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Abstract. We extend previous results by Cumplido, Martin and Vaskou on parabolic subgroups

of large-type Artin groups to a broader family of two-dimensional Artin groups. In particular, we
prove that an arbitrary intersection of parabolic subgroups of a (2, 2)-free two-dimensional Artin

group is itself a parabolic subgroup. An Artin group is (2, 2)-free if its defining graph does not

have two consecutive edges labeled by 2. As a consequence of this result, we solve the conjugacy
stability problem for this family by applying an algorithm introduced by Cumplido. All of this is

accomplished by considering systolic-by-function complexes, which generalize systolic complexes.

Systolic-by-function complexes have a more flexible structure than systolic complexes since we
allow the edges to have different lengths. At the same time, their geometry is rigid enough to

satisfy an analogue of the Cartan-Hadamard theorem and other geometric properties similar to

those of systolic complexes.

1. Introduction

Let ΓS be a finite simple graph with vertex set S and edges labeled by integers m ≥ 2. The label
of the edge between s and t is denoted by mst, and we put mst = ∞ if there is no edge between
them. The Artin group defined by ΓS is the group AS given by the following presentation:

〈S | sts · · ·︸ ︷︷ ︸
mst letters

= tst · · ·︸ ︷︷ ︸
mst letters

∀s, t such that mst 6=∞〉.

The graph ΓS is implicit in the notation AS .
In this article we study the structure of the parabolic subgroups of two-dimensional Artin groups.

By results of Charney and Davis [5, 6], it is well-known that an Artin group AS is 2-dimensional
(i.e. it has geometric dimension 2) if and only if for every triangle in the graph ΓS with edges
labeled by p, q and r we have 1

p + 1
q + 1

r ≤ 1.

Given an Artin group AS , by a result of Van der Lek [17], the subgroup generated by a subset
S′ ⊆ S is isomorphic to AS′ , where AS′ is the Artin group corresponding to ΓS′ , the full subgraph
of ΓS spanned by S′. These subgroups are called the standard parabolic subgroups of AS , and
their conjugates are the parabolic subgroups of AS . Thanks to the result of Van der Lek, parabolic
subgroups have become a fundamental tool in the study of Artin groups. For example, the Deligne
complex [6] and an analogue to the curve complex of braid groups [9, 16] are simplicial complexes
for Artin groups that are defined using parabolic subgroups.

One of the main questions regarding parabolic subgroups is whether they are stable under in-
tersection. That is, is the intersection of an arbitrary family of parabolic subgroups a parabolic
subgroup? The answer was already known to be affirmative for the intersection of standard para-
bolic subgroups [17] and in the case of braid groups. A braid group on n strands can be thought of
as the mapping class group of a punctured disk Dn with n punctures. Its parabolic subgroups are in
bijection with isotopy classes of nondegenerate, simple closed multicurves in Dn. The complement
of each of these multicurves is a disjoint union of punctured disks in Dn. In [11] an intersection be-
tween these families of punctured disks is defined. This intersection corresponds, via the bijection,
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to the intersection between parabolic subgroups, and can be used to give an affirmative answer to
the question. It was also known for graph products of groups, and in particular for right-angled
Artin groups [1]. More recently, the answer was generalized to Artin groups of spherical type using
Garside theory [9]. Combining this previous result with the structure of the Deligne complex,
in [16] it was shown that the intersection of two parabolic subgroups of spherical type inside an
FC-type Artin group is a parabolic subgroup of spherical type.

In [10] Cumplido, Martin and Vaskou used a geometric approach to solve this problem for Artin
groups of large-type (i.e. those with mst ≥ 3 for all s, t ∈ S). They introduced a simplicial complex
associated to an Artin group, called the Artin complex, on which the Artin group acts cocompactly
and without inversions (see Section 3 for definitions) and proved the following:

Theorem 1.1 ([10], Theorem 11, Remark 15, Corollary 16). Let AS be an Artin group and XS

its Artin complex. If any time an element of AS fixes two vertices of XS it fixes pointwise a
combinatorial path joining them, then

(1) An arbitrary intersection of parabolic subgroups of AS is a parabolic subgroup of AS.
(2) If P1 and P2 are two parabolic subgroups of AS such that P1 ⊆ P2, then P1 is a parabolic

subgroup of P2.
(3) For a subset B ⊆ AS, there is a unique minimal parabolic subgroup of AS (with respect to

the inclusion) containing B, called the parabolic closure of B.
(4) The set of parabolic subgroups of AS is a lattice with respect to the inclusion.

Note that items (3) and (4) are direct consequences of item (2). These last facts were also proven
in [9] in the context of spherical Artin groups. The proofs presented in [10] are a geometrical
reinterpretation of the latter. The second item had also been proven previously by Godelle in [12].

In order to show that large-type Artin groups satisfy the conditions of the theorem, Cumplido,
Martin and Vaskou proved that Artin complexes are systolic in the sense of [15], and used the fact
that if a group G acts without inversions on a systolic complex and fixes two vertices, then it fixes
pointwise every combinatorial geodesic between them ([10, Lemma 14]). Systolic complexes were
first introduced by Chepoi under the name of bridged complexes in [7]. They were later discovered

and investigated independently by Januszkiewicz and Świa̧tkowski in [15], and by Haglund in [13].
Systolicity gives certain rigidity to the complex, which allows them to control its combinatorial
geodesics.

In the same spirit as [14], in this article we generalize Cumplido, Martin and Vaskou’s result to
a broader class of two-dimensional Artin groups. This is accomplished by considering a geometric
structure more flexible than systolicity. In Section 2 we introduce systolic-by-function complexes,
which generalize systolic complexes, and prove an analogue of the Cartan-Hadamard theorem.
In systolic-by-function complexes we permit the edges to have different lengths. This flexibility
allows us to consider a broader family of examples, while maintaining a rigid enough geometry.
In Section 3 we recall the construction of the Artin complex given in [10]. Then, in Section 4 we
show that the Artin complexes of (2, 2)-free two-dimensional Artin groups, which are those whose
defining graphs do not have two consecutive edges labeled by 2, are systolic-by-function and prove
the following result.

Theorem 1.2. Let AS be a (2, 2)-free two-dimensional Artin group with |S| ≥ 3 and XS its Artin
complex. Then, if an element of AS fixes two vertices in XS, it fixes pointwise a combinatorial
path joining them.

As an immediate consequence, the results of Theorem 1.1 hold for all (2, 2)-free two-dimensional
Artin groups (the cases with less than 3 generators were established in [9, 10]). In particular, we
derive the main result of this article.

Theorem 1.3. Let AS be a (2, 2)-free two-dimensional Artin group. Then the intersection of an
arbitrary family of parabolic subgroups is a parabolic subgroup.
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Finally, at the end of Section 4, we study the conjugacy stability problem for two-dimensional
Artin groups that are (2, 2)-free, by applying a very recent result of Cumplido [8]. A subgroup H
of a group G is conjugacy stable if, for every pair h, h′ ∈ H such that there exists g ∈ G with
g−1hg = h′, there is h̃ ∈ H such that h̃−1hh̃ = h′. The conjugacy stability problem consists in
deciding which of the parabolic subgroups of an Artin group are conjugacy stable. By applying
the algorithm described in [8], as a consequence of Theorem 1.3 we obtain the following result.

Theorem 1.4. Let AS be a (2, 2)-free two-dimensional Artin group and AS′ a standard parabolic
subgroup. Then AS′ is not conjugacy stable if and only if there exist vertices s, t in ΓS′ that are
connected by an odd-labeled path in ΓS, but are not connected by an odd-labeled path in ΓS′ .

Since conjugacy stability is preserved by conjugation, the previous theorem solves the conju-
gacy stability problem for (2, 2)-free two-dimensional Artin groups. Notice that Theorem 1.4 is a
generalization of [10, Theorem C].

Acknowledgments: I would like to thank Gabriel Minian for useful discussions and advice.

2. Systolic-by-function complexes

In this section we define systolic-by-function complexes, which are a generalization of systolic
complexes. We prove some basic properties and a local-to-global theorem analogous to the Cartan-
Hadamard theorem. In Section 4 we will make use of this geometric structure to prove Theorem 1.2.

Definition 2.1. A length function for a simplicial complex X is a function l : edges(X) → [0, 1
2 ]

that assigns a real number between 0 and 1
2 to each edge of X, satisfying the two following

conditions:

• the sum of the lengths of the three edges of any triangle is less than or equal to 1;
• the triangle inequality holds. That is, given three edges e0, e1, e2 that form a triangle,
l(ei) ≤ l(ei+1) + l(ei+2) (indices modulo 3).

A simplicial complex together with a length function is called a length complex.

A cycle in a (length) complex X is a subcomplex σ homeomorphic to S1. We denote by |σ| the
number of edges in σ. The length of σ is the sum of the lengths of its edges, and we denote it
by l(σ). A path in X is a subcomplex γ homeomorphic to [0, 1]. We define |γ| and l(γ) analogously.

A subcomplex K of a simplicial complex X is full if any simplex of X spanned by a set of
vertices in K is a simplex of K. A diagonal in a cycle σ in a simplicial complex X is an edge
of X connecting two nonconsecutive vertices of σ. Thus, a cycle is full if and only if it has no
diagonals and does not span a simplex. A simplicial complex X is flag if every set of vertices
pairwise connected by edges spans a simplex of X.

We recall that given a simplex s in a simplicial complex X, its link LkX(s) is the subcomplex
of X consisting of the simplices that are disjoint from s and such that, together with s, span a
simplex of X.

Definition 2.2. A length complex X is large if it is flag and if every full cycle has length greater
than or equal to 2. It is locally large if the link of every vertex is large.

It is clear from the definitions that a large length complex is locally large. This is because, since
the complex is flag, the links of its vertices are flag and full cycles in the links are full cycles in
the complex. The rest of this section is devoted to showing that the converse holds when X is
simply connected. This is a local-to-global theorem analogous to the classical result for systolic
complexes [15].

Definition 2.3. A length complex X is systolic-by-function if it is connected, simply connected
and locally large.
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Remark 2.4. A simplicial complex is systolic if and only if it is systolic-by-function with constant
length function l ≡ 1

3 . In general, a simplicial complex is k-systolic if and only if it is systolic-by-

function with constant length function l ≡ 2
k .

Theorem 2.5. Let X be a systolic-by-function length complex. Then X is large.

In order to prove this theorem, we will have to study the structure of diagrams over a systolic-
by-function complex. A diagram ∆ in X is a simplicial map ϕ : M → X. If M is a simplicial
structure of a 2-dimensional disk, we say that ∆ is a disk diagram. A simplicial map is called
nondegenerate if it is injective in every simplex.

Lemma 2.6 ([15], Lemma 1.6). Let X be a simplicial complex, and σ a homotopically trivial cycle
in X. Then there exists a nondegenerate disk diagram ϕ : D → X, which maps the boundary of D
isomorphically onto σ.

Such a diagram is called a filling diagram for σ. In a simply connected length complex, the
previous lemma implies that every cycle has a filling diagram. To understand these diagrams, we
will recall some basic notions of combinatorial curvature.

Let X be a 2-dimensional length complex. If v is a vertex of X, its curvature is defined as

κ(v) = 2− χ(LkX(v))−
∑

e∈LkX(v)

l(e).

Here χ(LkX(v)) denotes the Euler characteristic of the link of v. We define the curvature of a
2-simplex f of X as

κ(f) =

∑
e∈∂f

l(e)

− 1,

where ∂f is the boundary of f and the sum is over its three edges. Note that the curvature of a
face is always nonpositive. The following well known result can be found in [2, 18].

Theorem 2.7 (Combinatorial Gauss-Bonnet Theorem). Let X be a 2-dimensional length complex.
Then ∑

f∈faces(X)

κ(f) +
∑

v∈vertices(X)

κ(v) = 2χ(X).

Notice that the formula is not exactly equal to the one appearing in [2, 18]. The size of an angle
is the length of the side opposite to it, multiplied by π. We omit the factor of π for simplicity.

Definition 2.8. Let σ be a cycle in a simplicial complex X. A filling diagram ϕ : D → X for σ
is minimal if D has the least amount of 2-simplices among all filling diagrams for σ.

Observe that if ϕ : D → X is a minimal filling diagram for a cycle σ, it is nondegenerate: if an
edge e were mapped to a vertex, we could take the two triangles containing e, delete the interior
of their union and glue the remaining four edges, thus obtaining a filling diagram for σ with less
2-simplices. Given a nondegenerate diagram ϕ : M → X, where X is a length complex, we can
pullback the length function to M , so that M is a length complex itself. The next two lemmas
follow the ideas from [3, Lemmas 2.5 and 2.6].

Lemma 2.9. Let X be a large length complex and σ a cycle in X of length less than 2. Then there
exists a filling diagram ϕ : D → X for σ such that D has no interior vertices.

Proof. We proceed by induction on |σ|. If |σ| = 3, then the result follows by flagness. Now
suppose |σ| > 3. Since X is large, σ cannot be full. Then σ has a diagonal e that connects two
nonconsecutive vertices of σ. This edge subdivides σ in two paths, both with less than |σ| − 1
edges. We call them σ1 and σ2. Attaching e to both σ1 and σ2, we get two cycles with less number
of edges than σ. By the triangle inequality l(σi ∪ e) ≤ l(σ) for i = 1, 2. By inductive hypothesis,
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there exist filling diagrams without interior vertices for both cycles. Gluing these two diagrams
along the two edges mapped to e we obtain the desired diagram for σ. �

Lemma 2.10. Let σ be a homotopically trivial cycle in a locally large length complex X. Then for
any minimal filling diagram ϕ : D → X for σ, D is locally large when considered with the pullback
length.

Proof. Let ϕ : D → X be a minimal filling diagram for σ. Suppose there is an interior vertex v of D
such that LkD(v) is not large. Since D is simplicial, LkD(v) is a full cycle in D (that has length
less than 2). Consider ϕ(LkD(v)) as a cycle in LkX(ϕ(v)). Since X is locally large, LkX(ϕ(v)) is
a large length complex. Thus, by Lemma 2.9, there is a filling diagram ψ : D′ → LkX(ϕ(v)) ⊂ X
for ϕ(LkD(v)) with no interior vertices. There are |LkD(v)| closed 2-simplices in D that contain v.
Since ψ is a filling diagram for ϕ(LkD(v)) and D′ has no interior vertices, the number of 2-simplices
in D′ is |ϕ(LkD(v))| − 2 < |LkD(v)|. Therefore, if we replace the set of closed 2-simplices of D
that contain v by this new diagram, we obtain a filling diagram for σ with less 2-simplices, which
is a contradiction. Hence D is locally large. �

Remark 2.11. If ϕ : M → X is a nondegenerate disk diagram, then being locally large is equivalent
to κ(v) ≤ 0 for every interior vertex v of M . This is because, for an interior vertex v, κ(v) =
2−

∑
e∈LkM (v) l(e).

Let ϕ : D → X be a disk diagram. The boundary layer L of D consists of every vertex in the
boundary of D, every edge incident to a vertex in the boundary, and every open 2-simplex whose
closure has a vertex in the boundary. Here we consider open 2-simplices because we do not want
edges that are not incident to a vertex in the boundary to be part of the boundary layer. Note
that L is usually not a simplicial complex. If D has at least two interior vertices, and no edge
connecting nonconsecutive vertices of the boundary, we define the following complex. Consider the
simplicial complex A constructed by taking the disjoint union of the vertices, edges and 2-simplices
(now closed) of the boundary layer of D and identifying the boundaries of the closed 2-simplices
but only in the vertices and edges of the boundary layer of D (see Figure 1). Since D has more
than one interior vertex and no edge connecting nonconsecutive vertices of the boundary, A is an
annulus without interior vertices. We call A the boundary complex of D. It has two boundary
components ∂1A and ∂2A, the first of which is isomorphic to ∂D. If D is a length complex, then
A is a length complex with the induced length. Note that if D has exactly two interior vertices,
its boundary complex A is not a simplicial complex, since it has a double edge. However, it is easy
to see that all the definitions and results can be adapted to this case.

Remark 2.12. If the disk had only one interior vertex, its boundary complex would be the disk
itself. This is why that case is excluded from the previous definition.

D A

Figure 1. A disk D and its boundary complex A
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Lemma 2.13. Let ϕ : D → X be a minimal filling diagram for a cycle σ in a locally large length
complex X, where D has at least two interior vertices, and no edge connecting nonconsecutive
vertices of the boundary. Let A be the boundary complex of D. Then:

l(∂1A) ≥ l(∂2A) + 2.

Proof. We apply Gauss-Bonnet to D and A to obtain (after simplifying the notation of the indices
of the sums)

2 =
∑
f∈D

κ(f) +
∑
v∈D

κ(v) ≤
∑
f∈A

κ(f) +
∑
v∈∂D

κ(v) =
∑
f∈A

κ(f) +
∑
v∈∂1A

κ(v),

0 =
∑
f∈A

κ(f) +
∑

v∈∂1A∪∂2A

κ(v).

The first and last equalities hold because the Euler characteristic of a disk and an annulus are 1
and 0 respectively. The first inequality is due to the fact that the curvature of faces and interior
vertices is always nonpositive.

By taking the double of the first expression and subtracting the second expression we get

4 ≤ 2

∑
f∈A

κ(f) +
∑
v∈∂1A

κ(v)

−∑
f∈A

κ(f)−
∑

v∈∂1A∪∂2A

κ(v) =
∑
f∈A

κ(f) +
∑
v∈∂1A

κ(v)−
∑
v∈∂2A

κ(v).

Observe that the Euler characteristic of the link of a vertex in the boundary is equal to 1. We
note by F1 and F2 the sets of 2-simplices of A having one edge in ∂1A and ∂2A respectively. For

a face f in F1 or F2 we denote its three sides by ef1 , ef2 and ef3 , where ef1 is the one lying in the

corresponding boundary component. We also denote their respective lengths by lf1 , lf2 and lf3 . Note
that the cardinality of Fi is |∂iA| for i = 1, 2. From this we have

4 ≤
∑
f∈A

∑
e∈∂f

l(e)

− 1

+
∑
v∈∂1A

1−
∑

e∈LkA(v)

l(e)

− ∑
v∈∂2A

1−
∑

e∈LkA(v)

l(e)


=
∑
f∈F1

∑
e∈∂f

l(e)

− 1 + 1 + lf1 − l
f
2 − l

f
3

+
∑
f∈F2

∑
e∈∂f

l(e)

− 1− 1− lf1 + lf2 + lf3


=
∑
f∈F1

2lf1 +
∑
f∈F2

(
−2 + 2lf2 + 2lf3

)
≤
∑
f∈F1

2lf1 +
∑
f∈F2

−2lf1

= 2l(∂1A)− 2l(∂2A).

The first equality is a rearrangement of the terms using the new notation and the remark about
the cardinalities of the Fi. The last inequality holds because the sum of the lengths of the sides of
any 2-simplex is less than or equal to 1. Dividing both sides by 2, we obtain the desired inequality
l(∂1A) ≥ l(∂2A) + 2. �

We now have all the necessary ingredients to prove Theorem 2.5.

Proof of Theorem 2.5. We have to show that every full cycle has length greater than or equal to 2,
and that X is flag. Let σ be a full cycle in X. Since X is simply connected, by Lemma 2.6 there
is a minimal filling diagram for σ, say ϕ : D → X. We know that ϕ is nondegenerate because
it is minimal. Hence by Lemma 2.10, D is locally large. Since σ is full, there are no edges in D
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connecting nonconsecutive vertices of its boundary, and D has at least one interior vertex. If D
has only one interior vertex v we have

0 ≥ κ(v) = 2−
∑

e∈LkD(v)

l(e) = 2− l(σ).

Therefore l(σ) ≥ 2. If D has more than one interior vertex, then we are under the hypotheses of
Lemma 2.13, and l(σ) = l(∂1A) ≥ 2.

Now we show that X is flag. We are going to see that it suffices to show that every cycle with
three edges spans a 2-simplex in X. Indeed, suppose we have vertices v1, . . . , vn that are pairwise
connected. If every triangle is filled, we have the 1-skeleton of an (n−1)-simplex in LkX(v1). Since
the links of the vertices are flag, v1, . . . , vn must span an n-simplex in X.

Take a cycle σ with three edges, and let ϕ : D → X be a minimal filling diagram for σ. If D
has more than one interior vertex, then by Lemma 2.13, l(σ) ≥ 2, which is impossible. If D has
exactly one interior vertex v, then just as before

0 ≥ κ(v) = 2−
∑

e∈LkD(v)

l(e) = 2− l(σ).

Once again, this would imply that l(σ) ≥ 2. So the only possibility is that D has no interior
vertices. Hence, σ spans a 2-simplex in X. �

3. The Artin complex

In this section we recall the construction of the complex associated to an Artin group described
in [10]. We follow their description and maintain their notation. The definitions and notations
related to complexes of groups are those of [4, Chapter II.12].

Let AS be an Artin group with generator set S (with |S| ≥ 2). Take K a simplex of dimension
|S| − 1 and define a simplex of groups over K. First, give the simplex K a trivial local group.
Simplices of codimension 1 are in one-to-one correspondence with elements si ∈ S, and are denoted
by ∆si . The simplex ∆si is given the local group 〈si〉. Now every simplex of codimension k is in
one-to-one correspondence with a subset of S of cardinality k. Given S′ ⊂ S with |S′| = k, its
corresponding face can be written uniquely as

∆S′ = ∩si∈S′∆s1 .

The simplex ∆S′ is given the local group AS′ .
Given an inclusion ∆S′′ ⊂ ∆S′ there is a natural inclusion ψS′S′′ : AS′ −→ AS′′ . Let P be

the poset of standard parabolic subgroups of AS with the order given by the natural inclusions.
Since every standard parabolic subgroup is itself an Artin group [17], there is a simple morphism
ϕ : G(P) −→ AS , given by inclusion, from the complex of groups to AS .

Definition 3.1. The Artin complex associated to AS is the development XS := DK(P, ϕ) of P
over K along ϕ ([4, Theorem II.12.18]).

In the proof of [4, Theorem II.12.18], an explicit description of XS is given. The simplicial
complex XS can be defined as

XS := AS ×K/ ∼,
where (g, x) ∼ (g′, x′) if and only if x = x′ and g−1g′ is in the local group of the smallest simplex
of K containing x.

The action of AS in XS is by simplicial isomorphisms, without inversions and cocompact, with
strict fundamental domain K. Any simplex ∆ of XS is in the orbit of exactly one ∆S′ ⊂ K for
some S′ ⊂ S. In that case ∆ is said to be of type S′. We now recall some results from [10] about
the complex XS .

Lemma 3.2 ([10], Lemma 4). Let AS be an Artin group and let XS be its Artin complex. Then
XS in connected. Additionally, if |S| ≥ 3, then XS is simply connected.
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Lemma 3.3 ([10], Lemma 6). Let AS be an Artin group with Artin complex XS. The link of a
simplex of type S′ is isomorphic to the Artin complex XS′ associated to the Artin group AS′ .

Lemma 3.4 ([10], Lemma 9). Let AS be an Artin group with S = {s, t}. Then any cycle in XS

has at least 2mst edges, and it it a tree if mst =∞.

Remark 3.5. In [10], they show the previous result for mst ∈ {3, 4, . . . ,∞}, since they work with
large-type Artin groups. However, the result also holds for the case mst = 2, and the proof is the
same as in the other cases.

4. Parabolic subgroups

We now define a length function for the Artin complex of a given (2, 2)-free two-dimensional
Artin group, and show that it is a systolic-by-function length complex. Then we make use of its
geometric structure to prove Theorem 1.2.

Definition 4.1. An Artin group AS is (2, 2)-free if its defining graph does not have two consecutive
edges labeled by 2.

Notice that large-type Artin groups are (2, 2)-free two-dimensional Artin groups. Now we give
an equivalent characterization.

Proposition 4.2. A two-dimensional Artin group AS is (2, 2)-free if and only if there exist numbers
m′st ∈ {2, 3, 4, 6} with m′st ≤ mst and m′st = m′ts for every s, t ∈ S, such that 1

m′
st

+ 1
m′

tr
+ 1

m′
rs
≤ 1

and 1
m′

st
≤ 1

m′
tr

+ 1
m′

rs
for every r, s, t ∈ S.

Proof. It is clear that if such m′st exist, then AS is (2, 2)-free. Now suppose that the graph of AS
does not have two consecutive edges labeled by 2. The we can define the m′st in the following way:

• if mst = 2, then m′st = 2;
• if mst = 3, then m′st = 3;
• if mst > 3 and the edge is not adjacent to an edge labeled by 2, then m′st = 3;
• if mst forms a triangle with a 2 and a 3, then m′st = 6;
• in any other case, m′st = 4.

It is easy to see that such labeling is well defined since AS is a (2, 2)-free two-dimensional Artin
group, and that it satisfies the required conditions. �

Let AS be a (2, 2)-free two-dimensional Artin group. We define a length function for XS ,
l : edges(XS) → [0, 1

2 ] as follows. Edges in XS are simplices of codimension |S| − 2, so they
correspond to subsets of S that are missing two elements. We define the length of an edge of
type S\{s, t} to be 1

m′
st

, where the m′st are the ones in the previous proposition. Since AS is

(2, 2)-free and two-dimensional, the sum of the lengths of the three edges of every triangle is less
than or equal to 1, and the triangle inequality holds, so l is well defined.

Theorem 4.3. Let AS be a (2, 2)-free two-dimensional Artin group with |S| ≥ 3. Then XS with
the length function defined as above is systolic-by-function.

Proof. The proof proceeds by induction on |S| by using our local-to-global Theorem 2.5.
If |S| = 3, by Lemma 3.2 XS is connected and simply connected. Let v be a vertex of XS .

Lemma 3.3 says that LkXS
(v) is isomorphic to the Artin complex XS′ associated to the Artin

group AS′ , where S′ ⊂ S with |S′| = 2. The complex XS′ is a graph and it inherits the length
function from XS . If XS′ is a tree, then it is clearly a large length complex. If it is not a tree, then
by Proposition 4.2, the length of its edges is greater than or equal to 1

m , where m is the label in
AS′ . By Lemma 3.4 all cycles in XS′ have at least 2m edges, so it is a large length complex. Thus
XS is systolic-by-function.

Now assume that |S| > 3 and that the claim holds for every (2, 2)-free two-dimensional Artin
group with less generators. Once again, we know XS is connected and simply connected from
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Lemma 3.2. Applying Lemma 3.3 we get that the link of every vertex is systolic-by-function.
Hence, by Theorem 2.5, the link of every vertex is large. Therefore XS is systolic-by-function. �

Remark 4.4. With the length function defined as above, one can give XS a metric such that it is
metrically systolic in the sense of [14]. Concretely, if an edge e ∈ XS has l(e) = 1

k , then the length
of e in the metric is sin(πk ). We will not use metric systolicity in this article, but this fact may be
of interest for other applications.

We define the distance between two vertices u, v ∈ XS as

d(u, v) = min{l(γ) | γ is a path connecting u and v}.
Note that this minimum is attained, because XS is connected and the image of l is a finite subset
of [0, 1

2 ]. We say that a path γ between u and v is a geodesic if it is of minimum length.
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We want to show that if an element g ∈ AS fixes two vertices in XS , then
there is a path between said vertices that is fixed pointwise by g. Suppose it is not the case. Take
vertices u and v, and g ∈ AS such that the condition fails and such that d(u, v) is minimal among
such pairs. Let γ be a geodesic between them (it exists because XS is connected). Then g maps γ
to another geodesic γ′ between u and v. Since d(u, v) is minimal, the union of γ and γ′ determines
a cycle in XS . We will show that we can fill the cycle with a minimal filling diagram and find a
shortcut between u and v, contradicting the fact that γ is a geodesic.

Let ϕ : D → XS be a minimal filling diagram for the concatenation of γ and γ′ (it exists because
XS is simply connected). We label the vertices of γ in D as u = v0, v1, . . . , v|γ|−1, v|γ| = v, and the
vertices of γ′ in D as u = v′0, v

′
1, . . . , v

′
|γ′|−1, v

′
|γ′| = v. Note that

(1) we may assume, without loss of generality, that there is no edge between nonconsecutive
vertices of γ, or between nonconsecutive vertices of γ′, because γ is a geodesic, and

(2) there is no edge between vi and v′i for 1 ≤ i ≤ |γ| − 1, because vertices of the same type
are not connected by an edge in XS .

However, there may be an edge between vi and v′j if i 6= j. Take the rightmost of these edges.

We call it e and assume that it connects vk with v′k+r (see Figure 2). Let D̃ be the disk delimited

by e, and let γ̃ and γ̃′ be the paths connecting vk and v along the boundary of D̃, where γ̃′ contains
e. If there is no such edge e, we consider D̃ = D, γ̃ = γ and γ̃′ = γ′, and continue in the same way.
It is clear that γ̃ is a geodesic. Then l(e) ≥ d(vk, vk+r). We also have that l(e) ≤ d(vk, vk+r). To
see so, we project both e and the path in γ̃ between vk and vk+r to the fundamental domain K, and

apply the triangle inequality r − 1 times. Hence, l(γ̃′) = l(γ̃). From the previous observations, D̃
has no edges connecting nonconsecutive boundary vertices. Therefore, it has at least one interior
vertex. As in the proof of Theorem 2.5 we get that l(∂D̃) = l(γ̃) + l(γ̃′) ≥ 2.

e

vk

v′k+r

u v

γ

γ′

D

γ̃

γ̃′

D̃

Figure 2. Disk D, the rightmost edge e and disk D̃

If either vk or v have degree greater than 3, then by Lemma 2.13 we could find a path in D̃
connecting vk and v shorter than γ̃. That would contradict the fact that γ is a geodesic. So we
can assume that both vk and v have degree 3 (it is clear that they cannot have degree 2). Let e1

and e2 be the interior edges incident to vk and v respectively. If either of them has length less than
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1
2 , then either by Lemma 2.13, in case D̃ has more than one interior vertex, or by the inequality

l(∂D̃) ≥ 2 if D̃ has exactly one interior vertex, we can find a shortcut and get a contradiction.
The only situation remaining is when vk and v have degree 3, and l(e1) = l(e2) = 1

2 . In that case

we can find a path σ in D̃ starting at vk and ending with e2, with l(σ) ≤ l(γ̃). If the inequality
is strict the proof is finished. If l(σ) = l(γ̃), consider the geodesic τ from u to v consisting of
concatenating the subpath of γ that goes from u to vk with ϕ(σ). We can assume ϕ(σ) is a path
in XS , because otherwise we would have found a shortcut. Since this geodesic ends with an edge
of length 1

2 and no triangle has two edges of length 1
2 , applying the same procedure to τ gives us

a path between u and v shorter than γ, obtaining the desired contradiction. �

Proof of Theorem 1.3. It follows immediately from Theorems 1.1 and 1.2. �

Applying this theorem together with previous results we get following corollary.

Corollary 4.5. Let AS be an Artin group with at most three generators. Then the intersection of
an arbitrary family of parabolic subgroups is a parabolic subgroup.

Proof. Such an Artin group is either spherical type, right-angled or (2, 2)-free two-dimensional.
Therefore, either by [9] for the spherical case; by [1] for the right-angled case; or by Theorem 1.3
for the (2, 2)-free two-dimensional case, we get the desired result. �

We finish this article by applying our results and the algorithm introduced in [8, Algorithm 4]
to solve the conjugacy stability problem for (2, 2)-free two-dimensional Artin groups. We follow
the notation and definitions of [8].

Theorem 4.6 ([8], Theorem A). Let AS be a standardisable Artin group satisfying the ribbon
property and such that every element in AS has a parabolic closure. Then, there is an algorithm
that decides if a parabolic subgroup P of AS is conjugacy stable or not.

It is known by results of Godelle [12] that two-dimensional Artin groups are standardisable and
satisfy the ribbon property. Also, by Theorem 1.2 and Theorem 1.1, any element in a (2, 2)-free
two-dimensional Artin group has a parabolic closure. Therefore, (2, 2)-free two-dimensional Artin
groups satisfy the hypothesis of Theorem 4.6. By examining the aforementioned algorithm in the
(2, 2)-free two-dimensional case we obtain the classification of Theorem 1.4.

Proof of Theorem 1.4. We need to understand [8, Algorithm 4] for a (2, 2)-free two-dimensional
Artin group AS and a standard parabolic subgroup AS′ . Since AS is two-dimensional, the only
spherical-type parabolic subgroups are dihedral Artin groups of type I2(m). Thus, the algorithm
reduces to checking if there exist vertices s, t in ΓS′ that are connected by an odd-labeled path
in ΓS , but are not connected by an odd-labeled path in ΓS′ . This is exactly the criterion we wanted
to prove. �

For a more detailed proof of this fact, see [10, Theorem C]. Their proof is for large-type Artin
groups, but it also works in the (2, 2)-free two-dimensional case.
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