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PERTURBATION THEORY OF A DISSIPATIVE QUANTUM SUBSYSTEM
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It is shown how a nondegenerate quantum perturbation of a dissipative quantum subsys-
tem, part of a larger conservative system, may be carried out. Under a certain condition, an
approximately conservative system may result from adding the perturbation, or equivalently the
interactions with the full system. For large systems, the condition leads to nonlinear integral
equations and induced gap behaviour in the spectrum. Conditions under which the equations
may be satisfied are discussed.
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1. Introduction
There is by now an immense literature which concerns dissipative subsystems of

larger conservative systems. Some works generalize the Schrödinger theory [1–3],
some adopt a quantum-classical theory [4–6], some study themasters equations and
calculate a reduced density matrix [7, 8]. Very general analysis has been made
on the effect of adding both dynamics (time) and thermal properties (temperature)
[9–11]. Sometimes perturbation theory has been used, but usually on the quantum
master equation. It is common to assume a quantum system immersed in a heat
bath.

Physical examples readily abound, as in the case of a system of electrons,
phonons and the interactions, all making up part of a larger but conservative system
of electrons plus phonons. In this example phonons are continually being absorbed,
sending electrons from one state to a higher energy one, or are being emitted with
electrons dropping to a lower energy level. It is clear in theexample that there
is no absolute conservation of the number of particles for any given energy level.
However, equilibrium does mean that there is an overall conservation of the number
of particles for each open subsystem.

We study only the equilibrium situation. In mathematical terms, it is only
necessary to show that interactions alone suffice, that is that the subsystem plus
interactions is conservative. The actual presence of the second subsystem is in fact
immaterial, because without interactions the two subsystems would not see each
other. This in turn justifies the use of time independent theory for subsystem plus

[15]
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interaction. However, the interactions themselves would have to be shaped by the
requirement that they, plus the second subsystem, should beconsidered conservative
as well. As such, we only address the first part of the problem.

Here we adopt the conventional fully microscopic and zero temperature approach
for nondegenerate levels. This task has already been initiated in [12, 13], in which
the possibility of reduction of decay rate due to a complex part of the nondegenerate
initial spectrum is noted, and we also find it here. Long-lived unusual (non Gamow)
decay states are also noted in [14]. Our purpose is to analyzesuch situations
in more detail, but in general terms, focusing specifically on the construction of
states with infinite lifetime within second-order perturbation theory. We show that
this surprising solution, apparently previously missed, is possible in systems with
a large number of levels. This approach stresses what we think is the simplest
possible rigorous one, dealing with both perturbed levels and final lifetimes. Our
conclusion is that when interactions are added to a quantum dissipative subsystem,
which makes the full system conservative, then the subsystem itself can, to a certain
extent, be treated in time independent formulation. Clearly such approach does not
immediately consider fluctuation dynamics about a mean, andcertainly does not
address the interesting case of irreversible quantum dynamics, but in general terms,
it should be adequate for average quantities. For example, in the electron–phonon
problem, we expect that as time passes, there is an overall equilibrium between the
two subsystems.

Typically quantum theory can deal with an increase or decrease of the state
probability density in time, by adding imaginary parts to the energy levels. However,
traditional methods of quantum theory shun this option, in favour of Hermitian
Hamiltonians, which only yield real eigenvalues. While it is true that the full
Hamiltonian is expected to be Hermitian, subsystems can clearly violate this require-
ment. In our example the subsystem does not have real eigenvalues, but addition
of interaction turns it into an overall number conserving system. The interaction
is added in nondegenerate perturbation theory, adequate for zero temperature. The
coupling of the subsystem with the rest of the system is here considered through
the interactionsU .

2. Model calculations

Time independent nondegenerate perturbation theory yields, to second order, the
approximate eigenvalues [13]

En = E0
n + Unn +

∑

k 6=n

|Unk|
2

E0
n − E0

k

. (1)

Here En are the approximate eigenvalues of the total HamiltonianH , while E0
n are

the energy levels of the system represented byH0 prior to adding the perturbation.
The total Hamiltonian has the formH = H0 + U and Unk = 〈n|U |k〉 are the matrix
elements ofU evaluated between the unperturbed eigenstates ofH0. Now imagine



PERTURBATION THEORY OF A DISSIPATIVE QUANTUM SUBSYSTEM 17

that the eigenvalues ofH0 are not real, but given by the eigenenergiesE0
n + iVn.

The reason for doing this is that the subsystem alone is not conservative. Then,
what we should do is to recalculate expression (1) using the new eigenvalues. What
we get is a real part, which remains similar to (1), becoming expression (1) when
all Vn are zero, plus an imaginary part equal to

i

[

Vn −
∑

k 6=n

|Unk|
2(Vn − Vk)

(E0
n − E0

k )
2 + (Vn − Vk)2

]

. (2)

It should not escape now one’s attention that the complex part (2) can be made to
vanish, so that the eigenvalues ofH become real, at least in perturbation theory.
This gives us our nonlinear equation involving the complex part of the subsystem
eigenenergies. There are in essence now two expressions (not one) to consider.
Clearly our interest lies in those possible solutions of Eq.(4) below, which are not
merely trivial, that is theVn are not all zero. The possibility of setting expression
(2) to zero is of interest in analyzing long-lived quasi-particle excitations. Otherwise,
in the general case, these expressions give us an idea about the energy and the
lifetime of the perturbed levels. Setting expression (2) tozero, means physically
that the full system is conservative, at least within second-order perturbation theory.
This motivates the following:

ASSUMPTION 1. The following system of two equations is taken as the funda-
mental set:

En = E0
n + Unn + Re

(

∑

k 6=n

|Unk|
2

E0
n + iVn − E0

k − iVk

)

, (3)

Vn =
∑

k 6=n

|Unk|
2(Vn − Vk)

(E0
n − E0

k )
2 + (Vn − Vk)2

. (4)

Eq. (4) reminds one of the nonlinear equation for the gap function in wave
vector space which one obtains for zero temperature superconductivity. As such it is
subject to different possible approximations for solution, according to the problem.
We will initially make an unnecessarily strong assumption,to get a self-consistent
solution, and then relax it to see how solutions should be handled. However, we
first note

COROLLARY 1 ∑

n

Vn = 0. (5)

Proof: The terms on the right-hand side of Eq. (4) of Assumption I cancel in
pairs. �

This condition means that overall there is no net gain or lossof subsystem
particles, when all levels are considered, a conclusion which may also be drawn by
looking at the time dependent quantum mechanical version. Let us return now to
our assumption. This reads
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ASSUMPTION 2. The expression

1 = Cons=
|Unk|

2

(E0
n − E0

k )
2 + (Vn − Vk)2

= Fkn (6)

is constant for alln and k.

THEOREM 1. For an N -level system Assumption2 leads to the conclusion that
1 = 1/N fulfills the requirement of a fully consistent system of equations.

Proof: It is sufficient to write out the equations in detail to checkthis, for
any N . �

This being the case we see that for largeN , our assumption is quite consistent
with the additional requirement that the level separation is large compared with matrix
elements, a requirement for the validity of second order nondegenerate perturbation
theory. Using this result, one recalculates the final perturbed spectrum with real
eigenvalues, and finds that it spreads out compared with the original real part of
the unperturbed eigenvalues. One also finds

LEMMA 1. ∑

n

En =
∑

n

Unn +
∑

n

E0
n . (7)

Proof: It can be checked for any number of levels. �

This constitutes conservation of energy in this model.
However, Assumption 2 is probably too restrictive, in that there is no reason

that all matrix elements and energy levels should follow such strict relationship.
Therefore our nonlinear set may also be solvable under the looser assumption:

ASSUMPTION 3.
1 =

∑

k 6=n

Fkn. (8)

This is adequate for a large system. For a dense set of levels such sums can
be transformed into integrals. Additional solving assumptions might include the
constancy of the matrix elements over a reduced interval of energies, and so on.

When we analyze conditions for the final spectrum to be real, it is clear that
we cannot consider just one level as possessing an original complex part, but must
consider at least a two-level system as having original complex parts. This has to
be of opposite sign for the two levels, as(V , −V ) . Let U be the original matrix
element connecting the two levels, and1E the original separation. In this case
the solution which must follow is1 = Fab = 1

2, so that the nontrivial solution for

V = 1
2

√

2U2 − (1E)2 is possible as long as 2U2 > (1E)2. Clearly the separation
of levels cannot be too great, for the nontrivial solution tobe operative. Otherwise
the trivial solution will hold, V is zero, and the original eigenvalues taken as real.
For a two-level system this is the only possible strategy, but this could vary in a
many-level system. Note also that the resonances do not necessarily arise here only
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in pairs (as in the Gamow case),N could be odd, as long as it is greater than 2.
However, the fully paired solution withN even is always an option.

3. Discussion

In this two-level system, it appears we do not have that much leeway, because
we could already plausibly be in the region in which the perturbation theory is
invalid. However, take now a system withN = 10 000 levels. Then we must meet
the condition 100U > 1E, when we have 10U = 1E, denoting now byU and
1E the magnitudes of the respective quantities, on the average. Since 100> 10, we
meet both this condition and the condition for second-orderperturbation theory, that
energy separations be much larger than matrix elements. Therefore this seemingly
exceptional case can well arise within the conditions of second order perturbation
theory. In fact, it almost must arise, except for the possibility of the trivial solution.

We have however shown that certain interactions, added to a dissipative quantum
subsystem, are able to convert the problem to the one with real eigenvalues. The
nature of the perturbed spectrum is that the large eigenvalues are raised by the
perturbation, while the small ones are lowered, so we tend tohave more gap space
in the spectrum. However, as noted previously [12], this increase in gap space is
attenuated by the presence of the complex part of the original spectrum. Strategies
for solutions would depend on the particular problem, but have much in common
with approximations adopted in the theory of zero temperature superconductivity,
which yields a similar set of equations [15]. In any particular problem, energy
considerations should determine viability of the nontrivial solution.

In usual approaches to the problem of an open subsystem in contact with the rest
of the system, two effects arise at the same time. One is the energy shifting effect
on the energy levels due to the interactions with the environment, while the other
is the effect of dissipation, because the subsystem alone isnot conservative. The
complete system is conservative. Here we have not tried to correlate the two separate
effects at the outset, which should properly arise together. Our initial treatment of
the effect of dissipation is phenomenological, as the separately introduced termsVn.
We have only argued a final equilibrium situation which should not have dissipation,
and which does give a condition for the interrelation of the two separate effects,
because the formulae contain theVn, En and Un. Because the final equilibrium
situation has no assumed dissipation, usual equilibrium treatment of the fluctuations
in occupation numbers should be applicable, in the case thateverything is immersed
in a heat bath. Out of equilibrium fluctuations are perhaps a challenging topic for
the future.
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