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Abstract—The aim of this work is to investigate the exploitation
of radiometric acquisitions from satellite sensors at different
microwave frequencies in view of the prediction of river water
level. A case study has been identified in the Bermejo basin, in
northern Argentina. This river is seasonally affected by severe
flooding events in the lower part, mostly due to rains occurring in
the upper basin, that produce sediment loadings flushing down
along the lower basin thus changing the watercourse. While the
effectiveness of microwave radiometry at Ka band for flood moni-
toring is consolidated in the literature, this study also considers X
and C bands (provided by the Advanced Microwave Scanning
Radiometer (AMSR) series together with the higher frequency)
and highlights the better sensitivity to soil conditions of L band data
(made recently available, thanks to SMOS) over moderately and
densely vegetated areas. This study confirms, first, the well-known
capability of passive microwave remote sensing instruments to
record brightness temperature variations due to rainfall and floods
occurred near river edges under different seasonal conditions. For
this purpose, a multifrequency comparative analysis is conducted.
Second, it investigates whether these properties can be exploited for
flood forecasting: a model which directly links the daily satellite
measurements to the river water level has been tested, considering
1- to 7-day forecast horizons. The results show that forecasting
models can take advantage of the sensitivity of low frequencies to
soil moisture conditions in order to predict flood peaks, despite the
instrument’s low resolutions.

Index Terms—Flood, forecasting, hydrology, microwave
radiometry.

I. INTRODUCTION

I N the last few decades, several approaches have been
applied to predict the river conditions, such as physically

based hydrological models [1]–[3] and statistical or data-driven
models [4]–[6]. The study of water level stage for flood emer-
gency requires knowledge of the probability of occurrence, the
measurements of the water level in upstream gauging stations,
and a robust algorithm that is able to show, with the slightest
possible uncertainty, the estimation of the water level down-
stream [7]. Routing models have also been used to compute

downstream discharge, and/or level forecasts that generally tend
to be more accurate than rainfall-runoff models [7]. However,
routing models partially neglect aspects such as backwater
effects, so that spatially distributed rainfall-runoff models have
been developed as an extension of hydrological flood routing
with the aim of providing estimates of water levels at any point
along the river system.

The operational applicability of the above-mentionedmethods
is constrained by their complexity and, to a large extent, by the
requirements of extensive rainfall data, detailed information of
basin topography, vegetation, and soil characteristics for the
description of the hydrological processes. The most promising
approach to obtain these data relies on the exploitation of satellite
observations. Several works have recently been focused on
assimilation of remote sensing data [8]–[12], which can fulfill
the above needs in both spatial and temporal terms.

Active microwave remote sensing can provide high resolution
data, so that Synthetic Aperture Radar images have been mainly
used as a tool for flood and risk mapping [13]–[16], whereas
dealing with the evolution of floods requires a suitable revisit
time, as achieved recently by COSMO SkyMed [17], [18].
Interferometry has been proposed to measure surface velocity
across a river channel [19], whereas satellite altimetry has been
considered a source for surface water elevation information [20].

Passive microwave remote sensing, besides being indepen-
dent of weather and day light, offers a high temporal resolution,
which is one of the main requirements for an appropriate
monitoring. In particular, passive data at 36 GHz have been
successfully used so far to delineate flood extent [21], [22] on the
basis of the so-calledM/CRatio, i.e., the ratio between brightness
temperature of a wet (Measurement) pixel and the one of a dry
(Calibration) pixel, which is directly related to the fraction of
water covered area. The same index has been used as a proxy to
estimate river discharge [23], [24] and its application for flood
forecasting has also been recently presented [25]. These works
take advantage of the large contrast between flooded and non-
flooded pixels which can be detected, thanks to the spatial
resolution of the order of 10 km [of the high-frequency channels
of AdvancedMicrowave Scanning Radiometer for Earth observ-
ing system (AMSR-E)], which is suitable for this application.

In this paper, we intend to explore the applicability of lower
frequency radiometry to flood monitoring and forecast. For such
data, the water extent is no longer the primary driver of the
microwave response, because of the reduced spatial resolution
(see Sections III-A and B). Soil moisture changes are sensed
instead. This parameter plays a critical role in the processes
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related to floods and can be monitored through vegetation
canopy, especially at L-band, which is the frequency of the
recently launched SMOS satellite and of the forthcoming SMAP
mission. After checking the sensitivity of the available passive
data over an extended frequency range, a test offlood forecast has
been carried out following the approach described by Bindlish
et al. [26]. Such approach has been selected since remote sensing
data can be directly assimilated without retrieval of geophysical
parameters. Indeed, it is assumed that this information is con-
tained in the radiometric data themselves.

The study area is in the lower Bermejo basin (Argentina), a
hardly accessible region where the scarcity of ground measure-
ments makes the application of routing models problematic
because of the complexity of the drainage basin and the high
water flow from tributaries. Furthermore, this area has been
chosen because floods occur periodically, so that the forecasting
exercise has been carried out over two events.

This paper is organized as follows: a description of the site, of
the sensors used and the collected data is provided in Sections II
and III. A comparative analysis with the aim of assessing the
reliability of the multifrequency and multitemporal radiom-
etric data is carried out in Section IV. The results of the forecasting
exercise carried out using the radiometric data and the model
introduced in [26] are described in Section V. The conclusion and
possible further developments are presented in Section VI.

II. SITE DESCRIPTION

The region addressed is the Bermejo River basin in Argentina
(22–27 S and 58–66 W) and it is depicted in Fig. 1. The Bermejo
River has its head in the Andes Mountains of northwestern
Argentina and southern Bolivia, in the department of Tarija. The
basin extends over some inSouth-East direction and
reaches an overall length of 1450 km. The different weather and
topographic conditions in this large basin promote an array of rain
forest, humid valleys, and mountain desert in the upper basin, and
dry, humid, and gallery forest in the lower basin. The study area,
situated in the lower Bermejo basin between north Argentina and
the river Paraguay, is approximately included inside a rectangular
box of coordinates (25–27 S lat, 58–60 W lon) around the
hydro-meteorological station of El Colorado, as shown in Fig. 1.
In the lower basin ( ), the river is divided in two
branches. The smaller one is called Bermejito, a meandering
bed often dry that reaches the Chaco province. The larger one,
called Teuco or Bermejo Nuevo, marks the provincial boundary
between Formosa and Chaco while flowing into the Paraguay
River. The water course changes continuously, since this area is
subject to several processes of erosion and silting, and receives the
medium and coarse material mobilized in the upper basin charac-
terized by a high drainage density. The hydrological regime of the
Bermejo River has a marked seasonal variety, characterized by a
period of significant flow in the wet season, presenting values
close to 75% of runoff in summer, and a minimum flow, decreas-
ing to 11%, in the dry season. The mean discharge recorded at
the gauging station of El Colorado is about . In the
last section of the river, between El Sauzalito and El Colorado
stations, the bed slope is very low (< ) with a travel time of
about 1 week [27].

Annual rainfall in the lower basin is characterized by a
decrease from east (1400 mm) to west (300 mm), with highest
values in the Paraguay River. The rainy season runs between
November and March and it concentrates 85% of total annual
precipitation. Average temperatures for this time of year range
between 16 C and 28 C, with extreme maximum between 35 C
and 45 C, depending on the area. The dry season coincides with
Austral Autumn–Winter in the months of June, July, and August
when very little or almost no precipitation occurs. Average
temperatures in this period range between 8 C and 15 C, with
extreme minimum below 0 C.

In response to precipitation distribution, the Chaco phytogeo-
graphic province inBermejoRiver basin is divided into twomain
districts characterized by distinctive tree morphology: 1) the
eastern or humid Chaco dominated by Quebracho (Schinopsis
balansae) and 2) the western or semi-arid Chaco with Red
Quebracho (Schinopsis lorentzii). The study area lays in the
humid Chaco (see Fig. 1). Its wet and humid climate is deposited
by northern trade winds, and it is characterized by a strong
altitudinal gradient, which corresponds to an important gradient
in vegetation species. The plant communities [28] are condi-
tioned by the topographic gradient, and this is related with the
flooding pulse. The surroundings of El Colorado station are
characterized by crop and herbaceous coverage. The soil con-
ditions are affected, among others, by rainfalls, which were
measured in the four meteorological stations (Gral Vedia, Puerto
Bermejo, Laguna Limpia, and El Colorado) included in the
selected area, whose locations are also shown in Fig. 1.

Indeed, in extended and ramified watersheds lacking diffuse
in situ network of soil moisture monitoring, as in subtropical
South America, the combined use of satellite data and traditional
ground‐based rainfall and water level observations represents a
promising alternative to conventional monitoring techniques in
the surveillance of flooding phenomena.

III. INSTRUMENTS AND THE DATASETS

Seasonal flooding events often occur during the rainy season
in the lower basin of the Bermejo River between the Argentinean

Fig. 1. Bermejo basin location. The rainfall and hydrometric stations considered
in this study are marked by circles. The red frame shows the study area
of Figs. 3–5.
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provinces of Chaco and Formosa, due to heavy rains. Depending
on the year, floods can occur on a short time interval of 3–4 days,
or can last several days. In this respect, the high temporal
resolution represents the major attraction of passive microwave
data in the detection of floods and in monitoring of the evolution
of both short and long events, since they are acquired at a near-
global daily coverage. On the other hand, the lower spatial
resolution can be considered as the principal weakness, though
less stringent for the site under study since the considered
phenomena extend over large areas.

Data collected by two passive sensors have been used for this
analysis, exploring the phenomena with different wavelengths:
AQUA AMSR-E C, X, and Ka bands and SMOS Microwave
Imaging Radiometer with Aperture Synthesis (MIRAS) L band.
Ground data collected by rain gauges and hydrometric stations
were also included in the study. Satellite and ground datasets
cover the 2010 and 2011 time frame duringwhich both AMSR-E
and SMOS were active: the latter became fully operational in
2010, whereas the first one concluded its lifetime in October
2011. Sensors of the AMSR series are still operating onboard
JAXA’s Global Change ObservationMission (GCOM) satellite,
so that continuity of brightness temperatures acquisitions is
guaranteed.

A. AMSR-E Processing

The AMSR-E, aboard NASA’s AQUA satellite, provides
frequent global coverage of the Earth’s surface measuring
brightness temperature at six frequencies. Among them,
6.9, 10.7, and 36.5 GHz are the ones considered in this study.
The mean spatial resolution on the ground is 56 km at C-band,
38 km at X-band, and 12 km at Ka-band with an incidence angle
of 54.8 on the Earth’s surface. AMSR-E operates in a Sun-
synchronous orbit at 98.2 inclination with ascending equator
crossings at 13:30 LT. The imaged swath width is 1445 km,
providing full global coverage within 3 days. More detailed
information on AMSR-E sensor and its successor AMSR2
onboard JAXA’s GCOM—Water (GCOM-W1) satellite can be
found in [29] and [30]. Data fromAMSR-E level 2 (L2A, version
2, validation level 10) have been gathered for both ascending and
descending orbits, at both polarizations, yielding measurements
from January 1, 2010 toOctober 4, 2011,whenAMSR-E activity
was interrupted. In this paper, only the nighttime AMSR-E
observations are used, since soil moisture retrievals based on
these data are more reliable than those based on daytime
observations [31].

The ’s at C,X, andKa bands have been transformed into the
corresponding surface emissivities applying the following
formula, in the assumption of homogeneous pixel:

In (1), and are, respectively, the emissivity and the
brightness temperature at the selected frequency and polariza-
tion ( or ), and is the estimate of the surface temperature. It
was demonstrated that the Ka band is the most correlated to
surface temperature [32], so that in this work, we used the

regression by Parinussa et al. [33] developed for the AMSR-E
in descending orbit

where is the measured brightness temperature at Ka band
at vertical polarization, and all terms are given in K. This
method provides estimates of the surface temperature with the
closest time correspondence to the satellite acquisitions.

B. SMOS Processing

The Soil Moisture and Ocean Salinity (SMOS) ESA satellite
provides continuous multiangular measurements of brightness
temperature at a frequency of 1.4 GHz [34], [35]. In order to
achieve the spatial resolution required for observing soil mois-
ture, a huge antennawould have been required. To overcome this
challenge, theMIRAS instrument was developed. The payload is
a 2-D interferometer yielding a range of incidence angles from 0
to 55 at bothV andH polarizations, and an average resolution of
46 km. SMOS is deployed in a sun-synchronous orbit at 98.44
inclination with ascending equator crossings at 6:00 LT.

Daily L1C observations from ascending and descending orbits
have been analyzed for the period 2010–2011. SMOSV.504 data
have been used to extract L1C brightness temperatures averaged
over observational angles within 37.5 and 47.5 . Data with a
distance from swath center higher than 300 km, which showed a
poor quality, have been eliminated. Moreover, only data not
affected by RFI have been considered. In order to calculate the
emissivity applying (1), the surface temperature has been
extracted from ECMWF auxiliary products (V.501 version).

C. Hydrometric Data

The area of lower Bermejo basin was subject to severe rain-
storms during the analyzed period of time which spans almost 2
years of common operational activity of SMOS and AMSR-E.
Fig. 2 reports the water level versus the Day of Year (DoY), as it
was measured at two hydrometric stations during the 2010–2011
years. In these sites, seasonal effects, which give rise to two
floods, are well visible. Water level at the upstream station of
El Sauzalito anticipates peaks and troughs recorded at ElColorado
by about 7 days. The peaks in the first parts of the years are due to
the rainfalls simultaneously occurring in the whole river basin
and, when 6 m water level is reached, they indicate a flooding

Fig. 2. Bermejo river water level as it was measured at El Colorado and
El Sauzalito hydrometric stations during 2010 and 2011.
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event for the area of El Colorado. At El Sauzalito, the bankfull
depth is about 4 m.

During the first months of each year, due to the arrival of the
“rainy season” that starts in December and lasts until March, the
water level is always high (Fig. 2): at El Colorado station, it is
approximately included in a range from 5.5 to 8 m above the sea
level (not considering the temporary drop at 4 m after some days
of flooding in January 2010), whereas after March, the water
level returns under 4 m.

IV. PRELIMINARY ANALYSIS: RAINFALL AND FLOOD
EFFECTS OVER THE STUDY AREA

In this section, the sensitivity of brightness temperatures and
emissivity to rainfalls and floods is examined at regional and
local scale with the aim of highlighting the differences at the
various frequency bands.

A preliminary analysis has been performed, producing
emissivity maps of the area, extending from 27 to 25 latitude
South and 60 to 58 longitudeWest, around El Colorado hydro-
meteorological station.

Examples of rain and flooding conditions are provided, and
they are compared with the emissivity map produced in absence
of storms or discharges and after a rain-free period, from now on
called “normal conditions.” In the followingfigures, the Bermejo
and Paraguay rivers are drawn in black, whereas the position of
El Colorado station is highlighted by a blackmarker. Thesemaps
display night time acquisitions of AMSR-E (descending orbits)
and dawn acquisitions of SMOS (ascending orbits), so that the
influence of diurnal insolation can be neglected.

In Figs. 3–6, the maps of horizontal polarized emissivity at
36.5, 10.7, 6.9 and 1.4 GHz, respectively, are shown, and the

three columns report three different days corresponding to
normal, rain, and flooding condition, respectively. For each
frequency, the maps show data collected on April 12, 2010 (in
the absence of precipitation, after about 10 days from a rain
event, and water level of 4.5 m, i.e., under the bankfull height),
May 18, 2010 (about 20 mm precipitation at Puerto Bermejo and
Gral Vedia, with water level of 2.4 m) and February 26, 2010 (in
correspondence of flood). The bottom right corner corresponds
to the confluence of the Bermejo River into Rio Paraguay. The
latter is imaged in blue shades, from dark to light, depending on
the moisture conditions of the areas falling within the AMSR-E
and SMOS-MIRAS footprints.

Looking at the maps for the same date, it is possible to observe
the overall decreasing trend of emissivity with respect to fre-
quency. Note that, in order to avoid color saturation, and to
highlight the sensitivity of the various frequencies, we used
different color scales. At the higher frequencies and in normal
conditions [Figs. 3(a), 4(a), and 5(a)], the emissivity over
El Colorado area reaches quite uniform high values, whereas
the higher capability of penetration through vegetation at L-band
[Fig. 6(a)] allows to record less-saturated values with higher
spatial variability than at shorter wavelengths. Emissivity reduc-
tions can be observed at all frequencies in the whole area, in
correspondence of the rainfall event [Figs. 3(b), 4(b), 5(b), 6(b)].
In the case offlooding [Figs. 3(c), 4(c), 5(c), 6(c)], themaps show
more marked reductions of emissivity with respect to the “rain”
images around El Colorado hydrological station, where a water
gauge above bankfull is documented. This behavior due to the
soil saturation condition is much more evident at L band. The
inhomogeneities of , which can be observed at Ka band, are
due to spatial inhomogeneities which are visible, thanks to the
higher resolution. At C and X bands, the phenomenon affects

Fig. 6. SMOSL-bandmaps of horizontal emissivity over lowerBermejo basin
in: (a) normal condition; (b) rain condition; and (c) flooding condition. (Note the
different color scale with respect to Figs. 3 and 4.)

Fig. 4. AMSR-E X band maps of horizontal emissivity over lower Bermejo
basin in: (a) normal condition; (b) rain condition; and (c) flooding condition.

Fig. 3. AMSR-E Ka band maps of horizontal emissivity over lower Bermejo
basin in: (a) normal condition; (b) rain condition; and (c) flooding condition.

Fig. 5. AMSR-E C band maps of horizontal emissivity over lower Bermejo
basin in: (a) normal condition; (b) rain condition; and (c) flooding condition.
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mainly the area surrounding El Colorado station, where the
flooding produces the major effects. In the same maps, the
eastern areas, closer to Rio Paraguay, show intermediate emis-
sivity values between rain and normal conditions.

The same trends have been confirmed by the vertical polari-
zation emissivity maps, but with higher average values (not
shown here).

An assessment of the previous results has been carried out
considering the trends at all considered bands, averaging
measurements over a portion of half degree half degree,
between 26 and 26.5 S latitude and 59 and 59.5 W longitude,
i.e., about just around El Colorado station. The
selection of this area allowed studying the effects of soil moisture
variation during flooding events, which may extend far away the
watershed. Although soil moisture measurements were not
available for the site under study, in [36], a clear correlation
between the rain occurrence and the soil moisture content
provided by ECMWF over the same area has been observed.
For this reason, in Fig. 7, the daily rainfall data coming from the
four meteorological stations in the Bermejo area are plotted
together with the average and measured by both
radiometers.

Fig. 7(a)–(c) shows the comparison between the intensities of
measured rainfalls and the AMSR-E 2010–2011 series of bright-
ness temperature for descending orbits at both polarizations at
Ka, X, and C bands, respectively. As previously mentioned,
response to rain events is more apparent during night-
time passes, because less affected by insolation issues [23]. In
Fig. 7(d), the same comparison is shown considering the L band
dual polarization brightness temperature series acquired by
SMOS in both ascending and descending orbits (because of
the reduced amount of noise-free data). The long term trend
of is dependent on the season: an absolute minimum can be
identified during the dry season, i.e., from June toAugust (

), whereas the maximum values can be observed at
the beginning of the year, i.e., during Spring–Summer.

In Fig. 8, the rainfall rates are plotted along with the emissivity
trends. This parameter loses the seasonal periodicity because of
the normalization to surface temperature. Furthermore, thanks to
normalization, the variations due to the storm occurrences are
better highlighted.

The differences in the dynamics of the radiometric quantities
at the four frequencies are due to the different penetration
capability through the vegetation canopy and to the different
spatial resolutions of the four considered frequencies. The trends
at Ka and X bands are similar to the ones at C band, but with a
lower dynamic range. This is due to the higher canopy attenua-
tion and to the reduced dynamics of soil permittivity of the higher
frequencies. The enhanced dynamics of L band [Figs. 7(d) and
8(d)] with respect to other bands allows a better appreciation of
the changes due to rainfall, flooding, and saturation of soil.

Vegetation effects are over imposed to the soil ones, especially
at short wavelengths, but short-term variations in the microwave
signature time series remain visible after rainfall or flooding and
can be related to changes of soil properties also in presence of
vegetation. Indeed, forests change very slowly their biomass, so
that variations of the vegetation emission contribution are slower
than variations due to rainfall or flooding. Interception or change

in canopy moisture would produce an unpolarized emission,
which would reduce the difference between the emission at
vertical and horizontal polarizations [37]. However, in the case
under study, an increase of this difference is observed after the

Fig. 7. AMSR-E and SMOSmultifrequency time series of , plus ground
truth data collected at rainfall stations, from Jan. 2010 to Oct. 2011. (a) AMSR-E
Ka band. (b) AMSR-E X band. (c) AMSR-E C band. (d) SMOS L band.
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rainfalls, so that emissivity variations can be attributed mainly to
soil effects.

These considerations on the and series acquired by
AQUA AMSR-E and SMOS-MIRAS instruments assured the
reliability and congruence of the multifrequency and multitem-
poral datasets.

V. APPLICATION TO FLOOD FORECASTING

A. Algorithm

In Section IV, it has been shown that the emissivity signatures
are driven by the sensitivity to dielectric properties of the
observed surface, which may display a broad dynamic range of
dielectric constant from dry to water surfaces. That is, Tb and
are sensitive to the soil saturation state which, being related to
rain and runoff, can be a precursor of flooding events. The
radiometric quantities are not directly correlated to water level
in a watershed but to soil infiltration capacity and moisture
antecedent conditions, which are among the main causes of
flooding. Therefore, their information content could be exploited
in flooding forecast. In order to test this hypothesis, we imple-
mented the forecastingmodel of river water level which has been
introduced in [26]. We selected this method since it is based on
direct assimilation of remote sensing data, and it does not require
hydraulic backgrounds. However, the conclusions drawn from
this study can be of interest for the application of other forecast-
ing methodologies. The model assumes a linear correlation
between water level and input values, but it is able to perform
a dynamic adjustment of the weight parameters as soon as new
measurements are available as time flows. In this way, nonlinear
trends of water level with time can be reproduced. We remark
that in [26], the adaptive model was applied to a river basin in
Australia, which differs from the Bermejo one for its structure,
characterized by ephemeral channels in an arid region with
scarce vegetation cover.

Detailed description of the adopted forecast model can be
found in [26] and in the Appendix, where we also mention the
adjustments which we introduced. Here, we mention that we
selected the following inputs.

1) Rainfall measurements collected in the four meteorologi-
cal stations surrounding El-Colorado site, since we
assume that floods are related to local and upper basin
precipitations.

2) Water level measurements performed at El Sauzalito sta-
tion, about 300 km upstream El-Colorado site, in order to
consider water flow propagation.

3) AMSR-E and SMOS emissivity at both polarizations. We
disregarded brightness temperature measurements, since
the seasonal surface temperature variations can mask the
fluctuations due to change in soil conditions.

B. Results

First, we checked that the adopted algorithm could supply
forecast values with reasonable accuracies. Then, we examined
the performance of the AMSR-E and SMOS frequencies sepa-
rately and in combination. The adaptive model has been applied
to data of each satellite, considering three different forecast
horizons (the parameter) , , , and
days, whereas the number of days included in the input
measurements has been fixed to 7. The latter is related to the
water travel time between El Sauzalito and El Colorado that is
less than 1 week. Indeed, we have verified that the model results
show a weak dependence on .

Fig. 9 shows the water level forecast results for the
hydrometric station of El Colorado obtained with emissivity

Fig. 8. AMSR-E and SMOS multifrequency time series of , plus ground
truth data collected at rainfall stations, from Jan. 2010 to Oct. 2011. (a) AMSR-E
Ka band. (b) AMSR-E X band. (c) AMSR-E C band. (d) SMOS L band.
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measurements at Ka band of AMSR-E and at L-band of SMOS
sensors. The predictions with lead time equal to 5 days are not
reported since they show an intermediate behavior between the 3
and 7 days results.

The results of Fig. 9 show that the forecasting algorithm is able
to capture the real water level trend (blue circles in the figure),
although with a certain delay which, nevertheless, decreases
together with the forecast horizon. It can be observed that the
forecast values of discharge peaks show a little dispersion around
the ground truth values. These errors are always visible and
become higher increasing more than 7 days the forecast horizon.
Moderate differences are observed between results obtainedwith
data collected by the two sensors.

In Fig. 10, the scatterplots worked out with measured and
forecast values of water level at El Colorado station are shown.
This representation highlights the adaptive model behavior with
respect to the water level magnitude. The correlation coefficient
(R) and the root mean squared error (RMSE) of the complete
datasets are reported inside the graphs. The RMSE has been
calculated comparing the predicted water level with the
ground measurement . We remark that is the time when
the measurement has been carried out. On its turn, the
forecast value has been predicted days earlier, i.e., at time

(see also the Appendix), so that the forecast is
independent from the observation .

All plots show a good correlation between the estimated and
the measured quantities, being R always larger than 0.9 and
p-value lower than . On its side, the RMSE shows the
lowest values for the lowest lags. It can be also observed that the
model presents higher variance for high water level values. For

this reason,we recomputedR andRMSE for two separate subsets
of data: measured values of water level below and above 5 m.
(We remind that flooding condition at El-Colorado station is met
when 6 m water level is reached.) Table I reports the RMS errors
obtained applying the forecast model to AMSR-E and SMOS
frequencies and to the combination of Ka and L-band data. Other
combinations were not reported since they yield intermediate
results.

It can be noted that for < , R is always > and the
RMSE values are lower than 50 cm: during the dry season, i.e.,
when < , even and produce appreciable
results. When > , the correlation R increases and the
RMS error decreases when the forecast lead time decreases:
during the rainy season, the adaptive algorithm requires a
reduced lead time in order to get a more precise estimation of
water level. In particular, when , the error in the prediction
becomes lower than 10% of the measured water level. The lower
accuracy of the highest lead times can be due to the loss of the
linearity assumed by the adaptivemodel [(5) in theAppendix]. In
particular, whenwater level changes very quickly, i.e., during the
rainy period, the linear fit performed to find the weights W(t) of
(5) might be inadequate to represent the water level variation,
especially over long period of time, i.e., for large values.

To evaluate the effectiveness of the satellite measurements in
the river flow forecast, the adaptive model has been applied
considering only the precipitation data and El Sauzalito water
levels as input. The obtained results, shown in Fig. 11, highlight
the role of the radiometric measurements. Indeed comparing the
trend of the forecast values with the results of Fig. 9, the
improvement introduced by the remote sensed AMSR-E and

Fig. 9. Measured and predicted river water level values of El Colorado station. Forecasting usingAMSR–E (left) and SMOS (right) emissivities. (a) and (b) Caseswith
forecast horizon equal to 3 days . (c) and (d) Cases with forecast horizon equal to 7 days . in all cases.
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TABLE I
RMSE AND R FOR EACH LEAD TIME FOR BOTH SENSORS

Fig. 10. Water level scatter plots obtained by AMSR band (top) and SMOS L-band (bottom) at (a) and (d) , (b) and (e) , and (c) and (f) .
in all cases.

Fig. 11. Measured and predicted river water level values of El Colorado station without inclusion of satellite radiometric measurements in the model. (a) Forecast
horizon . (b) Forecast horizon .
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SMOS data is apparent. In particular, we remark that the absence
of satellite radiometric measurements affect forecasting not only
during the flooded days but also during the dry season. This is
displayed by the higher RMSE’s of the modeled data, which are
reported in Table II.

Finally, we come back to Table I, and observe that the best
forecasting results are obtained when using Ka or L band, or a
combination of the two. These frequencies own different char-
acteristics which turn out to be crucial for flood monitoring:
thanks to its spatial resolution, the highest frequency data contain
information about water surface extent that, on its turn, is
correlated with river discharge [23]–[25]; the lowest frequency
shows a remarkable sensitivity to soil conditions, forerunners of
flooding. Indeed, L band provides the best sensitivity to varia-
tions in the soil, coupled with minimal disturbance from vegeta-
tion cover.

VI. CONCLUSION

In thiswork, the direct comparison between data acquired over
the same area from satellite platforms, in a large microwave
frequency range, has been performed. The same dataset has been
subsequently employed in the application of an adaptative
approach to the forecast of river water level. We selected the
Argentinean lower Bermejo basin, where regular floods occur
during the rainy season, together with AMSR-E data and the
recently available SMOS radiometric measurements. The attrac-
tiveness in the use of the lower frequencies of AMSR-E and
SMOS sensors is mainly due to the sensitivity of the microwave
bands to the soil saturation, as well as to the high time resolution
of the data. The analysis has been carried out along a 2-year time
frame (2010–2011) during which the two sensors were simulta-
neously active and two flood events occurred.

The preliminary analysis confirmed the expected theoretical
behavior of the brightness temperature and emissivity at L, C, X,
and Ka bands with respect to rain and flooding events. The
obtained results suggested the idea to test the performance of
multifrequency radiometric data for river water level forecasting,
using variations together with rainfall rates. It is well known
that changes in emissivity at Ka band are correlated with changes
in water surface extent within the pixel, whereas lower frequen-
cies are sensitive to soil moisture changes. So, even though the
measured radiometric quantities are not directly correlated with
streamflow, they can play an important role in the prediction task,
being sensitive to surface conditions prone to saturation and to

development of floodings. Thus, an adaptive model has been
chosen which takes as input radiometric data.

Comparable forecast results were obtained at all frequencies.
However, the best performances are achieved at Ka and L bands,
showing that the higher resolution of the highest frequencies is
counterbalanced by the highest sensitivity to soil conditions at
the lowest frequencies. The results of this paper, therefore,
encourage the employment of L band microwave radiometry in
the monitoring of flood evolution. In particular, the performance
of advanced and skilled forecasting methods can benefit from
SMOS and SMAP data.

In a real application context, these radiometric data could be
integrated in operational flood forecasting systems. Furthermore,
the water gauge and meteorological measurements, eventually
needed by predictive algorithms, could be substituted by alti-
metric data and rain data measured from spaceborne platforms as
well. Indeed, the high resolution altimetry Surface Water Ocean
Topography mission and Global Precipitation Measurement
mission will open new scenarios for a system completely based
on the assimilation of remote sensing data [38].

APPENDIX

In order to find the relation that can describe the correlation
between satellite and ground truth hydrometric variations,
Bindlish et al. [26] developed an adaptive model which performs
a linear fit between input and output, and dynamically adjusts the
weights, depending on the evolving conditions.We implemented
this model and tested it for the area around El Colorado in the
lower Bermejo basin. This site counts the major number of
seasonal floods, and water peaks always occur from January to
March (rainy season), so that it has been possible to follow the
evolution of two floods. The algorithm has been applied to
measurements from AMSR-E and SMOS, in concomitant oper-
ation between 2010 and 2011, with slight differences in the
vector of inputs, as shown in (4a) and (4b).

The model inputs are:
1) measurements of AMSR-E and or the SMOS

and , extracted from the rectangular box (26 –26.5 S
latitude and 59 –59.5 W longitude) that includes ElColorado
station;

2) ground rainfall measurements in the four rainfall stations
closer to El Colorado hydrometric station with ;

3) water level measured in the upstream hydrometric
station of El Sauzalito.

TABLE II
RMSE AND R FOR EACH LEAD TIME AND WITHOUT THE SATELLITE RADIOMETRIC DATA
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The model output consists of the estimation, hereafter called
, of the water level ground observations at El Colorado station

(WL). The latter is the ground truth which is ingested by the
algorithm as soon as it comes available.

The water level is forecast at a time , i.e., a given
Day of the Year, for the following day . The lead time (or
forecast horizon) , equal to 1, 3, 5, or 7 days, represents the time
that a prediction is made for, and is related to the alert time in a
river basin. The model has been developed under the hypothesis
of linear dependence of the water level from the model inputs
acquired days in the past, as summarized in (3)

In (3), is the weight vector and is the input vector.
The latter is actually representative of a stream of data; i.e., the
components of this vector represent the previously listed para-
meters, acquired during days before the day . The expanded
formulations of for the AMSR-E and the SMOS are shown
in (4a) and (4b), respectively

At each new day, is updated with the new incoming data.
Therefore, at a given , contains the information acquired in
the previous days, i.e., from day to . Such a choice
depends on the observation that, when flooding occurs, the
saturation of soil depends on the soil condition present some
days before the flooding itself. Furthermore, is connected to
the hydrological behavior of the selected area and can be varied
according to intrinsic features of the basin, like geophysical and
topographical ones.

represents the number of days after the observations when
the river level is to be forecast. represents the number of days
before a certain time that enter the model as input. As a
consequence, indicates the number of components for each
variable considered in the vector of inputs. In the original model
by Bindlish et al. [26], . We relaxed this constraint since
we could take advantage of measurements made in the past in
order to predict water level at days in the future.

A linear interpolation has been applied when data necessary
to build were not available (AMSR-E and SMOS , or
El Sauzalito water levels, WL), in order to guarantee a uniform
temporal resolution of 1 day.

Through an adaptive algorithm, the model performs the
dynamic daily changing of the weights when new observations
come. Each prediction is performed with weights whose modifi-
cation depends on the radiometric responses, as well as on
precipitations and on the measured water level in the upstream
station, of days in the past. This allows building a flexible
model that is able to perform a linear fit at each time . From one
time to the next, the weight vector is dynamically adapted
using the least mean square (LMS) algorithm [39], [40]: in this
way, nonlinear trends are represented by spline functions. The

vector of weights has not been initialized, i.e., , for
, .
days after the forecasting, the water level is mea-

sured at ElColorado station, and it is used to compute the residual
error ( ) between the ground truth and the model output

In (5), is the estimation of water level at time , i.e., the
forecast value computed by means of the inputs .

is the ground truth water level measured at El Colorado
station at time .

The residual error is used at each step to adjust the vector of
weights applying the LMS formulation

where the values for the weights are computed considering their
previous values and an added term given by the residual error

multiplied by the input and by the step size
parameter , a positive constant which is required for the
convergence of the algorithm [39]. In our study, we chose

< < , when using the AMSR-E data, and
< < for SMOS. This selection was made applying

the forecasting algorithm on a training dataset; i.e., we chose the
value yielding the lowest RMSE on data collected in the whole

2009 by AMSR-E and on the first 60 days of 2010 by SMOS.
In order to better understand the methodology used here, a

flowchart has been developed (Fig. 12).
As explained in the figure, at the first steps, the weights

are initialized to zero. Therefore, the first inputs , i.e.,
the inputs for the first predictions, produce forecasts
to equal to zero. This means that the first residual
errors to , computed as soon as the water
level is measured, will be equal to the ground truth , or
rather the hydrometric value acquired at the days to

Fig. 12. Algorithm flowchart.
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. As a consequence, the forecasting performed
at to cannot be considered significant. This
first phase of the algorithm can be called “initialization phase”
and it lasts days. In our study, we included the
initialization phase inside the training phase, previously de-
scribed. In the subsequent steps, the LMS algorithm adjusts the
weights in order to minimize the residual errors at each step,
according to (6). The algorithm is stopped when the last water
level measurement is available (e.g., at time N), which allows the
prediction at time .
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