have

E1,...,Ek
∼= H1,...,H�,Ik ,...,Ik and it is easy to see that H1,...,H�,Ik ,...,Ik = Z

k−� ⊕
(Z�

�H1,...,H�
Z
s+2n) = Z

�
�H ′

1,...,H
′
�

Z
s+2n+k−�. ��

Corollary 3.15. The holonomy group of a splittable flat solvmanifold G\� is cyclic
if and only if the solvmanifold is diffeomorphic to an almost abelian solvmanifold.

In conclusion, to determine all the diffeomorphism classes of splittable flat
solvmanifolds we must determine all the isomorphism classes of splittable lattices.
In order to do so, we must look at the finite abelian subgroups of GL(n, Z). Two
conjugated subgroups give rise to isomorphic lattices, but not all such subgroups
are realised as the holonomy group of a flat solvmanifold, as we will see later.
However, the problem of classifying the finite abelian subgroups of GL(n, Z) up
to conjugation for an arbitrary n becomes very difficult. As far as we know, it has
only been obtained for n ≤ 6, as a particular case of the classification of the finite
subgroups of GL(n, Z) for n ≤ 6 obtained with the aid of CARAT (see [26]). A
list of these subgroups can be found in the Internet in https://www.math.kyoto-u.
ac.jp/~yamasaki/Algorithm/RatProbAlgTori/crystdat.html.

Nevertheless, to classify splittable lattices of flat Lie groups (regardless of the
classifications done in low dimensions) one can classify the integral similarity
classes of integer matrices, which can be done following the ideas of [32]. From
this classification the finite abelian subgroups ofGL(n, Z) can be obtained by doing
a careful analysis case by case, although wemust be careful because two subgroups
may be conjugated without the matrices being conjugated.

3.1. Almost abelian flat Lie groups

In [27] we described the structure of an almost abelian flat Lie algebra.

https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/crystdat.html.
https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/crystdat.html.
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Theorem 3.16. [27, Theorem 3.3] Let g = b ⊕ z(g) ⊕ [g, g] be a flat Lie algebra.
Then g is almost abelian if and only if dim b = 1.

Then we can write an almost abelian flat Lie algebra g as g = Rx �adx R
s+2n

with s = dim z(g), 2n = dim[g, g] and in some basis B of R
s+2n we have

[adx ]B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0s
0 −a1
a1 0

. . .

0 −an
an 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, a1, . . . , an ∈ R\{0}.

The corresponding Lie group G can be written as G = R �φ R
s+2n where

φ(t) = exp(t adx ) =

⎛
⎜⎜⎜⎝

Is
θ(a1t)

. . .

θ(ant)

⎞
⎟⎟⎟⎠ , where θ(t) =

(
cos t − sin t
sin t cos t

)
.

Wewant to determine all the lattices ofG. According to Theorem 3.4we have to
find t0 �= 0 such that φ(t0) is similar to an integer matrix. In view of Proposition 3.7,
φ(t0) must have finite order.

Computing the integral similarity classes of matrices obtained by conjugating
φ(t0) (bymatrices inGL(s+2n, R)) actually gives us the integral similarity classes
of matrices of finite order in SL(s + 2n, Z) (recall that det φ(t) = 1 for all t ∈ R),
according to the following theorem.

Theorem 3.17. [16] A matrix A ∈ GL(k, R) has finite order if and only if A is
similar to

Ik1 ⊕(− Ik2) ⊕ θ(t1)
d1 ⊕ · · · ⊕ θ(tr )

dr ,

where k1, k2 ≥ 0, r ≥ 0, d1, . . . , dr ≥ 1, 0 < t1 < · · · < tr < π , each ti is a
rational multiple of 2π , and k1 + k2 + 2(d1 + · · · + dr ) = k.

Denote φ̃(t) = θ(a1t)⊕· · ·⊕θ(ant). We are going to describe a method to find
all the possible values of the set {ai t0}ni=1 such that φ̃(t0) is similar to an integer
matrix in terms of the possible integer characteristic polynomials:

Method to find {ai t0}ni=1

If n = 1, by looking at the trace of φ(t0) it is easy to see that φ(t0) is similar to
an integer matrix if and only if a1t0 ∈ {π

2 , 3π
2 , 2π

3 , 4π
3 , π

3 , 5π
3 , π, 2π} + 2πZ.

If n > 1 note that the characteristic polynomial5 Pφ(t0) is equal to (x−1)s Pφ̃(t0)

and thus Pφ(t0) ∈ Z[x] ⇐⇒ Pφ̃(t0)
∈ Z[x]. Also, if we denote φ̄(t0) =

5 Given amatrix A, PA andMA will denote the characteristic and theminimal polynomials
of A respectively.
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− Ir ⊕φ̃(t0) (r ∈ N) then we have Pφ̄(t0) ∈ Z[x] ⇐⇒ Pφ̃(t0)
∈ Z[x]. There-

fore we can work with Pφ̃(t0)
and assume ai t0 /∈ {π, 2π} + 2πZ for all i .

Now, as φ̃(t0) has finite order, we have to analyze the integer polynomials p(x)
of degree 2n such that p(x) divides xd − 1 for some d ∈ N and p(x) has no real
roots. Equivalently, we look for the polynomials of degree 2n which can be written
as a product of cyclotomic polynomials of degree ≥ 2. Given that the degree of
the j-cyclotomic polynomial � j is ϕ( j), where ϕ is the Euler’s totient function,
we must determine the sets with repetition (also called multisets) S ⊂ {3, 4, . . .}
which satisfy

∑
j∈S

ϕ( j) = 2n.

It is known that the totient function has lower bounds such as ϕ( j) ≥
√

j
2 so we

can assume that S ⊂ {3, 4, . . . , 8n2}, where the number of elements in S is at
most n. Moreover, the list of integers x which solve the equation ϕ(x) = j for
1 ≤ j ≤ 1000 is known.6

Assume the matrix θi,k(t0) := θ(ai t0) ⊕ · · · ⊕ θ(akt0) has Pθi,k (t0) = � j for
some j and 1 ≤ i ≤ k ≤ n. Then we can deduce the values of {ai t0, . . . , akt0}.
Indeed, looking at the eigenvalues of θi,k(t0) we have

{
exp

(
±√−1amt0

)}k
m=i

=
{
exp

(
2π i

j
�

)
| (�, j) = 1

}
.

Then, it is easy to verify that

{
exp(

√−1ai t0)
}k
m=i

=
{

{exp( 2π ij �) | 1 ≤ � ≤ j−1
2 }, j odd,

{exp( 2π ij �) | 1 ≤ � ≤ j−2
2 }, j even

.

so ai t0 ∈ 2π
j {�, j − �} + 2πZ for some � as above.

4. Splittable flat solvmanifolds of dimension 6

Our goal is to classify splittable flat solvmanifolds of dimension 6.
Let g = b⊕z(g)⊕[g, g] be a non abelian flat Lie algebra of dimension 6. There

are two possibilities for dim b, namely dim b = 1 or dim b = 2. If dim b = 1, i.e. g
is almost abelian, then dim[g, g] can be 2 or 4 and if dim b = 2 then dim[g, g] = 4.

4.1. The almost abelian case R � R
5

A 6-dimensional almost abelian Lie algebra g can be written as g = Rx �adx R
5

where adx can be written in some basis B of z(g) ⊕ [g, g] as the block matrix

6 See http://primefan.tripod.com/TotientAnswers1000.html.

http://primefan.tripod.com/TotientAnswers1000.html
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[adx ] =

⎛
⎜⎜⎜⎜⎝

0
0 −a
a 0

0 −b
b 0

⎞
⎟⎟⎟⎟⎠

, a ∈ R, b ∈ R\{0}.

The corresponding Lie group is G = R �φ R
5 with φ(t) = I1 ⊕θ(at)⊕ θ(bt).

We want to find all the lattices of G. In order to do so we have to:

(I) Find the values t0 �= 0 such that φ(t0) is similar to an integer matrix (Theo-
rem 3.4).

(II) For each of the values of t0 found in (1) we have to determine7 the integral
similarity classes of integer matrices obtained by conjugating φ(t0). These
classes will give us actually the integral similarity classes of matrices with
finite order in SL(5, Z).

(III) For the integral similarity classes we obtained in (II) we have to check if
the natural map between the set of these classes and the set of conjugacy
classes of finite cyclic subgroups is a bijection, i.e. whether we obtained or
not non integrally similar matrices A, B ∈ SL(5, Z) such that 〈A〉 and 〈B〉
are GL(5, Z)-conjugate.

(I)Determining the values of t0: it can be done as in [27, Lemma5.5] or applying
the method described at the end of the previous section. We obtain the following
values.

Proposition 4.1. Let G = R�φ R
5. Thenφ(t0) �= I5 is similar to an integermatrix:

Values for at0 Values for bt0

Case (1) 2πZ {π, 2π
3 , 4π

3 , π
2 , 3π

2 , π
3 , 5π

3 } + 2πZ

Case (2) {π} + 2πZ {π, 2π
3 , 4π

3 , π
2 , 3π

2 , π
3 , 5π

3 } + 2πZ

Case (3)
{
2π
3 , 4π

3 , π
2 , 3π

2 , π
3 , 5π

3

}
+ 2πZ

{
2π
3 , 4π

3 , π
2 , 3π

2 , π
3 , 5π

3

}
+ 2πZ

Case (4)
{

π
4 , 7π

4

}
+ 2πZ

{
3π
4 , 5π

4

}
+ 2πZ

{
π
5 , 9π

5

}
+ 2πZ

{
3π
5 , 7π

5

}
+ 2πZ

{
2π
5 , 8π

5

}
+ 2πZ

{
4π
5 , 6π

5

}
+ 2πZ

{
π
6 , 11π

6

}
+ 2πZ

{
5π
6 , 7π

6

}
+ 2πZ

7 We include the computationswemade toobtain the classificationof the integral similarity
classes of integer matrices obtained by conjugating φ(t0) because we believe that these
calculations are useful for tackling the same problem in higher dimensions where there are
no classifications available.
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Remark 4.2. Note that if we change at0 for at0 + 2πk where k ∈ Z we do not
change the lattice because the matrix φ(t0) is the same, and if we change at0 for
2π − at0 or the order of the blocks we get a conjugate matrix to φ(t0) (in the
first case because θ(2π − at0) = θ(at0)−1). As we are looking for all the integer
matrices for which we can conjugate the matrix φ(t0) we can work only with the
following matrices φ(t0):

Case (1): I3 ⊕ − I2, I3 ⊕ θ

(
2π

3

)
, I3 ⊕ θ

(π

2

)
, I3 ⊕ θ

(π

3

)
,

Case (2): I1 ⊕ − I4, I1 ⊕ − I2 ⊕ θ

(
2π

3

)
, I1 ⊕ − I2 ⊕ θ

(π

2

)
, I1 ⊕ − I2 ⊕ θ

(π

3

)
,

Case (3): I1 ⊕ θ

(
2π

3

)
⊕ θ

(
2π

3

)
, I1 ⊕ θ

(
2π

3

)
⊕ θ

(π

2

)
, I1 ⊕ θ

(
2π

3

)
⊕ θ

(π

3

)
,

I1 ⊕ θ
(π

2

)
⊕ θ

(π

2

)
, I1 ⊕ θ

(π

2

)
⊕ θ

(π

3

)
, I1 ⊕ θ

(π

3

)
⊕ θ

(π

3

)
,

Case (4): I1 ⊕ θ
(π

4

)
⊕ θ

(
3π

4

)
, I1 ⊕ θ

(π

5

)
⊕ θ

(
3π

5

)
,

I1 ⊕ θ

(
2π

5

)
⊕ θ

(
4π

5

)
, I1 ⊕ θ

(π

6

)
⊕ θ

(
5π

6

)
.

(II) Finding the integral similarity classes of integer matrices to which φ(t0) is
similar.

• Case ord φ(t0) = 2. From the matrices we obtained above, the unique ones
with order 2 are I3 ⊕ − I2 and I1 ⊕ − I4.

The problem of determining the integral conjugacy classes of integer matrices A
such that A2 = I was solved in complete generality by Hua and Reiner [12].

Lemma 4.3. Every matrix A ∈ Mn(Z) such that A2 = In is integrally similar to a
matrix of the form

W (x, y, z) = L ⊕ · · · ⊕ L︸ ︷︷ ︸
x

⊕(− Iy) ⊕ Iz,

where 2x + y + z = n and L =
(
1 0
1 −1

)
.

In our case n = 5 and since det φ(t0) = 1 and det L = −1 it follows x ≡ y (2).
Then the possible values are (x, y, z) = (0, 0, 5), (0,4,1), (0,2,3), (1,3,0), (1,1,2)
or (2,0,1).

Thus, a set of representatives for integral conjugacy classes of matrices of order
2 in SL5(Z) is

− I4 ⊕ I1, − I2 ⊕ I3, L ⊕ − I3, L ⊕ − I1 ⊕ I2, L ⊕ L ⊕ I1 . (4)

The matrix I3 ⊕− I2 is obviously conjugated to − I2 ⊕ I3 but also to L ⊕− I1 ⊕ I2
and L ⊕ L ⊕ I1 because they have the same Jordan form. The matrix I1 ⊕ − I4 is
conjugated to − I4 ⊕ I1 and to L ⊕ − I3 because they have the same Jordan form.
Therefore with φ(t0) = I3 ⊕ − I2 and φ(t0) = I1 ⊕ − I4 we can conjugate to any
of the matrices in (4).
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• Case ord φ(t0) �= 2. We introduce some tools developed by Yang in [32].

Lemma 4.4. [32, Lemma 1.1] Every matrix A ∈ Mn(Z) is integrally similar to a
block triangular matrix

⎛
⎜⎜⎜⎝

A11 A12 · · · A1r
0 A22 · · · A2r
...

...
. . .

...

0 0 · · · Arr

⎞
⎟⎟⎟⎠ ,

where the characteristic polynomial of Aii is irreducible for 1 ≤ i ≤ r (then r is
the number of distinct irreducible factors of PA). The block triangularization can
be attained with the diagonal blocks in any prescribed order.

Given a monic polynomial p(x) ∈ Z[x] of degree n such that p(0) = ±1, let
Mp be the set of integral conjugacy classes of matrices A with PA = p, and
MA = {B ∈ Mn(Z) : PB(x) = PA(x), MB(x) = MA(x)}. It is known that
Cp, the companion matrix of p(x), has characteristic polynomial equal to p so
Mp �= ∅. Let |Mp| be the cardinal of Mp.

Lemma 4.5. [32, Lemma 1.2] Let A ∈ GLn(Z) have irreducible minimal polyno-
mial f (x) with |M f | = 1. Then A is integrally similar to C f ⊕ · · · ⊕ C f . That is
|M f k | = 1.

Aparticular case is when f = �n for certain values of n. According to Latimer,
MacDuffee and Taussky [17], if n < 23 then |M�n | = 1 because Q(ξn), where ξn
is a primitive n-th root of unity, has class number one for n < 23.

For A ∈ GLn(Z), we denote A± :=
(
A e�

1
0 ±1

)
, where e1 = (1, . . . , 0). Let Cn

be the companion matrix of �n .

Theorem 4.6. [32, Theorem 1.4] Let n ≥ 2 and A = Cn ⊕ . . . ⊕ Cn︸ ︷︷ ︸
s

. Let M =
(
A X
0 Im

)
, for some integer matrix X of the appropiate size.

1. If n = pk, where p is a prime number and k ≥ 1, then M is integrally similar
to

C+
n ⊕ · · · ⊕ C+

n︸ ︷︷ ︸
t

⊕Cn ⊕ · · · ⊕ Cn︸ ︷︷ ︸
s−t

⊕ Im−t

where t satisfies 0 ≤ t ≤ min(s,m) and is uniquely determined by M.
2. If n is not a power of a prime, then M is integrally similar to A ⊕ Im.

We analyze the matrices with ord φ(t0) �= 2 obtained in Remark 4.2.

Case (1):We obtained φ(t0) = I3 ⊕ θ(bt0) where bt0 ∈ { 2π3 , π
2 , π

3 }.
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We have Pφ(t0)(x) = (x − 1)3�i (x) and Mφ(t0)(x) = (x − 1)�i (x) for some
i ∈ {3, 4, 6}, according to the value of bt0.

By using Lemma 4.4 we obtain that if B ∈ Mφ(t0) then B is integrally similar

to a matrix of the form

(
C X
0 D

)
where PC = �i and D =

⎛
⎝
1 x y
0 1 z
0 0 1

⎞
⎠. Since

Mφ(t0)(x) = (x − 1)�i (x), D must be I3. Moreover, since |M�i | = 1 for i ∈
{3, 4, 6} we can assume that C = Ci .

Using Theorem 4.6 (in this case s = 1 and m = 3) we get the following table:

i B is integrally similar to

3 C3 ⊕ I3, C
+
3 ⊕ I2

4 C4 ⊕ I3, C
+
4 ⊕ I2

6 C6 ⊕ I3

As the Jordan forms of A± and A ⊕ (± I1) are equal it follows that in each
case φ(t0) is similar to the corresponding matrices in the right column of the table
above.

Case (4): We obtained φ(t0) where (at0, bt0) ∈ {(π
4 , 3π

4 ), (π
5 , 3π

5 ), ( 2π5 , 4π
5 ),

(π
6 , 5π

6 )}.
We get Pφ(t0)(x) = Mφ(t0)(x) = (x − 1)�i (x) for some i ∈ {5, 8, 10, 12},

according to the values of at0 and bt0. By Lemma 4.4, if B ∈ Mφ(t0) then B

is integrally similar to a matrix of the form

(
C X
0 I1

)
. Given that |M�i | = 1 for

i ∈ {5, 8, 10, 12}we can assume thatC = Ci . Using Theorem4.6, withm = s = 1,
we get the following table:

i B is integrally similar to

5 C5 ⊕ I1, C
+
5

8 C8 ⊕ I1, C
+
8

10 C10 ⊕ I1
12 C12 ⊕ I1

As the Jordan forms of A± and A ⊕ (± I1) are equal it follows that in each
case φ(t0) is similar to the corresponding matrices in the right column of the table
above.

For cases (2) and (3)we describe the notion of (A, B)-equivalence (see [32, Sec-
tion 2]), which is related to the integral similarity problem for upper block triangular

matrices of the form

(
C X
0 D

)
, where C, D have coprime minimal polynomials.
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Let A ∈ GLm(Z) and B ∈ GLn(Z) and suppose that their respective character-
istic polynomials f (x) and g(x) are coprime.

We define a Z-module homomorphism ψ : Mm×n(Z) → Mm×n(Z) given by

ψ(T ) = AT − T B.

It can be seen that in a suitable basis, the matrix of ψ is A ⊗ In − Im ⊗B�, where
⊗ is the Kronecker product of matrices. Then the determinant of ψ is equal to
R( f, g), the resultant of f (x) and g(x).

We recall that if p(x) = xm + ∑m−1
i=0 ai xi and q(x) = xn + ∑n−1

i=0 bi xi are
two monic polynomials in Z[x] then the resultant R(p, q) is the determinant of the
Sylvester matrix which is given by

Syl(p, q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 am−1 · · · · · · a0
. . .

. . .
. . .

1 am−1 · · · · · · a0
1 bn−1 · · · b0

. . .
. . .

. . .

1 bn−1 · · · b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎬
⎪⎭
n

⎫⎪⎬
⎪⎭
m

Since f (x) and g(x) are coprime, then detψ = R( f, g) �= 0, so ψ is injective.
Denote 〈A, B〉 := Imψ . Then, Cokerψ has order r := |R( f, g)| where

Cokerψ = Mm×n(Z)/ 〈A, B〉 .

We define an equivalence relation on Mm×n(Z). In what follows, given X ∈
GLk(Z), C(X) will always denote the centralizer of X in GLk(Z).

Definition 4.7. [32, Definition 2.2] X,Y ∈ Mm×n(Z) are said to be (A, B)-
equivalent, denoted by X ≡ Y (A, B) (or X ≡ Y ), if there exist P ∈ C(A) and
Q ∈ C(B) such that XQ − PY ∈ 〈A, B〉. The set of (A, B)-equivalence classes
is denoted by S(A, B).

It is clear that if X − Y ∈ 〈A, B〉, then X ≡ Y (A, B). The converse is not
necessarily true. By defining a group action of C(A) ×C(B) on Cokerψ (see [32,
p. 486]) it can be seen the important fact that if r = 1 then |S(A, B)| = 1, and if
r > 1 then 1 < |S(A, B)| ≤ r .

The importance of the (A, B)-equivalence is its connection with the integral
similarity problem of upper block triangular matrices.

Lemma 4.8. [32, Lemma 3.1] Let A ∈ Mm(Z) and B ∈ Mn(Z) with (MA, MB) =
1. Then,

(
A X
0 B

)
and

(
A Y
0 B

)
are integrally similar if and only if X ≡ Y (A, B).

Using Lemmas 4.4 and 4.8 we will solve cases (2) and (3) by computing the set
of (A, B)-equivalence classes for certain pairs of matrices. We note that if Pφ(t0)

is a product of more than two irreducible polynomials there is more than one way
to write Pφ(t0) as a product of two coprime polynomials and compute the resultant.
By Lemma 4.4 the result does not depend on the way we do it. We do it in such a
way that the resultant be as small as possible.

We will also need in some cases the following analogue result to Theorem 4.6.
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Theorem 4.9. [32, Theorem 1.5] Let n ≥ 3 and A = Cn ⊕ · · · ⊕ Cn︸ ︷︷ ︸
s

. Let M =
(
A X
0 − Im

)
.

1. If n = 2pk, where p is a prime and k ≥ 1, then M is integrally similar to

C−
n ⊕ · · · ⊕ C−

n︸ ︷︷ ︸
t

⊕Cn ⊕ · · · ⊕ Cn︸ ︷︷ ︸
s−t

⊕(− Im−t ),

where t satisfies 0 ≤ t ≤ min(s,m) and is uniquely determined by M.
2. If n �= 2pk, then M is integrally similar to A ⊕ (− Im).

We analyze next cases (2) and (3) from Remark 4.2.
Case (2):We obtained φ(t0) = I1 ⊕ − I2 ⊕ θ(bt0) where bt0 ∈ { 2π3 , π

2 , π
3 }.

♠ Let bt0 = 2π
3 . Then Pφ(t0)(x) = (x − 1)(x + 1)2�3(x) and Mφ(t0)(x) =

(x2 − 1)�3(x).

By Lemma 4.4 a matrix B ∈ Mφ(t0) is integrally similar to a matrix

(
C3 X
0 D

)
,

where D =
(− I2 Y

0 I1

)
. We have r = |R(�3(x), (x − 1)(x + 1)2)| = 3. Noting

that − I2 = C2 ⊕C2 and using Theorem 4.6 we get that D can be integrally similar
to − I2 ⊕ I1 or C

+
2 ⊕ − I1.

For D = − I2 ⊕ I1, X =
(
x1 x2 x3
x4 x5 x6

)
∈ 〈C3, D〉 if and only if there exists an

integer matrix T =
(
t1 t2 t3
t4 t5 t6

)
such that C3T − T D = X , and

X =
(
t1 − t4 t2 − t5 −t3 − t6
t1 t2 t3 − 2t6

)
⇐⇒ x3 + x6 ≡ 0 (3).

Then, Cokerψ = {[0], [E13], [2E13]} where Ei j is the matrix (in M2×3(Z)) with
a 1 in the place (i, j) and 0 elsewhere. If we choose P = − I2 and Q = D then we
have 2E13Q− PE13 ∈ 〈C3, D〉 so 2E13 ≡ E13 and thus S(C3, D) = {[0], [E13]}.

For D = C+
2 ⊕ − I1,

X = C3T − T D =
(
t1 − t4 −t1 − t2 − t5 t3 − t6
t1 t2 − t4 − 2t5 t3

)

⇐⇒ 2x1 + x2 + 2x4 + x5 ≡ 0 (3).

Then Cokerψ = {[0], [E11], [2E11]}. Since 2E11 I3 + I2 E11 ∈ 〈C3, D〉, we
deduce that S(C3, D) = {[0], [E11]}.

In conclusion, B can be integrally similar to

C3 ⊕ − I2 ⊕ I1,

(
C3 E13
0 − I2 ⊕ I1

)
, C3 ⊕ C+

2 ⊕ − I1,

(
C3 E11

0 C+
2 ⊕ − I1

)
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♠Let bt0 = π
2 . Then Pφ(t0)(x) = (x−1)(x+1)2�4(x) andMφ(t0)(x) = (x2−

1)�4(x). ByLemma4.4 amatrix B ∈ Mφ(t0) is integrally similar to

(
I1 X
0 D

)
where

D =
(
C4 Y
0 − I2

)
. We have r = |R(x − 1,�4(x)(x + 1)2)| = 8. By Theorem 4.9,

D can be integrally similar to C4 ⊕ − I2 or C
−
4 ⊕ − I1.

For D = C4 ⊕ − I2,
(
x1 x2 x3 x4

) = T − T D = (
t1 − t2 t1 + t2 2t3 2t4

)

⇐⇒ x1 + x2 ≡ x3 ≡ x4 ≡ 0 (2).

Then Cokerψ = {[0], [e1], [e3], [e4], [e1+e3], [e1+e4], [e3+e4], [e1+e3+e4]}.
Choosing P = I1 and Q = − I2 ⊕C4 ∈ C(C4 ⊕ − I2) we have e3 ≡ e4 and

e1 + e3 ≡ e1 + e4. Choosing P = I1 and Q = I2 ⊕
(
1 1
1 0

)
we have e3 ≡ e3 + e4

and e1 + e3 ≡ e1 + e3 + e4.

Using that C(D) =
{(

p q
−q p

)
⊕
(
p1 p2
p3 p4

)}
∩ GL4(Z) it can be seen that

there are no more (I1, D)-equivalences. For example, if [e1] = [e3] then there are
Q ∈ C(D) and P = ± I1 such that e1Q − Pe3 = (

p q ∓1 0
) ∈ 〈I1, D〉 but

∓1 �≡ 0 (2). Therefore, S(I1, D) = {[0], [e1], [e3], [e1 + e3]}.
For D = C−

4 ⊕ − I1,

X = (
t1 − t2 t1 + t2 −t1 + 2t3 2t4

) ⇐⇒ x1 + x2 + 2x3 ≡ 0 (4), x4 ≡ 0 (2).

Then Cokerψ = {[0], [e1], [e3], [e4], [e1+e3], [e1+e4], [e3+e4], [e1+e3+e4]}.

Now, C(D) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
q1 −q2 q3 q4
q2 q1 q2 − q3 −q4
0 0 q1 + q2 − 2q3 −2q4
0 0 q5 q6

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

∩ GL4(Z). Let P = I1.

If we choose q1 = q3 = q6 = 1 and q2 = q4 = q5 = 0 thenwe get e1 ≡ e1+e3
and e1 + e4 ≡ e1 + e3 + e4. Choosing q1 = q4 = q6 = 1 and q2 = q3 = q5 = 0
we get e1 ≡ e1 + e4. Finally, choosing q1 = q5 = q6 = 1 and q2 = q3 = q4 = 0
we get e4 ≡ e3 + e4. It can be seen that there are no more (I1, D)-equivalences so
S(I1, D) = {[0], [e1], [e3], [e4]}.

In conclusion B can be integrally similar to

I1 ⊕C4 ⊕ − I2,

(
1 e1
0 C4 ⊕ − I2

)
,

(
1 e3
0 C4 ⊕ − I2

)
,

(
1 e1 + e3
0 C4 ⊕ − I2

)
,

I1 ⊕C−
4 ⊕ − I1,

(
1 e1
0 C−

4 ⊕ − I1

)
,

(
1 e3
0 C−

4 ⊕ − I1

)
,

(
1 e4
0 C−

4 ⊕ − I1

)
.



A. Tolcachier

♠Let bt0 = π
3 . Then Pφ(t0)(x) = (x−1)(x+1)2�6(x) and Mφ(t0)(x) = (x2−

1)�6(x). By Lemma 4.4 amatrix B ∈ Mφ(t0) is integrally similar to a matrix of the

form

(
I1 X
0 D

)
,where D =

(
C6 Y
0 − I2

)
.Wehave r = |R(x−1, (x+1)2�6(x))| = 4.

Moreover, by Theorem 4.9, D can be integrally similar to C6 ⊕− I2 or C
−
6 ⊕− I1.

For D = C6 ⊕ − I2,

X = (
t1 − t2 t1 2t3 2t4

) ⇐⇒ x3 ≡ x4 ≡ 0 (2).

Therefore, Cokerψ = {[0], [e3], [e4], [e3 + e4]}. With Q = C6 ⊕ C4 we get

e3Q − e4 ∈ 〈I1, D〉 and with Q = C6 ⊕
(
1 1
0 1

)
and P = I1 we get e3 ≡ e3 + e4,

so S(I1, D) = {[0], [e3]}.

For D = C−
6 ⊕ − I1,

X = (
t1 − t2 t1 −t1 + 2t3 2t4

) ⇐⇒ x2 + x3 ≡ x4 ≡ 0 (2).

We have Cokerψ = {[0], [e3], [e4], [e3 + e4]}.

Now,C(D) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
q1 −q2 q2 − 2q3 −2q4
q2 q1 + q2 q3 q4
0 0 q1 − q2 + 3q3 3q4
0 0 q5 q6

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

∩GL4(Z). Let P = I1.

Choosing q1 = 2, q2 = q3 = 0 and q4 = q5 = q6 = 1 we get e3 ≡ e4 and
choosing q1 = q4 = q6 = 1 and q2 = q3 = q5 = 0 we get e3 ≡ e3 + e4, so
S(I1, D) = {[0], [e3]}.

In conclusion, B can be integrally similar to

I1 ⊕C6 ⊕ − I2,

(
1 e3
0 C6 ⊕ − I2

)
, I1 ⊕C−

6 ⊕ − I1,

(
1 e3
0 C−

6 ⊕ − I1

)
.

Case (3): We obtained φ(t0) = I1 ⊕ θ(at0) ⊕ θ(bt0) where at0, bt0 ∈
{ 2π3 , π

2 , π
3 }.

♠ Let at0 = bt0 = 2π
3 . Then Pφ(t0)(x) = (x − 1)�3(x)2 and Mφ(t0)(x) =

(x − 1)�3(x). By Lemma 4.4 a matrix B ∈ Mφ(t0) is integrally similar to a matrix

of the form

(
D X
0 I1

)
where D =

(
C3 Y
0 C3

)
. By Lemma 4.5, D is integrally similar

to C3 ⊕C3. By Theorem 4.6 with s = 2 and m = 1, B can be integrally similar to
C3 ⊕ C3 ⊕ I1 or C3 ⊕ C+

3 .

♠ Let at0 = bt0 = π
2 . As in the previous ♠ we deduce that B ∈ Mφ(t0) is

integrally similar to C4 ⊕ C4 ⊕ I1 or C4 ⊕ C+
4 .

♠ Let at0 = bt0 = π
3 . Then B ∈ Mφ(t0) is integrally similar to C6 ⊕ C6 ⊕ I1.
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♠ Let at0 = 2π
3 and bt0 = π

2 . Then Pφ(t0)(x) = Mφ(t0)(x) = (x −
1)�3(x)�4(x). By Lemma 4.4 a matrix B ∈ Mφ(t0) is integrally similar to a

matrix

(
C4 X
0 D

)
where D =

(
C3 Y
0 I1

)
. By Theorem 4.6, D is integrally simi-

lar to C3 ⊕ I1 or C+
3 . We have r = |R(�4(x), (x − 1)�3(x))| = 2, and since

1 < |S(C4, D)| ≤ r , we get |S(C4, D)| = 2.

For D = C3 ⊕ I1,(
x1 x2 x3
x4 x5 x6

)
=
(−t2 − t4 t1 + t2 − t5 −t3 − t6

t1 − t5 t2 + t4 + t5 t3 − t6

)
⇐⇒ x3 + x6 ≡ 0 (2).

Therefore Cokerψ = {[0], [E13]} and S(C4, D) = {[0], [E13]}.

For D = C+
3 ,

(
x1 x2 x3
x4 x5 x6

)
=
(−t2 − t4 t1 + t2 − t5 −t1 − t3 − t6

t1 − t5 t2 + t4 + t5 t3 − t4 − t6

)
⇐⇒ x2 + x3 + x5 + x6 ≡ 0 (2).

Then Cokerψ = {[0], [E12]} and S(C4, D) = {[0], [E12]}. Therefore B can be
integrally similar to

C4 ⊕ C3 ⊕ I1,

(
C4 E13
0 C3 ⊕ I1

)
, C4 ⊕ C+

3 ,

(
C4 E12

0 C+
3

)
.

♠ Let at0 = 2π
3 and bt0 = π

3 . Then Pφ(t0)(x) = Mφ(t0)(x) = (x −
1)�3(x)�6(x). By Lemma 4.4 a matrix B ∈ Mφ(t0) is integrally similar to a

matrix of the form

(
C6 X
0 D

)
where D =

(
C3 Y
0 I1

)
. By Theorem 4.6, D can be

integrally similar to C3 ⊕ I1 or C
+
3 . We have r = |R(�6(x), (x − 1)�3(x))| = 4.

For D = C3 ⊕ I1,
(
x1 x2 x3
x4 x5 x6

)
=
( −t2 − t4 t1 + t2 − t5 −t3 − t6
t1 + t4 − t5 t2 + t4 + 2t5 t3

)
⇐⇒ x1 + x5 ≡ x1 + x2 + x4 ≡ 0 (2).

Then Cokerψ = {[0], [E11], [E12], [E11 + E12]}. With Q = D and P = I2 we
have E11 ≡ E12. Choosing Q = I3 and P = C6 we have E11 ≡ E11 + E12, so
S(C6, D) = {[0], [E11]}.

For D = C+
3 ,

(
x1 x2 x3
x4 x5 x6

)
=
( −t2 − t4 t1 + t2 − t5 −t1 − t3 − t6
t1 + t4 − t5 t2 + t4 + 2t5 t3 − t4

)
⇐⇒ x5 ≡ −x1 ≡ x2 + x4 (2).

Therefore Cokerψ = {[0], [E11], [E12], [E11 + E12]}. If we choose Q = D and
P = I2 we have E11 ≡ E12 and if we choose Q = I3 and P = C6 we have
E11 ≡ E11 + E12, so S(C6, D) = {[0], [E11]}. In conclusion B can be integrally
similar to

C6 ⊕ C3 ⊕ I1,

(
C6 E11
0 C3 ⊕ I1

)
, C6 ⊕ C+

3 ,

(
C6 E11

0 C+
3

)
.
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Table 1. 6-dim. almost abelian flat solvmanifolds (Cases (1) and (4))

φ(t0) Holonomy group Subgroup Abelianization of �

I5 {e} 〈I5〉 Z
6

I3 ⊕θ(π) 〈− I2 ⊕ I3〉 Z
4 ⊕ Z

2
2

Z2 〈L ⊕ − I1 ⊕ I2〉 Z
4 ⊕ Z2

〈L ⊕ L ⊕ I1〉 Z
4

I3 ⊕θ( 2π3 ) Z3 〈C3 ⊕ I3〉 Z
4 ⊕ Z3〈

C+
3 ⊕ I2

〉
Z
4

I3 ⊕θ(π
2 ) Z4 〈C4 ⊕ I3〉 Z

4 ⊕ Z2〈
C+
4 ⊕ I2

〉
Z
4

I3 ⊕θ(π
3 ) Z6 〈C6 ⊕ I3〉 Z

4

I1 ⊕θ( 2π5 ) ⊕ θ( 4π5 ) Z5 〈C5 ⊕ I1〉 Z
2 ⊕ Z5〈

C+
5

〉
Z
2

I1 ⊕θ(π
4 ) ⊕ θ( 3π4 ) Z8 〈C8 ⊕ I1〉 Z

2 ⊕ Z2〈
C+
8

〉
Z
2

I1 ⊕θ(π
5 ) ⊕ θ( 3π5 ) Z10 〈C10 ⊕ I1〉 Z

2

I1 ⊕θ(π
6 ) ⊕ θ( 5π6 ) Z12 〈C12 ⊕ I1〉 Z

2

♠ Let at0 = π
2 and bt0 = π

3 . Then Pφ(t0)(x) = Mφ(t0)(x) = (x −
1)�4(x)�6(x). By Lemma 4.4 a matrix B ∈ Mφ(t0) is integrally similar to(
C6 X
0 D

)
where D =

(
C4 Y
0 I1

)
. By Theorem 4.6, the matrix D is integrally similar

to C4 ⊕ I1 or C
+
4 . Furthermore, r = |R(�6(x),�4(x)(x − 1))| = 1 so B can be

integrally similar to C6 ⊕ C4 ⊕ I1 or C6 ⊕ C+
4 .

(III) For the integral similarity classes of matrices A ∈ SL(5, Z) that we have
found, there are no non integrally similar matrices which give rise to conjugated
subgroups. Indeed, it can be verified that for the 48 non integrally similar matrices
A we have, A is similar to Ad for (d, ord A) = 1, so if 〈A〉 is conjugated to 〈B〉,
then A ∼ Bs for some (s, ord B) = 1 and then A ∼ B. Therefore there is a
bijection between the set of integral similarity classes of integer matrices obtained
by conjugating φ(t0) and the set of conjugacy classes of finite cyclic subgroups
of SL(5, Z). These subgroups give rise to 48 6-dimensional almost abelian flat
solvmanifolds which are shown in Tables 1 and 2, along with their holonomy group
and the abelianization�ab := �/[�,�]of the corresponding lattice� = t0Z�PZ

5.
Recall that we identify � with E , where E = P−1φ(t0)P . The next result shows
how to compute [�,�] and it is easily obtained. From this, the abelianization can
be computed.
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Proposition 4.10. For E ∈ GL(n, Z), we have [E , E ] = 0Z ⊕ Im(In −E).

Comparing what we obtained with the finite cyclic subgroups of SL(5, Z) of
the list of all the finite subgroups of GL(5, Z) gives us the same non-conjugated
subgroups (Table 2).

4.2. The non almost abelian case R
2

� R
4

Let g = b ⊕ z(g) ⊕ [g, g] be a non almost abelian flat Lie algebra of dimension 6,
i.e., z(g) = 0, dim b = 2 and dim[g, g] = 4, according to Theorems 2.7 and 3.16.
Then g can be written as g = R

2
�ad R

4 where R
2 = span{x, y}, and in some basis

B of [g, g]we have [adx ] =
(
0 −a
a 0

)
⊕
(
0 −b
b 0

)
and [ady] =

(
0 −c
c 0

)
⊕
(
0 −d
d 0

)
,

where a2 + c2 �= 0, b2 + d2 �= 0 and ad − bc �= 0.
The simply-connected Lie group is G = R

2
�φ R

4 where φ(t x + sy) =
exp(t adx ) exp(s ady).

As stated in Theorem 3.4, to determine all the splittable lattices in G we have
to look for pairs {x, y} such that P−1 exp(adx )P = A and P−1 exp(ady)P = B
with A, B ∈ GL(4, Z), for some P ∈ GL(4, R). To find such pairs {x, y} note that
exp(adx ) = θ(a)⊕ θ(b) and exp(ady) = θ(c)⊕ θ(d). The values of a and b (resp.
c and d) such that θ(a)⊕ θ(b) (resp. θ(c)⊕ θ(d)) is conjugate to an integer matrix
are as in Proposition 4.1 and they can be chosen so as to satisfy the conditions
above.

Keeping in mind that the group A,B = Z
2

�A,B Z
4 is determined by the

conjugacy class of the finite abelian subgroup 〈A, B〉 ⊂ SL(4, Z), the strategy will
be to extract from the list of all the finite subgroups of GL(4, Z) the ones which
are finite, abelian, 2-generated and contained in SL(4, Z). We do not take into
account the cyclic ones because they correspond to almost abelian flat solvmani-
folds (Proposition 3.14). Then, we will see which subgroups can be realised as the
holonomy group of a splittable flat solvmanifold.

There are 710 finite subgroups of GL(4, Z). Only 33 are 2-generated finite
abelian subgroups of SL(4, Z). 13 of them give rise to groups A,B with abelian-
ization of rank 3, which are the following:

〈diag(−1, 1,−1, 1), diag(1,−1,−1, 1)〉 ,〈(−1 0
0 1

)
⊕
(

0 −1
−1 0

)
,

(−1 0
0 1

)
⊕
(
0 1
1 0

)〉
,

〈⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 −1 −1 0
0 0 1 0
0 0 1 −1

⎞
⎟⎟⎠
〉

,

〈(
1 0
0 −1

)
⊕
(

0 −1
−1 0

)
, (− I2) ⊕ I2

〉
,

〈⎛⎜⎜⎝
−1 0 0 0
0 1 1 0
0 0 −1 0
0 0 −1 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0

⎞
⎟⎟⎠
〉

,
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Table 2. 6-dim. almost abelian flat solvmanifolds (Cases (2) and (3))

φ(t0) Holonomy group Subgroup Abelianization of �

I1 ⊕θ(π) ⊕ θ(π) Z2 〈I1 ⊕ − I4〉 Z
2 ⊕ Z

4
2〈L ⊕ − I3〉 Z

2 ⊕ Z
3
2

I1 ⊕θ(π) ⊕ θ( 2π3 ) 〈C3 ⊕ − I2 ⊕ I1〉 Z
2 ⊕ Z2 ⊕ Z6

Z6

〈(
C3 E13
0 − I2 ⊕ I1

)〉
Z
2 ⊕ Z

2
2〈

C3 ⊕ C+
2 ⊕ − I1

〉
Z
2 ⊕ Z6〈(

C3 E11
0 C+

2 ⊕ − I1

)〉
Z
2 ⊕ Z2

I1 ⊕θ(π) ⊕ θ(π
2 ) 〈I1 ⊕C4 ⊕ − I2〉 Z

2 ⊕ Z
3
2〈(

1 e1
0 C4 ⊕ − I2

)〉
Z
2 ⊕ Z

2
2〈(

1 e3
0 C4 ⊕ − I2

)〉
Z
2 ⊕ Z

2
2

Z4

〈(
1 e1 + e3
0 C4 ⊕ − I2

)〉
Z
2 ⊕ Z

2
2〈

1 ⊕ C−
4 ⊕ − I1

〉
Z
2 ⊕ Z2 ⊕ Z4〈(

1 e1
0 C−

4 ⊕ − I1

)〉
Z
2 ⊕ Z2

〈(
1 e3
0 C−

4 ⊕ − I1

)〉
Z
2 ⊕ Z

2
2〈(

1 e4
0 C−

4 ⊕ − I1

)〉
Z
2 ⊕ Z4

I1 ⊕θ(π) ⊕ θ(π
3 ) 〈I1 ⊕C6 ⊕ − I2〉 Z

2 ⊕ Z
2
2

Z6

〈(
1 e3
0 C6 ⊕ − I2

)〉
Z
2 ⊕ Z2〈

I1 ⊕C−
6 ⊕ − I1

〉
Z
2 ⊕ Z

2
2〈(

1 e3
0 C−

6 ⊕ − I1

)〉
Z
2 ⊕ Z2

I1 ⊕θ( 2π3 ) ⊕ θ( 2π3 ) Z3 〈C3 ⊕ C3 ⊕ I1〉 Z
2 ⊕ Z

2
3〈

C3 ⊕ C+
3

〉
Z
2 ⊕ Z3

I1 ⊕θ(π
2 ) ⊕ θ(π

2 ) Z4 〈C4 ⊕ C4 ⊕ I1〉 Z
2 ⊕ Z

2
2〈

C4 ⊕ C+
4

〉
Z
2 ⊕ Z2

I1 ⊕θ(π
3 ) ⊕ θ(π

3 ) Z6 〈C6 ⊕ C6 ⊕ I1〉 Z
2

I1 ⊕θ( 2π3 ) ⊕ θ(π
2 ) 〈C4 ⊕ C3 ⊕ I1〉 Z

2 ⊕ Z6

Z12

〈(
C4 E13
0 C3 ⊕ I1

)〉
Z
2 ⊕ Z3〈

C4 ⊕ C+
3

〉
Z
2 ⊕ Z2〈(

C4 E12
0 C+

3

)〉
Z
2
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Table 2. continued

I1 ⊕θ(π) ⊕ θ(π) Z2 〈I1 ⊕ − I4〉 Z
2 ⊕ Z

4
2〈L ⊕ − I3〉 Z

2 ⊕ Z
3
2

I1 ⊕θ( 2π3 ) ⊕ θ(π
3 ) 〈C6 ⊕ C3 ⊕ I1〉 Z

2 ⊕ Z3

Z6

〈(
C6 E11
0 C3 ⊕ I1

)〉
Z
2 ⊕ Z3〈

C6 ⊕ C+
3

〉
Z
2

〈(
C6 E11
0 C+

3

)〉
Z
2

I1 ⊕θ(π
2 ) ⊕ θ(π

3 ) Z12 〈C6 ⊕ C4 ⊕ I1〉 Z
2 ⊕ Z2〈

C6 ⊕ C+
4

〉
Z
2

〈⎛⎜⎜⎝
0 0 1 −1
0 1 0 0
0 0 −1 0
−1 0 −1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 1 1 0
0 −1 0 0
0 0 −1 0
0 −1 −1 1

⎞
⎟⎟⎠
〉

,

〈⎛⎜⎜⎝
1 0 0 0
0 0 1 −1
0 0 −1 0
0 −1 −1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 1 0 1
0 1 1 0

⎞
⎟⎟⎠
〉

,

〈⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 −1 0 −1
0 −1 −1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1 0 0 0
0 0 1 −1
0 1 0 1
0 0 0 1

⎞
⎟⎟⎠
〉

,

〈⎛⎜⎜⎝
0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠
〉

,

〈⎛⎜⎜⎝
0 −1 1 1
−1 0 −1 −1
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ ,

(
0 −1

−1 0

)
⊕
(
0 1
1 0

)〉

〈(
0 1
1 0

)
⊕
(

0 −1
−1 0

)
,

⎛
⎜⎜⎝

−1 0 −1 −1
0 −1 1 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠
〉

,

〈⎛⎜⎜⎝
1 0 2 0
−1 0 −1 −1
0 0 −1 0
−1 −1 −1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1 0 0 −2
1 0 1 1
1 1 0 1
0 0 0 1

⎞
⎟⎟⎠
〉

,
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Table 3. 6-dimensional splittable non almost abelian flat solvmanifolds

Ã, B̃ Holonomy group 〈A, B〉 �ab

(2π, π), (π, 2π) 〈I2 ⊕ − I2, − I4〉 Z
2 ⊕ Z

4
2

Z2 ⊕ Z2

〈(
I2 E22
0 − I2

)
, − I4

〉
Z
2 ⊕ Z

3
2〈(

I2 I2
0 − I2

)
, − I4

〉
Z
2 ⊕ Z

2
2

(2π, π), (π, 2π
3 ) Z2 ⊕ Z6 〈− I2 ⊕C3, − I4〉 Z

2 ⊕ Z
2
2

(2π, π), ( π
2 , 2π) Z2 ⊕ Z4 〈I2 ⊕C4, − I4〉 Z

2 ⊕ Z
3
2〈(

I2 E11
0 C4

)
, − I4

〉
Z
2 ⊕ Z

2
2

(2π, π), ( π
2 , 2π

3 ) Z4 ⊕ Z6 〈C3 ⊕ C4, − I4〉 Z
2 ⊕ Z2

(2π, π), ( π
3 , 2π

3 ) Z2 ⊕ Z6 〈C3 ⊕ −C3, − I4〉 Z
2〈(

C3 E11
0 −C3

)
, − I4

〉
Z
2

(2π, 2π
3 ), ( 2π3 , π) Z3 ⊕ Z6 〈I2 ⊕C3, C3 ⊕ − I2〉 Z

2 ⊕ Z3
(2π, π

3 ), ( π
3 , 2π) Z6 ⊕ Z6 〈I2 ⊕ − C3, C6 ⊕ I2〉 Z

2

(2π, 2π
3 ), ( 2π3 , 2π) Z3 ⊕ Z3 〈I2 ⊕C3, C3 ⊕ I2〉 Z

2 ⊕ Z
2
3〈(

I2 E11
0 C3

)
, B1

〉
Z
2 ⊕ Z3

(2π, 2π
3 ), ( π

3 , π) Z3 ⊕ Z6 〈I2 ⊕C3, C6 ⊕ − I2〉 Z
2〈(

I2 E11
0 C3

)
, B2

〉
Z
2

(2π, π
2 ), ( π

2 , 2π) Z4 ⊕ Z4 〈I2 ⊕C4, C4 ⊕ I2〉 Z
2 ⊕ Z

2
2〈(

I2 E11
0 C4

)
, B3

〉
Z
2 ⊕ Z2

(2π, π), ( π
2 , π

2 ) 〈I2 ⊕ − I2, C4 ⊕ C4〉 Z
2 ⊕ Z

2
2

Z2 ⊕ Z4

〈(
I2 E22
0 − I2

)
, B4

〉
Z
2 ⊕ Z

2
2〈(

I2 I2
0 − I2

)
, C4 ⊕ C4

〉
Z
2 ⊕ Z2

where B1 =

⎛
⎜⎜⎝

1 1 0 0
−3 −2 −2 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , B2 =

⎛
⎜⎜⎝

−1 1 0 0
−3 2 −2 1
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

B3 =

⎛
⎜⎜⎝

1 1 0 0
−2 −1 −1 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , B4 =

⎛
⎜⎜⎝
1 −2 0 −1
1 −1 −1 0
0 0 1 −1
0 0 2 −1

⎞
⎟⎟⎠ .

〈(
0 −1

−1 0

)
⊕
(

0 −1
−1 0

)
,

⎛
⎜⎜⎝
0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠
〉

.

These groups cannot be realised as the holonomy group of a 6-dimensional flat
solvmanifold because Barberis, Dotti and Fino proved in [3] that any flat solvman-
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ifold of even dimension is Kähler, so the first Betti number b1 must be even. We
obtained the remaining 20 subgroups, which are shown in the Table 3.

5. Conclusions

We obtained 68 6-dimensional splittable flat solvmanifolds, of which 48 are almost
abelian solvmanifolds and 20 are not.

Wewill discuss the first Betti number b1 of the solvmanifolds we have obtained.
Recall that � is isomorphic to the fundamental group of the solvmanifold �\G.
Therefore, by Hurewicz’s theorem, �ab ∼= H1(�\G, Z) and thus b1(�\G) is equal
to the rank of �ab.

By inspection ofTable 3,we observe that all 6-dimensional splittable non almost
abelian flat solvmanifolds have b1 equal to 2.

On the other hand, the first Betti number of 6-dimensional almost abelian
flat solvmanifolds can be computed using [4, Proposition 4.7]: b1(�\G) =
6 − rank(φ(t0) − I5). Note that this coincides with the values in Tables 1 and 2.

A long standing problem concerning solvmanifolds is to determine whether the
cohomology of a solvmanifold can be computed exclusively using left invariant
forms. That is, when there is an isomorphism H∗(�\G, R) ∼= H∗(g) where H∗(g)
denotes the Chevalley–Eilenberg cohomology of the Lie algebra.

Regarding this problem, we can obtain from Table 1 examples of solvmanifolds
where this isomorphism does not hold. For instance, the Lie groupG = R�φ(t0)R

5

where at0 = 2π and bt0 = 2π
3 gives the solvmanifold in Table 1 corresponding to

φ(t0) = I3 ⊕θ(π
3 ) and has b1 equal to 4 but dim H1(g) = codim[g, g] = 2.

As a final remark, we would like to point out that the classification of 6-
dimensional splittable flat solvmanifolds can be easily generalized to dimension
7, by using the classification of finite subgroups of GL(6, Z).
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