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ABSTRACT

Observations of the interstellar and circumstellar absorption components obtained with the Hubble
Space Telescope Space Telescope Imaging Spectrograph (STIS) along the line of sight toward the Wolf-
Rayet-luminous blue variable (LBV) system HD 5980 in the Small Magellanic Cloud are analyzed.
Velocity components from C, C1*, Cuo, Cu*, Civ, N, Nv, O 1, Mg, Al i1, Si 1, Si or*, Si 1, Si 1v,
Su, Sm, Fe i, Ni i, Be 1, Cl 1, and CO are identified, and column densities estimated. The principal
velocity systems in our data are (1) interstellar medium (ISM) components in the Galactic disk and halo
(Var = 1.1 £3,9 £ 2 km s™1); (2) ISM components in the SMC (V,, = +87 £ 6, +110 + 6, +132 + 6,
+158 +8, +203 + 15 km s~ !); (3) SMC supernova remnant SNR 0057 —7226 components (V;, =
+312+ 3, +343 + 3, +33, +64 km s~ 1); (4) circumstellar (CS) velocity systems (¥}, = — 1020, — 840,
—630, —530, —300 km s~ '); and (5) a possible system at —53 4+ 5 km s~ ! (seen only in some of the Si
I lines and marginally in Fe m) of uncertain origin. The supernova remnant SNR 0057 —7226 has a
systemic velocity of +188 km s~ !, suggesting that its progenitor was a member of the NGC 346 cluster.
Our data allow estimates to be made of T, ~ 40,000 K, n, ~ 100 cm ™3, N(H) ~ (4-12) x 10'® cm~?2 and
a total mass between 400 and 1000 M for the supernova remnant (SNR) shell. We detect C 1 absorp-
tion lines primarily in the +132 and +158 km s~! SMC velocity systems. As a result of the LBV-type
eruptions in HD 5980, a fast-wind/slow-wind circumstellar interaction region has appeared, constituting
the earliest formation stages of a windblown H m bubble surrounding this system. Variations over a

timescale of 1 year in this circumstellar structure are detected.
Key words: ISM: bubbles — stars: individual (HD 5980) — stars: winds, outflows —

supernova remnants

1. INTRODUCTION

The Wolf-Rayet (W-R) binary system HD 5980 is the
visually brightest stellar object in the Small Magellanic
Cloud. It lies on the periphery of the largest SMC H 1
region, NGC 346, and it consists of a close (P = 19.266
days) eclipsing W-R binary system and a third component,
which may itself be multiple (Koenigsberger et al. 2000).
HD 5980 underwent two luminous blue variable-like erup-
tive events in 1993 and 1994, during which the wind veloci-
ties decreased and the mass-loss rates increased
(Koenigsberger et al. 1998a, 1998b). During the eruptive
phases, the wind velocities were ~200-400 km s~ !, while
during the subsequent “quiescent” phases of the system,

! Based on observations with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc., under NASA
contract NAS 5-26555.

2 Member of Carrera del Investigador, CONICET, Argentina.

3 Member of Carrera del Investigador, CIC, Prov. Buenos Aires, Argen-
tina.
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wind velocities as fast as 3000 km s~ ! prevailed. Hence, as
the fast wind collides with the slower moving material
ejected at the time of the eruption, gas is shocked, leading
eventually to the formation of an H 1 region surrounding
the system. Such a scenario is believed to apply to the
Homunculus in # Carinae (Frank, Balick, & Davidson
1995; Garcia-Segura, Mac Low, & Langer 1996), which is
the result of the “ Great Eruption” in 1850 (Morse, Hump-
hreys, & Damineli 1999).

The current mass of the erupting star (called star A) in
HD 5980 is estimated at ~50 M, and that of the close
companion (star B) at ~28 M, (Niemela et al. 1997).
However, when placed on an H-R diagram, with values
L, =3 x 10 L, (Koenigsberger et al. 1998b) and T, =
21,000 K (Koenigsberger et al. 1996) obtained for star A
near the time of the 1994 eruption, it lies above the evolu-
tionary tracks of a zero-age main-sequence star of 140 M o,
and to the right of the Humphreys-Davidson limit
(Humphreys & Davidson 1979). Thus, assuming evolution
in this binary system has proceeded according to the stan-
dard binary evolutionary scenarios, star A must have
already lost over 90 M. Furthermore, star B is believed to
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be a W-R star, implying that it, too, must have lost a signifi-
cant amount of mass. Thus, the interstellar medium (ISM)
surrounding HD 5980 may contain as much as 200 M, lost
from this stellar system. HD 5980 is also a significant source
of ionizing photons. Although near the maximum of the
eruption the effective temperature of star A was relatively
low, its “quiescent” temperature is over 50,000 K
(Koenigsberger et al. 1998a; Schweickhardt & Schmutz
1999).

The two major eruptions that have occurred in HD 5980
within the past 7 years should have produced an ISM struc-
ture surrounding the system. Indeed, Hubble Space
Telescope (HST) observations of HD 5980 carried out in
1999 revealed the presence of strong circumstellar absorp-
tion lines in C 1v and Si 1v, which most likely are related to
the fast-wind/slow-wind interaction region resulting from
the 1994 eruption. These absorption lines are found at
velocities of ~ —680 km s~ (V;,; ~ —530 km s~ !) with
respect to the SMC velocity (Koenigsberger et al. 2000). In
this paper we search for additional such features, which
should allow an analysis of the interacting winds.

HD 5980 is embedded in the N66 H 1 complex. This
giant H 1 region has been observed at wavelengths ranging
from radio to X-rays, and at least five distinct regions can
be identified and were described by Ye, Turtle, & Kennicutt
(1991). Two of these five regions are located along the line of
sight to HD 5980. The first one consists of two nearly con-
centric shells present in Ha data, with their centers close to
HD 5980 and diameters of 1.2 and 55, respectively. Based
on identical images in Ho and [O 1] (Czyzak & Aller 1977)
and no enhancement of [S 1] in the filamentary structure,
Walborn (1978) suggested that the shell structure is a conse-
quence of mass loss from HD 5980 and the nearby O7
supergiant Sk 80. The radio observations of Ye et al. (1991)
confirmed the thermal nature of this component. The
second component is a supernova remnant identified by Ye
et al. (1991), who find a nonthermal shell radio source along
the line of sight to HD 5980 having a diameter of 3'2 (55 pc)
and close to which lies the X-ray source IKT 18 (Inoue,
Koyama, & Tanaka 1983). Fitzpatrick & Savage (1983) had
already suggested the presence of an SNR moving toward
HD 5980 with a velocity of 150 km s ! (Vg = 300 km s~ 1)
based on International Ultraviolet Explorer (IUE) data, in
which ISM absorption features shifted by this velocity were
detected (de Boer & Savage 1980). Chu & Kennicutt (1988)
also detected the presence of clumps moving at up to ~ 170
km s~ ! with respect to the H 1 region in their Ho and [N 1]
echelle observations with the slit placed at the position of
the nonthermal source. This SNR (SNR 0057 —7226) is the
second most luminous SNR in the SMC at 843 MHz.

In addition to the velocity system associated with the
SNR, de Boer & Savage (1980) used IUE observations
along the line of sight to HD 5980 in order to identify
absorption line systems at ¥}, in the range 80220 km s~ !.
These velocities were shown to correspond to the SMC H 1
regions from optical Ca 1 observations by Songaila et al.
(1986), who concluded that the SMC appears to consist of
layers of ISM gas at different velocities and distances. More
recently, Welty et al. (1997) have used Goddard High
Resolution Spectrograph observations along the line of
sight to the SMC star Sk 108 and have determined the
presence of at least 16 individual cloud velocity systems
between 80 and 210 km s~ ' and nine individual cloud
systems at Galactic velocities. They obtain relative gas-

phase abundances for the SMC lines of Si i, Cr i, Mn 1,
Fe 1, Ni 1, and Zn 11 that are similar to those found for ISM
clouds in the Galactic halo. A similar study along the line of
sight to HD 5980 would be most desirable, although the
degree of contamination by the SNR and by possible shells
ejected from HD 5980 in previous eruptive phases needs
first to be analyzed.

This paper is organized as follows: § 2 contains the
description of the data; in § 3, we determine the general
velocity systems that are present in these HST data; in § 4,
we present estimates of the column densities derived for all
the observed ISM-like features in the spectrum; and in § 5
we present the summary and conclusions.

2. OBSERVATIONS AND DATA ANALYSIS

As part of HST Cycle 7 General Observer program 7480,
six high-resolution spectra of HD 5980 were obtained with
the Space Telescope Imaging Spectrograph (STIS;
Woodgate et al. 1998), five during 1999 May and one in
2000 April. The MAMA detector was used with the E140M
grating, obtaining a resolution of ~4 km s~ ! in the
1150-1710 A wavelength range. Further details may be
found in Koenigsberger et al. (2000). The spectra were pro-
cessed through the standard STScl pipeline. The signal-to-
noise ratio (S/N) of each individual spectrum is ~40, at
1400 A. Averaging the five spectra obtained in 1999 gives an
enhanced S/N ~ 70. This average, flux-calibrated spectrum
was used to search for all lines arising from ground-state
transitions with wavelengths in the range 1150-1700 A,
using the tables of line identifications of Kelly & Palumbo
(1973) and the electronically available line lists at the
National Institute of Standards and Technology (NIST).

The data were analyzed using IRAF# routines to measure
wavelength positions and the equivalent widths. Gaussian
functions were generally employed to fit the line profiles to
perform the measurements. When necessary, absorptions
were fitted with several (two to four) Gaussians, which
allows the lines to be deblended and principal velocities and
equivalent widths to be assigned to individual components
of a blend. No attempt was made, however, to perform a fit
for the large number (nine Galactic and 16 in the SMC;
Welty et al. 1997) of individual velocity components con-
tributing to the absorptions. In the cases where one or
several Gaussians provided a poor fit, the equivalent width
was obtained by directly integrating the flux over the speci-
fied wavelength range.

One of the major sources of uncertainty in the equivalent
width measurements is the placement of the continuum
level. The spectrum of HD 5980 contains broad emission
and P Cygni lines originating in the stellar winds, as well as
weak photospheric absorption components, and many of
the ISM components are superposed upon these features.
Thus, in many cases, the local “continuum ™ level corre-
sponds to the flux level of the P Cygni emission line, at the
position of the ISM feature. It is very difficult to determine
the intrinsic stellar emission line profile, and hence to
determine the actual limits of the ISM feature. If the true
shape and intensity of the wind lines were known, a more

4 The Image Reduction and Analysis Facility is distributed by the
National Optical Astronomy Observatories, operated by the Association
of Universities for Research in Astronomy, Inc., under cooperative agree-
ment with the National Science Foundation.



TABLE 1
INTERSTELLAR AND CIRCUMSTELLAR COMPONENTS TOWARD HD 5980

)'obs VV). Vhel
A Line ID (mA) (kms™Y) Comments
1 @ 3 4) O]
1152.85...... P 21152.818 103 5
1153.34...... P A1152.818 69 136*
1153.43...... P 21152.818 6 165*
1155.86...... C1 A1155.809 8 12
1161.60...... Si m* 11161.58? 7 3:
1170.03...... Al 1 11169.846: 20 47:
117044...... Al 1 11169.846: 8 155:
1171.05...... Al 1 11169.846: 5 307:
1173.32...... 14 C m DACs?
117413...... 10 C m DACs?
1175.86...... 31 C m DACs?
1186.90...... S m 41190.203 12 —834
1187.09...... Si m 41190.416 8 —841
1188.03...... S m 41190.203 5 —549
1188.30...... Sim A1190.416 4 —536?
1188.95...... S m 41190.203 5 —315?
1190.21...... S m 41190.203 54 3 Plus Si i 41190.416 at —50 km s~ *
119045...... Si m 41190.416 216 8 Plus S m at 90 km s~ 1?
1190.76...... Sim A41190.416 270 892 Plus S m at 130 km s *?; 50-240 km s~ !
1191.07...... Si m 41190.416 380 162* Plus S m at 160 km s~*?
1191.64...... Sim A1190.416 24 311
1191.78....... Si m 41190.416 17 343
1193.06...... Si m 41193.290 23 —56
1193.32...... Si m 41193.290 >212 6
1193.62...... Si m 41193.290 202: 822
119394...... Si m 41193.290 524: 164*
1194.53...... Si m 41193.290 49 309 Plus Si m 1194 at 7 km s~ 1?
1194.65...... Si m 41193.290 20 341
1194.90...... Si * 41194.500 11: 98*
1195.03...... Si * 11194.500 6: 1282
1195.15...... Si * 41194.500 10: 160?
1195.75...... Si * 11194.500 4: 311:
1195.86...... Si * 41194.500 16 337
1197.23...... Si m* A1197.394: 21 —44: E, = 0.04; but 41309 absent
1199.41...... N 11199.550 6: -35
1199.58...... N1 41199.550 179: 9
1199.90...... N 111199.550 78 882 Partly resolved
1200.09...... N1 41199.550 285: 1372
1200.28...... N 111199.550 104: 1832 Plus N 1 11200.223 at Galactic velocity
1200.58...... N1 41200.223 94 88
1200.72...... N 1 41200.223 139: 124?
1200.86...... N1 41200.223 123: 1582 Plus N 1 11200.710 at Galactic velocity
1201.07...... N 111200.710 82 912
1201.22...... N1 41200.710 119: 1292
1201.34...... N 111200.710 119: 160?
1201.68...... 11
1206.56...... Si m 21206.500 298: -5 —45t0 +53kms™?!
1207.08...... Si m 41206.500 685 (150> 64-220 km s~ !
1207.76...... Si m 21206.500 184: 312
1207.89...... Si m 41206.500 80: 343
1239.50...... N v 11238.821 32 (169> 100-200 km s~ *
1239.96...... Mg 1 41239.925 31 8
124045...... Mg 1 11239.925 33 1272 Plus Mg 1 1240 at +10 km s~ !
1240.57...... Mg 1 41239.925 20 156*
124092...... Mg 11 11240.395 8 1292
1241.02...... Mg 1 41240.395 19 151®
1243.50...... N v 11242.804 15 167) 90-214 km s~ !
1244.08...... N v 11242.804 34 (310> 250-350 km s~ *
1250.62...... S m 11250.584 88 9
1250.%6...... S 1 41250.584 25 90*
1251.13...... S m 11250.584 67 130? 110-190 km s~ *
1251.24...... S 1 41250.584 67 156*

1251.85...... S 1 11250.584 1 305::



TABLE 1—Continued

;I'obs VV}. Vhel
A) Line ID (mA) (km s™Y) Comments
(1 @ A3) @) ®)
1253.85...... S m A1253.811 114 9
1254.19...... S m 41253.811 39 882
1254.35...... S m A1253.811 94 126* 110-190 km s~!
1254.47...... S m 41253.811 97 164*
1255.13...... S m A1253.811 1 316::
1259.56...... S m 41259.519 137 8
1259.88...... S m 41259.519 49 86*
1260.12...... S m 41259.519 275 142* Plus Si 1 A1260.4 at—53 km s~ *?
1260.48...... Si m 41260.422 290 10 Plus Fe m 41260.54?
1261.02...... Sinmn +Fen +C1 752 Strong, saturated blend
1261.72...... Si m 41260.422 92 310
1261.86...... Si m 41260.422 30 340
1264.50...... Si m* 11264.737 2 —53
1265.20...... Si m* 11264.737 S: 111#
1265.30...... Si m* 11264.737 4: 1352
1265.41...... Si m* 11264.737 12: 159*
1266.09...... Si m* 11264.737 12 320
1266.18...... Si m* 11264.737 4 347
1270.28....... C1 41270.143: 7 33::
1270.59...... C 1 11270.143: 7 107::
1277.31...... C 1 A1277.245 33 14
1277.59...... C1 11277.245 2 80
1277.81...... C 1 A1277.245 4 1322
1277.89...... C1 11277.245 7 1532
1280.19...... C1 A1280.135 10 13
1280.78...... C1 11280.135 4 155 Broad
1284.26...... Al 1 A1284.464: 5 —46: But no other Al 1 lines present
1284.62...... Al 1 11284.464: 2 37:
1284.69...... Al 1 11284.464: <1 52:
1285.04...... Al 1 11284.464: <1 134:
1285.10...... Al 1 11284.464: 2 147:
1285.26...... Al 1 11284.464: 2 185:
1297.40...... 5
1298.74...... 4
1301.92...... P o 41301.87 16 10 Plus O 111301 at —50 km s~ 1?
1302.21...... O 1 11302.168 222 8 Plus Puat v > 60 km s~ 1?
1302.57...... O 1 41302.168 228: 80* 46-225km s~!
1302.87...... O 1 41302.168 386: 150*
1303.04...... O 1 41302.168 47 1982
1303.53...... O 1 11302.168 7 313
1304.11...... Si m 41304.370: 2 —59:
1304.40...... Si m 41304.370 194 8
1304.73...... Si m 11304.370 67 84*
1304.86...... Si m 41304.370 241 114*
1305.09...... Si m 11304.370 253 166*
1305.24...... Si m 41304.370 22: 197*
1305.72...... Si m 11304.370 13 310
1305.84...... Si m 41304.370 4 338
1317.25...... Ni o 41317.217 36 8
1317.66...... Ni m A1317.217 15 96
1317.78: Ni o A1317.217 21 126*
1317.89: Ni m A1317.217 32 1532
1318.61...... Ni o A41317.217 1 309::
1318.74...... Ni m A1317.217 3 347
1328.89...... C1 A1328.834 21 11
1329.16...... C111328.834 5 73: Plus C r* 41329.10 at 10 km s~ ! + emission at 101
1329.50...... C1 A1328.834 2 147
1334.58....... C 1 A1334.53 293 12
1335.18....... C 1 11334.53 830 135 46-240 km s~ *
1335.76...... C o* A1335.71 138 10
133592...... C 1 11334.53 80: 313
1336.08...... C o* A1335.71 89: 842
1336.25...... C o* A1335.71 119 128* 100-200 km s~!
1336.41...... C o* A1335.71 178 159*
1337.10...... C or* 11335.71 88 312
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TABLE 1—Continued

j't»bs VV). Vhel
A) Line ID (mA) (km s~ 1) Comments
(1) 2 3) @ (%)
1337.24...... C or* A1335.71 28 341
1341.16...... ? 5 0 Relative velocities
1341.78...... ? 2 137 Relative velocities
1341.86...... ? 2 154 Relative velocities
1342.58...... ? 1 316 Relative velocities
1342.58...... Be 1 11342.208: 2 83:
135642...... O 1 A1355.60 2 180
1347.30...... Cl1 A1347.239 6 14
1347.60...... Cl141347.239 <1 81
1347.90...... Cl141347.239 3 147
1349.32...... 4
135549...... O 1 A1355.60 2 —25:
1355.64...... O 1 A1355.60 4 8
135642...... O 1 A1355.60 2 180
1370.17...... Ni o A1370.132 41 6
1370.55...... Ni r 11370.132 7 91
1370.74....... Ni o 41370.132 9 1312
1370.85...... Ni  211370.132 18 166°
1371.54...... Ni o 41370.132 3 309
1371.74...... Ni r 211370.132 1: 351:
1389.88...... Si v 41393.755 15 —836
1390.84...... Si v 11393.755 24 —630
1391.28...... Si v 41393.755 53 —534
1392.37...... Si v 11393.755 12 —298
1393.76...... Si v 41393.755 99 12
1393.88...... Si v 11393.755 72 292
1394.29...... Si v 41393.755 209 116* 70214 km s !
1394.53...... Si v 11393.755 231 167°
1395.22...... Si v 41393.755 39 315
1395.34...... Si v 11393.755 3: 342
1396.97...... 8
1398.86...... Si v 11402.770 4 —835
1399.88...... Si v 11402.770 8 —619
1400.28...... Si v 11402.770 30 —532
1401.37...... Si v 11402.770 20 —300
1402.78...... Si v 11402.770 74 32
140291...... Si v 11402.770 48 30*
1403.29...... Si v 11402.770 154 1132 70-214 km s~ !
1403.53...... Si v 41402.770 235 1622
1404.22...... Si v 11402.770 27 313
1404.38....... Si v 11402.770 <1 342
1445.56...... 6
1447.32...... CO A1447.36: 1 —8:
1447.50...... CO A1447.36 1 28
1447.75...... CO A1447.36 5 82
1448.02...... CO A1447.36 1 137
1448.90...... CO A1447.36 1 318:
1454.60...... Ni  11454.842 1 —54
1454.88...... Ni o 11454.842 16 3
1455.32...... Ni  11454.842 1: 100
1455.51...... Ni o 11454.842 4 1332
1455.59...... Ni  11454.842 8 149°
1456.42...... Ni 1 11454.842 5: 318 Broad, probably 312 + 340 km s !
1463.62...... Ni 1 11467.756: 3 —849:
1467.79...... Ni o A11467.756 11 6
1468.20...... Ni 1 11467.756 2 88
146848...... Ni o A11467.756 4 145
1468.54...... Ni 1 11467.756 2 157
1526.75...... Si m A1526.707 220 10
1527.38....... Si m 11526.707 611 131® 50-220 km s~ !
1527.70...... Si m A1526.707 93:: 200*
1527.87...... Si m 11526.707 18 228:
1528.29...... Sim 41526.707 22 313
152845...... Si m 11526.707 10 344
1532.60...... P A1532.533 8 12
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TABLE 1—Continued

;l'obs VVI, Vhel
A) Line ID (mA) (kms™1) Comments
(€)) ()] (©)] 4 )
1533.24...... P o 11532.533 7 140
153348...... Si r* 21533431 3 10
1546.44...... C v 41550.772 74 —840
1547.60...... C1v A1550.772 106 —610
1548.04...... C 1v A1550.772 344: —532 Difficult to measure because on wing of steep P Cygni profile
1548.27...... C1v A1548.187 350: 10
1548.98...... C1v 11548.187 456: 147
1549.79...... C1v A1548.187 106 306
1550.77...... C v 41550.772 42 0
1550.88...... C1v A1550.772 191 22
1551.57...... C v 41550.772 354 156
1552.36...... C1v A1550.772 59 310
1560.38...... C 1 11560.309 30 12
1560.76...... C11560.309: 11 86: Plus C r* 41560.7 (two lines) at +9 km s~ *
1560.98...... C111560.309: 3 128
1561.11...... C11560.309: 5 152
1561.50...... C111561.44 10 9 Plus C r* 11560.7 at 152 km s~ *
1580.69...... 7
1608.14...... Fe m 11608.451 3 —56
1608.49...... Fe 1 41608.451 182 8
1608.94...... Fe m 411608.451 131 92
1609.15: Fe 1 41608.451 147 129* 110-190 km s !
1609.31: Fe m 11608.451 151 1572
1609.52: Fe 1 41608.451 27: 192:
1610.09...... Fe m 11608.451: 7 307
1610.33...... Fe 1 41608.451 10 350
1611.25...... 16 Sharp line; gfwhm® = 13 km s~*
1612.04...... 6 Sharp line; gfwhm® = 10 km s~ *
1656.33...... 8
1656.99...... C141656.929 55 11
165744...... C1 141656.929 8 92
1657.63...... C141656.929 7 127
1657.76...... C1 141656.929 17 149
1658.19...... C1* 11658.121 4 11
1670.82...... Al 1 A1670.787 251: 7
1671.30...... Al 1 11670.787 90:
1671.68...... Al 1 A1670.787 Highly saturated 88-192 km s~ *
1671.92...... Al 1 11670.787 151 202 gfwhm® = 58 km s~*
1672.51...... Al 1 A1670.787 65 310

Note.—Velocities enclosed by angle brackets refer to the average velocity obtained from the flux integration over the line

profile without any Gaussian fitting.

2 Velocities and equivalent widths are obtained from lines that were deblended using multiple Gaussian fits.

® Gaussian full width at half-maximum.

precise estimate of the equivalent widths would be possible.
However, in the case of HD 5980, it would be premature to
construct a theoretical line profile to use as a template for
the wind lines in order to measure the ISM features because
there are several stars contributing to the wind features, in
addition to the possibility of a contribution from a stellar
wind-wind collision zone (Moffat et al. 1998), and the lines
are highly variable. Hence, at this stage, we opted for merely
performing a visual interpolation across the ISM features
taking into account the presence of the underlying wind
lines. A posteriori, we find that the equivalent width of the
ISM lines, such as Si v 41393, which is superposed on the
steep wing of the P Cygni feature, can be underestimated by
as much as ~30%.

The second source of uncertainty is in the deblending
process through the use of a small number of Gaussian
profiles. For any given feature, we used the smallest number
of Gaussians needed to provide a reasonable fit to the line

profile, although we are aware (see Welty et al. 1997) that a
large number of ISM velocity components probably con-
tribute to each absorption feature.

In Table 1, we list the results of the measurements.
Column (1) contains the wavelength of the measured
absorption; column (2) lists the line identification, with the
reference wavelength taken from the NIST database;
column (3) is the equivalent width of the feature; column (4)
is the velocity measured with respect to the laboratory
wavelength (i.e., the heliocentric velocity); and column (5)
lists comments. Lines with uncertain measurements in
Table 1 are indicated by a colon. The primary sources of
these uncertainties are (1) a poor fit to a blended line
profile; (2) a questionable line indentification; (3) unusual
difficulty in placing the continuum level. We estimate the
uncertainty in equivalent width measurements to be about
3% for isolated ISM lines (such as the Galactic C 1 lines)
that do not lie on steep portions of stellar wind lines, and
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~10% for blended lines. Velocities and equivalent widths
obtained from lines that were deblended using multiple
Gaussian fits are footnoted in column (4) of Table 1; veloci-
ties enclosed by angle brackets refer to the average velocity
obtained from the flux integration over the line profile
without any Gaussian fitting.

A few absorption lines were not identified but appear to
be real, the most noteworthy of which is the set of lines
starting at 1341.16 A that, although rather weak, suggests
an atomic transition present in most of the SMC velocity
systems, in addition to the Galactic one.

3. PRINCIPAL VELOCITIES

Using the data in Table 1, we grouped the individual
velocities into broad velocity bins and averaged the values
within each bin. This yields the following different velocity
systems, with their corresponding standard deviations:
three components at v < 80 km s~ (Vj,; = 1.1+ 3,9 + 2,
28 + 3 km s~ 1), the first two of which are dominated by the
contribution from the Galactic disk and halo; seven com-
ponents in the SMC (V,,=87+6, 110 +6, 132 + 6,
158 + 8, 203 + 15, 312 + 3, 343 + 3 km s~ !); five circum-
stellar (CS) velocity systems (V;; = — 1020, —840, — 630,
—530, and —300 km s~ 1) associated with HD 5980; and a
possible system at —53 + 5 km s~ ! of uncertain origin
(seen only in some of the Si 11 lines and marginally in Fe m).

Table 2 summarizes the heliocentric velocities measured
for each of the ISM lines. The first column on the left lists
the line ID and the other columns list the measured velocity
of each line. The Galactic components are all grouped
together under the column labeled “+8.” We have,
however, explicitly included in this column the +28 km s !
component when detected. The SMC components are listed
under their closest principal velocity. As in Table 1, for data
footnoted “a” the listed velocity was obtained by deblend-
ing a broad feature; for those footnoted “b” the listed
velocity is simply the average of the velocity range observed,
with a solid line indicating this range, which is in general
broader than that given by the principal velocities listed in
Table 1. Examples of the line profiles on a velocity scale are
presented in Figures 1-4.

Four of our SMC velocity systems coincide within the
errors with the four main gas complexes in the SMC at
Voer= 114 + 6,134 + 9, 167 + 8, and 192 + 8 km s~ ! that
have been identified from a survey of H 1 21 cm emission
(McGee & Newton 1981, 1982).

The SMC components at +87 km s~ ! are present in C 1,
Co, N5, OLSim So, Fen, Nim, Cl1, and CO and, in many
cases, can be clearly separated from the 110-220 km s~ !
blend. Within the 110-220 km s~ ! blends, we find the
strongest contributions at +132 and +158 km s~ !, with
weaker contributions at +110 and +200 km s~ 1. Some of
the saturated lines, however, reach zero residual intensity in
the velocity range ~85-170 km s~ ! indicating that the
column density within the +110 km s~! system is also
significant.

We note the presence of C 1 lines at the SMC velocities
(predominantly in the +87, +132, and +158 km s™!
complexes), not previously detected in the UV, as well as
weak lines such as O 1 41355.

The component at —53 km s~ ! is visible in Si r 141190,
1193, and 1260, although the Si m 1260 A line is severely
blended with S 11 41259. It is absent in Si m A1526. If it is
related to gas in the SMC, it would be moving at ~200 km
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F1G. 1.—Si 1 lines plotted as a function of velocity. The tick marks
indicate the heliocentric velocities of —53, 8, 87, 110, 132, 158, 203, 312,
and 343 km s~ !. Velocities larger than 70 km s~! correspond to ISM
structures in the SMC; the heliocentric velocity with respect to the LSR is
10 km s~ !, Tracings have been displaced vertically for clarity. The fluxes of
the lines at 1264 and 1194 A have been scaled by the value shown in
parenthesis in order to make the (weak) absorption features visible in this
figure. These lines arise from the excited lower state (E, = 0.04 eV).

s~ ! with respect to the SMC, a velocity even higher than
that of the SNR (see below), but tantalizingly close to the
expected outflow velocity from HD 5980 at the time of
outburst. The two dotted tracings at the bottom of Figure 1
correspond to the excited transitions of Si m* 41264 and
21194, both of which are much weaker that the other lines
plotted in this figure, and thus we have rescaled the flux
values by a multiplicative factor (indicated in parentheses).
Note that the two strongest absorptions in the A1194
tracing belong to Si m A1193 (its +311 and +342
components). The strongest absorption in the excited tran-
sitions occurs at +160 km s~ !. There is an absorption
in this wavelength range that, if it were due to Si o* at
1194 A, would lie at +342 km s~ but this identification
is doubtful.

3.1. SNR0057—7226

The two systems at +312 + 3 and +343 + 3km s~ ! can
be associated with the vz = +300 km s~ ! feature first
detected by de Boer & Savage (1980) and subsequently
attributed to an SNR by Fitzpatrick & Savage (1983). Our
detected V., = 312 km s~ ! component coincides extremely
well with the component reported by de Boer & Savage
(1980), given that we have v, = 12 km s~ ! with respect to
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TABLE 2
VELOCITIES OF ISM FEATURES

HELIOCENTRIC VELOCITY (km s~ 1)

LINE —53 +8 +87 +110 +132 +158 +200 +312 +343
Cril1ss......... 12
CrAl1277......... 14 80 1322 1532
Cr111280......... 13 155
Cril328......... 11 73: 147
C11560......... 12 86: 128 152
Crils6l......... 9:
C11165......... 11 92 127 149
Cr* 11658 ....... 11
CuoAl334........ 12 135 e 313
C* A1335....... 10 84 1282 1592 312 341
CivAl548 ....... 10 147 306
Civ A1550 ....... 0+22 156 310
N1A1199 ........ -35 9 88 e 137* 183 R
N1112002 ...... 88 S 1242 1582
N1 41200.7 ...... 91 R 129* 160?
N v A1238........ 160° e
Nvail242........ 167° 310°
O11302 ........ 8 80° 150? 1982 313
O1A1355 ........ -25 8 180
Mg A1239 ...... 8 127 156
Mg 41240 ...... . 129 151
Alm 21670 ....... 7 90: 310 346
SimA1190........ 8 892 162* R 311 343
SimAl193........ —56 6 822 164° —_— 309 341
SimA1260........ 10 310 340
SimA1304........ —59: 8 84 1142 166° 1972 313 342
SimA1526........ 10 e 1312 200? 313 344
Sim* A1194 ...... 982 —_— 1282 160? 311 337
Sim* A1197 ...... —44
Sim* A1264 ...... —53 111 135 159 320 347
Sim A1206....... .. —5+30 312 343
Si m* 1161: 3:
Sirv A1393....... 1+29 —_— 116* e 167* R 315 342:
Simv A1402....... 3+30 —_— 113 1622 e 313 342:
PmAll52........ 5 e 136* 165*
PmA1301........ 10
PmAl532........ 12 140
S A1250 ........ 9 90 —_— 130? 156° 305::
SmA1253 ........ 9 88 R 126* 164* 316:: 346::
S Al1259 ........ 8 86 142
S A1190........ 3:
Fem 41608 ....... —56 8 92 —_— 129° 1572 192: 307 350
NimA1317....... 8 96 R 126* 1532 309: 347
NimA1370....... 6 91 —_— 1312 166° 309 351:
Ni n* 11454...... —54 3 100 1332 149* 318
Ni o* 11467...... . 6 88 145 157
Be1Al342........ 83:
Cl1A1347 ........ 14 81 147 190
CO A1447 ........ —8:,28 82 137 318:

2 Velocities and equivalent widths are obtained from lines that were deblended using multiple Gaussian fits.

b Velocities are the average of the velocity range observed.

the vz from the C 1 and C 1* velocities listed in Table 2
(excluding 41561). The second component, however, was
not detected by these authors, probably because it is
weaker. Both absorptions arise in gas that is receding from
the observer and approaching HD 5980. It is interesting to
note that there is a correlation between the strength of the
+312 and +343 km s~ ! components and the degree of
blending between the +87 km s~ ! and the Galactic absorp-
tion blend: When the SNR components are weak or absent,

the Galactic absorption is well separated from the SMC
components, and the intervening spectral region
approaches the continuum level. Conversely, lines having
very strong SNR components are associated with more
absorption in the intervening spectral region between the
Galactic and SMC components. The most extreme case is
Si m 11206, as illustrated in Figure 5, where we compare
Sim, Sim, and Si1v lines with the S m 1250 A line, which has
no significant contribution from the SNR. This effect sug-
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Fi1G. 4—Same as Fig. 1, but for C1lines

gests that the wavelength range between the Galactic and
the SMC velocity systems (i.e., between ~8 and ~ 80 km
s~ 1) contains a contribution from the approaching portion
of the SNR shell. Indeed, after subtracting the profile of
Si m 41206 from Si m 411526 (which does not have evident
+312 and + 343 absorption components) excess absorp-
tion appears at two velocities: +33 and +64 km s~ . This
is illustrated in Figure 6. The velocity of +33 km s~ ! coin-
cides within the errors with the component at roughly +28
km s~ ! that is prominent particularly in Si v and C 1v, as
well as Si m. Hence we can now associate this component
with the approaching portion of the SNR. Assuming that
each pair of velocities (+ 33, +343) and (+ 64, + 312) corre-
sponds to one of two approaching and two receding veloc-
ity systems associated with the SNR, the same systemic
velocity is found from both pairs: vgyg = +188 km s~ 1,
assuming that the expansion of the SNR is symmetric. This
velocity lies within the range of velocities + 180 to +220
km s~ that we obtain from HST archival spectra of four of
the O3-06 stars in NGC 346 (NGC 346-113, -324, -355,
-368; number IDs from Massey, Parker, & Garmany 1989).
Hence, it is very likely that the progenitor of SNR
0057 — 7226 was one of the most massive stars formed in the
NGC 346 cluster, assuming coeval star formation.

Two final points that should be made are that (1) it is
interesting to note the detection of CO at 1447 A at +28
km s~! and possibly at +318 km s, raising the question
of its possible association with the SNR; (2) the Galactic
ISM components are partially contaminated by the SNR
and may also contain absorption arising in slowly moving
ejecta of HD 5980.
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F1G. 5—Montage of Si m, Si m, and Si 1v lines compared with S 1
A1250. The SNR absorption components are strongest in the Si m line,
which also shows the most severe blending between the Galactic com-
ponents and those arising in the SMC, implying the presence of SNR
absorptions due to the approaching portion of the shell in the velocity
range 10-80 km s~ *. The tick marks are set at V,,, = 8, 28, 87, 110, 132,
158,203, 312,and 343kms .

3.2. Very High Velocity Circumstellar Components

Absorption features that we attribute to circumstellar gas
are illustrated in Figures 7 and 8, where we plot, respec-
tively, the two lines of Si v (441393 and 1402) and C 1v
11550, observed in the 1999 and the 2000 data. Tick marks
at the top of each panel indicate the values of the CS veloci-
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F1G. 6—Differences between the Si 1 1526 A line and the Si m 1193 A
line (dashed tracing), and between Si 1 11526 and Si m 11206 (solid tracing).
The dotted tracing is the Si m 411206 line profile, rescaled and shifted down,
for illustration purposes. Note the components at +33 and +64 km s~ 1,
which most likely correspond to the +343 and +312 km s~ SNR com-
ponents.

ties in 1999, as well some of the other ISM components. The
various components are much easier to identify in the Si v
lines because of the larger separation between the wave-
lengths of the doublet. The most prominent of the CS com-
ponents lies at V., = —533 + 2 km s~ ! in 1999. One year
later, this component becomes broader, giving the appear-
ance of a second component that has developed at a veloc-

TABLE 3
COMPARISON OF 1999 AND 2000 HiGH-VELOCITY FEATURES IN Si 1v

1999 2000
;l‘obs VVA Vhel nghm j'obs VVA Vhel nghm
LINE A) (mA) logN(cm~™%) (kms™!) (kms™Y) (A) (mA) logN(m~™?) (kms™!) (kms™Y)
Sitv 1393.755...... 1388.97 93 13.02 —1020 124 1388.53 104 13.07 —1126 67
1389.88 15 12.23 —836 25 1389.76 15 12.23 —3860 27
1390.84 24 12.43 —630 43 1390.57 5 11.75 —685 13
1391.09 43 12.68 —573 27
1391.28 53 12.78 —534 26 1391.22 34 12.58 —546 27
1392.18 18 1231 —338 24
1392.37 12 12.13 —298 32 1395.22 36 12.61 —314 22
Si v 1402.770...... 1397.97 73 1321 —1021 118 1397.53 44 12.99 —1125 55
1398.86 4 11.95 —835 28 1398.76 14 12.50 —860 23
1399.88 8 12.25 —619 34
.. .. .. .. 1400.09 34 12.88 —574 29
1400.28 30 12.83 —532 22 1400.24 14 12.50 —542 18
1401.17 11 12.39 —344 22
1401.37 20 12.65 —300 32 1404.23 26 12.77 —-310 28




No. 1, 2001 W-R STAR HD 5980 277

T T T T T T T T T T T T T

Si IV in 2000

flux(10-'%erg cm=2 s~! A1)

-500 0
velocity (km s-1)

F1G. 7—Comparison of the high-velocity circumstellar components of
Si 1v in spectra obtained in 1999 and in 2000. The tick marks on the top of
the figure mark features at —839, —533, and —300 km s~ ! arising either
in the circumstellar or wind material of HD 5980. Also marked are the
principal Galactic components at 2 and 30 km s~ !; and the SMC com-
ponents at 110, 158, and 312 km s~ !. The same features are noted on top of
the 2000 spectrum, with the changes in the high-velocity components also
indicated. Note that the SMC component at 343 km s~ ! is nearly unde-
tectable in Si 1v, while it is quite strong in Si 1 (Fig. 5). The label “XX”
marks the position of a blemish on the data.

ity —50 km s~ faster than the first one. A similar trend is
visible in the other CS features of Si 1v and in C 1v, although
the blending of the various velocity systems of the two C v
lines makes them more difficult to identify. Additional lines
that probably display these high-velocity CS features are
Sim A1190.4, S m 41190.2, and possibly Ni m 411467. The
characteristics of the Si 1v absorption components in 1999
and 2000 are presented in Table 3.

4. COLUMN DENSITIES

Column densities were obtained through two different
methods. For all the measured lines, we estimated the
column densities assuming that the lines are optically thin,
using

N(em™2) = 1.13 x 107 % Q)

(Spitzer 1978, p. 51), where f is the oscillator strength (see
Morton 1991 for a recent compilation). This assumption is
valid if each observed absorption consists of a blend of
undamped individual lines. The recent Australia Telescope
Compact Array H 1 survey (Staveley-Smith et al. 1997) has
resulted in the description of the SMC ISM as consisting of
“frothy and filamentary” shell-like structures, suggesting
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Fi1G. 8.—Same as Fig. 7, but for C v A1550. The circumstellar or wind
components of the C 1v 1548 A line lie deep within the P Cygni profile, but
some absorptions are visible. The lower tracing is unshifted and the upper
tracing is shifted by 6.5 in the vertical scale. The strong absorptions labeled
“C,” are the 2 + 28,110 + 158, and 312 km s~ ! features belonging to C v
A1548.

that the optically thin approximation is probably adequate
for most of the lines that are not obviously saturated. The
second method employed is the classical curve-of-growth
method (Spitzer 1978, p. 51) using the lines of Si 1, Si ¥,
Sim, Si v, N v, C 1, C 1v, and Al 1, yielding column
densities for these species in the Galactic, the + 312, and the
+343 km s~ ! components.

The values obtained using equation (1) are listed in Table
4, where the first column lists the identification of the
absorption line and the other columns list the column den-
sities estimated for each of the velocity components. Lower
limits are indicated for the saturated lines, and the colon
indicates that the original measurement has a greater uncer-
tainty than the average. The asterisk beside the Galactic
values of Si 1v indicates that the column density is the com-
bined value of both the ~0.0 and the +28 km s~ ' com-
ponents. The uncertainty in the logarithmic column
densities is, in general, ~0.10 dex for the Galactic com-
ponents and ~0.20 dex for the blended SMC features. A
conservative estimate of the uncertainties for the SNR
logarithmic column densities is ~0.06 dex. Also, a compari-
son between the column densities derived from the two
components of the Si v doublet indicates that ISM absorp-
tion lines superposed upon the wind emission lines lead to
column densities that are being underestimated by 0.2 to 0.3
in the log N value.

Many of the ISM line cores have zero residual intensities
over wide ranges in velocity. Examples of these saturated
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TABLE 4
CoLuMN DENSITIES log N(cm ~?)
HELIOCENTRIC VELOCITY (km s~ 1)
LINE —53 +38 +87 +110 +132 +158 +200 +312 +343

CrAll55 ........ 13.59
Cr1 1277 ........ ... 13.37 12.16 12.46 12.70
Cr1 41280 ........ e 13.45 ... 13.05
Cr1i1328 ........ 13.36 12.74: 12.34
Cr1 41560 ........ e 13.24 12.80: 12.24 12.46
C141656 ........ 13.21 12.37 12.31 12.70
CmAl334........ 14.16 14.61 13.60:
Co* A1335 ... 13.84 13.69: 13.82 13.99 13.68 13.19
CivAl548....... 14.28: 14.40 13.77
C1v A1550....... 13.36 14.29 13.51
Ni1Al1199 ........ e 14.02: 13.66 14.23: 13.79
N1412002 ...... .. .. 13.92 14.09: 14.04:
N1 412007 ...... 14.16 14.32: 14.32:
Nv 1238 ....... 13.18 R
Nv 1242 ....... 13.15 13.50
O141302 ........ 1522 15.23 15.46: 14.55: 13.72
O141355 ........ 17.27 .. 16.99:
Mg o A1239...... .. 1593 15.96 15.74
Mg o A1240...... 15.64 16.02
Al @ A1670 ....... 12.74: 12.16 11.34
Sim A1190 ....... e 13.84: 13.93: 14.08: e 12.88 12.73
SimAl193 ....... 12.56 >13.53 13.51: 13.92: 12.89 12.50
Sim A1260 ....... 13.31: 12.81 12.33
SimA1304 ....... 11.96 13.94 13.48: 14.04 .. 14.06 13.00: 12.77 12.26
Sim A1526 ....... 13.67 14.11 13.29: 12.67 12.32
Sim* A1194 ...... 12.14: 11.88: 12.10: 11.71: 12.31
Sim* A1197 ...... 12.12
Sim* A1264 ...... 11.19 11.59: 11.49: 11.97: 11.97 11.49
Sim A1206....... e 13.14: 13.50 S 12.93: 12.57:
Sitv A1393....... 13.05* 13.37 13.42 12.64 <11.53
Siv A1402....... 13.22* 13.54 13.72 12.78 <11.35
PmAl152........ 13.57 13.40 12.33
PuA1301........ 13.79
PmAl1532........ 13.70 13.64
S 41250 ........ 15.07 14.52 14.95 14.95 13.12:
SmA1253 ........ 14.88 14.41 14.79 14.81 12.82:
S A1259 ........ 14.77 14.33 15.08:
S m A1190 ....... 14.29
Fe m A1608....... 12.32 14.11 13.97 14.02 14.03 13.28: 12.69 12.85
Nim A1317....... 13.21 12.82 12.97 13.16 11.65:: 12.13
Ni r 41370....... . 13.27 12,51 12.62 12.92 e 12.14: 11.66
NimAl454....... 11.95 13.16 11.95: 12.55 12.86 12.65:
Nim A1467....... . 13.41 12.66 12.97: 12.66
Be141342 .......
Cl1A1347........ 12.50 <11.72 12.20

profiles include most of the Si m lines (saturated between
+87 and + 190 km s~ 1), shown in Figure 1. The deblending
process we have applied to these lines serves only as a crude
estimate for the equivalent widths. Other lines are clearly
not saturated, examples of which are the C 1lines illustrated
in Figure 4, all components of the Ni 1 lines (Fig. 3), the
components at +87 km s~ ! in S m and Fe 1 (Figs. 2 and 3),
and all of the components at +312 and +343kms™ .

In Table 5 we summarize the column densities derived for
the Galactic, the SMC, and the +312 and +343 km s !
components from the application of equation (1). The inte-
grated SMC column densities were obtained by adding the
equivalent widths of the components listed in Table 1 in the
+87 through +200 km s~! velocity bins, and applying
equation (1) to this combined value of the equivalent width.

The last two columns of this table list the density values
obtained by other authors (Welty et al. 1997 for the line of
sight toward Sk 108; Savage & de Boer 1981, for the line of
sight to HD 5980; and de Boer & Savage 1980, also for the
line of sight to HD 5980). Note that the Nv lines previously
reported as ISM lines may be contaminated by stellar
photospheric absorption (see Fig. 9).

We obtain a column density for C 1 of logN(C 1) =
13.36 + 0.09 s.d. from four lines at the Galactic velocity and
log N(C 1) = 12.99 + 0.04 s.d. from three lines in the SMC.
The SMC lines lie in the +132 to +158 km s ! range of
velocities.

The Galactic O 1 line at 1355.60 A is definitely present,
and although it lies on the descending wing of a P Cygni
absorption component, the definition of the local contin-
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TABLE 5

INTEGRATED COLUMN DENSITIES log N(cm ™~ 2)

THis PAPER OTHER AUTHORS
LINE —53 Gal. SMC +311 +343 Gal. SMC

Cr1A1277 ........ 13.37 12.97
C1A1280 ........ 1345 13.05
C1A1328 ........ 13.36 13.40° <13.00*
C1A1560 ........ 13.24 13.04
C1A1656 ........ 13.21 12.97
CuoAl334........ 14.16 >14.61 13.60:
Cml335°......... 13.84 14.33 13.68 13.19
Crval548....... 14.28: 14.40 13.77 14.35°
Civ A1550....... 13.36 14.29 13.51
N1A1199 ........ 14.02: >14.44
N 1412002 ...... >14.50
N1 41200.7 ...... >14.75
Nv 1238 ....... 13.18:
NvAl242 ....... 13.15: 13.50: 13.54°
O141302........ >1522 >15.70 13.72
O1A1355........ 17.29 16.87:
Mg 41239...... 15.93 16.16
Mg m A1240...... 16.17
Sim A1193 ....... 12.56 >13.53 14.06 12.89 12.50 ... ...
SimA1304 ....... 11.96 >13.94 >14.42 12.77 12.26 >14.45° >14.89*
Sim A1526 ....... 13.67 14.18 12.67 12.32 ... ...
SimA1194° ... 12.53 11.71: 1231 <12.0* <12.38*
Sim A1206....... 13.14: 13.50 12.93: 12.57:
Sitv A1393....... 13.05° 13.70 12.64 ~13.8¢
Sitv A1402....... 13.22° 13.94 12.78 <11.35 ...
PoAll52........ 13.57 1343 13.97* ...
SmA1250 ........ 15.07 >15.32 >15.20° >15.26*
SmAl1253 ........ 14.88 >15.18 >15.00* >15.20?
SmA1259 ........ 14.77: > 15.15 bl bl
S A1190 ....... 14.29
Femm A1608....... 12.32 14.11 14.51 12.69 12.85 14.78* 14.84*
NimA1317....... 13.21 13.48 13.18* 13.08*
Nim 41370....... 13.27 13.67
NimAl454....... 11.95 13.16 13.07:: 12.65:
Nim A1467....... 1341 13.27::

Notes.—The Galactic component of C 1v 11548 contains the contribution from the +28 km s~

1

component, while that of C v 41550 does not. C 1v 11548 is more difficult to measure given its position near
the base of the wing of a P Cygni absorption component.

* Welty et al. 1997.

® Column density includes the +28 km s~ ! component.

¢ Savage, Sembach, & Lu 1997
4 Savage & de Boer 1981.

uum level is relatively straightforward. Its measured equiva-
lent width is W, =4 + 04 mA, which yields a column
density log N(O 1) = 17.29 £+ 0.05 for the Galactic com-
ponent. The possible SMC component, if real, lies at + 180
km s~ ! and we derive a column density log N(O 1) =
16.87 + 0.15, where the uncertainty refers only to the error
in the continuum placement. The actual equivalent width of
this feature (W, = 1.5 + 0.5 mA) is near the noise level of the
data.

Column densities of selected lines for the Galactic and the
+312 and +343 km s~ ' components were also obtained
through the construction of curves of growth for these
observed lines, and comparison of the theoretical curve of
growth constructed following Spitzer (1978, p. 51). The
curve of growth for the +312 km s~ ! and the Galactic
absorption components are illustrated in Figures 10a and
10b, where the different symbols correspond to the different
lines used. The formal uncertainty in the log N value for

these column densities is +0.02. A comparison between the
values obtained through the use of equation (1) and the
curve-of-growth method is presented in Table 6. The largest
differences between the two methods occur for the saturated
lines, as would be expected because of the optically thin
assumption inherent to equation (1).

For the SNR components at +312 and +343kms ™', we
obtain ratios of column densities of Si 1/Si m/Si v = 1.0/
~2.5/0.4 and 1.0/1.1/0.0, respectively, values that can be
compared with the Galactic component, for which Si 1/
Si m/Si v = 1.0/0.6/0.01. This implies that the +312 km
s~ ! component has a very different ionization balance from
the +343 km s~ ' component and the average Galactic
component, as would be expected from an SNR, in which
collisional processes dominate. The electron temperature
for the SNR implied by these ratios is 7,~40,000 K
(Baliunas & Butler 1980). Also, from a comparison of the
observed ratios Si 11/Si 1* ~ 1/10 and C 1/C o* ~ 1/1 with
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F1G. 9.—Montage of the six individual N v 41240 line profiles on a
velocity scale. The orbital phase of the spectra is listed along the left
margin. The flux-calibrated profiles are shifted in the vertical direction for
clarity in the figure, but no scaling has been applied. The location of the
Mg 1 lines is indicated by the tick marks. The discontinuous lines mark the
positions of V;,; = —37, +12, +160 km s~ . The broad absorption com-
ponent at SMC velocities seems to be variable and hence may contain
contributions from stellar photospheric absorption features. The sharp
component at + 160 km s~ ! remains fixed in four of the six spectra.

the predictions given in Smeding & Pottasch (1979), we
obtain an estimate of the electron density for the +312 km
s~ ! region of n,~ 100 cm 3,

We can use the column density derived for Si m of
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log [N(Si)/(1 cm~2)] ~ 13.00 to 13.45, combined with a
value of log [N(Si)/N(H)] = —5.63 for the ISM of the SMC
gaseous phase (Relano & Peimbert 2001), to estimate the
column density of N(H) ~ (4.3-12.0) x 10*® cm ™2 for the
SNR shell. Adopting the electron density n, ~ 100 cm ™3
obtained above allows us to estimate the thickness of this
shell to be ~(4.3-12.0) x 10'® cm. Assuming that the SNR
is relatively symmetric and adopting its diameter to be ~ 55
pc (from the nonthermal radio source; Ye et al. 1991) yields
a total volume for the SNR shell of (3.7-10.0) x 10°7 cm?.
Assuming 100 atoms cm ™3 for this region yields a total
mass of (0.7-2.0) x 103® g = 370 to 1000 M .. Clearly, the
SNR shell contains a large amount of swept-up ISM gas.

5. SUMMARY AND CONCLUSIONS

We have presented the results obtained from the mea-
surement of the ISM lines in the high-resolution HST STIS
spectra obtained of the highly variable W-R system HD
5980 in the Small Magellanic Cloud. The principal results
are the following:

1. Absorption components at V= +312 + 3,
+343 + 3, approximately +33, and +64 km s~ ' are
associated with the SMC supernova remnant SNR
0057 — 7226, which lies in the foreground, between HD 5980
and the Galaxy. The component at +312 km s~ ! had been
previously detected by de Boer & Savage (1980) and associ-
ated with an SNR by Fitzpatrick & Savage (1983). The two
components at v < 80 km s ! are blended with the Galactic
ISM components. If the approaching and receding portions
of the SNR shell have symmetric velocities, then the sys-
temic velocity of the SNR is + 188 km s~ !, which is in good
agreement with the velocities of a selection of early-type
stars in NGC 346 and thus suggests that the progenitor of
this SNR was one of the most massive stars of this cluster,
assuming coeval star formation. We obtain estimates of
T, = 40,000 K, n, = 100 cm 3, and N(H) ~ (4-12) x 10'8
cm ™2 for the portion of the SNR shell that is responsible for
the +312 km s~ ' absorptions. A thickness for this shell of
~(4.3-12.0) x 10® cm is inferred. This implies a total mass
of (0.7-2.0) x 10%° g = 370 to 1000 M, in the SNR.

2. Very high velocity narrow absorption components of
Si v 41393 and 11402 are detected at V,,, = — 1020, — 840,
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F16. 10.—Curve of growth for (a) the + 312 km s~ ! SNR component and (b) the Galactic ISM components, obtained using the value b = 10 + 2km s~ !
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TABLE 6
COMPARISON OF COLUMN DENSITIES OBTAINED WITH TWO METHODS
UsinG Eq. (1) CURVE OF GROWTH

LINE Gal. +312 +343 Gal. +312 +343
Cr1 1277 ........ 13.37 13.40
C1A1328 ........ 13.36 13.40
C1 41560 ........ 13.24 13.40
C1A1656 ........ 13.21 13.40
CmAl334........ 14.16 13.60: 15.00 13.84
Co* A1335 ...... 13.84 13.68 13.19 13.84 12.95
Civils4s....... 13.77 13.51
C1v A1550....... 13.36 13.51 13.40 13.51
N1A1199........ 14.02: 14.50
NvAil242 ....... 13.18: 13.57
Mg A1239...... 1593 15.70
SimAl193 ....... >13.53 12.89 12.50 14.60 12.95 12.20
Sim A1304 ....... >13.94 12.77 12.26 14.60 12.95 12.20
SimA1526 ....... >13.67 12.67 12.32 14.60 12.92 12.20
Sio* A1194 ...... 11.71: 12.31:: 11.95 11.30
Sim A1206....... 13.14: 12.93: 12.57: 14.40 13.45 12.30
Siv A1393....... 13.05* 12.64 13.60 12.81
Siv A1402....... 13.22* 12.78 <11.35 13.60 12.81 12.20
Sm 1250 ........ 15.07 15.25
SmAl253 ........ 14.88 15.25
SmA1259 ........ 14.77 15.25
S A1190 ....... 14.29 14.40
Fe m A1608....... 14.11 12.69 12.85 14.60
NimA1317....... 13.21 13.60

—630, —530, and —300 km s~ %, the strongest of which (at in the SMC yield log N(C 1) = 13.01 + 0.04, with the

—530 km s~ 1) has been reported previously (Koenigsberger
et al. 2000). Several of these features are also present in S 11
A1190.2, Si m 2111904, and C 1v A41550. The components at
—1020 km s~ ! (about —1170 km s~ ! with respect to the
SMC reference frame) are broader than the rest and are
most likely discrete absorption components (DACs) gener-
ally associated with the winds of hot stars (Prinja &
Howarth 1986). The other components all have
FWHM ~ 20-30 km s~ ! and are likely to be associated
with the circumstellar regions in which the fast stellar winds
emitted after the 1994 eruption are interacting with the slow
winds emitted during the 1993 and 1994 eruptive events.
Although constant in velocity over the five HST obser-
vations obtained in 1999, there is a clear variation in these
features between 1999 and 2000 consisting in a shift and/or
doubling of the feature to higher velocities. These velocity
changes correlate with the increase in the velocity of the
DAC:s, possibly suggesting an association of these features.
The interacting winds region now being observed in HD
5980 may constitute the earliest stage in the formation
process of a windblown H 11 bubble ever observed.

3. The dominant velocities that we derive for the ISM
components in the SMC are V,,, = +87 + 6, +110+ 6,
+132+6, +158+8, and +203 + 15 km s~ '. These
velocities coincide with the four main gas complexes in the
SMC at ;=114 + 6, 134 + 9, 167 + 8, and 192 + 8 km
s~ ! that have been identified from a survey of H 1 21 cm
emission (McGee & Newton 1981, 1982). We estimate
column densities for C, Co, C1v, NL, Nv,O1, Mg, Si 1,
Sim, Si v, P 1, S i, Fe 1, and Ni 1 for these velocity
systems. The integrated column densities from the C 1 lines

principal contribution arising in the 158 km s~ ! system.

We obtain a lower limit of the N 1 column density log
N(N 1) > 14.5, with a more prominent contribution arising
in the 132 and 158 km s ! systems than in the 87 km s !
gstem A lower limit for O 1is derived from the strong 1302

blend, log N(O 1) > 15.70, while the very weak line of O 1
A1355 suggests log N(O1) ~ 16.9 in the +200 km s~ ! veloc-
ity system.

4. We obtain velocities and estimate column densities of
ISM components at velocities assumed to arise in Galactic
material. However, some of these suffer from probable con-
tamination from the SNR’s approaching shell.

5. From five of the six spectra, we obtain an upper limit
for N v absorption at V,,, = 13 + 15 km s~ of 7 + 3 mA,
yielding an upper limit for the N v Galactic column density
of log(N v) = 12.8%9:3. The ISM component of this line at
SMC velocities appears to be contaminated by stellar
photospheric absorption.
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