Vol. 58 (2006) REPORTS ON MATHEMATICAL PHYSICS No. 1

PERTURBATION THEORY OF A DISSIPATIVE QUANTUM SUBSYSTEM
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It is shown how a nondegenerate quantum perturbation of sipdisve quantum subsys-
tem, part of a larger conservative system, may be carried Wotler a certain condition, an
approximately conservative system may result from addiegperturbation, or equivalently the
interactions with the full system. For large systems, thad@on leads to nonlinear integral
equations and induced gap behaviour in the spectrum. Gomsliunder which the equations
may be satisfied are discussed.
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1. Introduction

There is by now an immense literature which concerns digg@aubsystems of
larger conservative systems. Some works generalize theddolger theory [1-3],
some adopt a quantum-classical theory [4—6], some studymihsters equations and
calculate a reduced density matrix [7, 8]. Very general ysial has been made
on the effect of adding both dynamics (time) and thermal ertigs (temperature)
[9-11]. Sometimes perturbation theory has been used, huallyson the quantum
master equation. It is common to assume a quantum systemrgachén a heat
bath.

Physical examples readily abound, as in the case of a systemleotrons,
phonons and the interactions, all making up part of a large#rconservative system
of electrons plus phonons. In this example phonons are rapaity being absorbed,
sending electrons from one state to a higher energy one,eobeing emitted with
electrons dropping to a lower energy level. It is clear in #ample that there
is no absolute conservation of the number of particles for given energy level.
However, equilibrium does mean that there is an overall esagion of the number
of particles for each open subsystem.

We study only the equilibrium situation. In mathematicarms, it is only
necessary to show that interactions alone suffice, that as tie subsystem plus
interactions is conservative. The actual presence of tensksubsystem is in fact
immaterial, because without interactions the two subsystevould not see each
other. This in turn justifies the use of time independent mhdor subsystem plus
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interaction. However, the interactions themselves wouldehto be shaped by the
requirement that they, plus the second subsystem, shoultbi&dered conservative
as well. As such, we only address the first part of the problem.

Here we adopt the conventional fully microscopic and zeroperature approach
for nondegenerate levels. This task has already beentédtin [12, 13], in which
the possibility of reduction of decay rate due to a complest pathe nondegenerate
initial spectrum is noted, and we also find it here. Longdiwmusual (non Gamow)
decay states are also noted in [14]. Our purpose is to anadymh situations
in more detail, but in general terms, focusing specifically thhe construction of
states with infinite lifetime within second-order pertuiba theory. We show that
this surprising solution, apparently previously missesl,possible in systems with
a large number of levels. This approach stresses what we tisinthe simplest
possible rigorous one, dealing with both perturbed levedd éinal lifetimes. Our
conclusion is that when interactions are added to a quantissipdtive subsystem,
which makes the full system conservative, then the subsysself can, to a certain
extent, be treated in time independent formulation. Cyeatlch approach does not
immediately consider fluctuation dynamics about a mean, eerdainly does not
address the interesting case of irreversible quantum digsarbut in general terms,
it should be adequate for average quantities. For examplahé electron—phonon
problem, we expect that as time passes, there is an ovendlibeiym between the
two subsystems.

Typically quantum theory can deal with an increase or degreaf the state
probability density in time, by adding imaginary parts te tenergy levels. However,
traditional methods of quantum theory shun this option, @volir of Hermitian
Hamiltonians, which only yield real eigenvalues. While & true that the full
Hamiltonian is expected to be Hermitian, subsystems caarlgleviolate this require-
ment. In our example the subsystem does not have real eigesyabut addition
of interaction turns it into an overall number conservingstsyn. The interaction
is added in nondegenerate perturbation theory, adequateef® temperature. The
coupling of the subsystem with the rest of the system is heresidered through
the interactionsU.

2. Modéd calculations

Time independent nondegenerate perturbation theory syjigtdl second order, the
approximate eigenvalues [13]

|Unk|2

. 1
E?— E? @)

En =E,?+Unn+z
k#n

Here E, are the approximate eigenvalues of the total Hamiltontanwhile E are
the energy levels of the system representedHyprior to adding the perturbation.
The total Hamiltonian has the forld = Hy+ U and U, = (n|U|k) are the matrix
elements ofU evaluated between the unperturbed eigenstate&/pfNow imagine
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that the eigenvalues offy are not real, but given by the eigenenergi€$+iV,,.
The reason for doing this is that the subsystem alone is noseswative. Then,
what we should do is to recalculate expression (1) using #we @igenvalues. What
we get is a real part, which remains similar to (1), becomirgression (1) when
all v, are zero, plus an imaginary part equal to

. |Unk|2(Viy = Vi) }
vV, — . 2
’[ ; (EQ — EQ2 + (V, — Vi)? @

It should not escape now one’s attention that the complek (@rcan be made to
vanish, so that the eigenvalues &f become real, at least in perturbation theory.
This gives us our nonlinear equation involving the complext pf the subsystem
eigenenergies. There are in essence now two expressioisofr&) to consider.
Clearly our interest lies in those possible solutions of E). below, which are not
merely trivial, that is theV, are not all zero. The possibility of setting expression
(2) to zero is of interest in analyzing long-lived quasi{fe excitations. Otherwise,
in the general case, these expressions give us an idea dmutnergy and the
lifetime of the perturbed levels. Setting expression (2)z&ro, means physically
that the full system is conservative, at least within seeorter perturbation theory.
This motivates the following:

AsSsSUMPTION 1. The following system of two equations is taken as the funda
mental set:

|Unk|2
E,= E,? + Unn + Re( s 3
;E,9+iv,,—E,9—in ®)
|Unk|2(vn - Vk)
Vi ZZ 0_ g0y2 2 )
k#n (En - Ek) + (Vo — Vi)

Eq. (4) reminds one of the nonlinear equation for the gap tfancin wave
vector space which one obtains for zero temperature supéuctivity. As such it is
subject to different possible approximations for soluti@ecording to the problem.
We will initially make an unnecessarily strong assumptitm,get a self-consistent
solution, and then relax it to see how solutions should bedlegin However, we
first note

COROLLARY 1
Y V.=o0. (5)

Proof. The terms on the right-hand side of Eqg. (4) of Assumption thogh in
pairs. O

This condition means that overall there is no net gain or logssubsystem
particles, when all levels are considered, a conclusiorchvimay also be drawn by
looking at the time dependent quantum mechanical versi@t. us return now to
our assumption. This reads



18 J. F. WEISZ

ASSUMPTION 2. The expression

|Unk|2

A = Cons= =
(EQ — ED)2 + (V, — V)2

Fkn (6)

is constant for alln and k.

THEOREM 1. For an N-level system Assumptidh leads to the conclusion that
A = 1/N fulfills the requirement of a fully consistent system of ¢igna.

Proof: It is sufficient to write out the equations in detail to chetiks, for
any N. O

This being the case we see that for larye our assumption is quite consistent
with the additional requirement that the level separat®taige compared with matrix
elements, a requirement for the validity of second orderdegenerate perturbation
theory. Using this result, one recalculates the final pbddr spectrum with real
eigenvalues, and finds that it spreads out compared with tiggnal real part of
the unperturbed eigenvalues. One also finds

> E, =) Un+) EJ. 7)

Proof: It can be checked for any number of levels. O

LEMMA 1.

This constitutes conservation of energy in this model.

However, Assumption 2 is probably too restrictive, in thhere is no reason
that all matrix elements and energy levels should followhswstrict relationship.
Therefore our nonlinear set may also be solvable under theeloassumption:

ASSUMPTION 3.
1=>" Fi. (8)

k#n

This is adequate for a large system. For a dense set of levels sums can
be transformed into integrals. Additional solving assupnmd might include the
constancy of the matrix elements over a reduced intervalnefrgies, and so on.

When we analyze conditions for the final spectrum to be rdals iclear that
we cannot consider just one level as possessing an origoraplex part, but must
consider at least a two-level system as having original dexparts. This has to
be of opposite sign for the two levels, &¥, —V) . Let U be the original matrix
element connecting the two levels, amdE the original separation. In this case
the solution which must follow isA = F,, = % so that the nontrivial solution for
V= %\/2U2— (AE)? is possible as long aslZ > (AE)?. Clearly the separation
of levels cannot be too great, for the nontrivial solutionkt® operative. Otherwise
the trivial solution will hold, V is zero, and the original eigenvalues taken as real.
For a two-level system this is the only possible strategy, this could vary in a
many-level system. Note also that the resonances do nossertlg arise here only
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in pairs (as in the Gamow case), could be odd, as long as it is greater than 2.
However, the fully paired solution withiv even is always an option.

3. Discussion

In this two-level system, it appears we do not have that mesway, because
we could already plausibly be in the region in which the pdédtion theory is
invalid. However, take now a system witN = 10000 levels. Then we must meet
the condition 1000 > AE, when we have 10 = AE, denoting now byU and
AE the magnitudes of the respective quantities, on the aveiBigee 100> 10, we
meet both this condition and the condition for second-oqetturbation theory, that
energy separations be much larger than matrix elementsceftine this seemingly
exceptional case can well arise within the conditions ofosdcorder perturbation
theory. In fact, it almost must arise, except for the potigibof the trivial solution.

We have however shown that certain interactions, added tissipdtive quantum
subsystem, are able to convert the problem to the one with gigenvalues. The
nature of the perturbed spectrum is that the large eigeesahre raised by the
perturbation, while the small ones are lowered, so we tentaiee more gap space
in the spectrum. However, as noted previously [12], thisréase in gap space is
attenuated by the presence of the complex part of the ofigipectrum. Strategies
for solutions would depend on the particular problem, butehanuch in common
with approximations adopted in the theory of zero tempeeatsuperconductivity,
which yields a similar set of equations [15]. In any partisulproblem, energy
considerations should determine viability of the nongivsolution.

In usual approaches to the problem of an open subsystem tacatomith the rest
of the system, two effects arise at the same time. One is teeggrshifting effect
on the energy levels due to the interactions with the enmi@mt, while the other
is the effect of dissipation, because the subsystem alonsotisconservative. The
complete system is conservative. Here we have not tried teelete the two separate
effects at the outset, which should properly arise togetBer initial treatment of
the effect of dissipation is phenomenological, as the s#plr introduced termd,,.
We have only argued a final equilibrium situation which skionbt have dissipation,
and which does give a condition for the interrelation of theo tseparate effects,
because the formulae contain tHé, E, and U,. Because the final equilibrium
situation has no assumed dissipation, usual equilibrivgattnent of the fluctuations
in occupation numbers should be applicable, in the caseetatything is immersed
in a heat bath. Out of equilibrium fluctuations are perhapshallenging topic for
the future.
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