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Time-extensive classical and quantum correlations in thermal machines
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We study intraenvironmental classical and quantum correlations in a thermal machine, which is modeled as
a driven quantum system coupled with thermal reservoirs. We compute the mutual information, the quantum
discord, and the entanglement between two parts of the environment formed by oscillators centered around
two different frequencies. We show that there are only two processes that generate time-extensive correlations
in the long-time limit. First, there is a resonant process which is responsible for the transport of excitations
between different environmental modes due to the absorption (or emission) of energy from (or into) the driving
field. Second, there is a nonresonant process that transforms the energy from the external driving into pairs of
excitations in two environmental modes. We show that there is a regime when the mutual information and the
quantum discord between the parts of the environment correlated by these two processes grow quadratically in
time, while entanglement production is time extensive.
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I. INTRODUCTION

The tools and resources of information theory have brought
astounding advancements to our understanding of the quan-
tum world, and have permeated all the layers of quantum
theory. In recent years, the connection between quantum in-
formation [1] and quantum thermodynamics [2] has been
extensively explored, and in the heart of it all lies the study of
correlations between physical systems. This has provided, for
example, much necessary insight into the emergence of ther-
modynamic irreversibility from unitary dynamics [3,4], and
a generalization of the laws of thermodynamics that resolve
their apparent violations in correlated scenarios [5] (such as
anomalous heat flows from cold to hot baths [6], and mem-
ory erasure accompanied by work extraction instead of heat
dissipation [7]).

In view of their seemingly fundamental role, it is natural to
wonder if correlations can be exploited as a thermodynamic
resource. In the context of single-shot thermodynamics [8],
both classical and quantum correlations have been studied in
their role as a resource in state formation or work extraction
[9–12]. In addition, considering that separability has often
been used synonymously with classicality, entanglement in
particular has been put in the spotlight in order to under-
stand how nonclassical correlations affect thermal machines
[13–16].

Understanding the nature and creation of correlations is
a necessary task to further advance our knowledge of the
foundations of thermodynamics. In this work we address
these issues by studying how and what type of correlations
are built up between different parts of the environment of a
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thermal machine while it is continuously driven beyond the
transient regime. We will study a periodically driven system
S in contact with two bosonic environments, ER and EL, at
different temperatures. First, we show that there are only two
physical processes that constantly create intraenvironmental
time-extensive correlations in the long-time limit. On the one
hand, the driving field can transport an excitation from one
mode to another one. On the other, the energy of the driving
can split and create a pair of excitations that are dumped
in different modes. The first process is none other than the
quantum manifestation of the heat current from classical ther-
modynamics, that flows either from the hotter reservoir to the
colder one in a heat engine or the reverse in a heat pump. The
second one is at the core of the third law of thermodynamics: it
always heats up the environment, preventing it from reaching
absolute zero temperature. As a consequence of these two
processes, time-extensive classical and quantum correlations
are established only between parts of the environment cen-
tered around frequencies such that their sum or difference is a
multiple of the driving frequency ωd . And second, we analyze
the nature of those correlations. We present simple, analytical
expressions for the quantification of classical and quantum
correlations and analyze their relation and their interplay. We
also show that the “classical” transport of excitations swaps
the entanglement created by the creation of a pair of excita-
tions to other modes.

The study of intraenvironmental correlations is not plen-
tiful in the literature of quantum thermodynamics. Recent
findings [3,4] show that thermodynamic irreversibility is in-
trinsically linked to the development of correlations in the
environment. Indeed, in Refs. [3,4] it was shown that these
correlations are responsible for the entropy production in the
long-time limit, using a fermionic system as an example. Our
work can also be interpreted as providing support for this idea.
Thus, we obtain similar results in a bosonic model, which
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FIG. 1. A parametric oscillator S driven by V (t ) is coupled with
two environments EL and ER at temperatures TL and TR, respectively

is the paradigmatic model of a thermal machine. This paper
also contains a generalization of previous results reported
in Ref. [13], where the generation of entanglement in the
environment was studied. Here we study other measures of
classical and quantum correlations, such as the mutual infor-
mation and the quantum discord. We also present results and
interpretations about the nature and behavior of the entangle-
ment generated in thermal machines.

The paper is organized as follows: In Sec. II we give a brief
overview of the model and its solution. It is a generalization
of the standard quantum Brownian motion model including a
time-dependant driving field. In Sec. III we use the previous
results to compute the covariance matrix between different
environmental modes and we discuss its properties in the
long-time regime. In Sec. IV we present the measures we
will use later to quantify and describe classical and quantum
correlations, including entanglement. In Sec. V we study clas-
sical and quantum correlations between environmental bands
at an arbitrary environmental temperature. We provide simple
analytical expressions to compute the mutual information, the
quantum discord, and the entanglement in terms of physi-
cally meaningful parameters. We summarize our results in
Sec. VI.

II. THE MODEL

We consider a generalization of the usual quantum Brow-
nian motion model (QBM) [17,18] that was presented and
solved in Ref. [13]. It consists of a parametric oscillator, which
we will refer to as system S , coupled with an environment E
formed by N independent oscillators. The environment is then
divided into two pieces EL and ER by preparing them in differ-
ent thermal states with temperatures TL and TR, respectively.
This model represents the physical situation shown in Fig. 1.
Since the solution of this model has been treated in detail in
Ref. [13], here we will only present a brief outlook of it. The
dynamics are governed by the total Hamiltonian HT = HS ⊗
1E + 1S ⊗ HE + HS,E . The system’s Hamiltonian is HS =
p2/2m + mV (t )x2/2 while the environmental and interaction
terms are, respectively, HE = ∑

i(p2
i /2mi + miω

2
i q2

i /2) and
HS,E = x

∑
i λiqi. The solution of the Heisenberg equations

of motion is

qi = qh
i + K (1)

i j ∗ qh
j + K (2)

i ∗ xh,

x = xh + K (3)
j ∗ qh

j , (1)

where the notation F∗ f = ∫ t
0 dt ′F (t, t ′) f (t ′) is used. qh

i (t ) =
qi,0 cos(ωit ) + pi,0 sin(ωit )/miωi are the free Heisenberg op-
erators of the environmental modes, with qi,0 and pi,0

Schrödinger operators, and xh(t ) is a dressed operator for S
that satisfies the linear equation

ẍh + VR(t )xh + γ ∗ẋh = 0. (2)

Above, γ is the dissipation kernel γ (t ) =∫
dωI (ω) cos(ωt )/mω, and VR(t ) = V (t ) − γ (0) is the

renormalized potential. The explicit expressions for the
kernels K (1,2,3) can be found in Ref. [13], but it is sufficient
to know that they are functionals of the Green’s function
G of Eq. (2). Thus, knowing G means solving the full
Heisenberg equations. For a periodic driving with frequency
ωd , V (t ) = ∑

k Vkeikωd t , the Green’s function G can always be
written as G(t, t ′) = ∑

kAk (t − t ′)eikωd t , where Ak vanishes
for negative arguments. For G to be a Green’s function of
Eq. (2), the Laplace transform of the functions Ak (t ), Ãk (s),
must satisfy a linear set of algebraic equations:

g̃−1(s + ikωd )Ãk (s) +
∑
n �=0

Vn Ãk−n(s) = δk0, (3)

where g̃ is the Laplace transform of the static Green’s func-
tion. The above system of equations can be simply solved
by using a perturbative series expansion which is valid when
the Fourier coefficients of the potential |Vk| are small and
the frequency of the driving ωd is detuned from the para-
metric resonance (that is, from the renormalized frequency
ωr = V0 − γ (0) [19]). In that case, the solution of Eq. (3)
satisfies the following recurrence relation:

A(m)
k (s) = g̃(s + ikωd )

[
δk0 −

∑
n �=0

Vn Ã(m−1)
k−n (s)

]
, (4)

for m � 1, with A(0)
k (s) = g̃(s + ikωd ) δk0.

We will focus our attention on Gaussian initial states with
first moments equal to zero. Since the total Hamiltonian is
quadratic, states remain Gaussian for all times. Also, our
results are independent of the specific form of the spectral
density IR,L (ω) of the environments, but we will require that
it is a smooth function of ω with a frequency-independent
damping constant γ0. That is, I (ω) = γ0 f (ω) with f smooth.

III. THE COVARIANCE MATRIX

In order to make this paper self-contained, in this section
we include some material from our previous work [13]. We
added new and better explanations to aid the understanding of
the broader topics treated here.

Our goal is to study environmental correlations between
two parts of the environment, so we use Eq. (1) to compute
all correlation functions between two environmental bands:
one of them consists of oscillators whose frequencies are dis-
tributed around ωi ∈ ER with a bandwidth �ω, and the other
one is centered around ω j ∈ EL. All expressions will depend
on the product I (ω)�ω which, for sufficiently small values of
�ω, plays the role of an effective coupling strength between
the reservoir band and S [since I (ω)�ω ≈ λ2/mω]. With the
correlation functions we build the two-mode covariance ma-
trix as σab(t ) = 〈{za(t ), zb(t )}〉/2 where 
z = (qi, pi, q j, p j ),
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which determines all properties of Gaussian states. For the
sake of simplicity we avoid writing all correlators here (in
Appendix A we include the general form of the position and
momentum correlators), but we can prove that, for a contin-
uous environment (the continuous hypothesis is discussed in
Ref. [13]),

σ(t ) = νi ⊗ ν j + σ0(t ) + σosc(t ) + σ lin × t, (5)

where νi ⊗ ν j is the initial thermal state of both bands, σ0(t )
depends on the initial state of S and σ0(t ) → 0 exponentially
fast as t → ∞, σosc(t ) oscillates in time with frequencies
ωd and its higher harmonics, and σ lin × t is linear in time.
We note that the fact that σ0(t ) → 0 is not trivial and rest
on the assumption that a stable stationary regime exists. The
existence of such a regime requires the energy pumped into S
to be dissipated by E . This can be achieved for small driving
amplitudes provided that ωd is detuned from the parametric
resonance.

We are interested in the physical processes that con-
tinuously create correlations beyond the transient regime.
Therefore, we will only keep the terms that do not equal zero
after averaging σ over a driving cycle in the long-time limit.
Thus, we will work with

σav (t ) = νi ⊗ ν j + σ lin × t . (6)

The linear term in time, σ lin, is a block-diagonal matrix (that
is, the cross-correlators are zero) unless the center frequencies
of the bands satisfy a precise relation: either ωi + ω j = kωd

or ω j = ωi + kωd , with k ∈ Z. This is the signature of the two
main processes that creates correlations between the bands. In
order to understand their nature, we compute the energy Ei

stored in the band i ∈ ER, which varies due to the same two
processes. Ei is proportional to the sum of the two first diag-
onal correlators of σav (Ei ∝ σav,11 + σav,22; see Appendix A
for a brief derivation) and has a simple expression: Ei(t ) =
[1/2 + nR(ωi )]ωi + Q̇i × t , with

Q̇i

�ω
=

∑
k

∑
α=R,L

ωi
{
�(ωi,k )p(k)

R,α (ωi )[nα (ωi,k ) − nR(ωi )]

+�(−ωi,k )p(k)
R,α (ωi )[nα (|ωi,k|) + nR(ωi ) + 1]

}
, (7)

where ωi,k = ωi − kωd , � is the step function, nα (ω) is
the Planck distribution with temperature Tα , and p(k)

R,α (ωi ) =
π IR(ωi )Iα (|ωi,k|)|Ãk (iωi,k )|2/2m2 is the probability that mode
ωi in ER interacts with mode ωi,k in Eα through S (Iα is the
spectral density of Eα). In Eq. (7) we can see the two main
processes that generate correlations between the bands. In
the long-time regime the energy stored in each band varies
due to these two processes and their relative importance de-
pends on the temperatures TR and TL. As the first term on the
right-hand side of Eq. (7) shows, at nonzero environmental
temperature, the resonant absorption (or emission) from (or
into) the driving field can transport an excitation in a mode
with frequency ωi to a mode with frequency ωi − kωd . This
process is associated with the classical heat current that flows
from one environment to another and, naturally, it is not
present at zero temperature where there are no excitations
to be transported around. Thus, at very low temperature, Ei

varies because of a different process. In the second term of

Eq. (7), we can see that the energy of the driving is dumped
into two modes whose frequencies add up to a multiple of
ωd . This splitting of the driving energy between two modes
generates entanglement between them, and is interpreted as
the nonresonant creation of a pair of excitations (one in each
mode) [13,20,21]. This second term is positive and therefore
it is always associated with heating—more specifically, with
the third law of thermodynamics.

We have seen that the only time-extensive correlations
are generated between environmental bands that satisfy either
ωi + ω j = kωd or ω j = ωi + kωd . The former are correlated
by the nonresonant creation of a pair of excitations, while the
latter are correlated by the resonant transport of excitations.
In following sections we will study the nature of the correla-
tions generated by these two processes and their relation with
entanglement. Before that, we note that in the time-extensive
regime, σav is symplectically equivalent to the standard form
(see Lemma I in Ref. [22])

σs f =

⎛
⎜⎝

a 0 c1 0
0 a 0 c2

c1 0 b 0
0 c2 0 b

⎞
⎟⎠, (8)

where c1 = c2 for the bands correlated by the resonant trans-
port of excitations and c1 = −c2 for the ones correlated by
the nonresonant creation of a pair of excitations. This is the
subclass of squeezed-thermal states. Therefore the driving
might be creating squeezed thermal states between the bands
in the environment.

IV. THE TOOLBOX

In order to study the cause and nature of intraenvironmental
correlations in thermal machines, we need (i) a measure of
the total amount of correlations, (ii) a measure of quantum
correlations, and (iii) a measure of entanglement. For the first
item, the immediate choice is the mutual information I. For a
bipartite system divided in A and B, it is defined as I (A : B) =
S(A) + S(B) − S(AB), where S is the von Neumann entropy.
It is worth noticing that, whereas the mutual information for
classical distributions is bounded from above by the entropy
of either one of them, the mutual information for quantum
systems can be as large as 2 min{S(A), S(B)} for entangled
states (see Araki-Lieb inequality, Corollary of Theorem 2 in
Ref. [23]), which reflects the existence of quantum correla-
tions beyond the classical ones. In order to quantify these
quantum correlations, we will use a measure called quantum
discord (QD). QD was proposed [24,25] in an effor to adress
a series of developments in Refs. [26–28] that challenged the
belief that entanglement is the only form of quantum corre-
lation. QD is defined by quantizing the mismatch between
two classically equivalent measures of mutual information:←−
D (A : B) = I (A : B) − J (A : B), where I (A : B) = H (A) +
H (B) − H (A, B) and J (A : B) = H (A) − H (A|B), with H
the Shannon entropy. The discrepancy between I and J in
the quantum case occurs because, in quantum theory, the
conditional entropy H (A|B) involves a specific choice of basis
to perform a measurement on B to infer the state of A. Thus,
the quantization of J is not as straightforward as the one of
I, which only requires to replace the Shannon entropy for the
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von Neumann one. In order to do this, a minimization is per-
formed over all positive operator valued measures (POVMs)
corresponding to a measurement in B so as to find the one that
disturbs least the overall quantum state and that, at the same
time, allows to extract the most information about B. Hence,
the quantum analog of J is defined as

←−J (A : B) = S(A) − inf
{
n}

[∑
n

pn S(A|n)

]
, (9)

where {
n} is a POVM, pn = tr(ρB
n) is the probability of
obtaining the result n, and S(A|n) is the von Neumann entropy
of the reduced state of A after obtaining this result. Quantum
discord has been shown to be a property held by almost all
quantum states [29] (the set of states with zero quantum dis-
cord has measure zero and is nowhere dense) and has attracted
considerable attention [30–34]. Initially defined only in finite-
dimensional systems, the concept of QD was extended to
continuous-variable systems, specifically to the case of two-
mode Gaussian states [35,36]. When the POVMs are restricted
to the set of Gaussian measurements, it is called Gaussian
quantum discord (GQD). Until recently it was thought to be
an upper bound of the QD for continuous-variable systems
but it has been proved that, in fact, QD and GQD are equal for
Gaussian states [37]. Finally, as a measure of entanglement
we will use the logarithmic negativity EN = log ‖ρ̃‖1, where
ρ̃ is the partially transposed density matrix. EN quantifies the
violation of the Peres-Horodecki criterion and it is monotone
under local operations and classical communication [38]. In
the case of two-mode Gaussian states, this criterion is a nec-
essary and sufficient condition for the composite system to be
separable.

Gaussian states are completely determined by their co-
variance matrix σ, so it is not surprising that all three
quantities discussed above can be computed using only σ.
For example, the logarithmic negativity is computed as EN =
max{0,− ln(2λ̃−)}, where λ̃− is the lowest symplectic eigen-
value of the covariance matrix σ̃ corresponding to the partially
transposed density matrix ρ̃ (which differs from σ by just a
sign flip in the off-diagonal block matrices). Expressions for
the mutual information and quantum discord in terms of σ can
be respectively found in Ref. [39] and in Ref. [36].

V. CORRELATIONS BETWEEN ENVIRONMENTAL BANDS

In this section we present a study of classical and quantum
correlations between two environmental bands which are re-
spectively centered around frequencies ωi ∈ ER and ω j ∈ EL,
in increasing order of quantumness. We will use the toolbox
described in the previous section. First, we will compute the
mutual information I for the total correlations, second, the
quantum discord

←−
D , which measures the quantumness of

correlations, and third, as a measure of entanglement, the
logarithmic negativity EN . We will analyze the relationship
between these quantities and present simple analytic expres-
sions which are valid in the limit of small driving and weak
coupling (γ0/ωi, j � 1). We will examine and compare two
distinct physical processes which, as discussed above, are the
main sources of generation of time-extensive correlations in
the long-time regime: the nonresonant creation of a pair of

excitations, satisfying the condition ωi + ω j = kωd , and the
resonant transport of excitations, with ω j = ωi + kωd .

Our formulas are written in terms of only three physically
meaningful symplectic invariants. These are the individual pu-
rities μi = tr(ρ2

α ) = 1/2
√

det(α) and μ j = 1/2
√

det(β), and
the determinant �(t ) = 4 det(γ ), which is a measure of the
generation of cross correlations (see below). Here, α, β, and
γ are the three 2 × 2 submatrices in the two-mode covariance
block matrix σ. If we write σ in its standard form as in Eq. (8),
then α = a 1, β = b1, and γ = diag(c1, c2).

Although the individual purities depend on time (they de-
crease as time goes by), in the weak-coupling limit their value
is mostly determined by the temperature of the environments.
That is, μi, j → 1− indicates low temperature whereas μi, j →
0+ indicates high temperature. On the other hand, �(t ) is a
quadratic function of time, �±(t ) = �± × t2 (from now on,
the plus sign will indicate the nonresonant case and the minus
sign, the resonant one). As we mentioned above, �±(t ) can be
interpreted as the generator of cross correlations: pair creation
or transport of excitations, depending on the case. This is
because the Kullback-Leibler divergence between the Wigner
function of ρσ and the Wigner function of the product of the
marginals ρα ⊗ ρβ can be written as

DKL
(
Wρσ

||Wρα⊗ρβ

) � μi μ j |�±(t )| (10)

(see Ref. [40]). DKL measures the phase-space distinguisha-
bility between ρσ and ρα ⊗ ρβ. As we can see from Eq. (10),
while the purities decrease with time, |�±(t )| increases
quadratically, making ρσ more and more distinguishable from
the completely uncorrelated state ρα ⊗ ρβ. Thus, �±(t ) is
indeed responsible for generating correlations.

In Appendix B we include explicit expressions for the in-
dividual purities in Eq. (B1) and for �± in Eqs. (B2) and (B3),
respectively. In Appendix C we include a brief derivation of
the equations presented below.

A. Mutual information

We begin our study of correlations by computing the mu-
tual information between the bands. For both the resonant and
nonresonant cases, I has the same simple form

I±(σav ) � f±(μi, μ j ) |�±(t )| (11)

with

f±(μi, μ j ) = μiμ j[atanh(μi ) ± atanh(μ j )]/(μi ± μ j ).

(12)

Although Eq. (11) may give the impression that mutual in-
formation grows quadratically in time like |�±(t )|, this is not
the case. The reason is that, while |�±(t )| increases, f± is a
monotonically decreasing function of the individual purities.
In fact, for the resonant case it can be shown (see Appendix B)
that

|�−(t )| � (1 − μi )(1 − μ j )/μiμ j, (13)

and, consequently, the mutual information is bounded: I− �
1. Thus, the quadratic growth in time must eventually stop
and I− reaches a saturation value. It seems that the genera-
tion of correlations by means of the transport of excitations
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FIG. 2. Dependence of the mutual information, quantum discord,
and logarithmic negativity on the frequency ωi for the nonresonant
case, with ωi + ω j = ωd . (a) When both environments are at zero

temperature, entanglement is maximized and
←−
D +/I+ → 1/2. (b),

(c) Temperature is raised in one of the environments to T = 7.5γ0,
while the other one is kept at T = 0. This illustrates the asymmetry of
the quantum discord. (d) Both temperatures are raised to T = 7.5γ0

and the only entanglement left is present at the center frequencies.
Here, V (t ) = ω2

r + V cos(ωdt ) and I (ω) = 2mγ0ω2/π (ω2 + 2).
The plots are normalized using E0 = γ0�ωV t/ω3

r (we plot I+/E 2
0 ,←−

D +/E 2
0 , and EN /E0). The parameters used are ωd = ωr/

√
11, ωr =

800γ0, V = ω2
r /32, m = 10mi, t = 20γ0, and γ0 = 0.005.

cannot increase the mutual information between the bands to
arbitrarily large values. On the contrary, in the nonresonant
case the bound in Eq. (13) does not hold. This is a natural
result taking into account that this process continually creates
correlations in time. However, it exists in a regime in which
the mutual information I± grows relatively quadratically in
time. For not so long times such that the individual purities
μi, j stay approximately constant, f± stays constant too and
the mutual information grows as |�±(t )|.

With this in mind, Eq. (11) has a clear physical interpreta-
tion: mutual information increases due to the creation of cross
correlations between the bands by �±(t ), but this increment
is countered by the influence of the thermal agitations in the
environment, which are represented by f±. Certainly, as time
passes or temperature increases, the bands correlate progres-
sively more with the rest of the environment, decreasing its
mutual dependence. Furthermore, since f+ < f−, the effects
of the thermal agitations in the environment are more detri-
mental to the bands that are related by the nonresonant pair
creation than to the ones that are related by the more “classi-
cal” resonant transport of excitations. Mutual information is
plotted in Figs. 2 and 3 for different environmental tempera-
tures, in the nonresonant and resonant cases, respectively.

An interesting feature can be seen from the form of �−

�− ∝ |nR(ωi )Ãk (iωi) − nL(ω j )Ã
∗
−k (iω j )|2 (14)

FIG. 3. Dependence of the mutual information and quantum dis-
cord on the frequency ωi for the resonant case, with ω j = ωi + ωd .
(a), (b) Temperature is raised in one of the environments to T =
1500γ0, while the other one is kept at T = 0. This illustrates the lim-
its shown in Eqs. (19) and (20), respectively. (c) Both temperatures
are raised to T = 7500γ0, showing that I− becomes vanishingly
small when occupation numbers are similar (note that the scale
of the vertical axis is 100 times smaller than the previous plots).
Here, V (t ) = ω2

r + V cos(ωdt ) and I (ω) = 2mγ0ω2/π (ω2 + 2).
The plots are normalized using E0 = γ0�ωV t/ω3

r (we plot I−/E 2
0

and
←−
D −/E 2

0 ). The parameters used are ωd = ωr/
√

11, ωr = 800γ0,
V = ω2

r /32, m = 10mi, t = 20γ0, and γ0 = 0.005.

[the complete expression can be found in Eq. (B3) in Ap-
pendix B]. In the resonant case, the transport of excitations
can go both ways depending if a quantum of energy is either
absorbed or emitted from the driving field. Because exci-
tations act as identical quasiparticles, an interference effect
takes place and the correlations generated by the absorption
tend to cancel the ones generated by the emission. Indeed, the
case where no excitations have been transported is indistin-
guishable from the one where the same number of excitations
have been transferred in both directions. In particular, when
the bands have the same occupation number [i.e., nR(ωi ) =
nL(ω j )], absorption and emission are equally likely and mu-
tual information tends to vanish. This is reflected in the fact
that �− becomes vanishingly small, as can be seen in Eq. (14).
This is illustrated in Fig. 3(c) (note the scale of the vertical
axis).

Seeing that the pair creation mechanism is the dominant
process at lower temperatures, physical intuition tells us that
the mutual information between the bands correlated by it
must be bigger than the ones correlated by the resonant
transport of excitations. This is confirmed by an analysis of
�±. As opposed to the nonresonant case, in the resonant
case, �− → 0 as T → 0 [see Eq. (14)]. At zero environmen-
tal temperature the bands are not populated and, therefore,
the driving cannot transport excitations from one into the
other.
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B. Quantum discord

In this section we will compute the ratio
←−
D /I which rep-

resents the amount of quantum correlations among the totality
of correlations. The result is

←−
D ±(σav )/I±(σav ) � 1 − g±(μi, μ j ), (15)

with

g±(μi, μ j ) = 1

1 + μ j

(
1 ± μ j

μi

)[
1 ± atanh(μ j )

atanh(μi )

]−1

. (16)

We note that g± is such that 0 � g± � 1 and it is a mono-
tonically increasing function of the purities. Since g+ > g−,
it follows that

←−
D +/I+ <

←−
D −/I−. That is, the fraction of

quantum correlations in the mutual information between the
bands correlated by the nonresonant pair creation is less than
the fraction between the bands correlated by the resonant
transport of excitations. Nevertheless, it is possible for the
quantum discord in the nonresonant case to be greater than
the one in the resonant one (i.e.,

←−
D + >

←−
D −). For example,

that is the case in the low-temperature limit where I− → 0
but I+ � 0. As a consequence of the mutual information
in the resonant case being bounded, the quantum discord is
bounded too:

←−
D − � 1. This result was previously obtained

in Refs. [35,36] when studying quantum discord in squeezed
thermal states. Thus, it is consistent with the idea that that is
the type of state generated by the resonant process. Now we
will provide some examples that illustrate the previous results
in two different regimes.

We will analyze the case where environmental tempera-
tures are similar (a more precise statement would be μi � μ j ,
but in the limits of high and low temperatures both condi-
tions are equivalent). We will express all quantities in terms
of μ̄ = (μi + μ j )/2 and �μ = (μi − μ j )/2, and we will
work up to first order in |�μ|/μ̄ � 1. In this case, the ratio←−
D /I is

←−
D +(σav )/I+(σav ) � μ̄

1 + μ̄
(17)

and

←−
D −(σav )/I−(σav ) � 1 − 1

μ̄
(1 − μ̄) atanh(μ̄). (18)

As we can see from Eqs. (17) and (18) above, at high
temperatures, when μ̄ → 0+, both expressions go to zero
(i.e.,

←−
D /I → 0). In the other limit, when μ̄ → 1−, we have←−

D +/I+ → 1/2 and
←−
D −/I− → 1. For the nonresonant case,

it means that half of the total correlations are quantum in
origin. This can be interpreted as follows. For the quan-
tum system, mutual information is bounded by I+ � 2 Sμ̄

(Araki-Lieb inequality with Sμ̄ the entropy of an “average
band” represented by μ̄), while for a classical system the
mutual information satisfies I+ � Sμ̄. Therefore, the above

limit (
←−
D +/I+ → 1/2) seems to indicate that the pair creation

mechanism at zero temperature saturates the Araki-Lieb in-
equality. Thus, I+ → 2 Sμ̄, and, qualitatively, 0 < I+ � Sμ̄

corresponds to classical correlations and Sμ̄ < I+ � 2 Sμ̄ to
quantum ones. This is shown in Fig. 2(a). On the other hand, in
the resonant case the situation is different. When μ̄ → 1−, the

mechanism creating correlations tends to vanish (remember
that in this case, I− � I+) but the small amount of correla-
tions that are present will have nonzero quantum discord and
satisfy

←−
D − � I−. As time passes or temperature increases,

classical correlations start to develop and the quantum discord
begins to decrease.

Since the definition of the quantum discord is based on
measurements over one of the subsystems, it is naturally
asymmetric with respect to an {i, R} ↔ { j, L} interchange.
It is interesting to explore how this asymmetry manifests
itself in terms of the temperatures of the environments. For
example, let us use the resonant case (the nonresonant one
is analog), and suppose one of the environments is at low
temperature and the other one is at an arbitrary (but higher)
one. If EL is the one at low temperature, then Eq. (15) can be
approximated as

←−
D −(σav )/I−(σav ) � 1 − μ j

2 atanh(μ j )
. (19)

Equation (19) shows that most correlations are quantum ones
in that limit. In contrast, if ER is the one at low temperature,
we have

←−
D −(σav )/I−(σav ) � 2

μ j

μi
. (20)

Now if we increase the temperature of EL, quantum discord
reaches its minimum value: all correlations are classical. As
we can see from the results above, the quantumness of the
correlations measured by the quantum discord highly depends
on which system is being observed. This difference is shown
in Figs. 2(b) and 2(c) for the nonresonant case, and Figs. 3(a)
and 3(b) for the resonant one [in this case we explicitly show
the limits of Eqs. (19) and (20)].

C. Entanglement

The generation of entanglement in the nonresonant case
was addressed in our previous work [13]. Here we rederive
its main equations but this time written in terms of symplectic
invariants. We expand on its interpretation and the connection
between entanglement, the phase-space entropy, and the gen-
eration of correlations.

In the resonant case we have det(γ ) > 0, and therefore
the logarithmic negativity is zero. That is, bands with cen-
ter frequencies such that ω j = ωi + kωd are not entangled.
Therefore, we focus our attention on the bands correlated by
the pair creation mechanism (i.e., such that ωi + ω j = kωd ).
We can show that these bands are entangled and the logarith-
mic negativity EN is the maximum between zero and

EN (t ) � −Si j + �N × t, (21)

where �N = (μi + μ j )e−2Si j
√|�+|/2μiμ j and Si j =

ln[(μ2
i + μ2

j )/2μ2
i μ

2
j ]/2 � 0. We note that, just like it

happens with the mutual information and the quantum
discord, EN is not linear in time as Eq. (21) may suggest.
Entanglement production is time extensive as long as
the individual purities stay approximately constant. From
Eq. (21) we can see that the creation of entanglement is a
competition between the generation of correlations by the
pair creation mechanism and the thermal agitations of the
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environment that try to destroy them. These thermal agitations
have two distinct effects on the logarithmic negativity. First,
they reduce the rate of generation �N (�N � √|�+|). �N is a
function of the individual purities and it reaches its maximum
value when μi, j → 1− (�N → √|�+|). And second, they
provide a threshold Si j that the pair creation mechanism has
to overcome to entangle the bands. Logarithmic negativity is
plotted alongside mutual information and quantum discord in
Figs. 2(a)–2(d) for different environmental temperatures. Note
that, as temperature is increased, entanglement disappears
from the side that corresponds to the lower frequencies in the
higher-temperature environment.

It is worth noticing that Si j is obtained from the Shannon
entropy of the phase-space Wigner distributions correspond-
ing to ρα and ρβ. Thus, it is a measure of the disorder of the
bands. In fact, it can be written as

Si j = S̄2 + ln [cosh (�S2)]/2, (22)

where S̄2 = [S2(α) + S2(β)]/2 and �S2 = S2(α) − S2(β),
with S2(ρ) = − ln[tr(ρ2)] the Renyi-2 entropy. For Gaussian
states, S2 coincides with the Shannon entropy of the corre-
sponding phase-space Wigner distribution (up to an additive
constant) [40]. As Eq. (22) shows, not only the entropy of
the bands affects the generation of entanglement, but their
difference too. For example, since for high temperatures S2 ∼
ln(T ), it is harder to entangle two bands at different tempera-
tures than two at the same one. Si j in turn fixes a latency time
tent = Si j/�N , which is the time it takes for the bands to be
entangled.

As we previously mentioned, the generator of intraenvi-
ronmental correlations is �±(t ) [see Eq. (10)]. In view of the
above results, in the nonresonant case, we can rewrite this
generator as

|�+(t )| = |�+|
�2
N

[EN (t ) + Si j]
2, t > tent. (23)

Equation (23) shows that, from the moment the bands are
entangled onwards, the pair creation mechanism can be
interpreted as having the dual effect of increasing that entan-
glement and generating entropy in the environment. It must
be emphasized that, since Si j is mostly constant through time,
the predominant effect is the production of entanglement. As
a consequence of Eq. (23), the mutual information in Eq. (11)
and the quantum discord in Eq. (15) can be cast in terms
of the logarithmic negativity and, for fixed EN , both are
nonmonotonic functions of the purities, in accordance with
previous results [35]. We also note that the second term in
Eq. (21), which represents the generation of entanglement,
is proportional to the number of entangled pairs �ω, as it
should be since the logarithmic negativity is additive. This
is in opposition to the mutual information in Eq. (11) (and
the quantum discord), which is proportional to �ω2 and not
additive.

As we mentioned in the beginning of this section, bands
such that ω j = ωi + kωd are not entangled. That is, the res-
onant process cannot create entanglement. Nevertheless, it
may play a role in the entanglement present between bands
correlated by the nonresonant process. Let us suppose the

excitation in band i that the driving absorbs to be transported
to band j was previously put there by the pair creation mech-
anism. In that case, there must exist a j′ band such that
ωi + ω j′ = k′ωd . Thus, the j and j′ bands are now related by
ω j + ω j′ = (k + k′)ωd , meaning that they are, in fact, entan-
gled. From this we conclude that it is possible for the resonant
process to swap the entanglement created by the nonresonant
process to other bands. This should be a higher-order effect
in the damping constant γ0 and thus not visible in our expres-
sions above.

VI. CONCLUSIONS

In this paper we presented a complete analysis of the origin
and nature of the time-extensive correlations that are present
in the reservoirs of a thermal machine (which we divided
in the so-called bands). By studying a generalization of the
usual QBM model that includes a time-dependent driving
enforced on the system, we were able to show that there are
only two processes that generate intraenvironmental correla-
tions beyond the transient regime: the resonant transport of
excitations, responsible for the classical heat flow, and the
nonresonant pair creation, linked to the third law of thermody-
namics. We would like to stress the most important results:

(i) There is a regime where mutual information and
quantum discord between the bands grow approximately
quadratically in time. This happens as long as the individual
purities stay approximately constant. Furthermore, in the res-
onant case (with center frequencies such that ω j = ωi + kωd )
both quantities are bounded from above (showing that this
regime must eventually end).

(ii) Quantum discord is always present between the bands,
independently of the process that correlates them. As shown
in Eq. (15), the fraction of quantum correlations is negatively
affected by the thermal agitations of the environment. This
effect is worse on the bands correlated by the nonresonant
process than the ones correlated by the resonant one.

(iii) Entanglement is only present on the bands that
are connected by the nonresonant process (with center fre-
quencies such that ωi + ω j = kωd ). We showed that the
logarithmic negativity grows approximately linearly in time
and that the pair creation mechanism has to overcome a
threshold Si j to entangle the bands that is a measure of the
disorder of them [see Eq. (22)].

(iv) The resonant process cannot create entanglement; at
most it can swap it. Since it can only transport excitations
between bands, if the band on which the excitation is absorbed
was already entangled with another one, it can swap that
entanglement to the band on which the excitation is dumped.
This is a higher-order effect which was not included in our
formulas above.

Our results are consistent with previous studies of classical
and quantum correlations in Gaussian states [35,36]. Using
the inequality presented in Eq. (13) we showed that the quan-
tum discord between the bands correlated by the resonant
process is bounded from above. Additionally, using Eq. (23),
we showed that the mutual information (and the quantum
discord) between the ones correlated by the nonresonant pro-
cess written in terms of the entanglement is a nonmonotonic
function of the purities.
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APPENDIX A: POSITION AND MOMENTUM CORRELATION FUNCTIONS

Here we present the general expression for the position and momentum correlation functions for two modes i ∈ ER and j ∈ EL.
In order to obtain the correlation function for just one mode (e.g., 〈{qi(t ), qi(t )}〉 instead of 〈{qi(t ), q j (t )}〉) we just need to make
the replacement {i, R} → { j, L}. The position correlator at an arbitrary environmental temperature is

〈{q̂i(t ), q̂ j (t )}〉 = 1

miωi
[2 nR(ωi ) + 1] δi j + 1

2m

1√
miωi

1√
mjω j

�ω
√

IR(ωi )IL(ω j ) [2 nR(ωi ) + 1]

× Im[J (ωi, ω j, t )e−i(ωi−ω j )t − J (ωi,−ω j, t )e−i(ωi+ω j )t ] + 1

2m

1√
miωi

1√
mjω j

�ω
√

IR(ωi )IL(ω j )

× [2 nL(ω j ) + 1]Im
[
J (ω j, ωi, t )ei(ωi−ω j )t − J (ω j,−ωi, t )e−i(ωi+ω j )t

]
+ 1√

miωi

1√
mjω j

�ω
√

IR(ωi )IL(ω j )
∫ t

0
dt1

∫ t

0
dt2 sin [ωi(t − t1)] sin [ω j (t − t2)]

〈{
xh(t1), xh(t2)

}〉

+ 1

4m2

1√
miωi

1√
mjω j

�ω
√

IR(ωi )IL(ω j )
∑

α

∫ ∞

0
dω Iα (ω) [2 nα (ω) + 1]

× Re[J (ω,ωi, t )J ∗(ω,ω j, t )ei(ωi−ω j )t + J (ω,−ωi, t )J ∗(ω,−ω j, t )e−i(ωi−ω j )t

− J (ω,ωi, t )J ∗(ω,−ω j, t )ei(ωi+ω j )t − J (ω,−ωi, t )J ∗(ω,ω j, t )e−i(ωi+ω j )t ], (A1)

and the momentum correlator is

〈{pi(t ), p j (t )}〉 = mi ωi [2 nR(ωi ) + 1] δi j + 1

2m

√
miωi

√
mjω j�ω

√
IR(ωi )IL(ω j ) [2 nR(ωi ) + 1]

× Im[J (ωi, ω j, t )e−i(ωi−ω j )t + J (ωi,−ω j, t )e−i(ωi+ω j )t ] + 1

2m

√
miωi

√
mjω j�ω

√
IR(ωi)IL(ω j )

× [2 nL(ω j ) + 1]Im[J (ω j, ωi, t )ei(ωi−ω j )t + J (ω j,−ωi, t )e−i(ωi+ω j )t ]

+ √
miωi

√
mjω j �ω

√
IR(ωi )IL(ω j )

∫ t

0
dt1

∫ t

0
dt2 cos[ωi(t − t1)] cos[ω j (t − t2)]〈{xh(t1), xh(t2)}〉

+ 1

4m2

√
miωi

√
mjω j�ω

√
IR(ωi )IL(ω j )

∑
α

∫ ∞

0
dω Iα (ω) [2 nα (ω) + 1]

× Re[J (ω,ωi, t )J ∗(ω,ω j, t )ei(ωi−ω j )t + J (ω,−ωi, t )J ∗(ω,−ω j, t )e−i(ωi−ω j )t

+ J (ω,ωi, t )J ∗(ω,−ω j, t )ei(ωi+ω j )t + J (ω,−ωi, t )J ∗(ω,ω j, t )e−i(ωi+ω j )t ], (A2)

where the J function is defined as

J (ω,ωi, t ) =
∑

k

∫ t

0
dt ′ ei(ω−ωi+kωd )t ′

∫ t ′

0
dt ′′ Ak (t ′′) e−iωt ′′

, (A3)

which, by integrating the exponentials with a change of the order of integration, can be formally solved as

J (ω,ωi, t ) =
∑

k

[t sinc[(ω − ωi + kωd )t/2] ak (iω) ei(ω−ωi+kωd )t/2 + Fk (ω,ωi )], (A4)

where we used the notation

ak (iω) =
∫ t

0
dt ′ Ak (t ′) e−iωt ′

, Fk (ω,ωi ) = ak (iω) − ak[i(ωi − kωd )]

i(ω − ωi + kωd )
. (A5)

Both ak and Fk are functions of the variable t , but we do not write its explicit dependence in an effort to keep the notation simple.
When computing correlators and quantities related to them, it is sometimes useful to use a relation which is a direct consequence
of the unitary evolution of the operators qi and pi:

Im[J (ωi, ωi, t )] = − 1

4m

∑
α

∫ ∞

0
dω Iα (ω)|J (ω,ωi, t )|2 + 1

4m

∑
α

∫ ∞

0
dω Iα (ω)|J (ω,−ωi, t )|2

− 1

2
m

∫ t

0
dt1

∫ t

0
dt2 sin[ωi(t1 − t2)]〈i[xh(t1), xh(t2)]〉. (A6)

The previous equality is obtained by imposing that [qi(t ), pi(t )] = i1 for all times to the solutions of the equations of motion
shown in the main text. We can identify the different parts of the covariance matrix as written in Eq. (5) by looking at, for
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example, the position correlator in Eq. (A1). The initial thermal state is

νi ⊗ ν j → 1
2 [2 nR(ωi ) + 1] δi j . (A7)

The term which involves the initial state of S is

σ0(t ) → 1

2
�ω

√
IR(ωi )IL(ω j )

∫ t

0
dt1

∫ t

0
dt2 sin[ωi(t − t1)] sin[ω j (t − t2)]〈{xh(t1), xh(t2)}〉. (A8)

The other two terms, σosc(t ) and σ lin × t , are given by the rest of Eq. (A1).
Using the correlators in Eqs. (A1) and (A2) we can obtain Ei, which is the energy stored in the band i ∈ ER presented in

Eq. (7), as

Ei = 1

4mi
〈{pi(t ), pi(t )}〉 + 1

4
miω

2
i 〈{qi(t ), qi(t )}〉. (A9)

A direct computation using relation (A6) shows that

Ei(t ) = 1

2
ωi [2 nR(ωi ) + 1] + 1

2
�ω ωi IR(ωi )[2 nR(ωi ) + 1]

∫ t

0
dt1

∫ t

0
dt2 〈x̂h(t1)x̂h(t2)〉 e−iωi (t1−t2 )

− 1

2
�ω ωi IR(ωi )nR(ωi )

∫ t

0
dt1

∫ t

0
dt2 cos[ωi(t1 − t2)]〈{xh(t1), xh(t2)}〉

+ 1

4m2
�ω ωi IR(ωi )

∑
α=R,L

∫ ∞

0
dω Iα (ω)[nα (ω) − nR(ωi )]|J (ω,ωi, t )|2

+ 1

4m2
�ω ωi IR(ωi )

∑
α=R,L

∫ ∞

0
dω Iα (ω)[nα (ω) + nR(ωi ) + 1]|J (ω,−ωi, t )|2. (A10)

In order to arrive at the final expression, we need the long-time behavior of the J functions. For this, we will use the fact that

lim
t→∞ t sinc(ω t/2) = lim

t→∞ t sinc2(ω t/2) = 2π δ(ω), (A11)

and limt→∞ ak (iω) = Ãk (iω). Thus,

|J (ω,±ωi, t )|2 → 2πt
∑

k

δ(ω ∓ ωi + kωd )|Ãk (iω)|2, (A12)

where we only kept the linear terms in time. Using this, and that Ã∗
k (iω) = Ã−k (−iω) (which is a consequence of G being a

real-valued function), we arrive at

Ei(t ) → [1/2 + nR(ωi )]ωi + Q̇i × t (A13)

with Q̇i as shown in Eq. (7) (remember that the terms involving the initial state of S decay exponentially fast for long times).

APPENDIX B: INDIVIDUAL PURITIES AND �±

Here we present explicit expressions for the individual purities μi, j and for �±, in the long-time regime [that is, given the
covariance matrix σav in Eq. (6)]. As discussed above, μi, j are related to σav by μi = 1/2

√
det(α) and μ j = 1/2

√
det(β). Since

the purities do not depend on the relation between the frequencies ωi and ω j , we just show

2
√

det(α) = 1 + 2nR(ωi ) + π

m2
�ω IR(ωi )

∑
α=R,L

∑
q′

Iα (ωi − q′ωd )[nα (ωi − q′ωd ) − nR(ωi )]|Ãq′ [i(ωi − q′ωd )]|2 × t

+ π

m2
�ω IR(ωi )

∑
α=R,L

∑
q′′

Iα (q′′ωd − ωi )[nα (q′′ωd − ωi ) + nR(ωi ) + 1]|Ã−q′′ [i(q′′ωd − ωi )]|2 × t, (B1)

where q′ and q′′ are integers such that ωi − q′ωd � 0 and q′′ωd − ωi � 0, respectively. In order to obtain 2
√

det(β) we just need
to make the replacement {i, R} → { j, L}. On the contrary, �± depends on whether ωi + ω j = kωd or ω j = ωi + kωd . Thus, for
the nonresonant case (ωi + ω j = kωd ) we have

�+ = − 1

4m2
�ω2IR(ωi )IL(ω j )|[2nR(ωi ) + 1]Ã∗

−k (iωi) + [2nL(ω j ) + 1]Ã∗
−k (iω j )|2, (B2)

and for the resonant one (ω j = ωi + kωd ),

�− = 1

m2
�ω2IR(ωi )IL(ω j )|nR(ωi )Ãk (iωi ) − nL(ω j )Ã

∗
−k (iω j )|2. (B3)
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It is clear from Eqs. (B1) and (B3) that the inequality in Eq. (13) holds. To see this, we can write the inequality as

|�−(t )| � (1/μi − 1)(1/μ j − 1). (B4)

From Eq. (B3), we know that when temperature goes to zero, the left-hand side of the inequality goes to zero too. On the contrary,
from the third line of Eq. (B1), the right-hand side does not go to zero. In the general case, the left-hand side of the inequality is
of order (�ω2γ 2

0 )n(ω), while the right-hand side is of order n(ω)2 + (�ωγ 2
0 )n(ω) which is much bigger in the weak-coupling

limit. So, as temperature increases, the right-hand side is always greater than the left-hand side.

APPENDIX C: SYMPLECTIC EIGENVALUES AND MEASURES OF CORRELATIONS

Here we will briefly show how to obtain the expressions of the mutual information, quantum discord, and logarithmic
negativity presented above. In order to do this, first we will compute the symplectic eigenvalues of σav . For the sake of clarity we
will use the standard notation: A = det(α) = 1/4μ2

i , B = det(β) = 1/4μ2
j , C = det(γ ) = �(t )/4, and D = det(σav ). We remind

the reader that all computations are valid in the weak-coupling regime and for long times. Therefore, in many steps we will
use Taylor expansions to first nontrivial order in |C| when comparing |C| ∼ O(γ 2

0 ) to |A|, |B| ∼ O(1) [see Eqs. (B1)–(B3)]. The
symplectic eigenvalues are

λ2
1,2 = 1

2 (� ±
√

�2 − 4 D), (C1)

where � = A + B + 2C [38,39]. In the nonresonant case we have � = A + B − 2|C| and D = (
√

AB − |C|)2 [see Eq. (8)].
Thus, after a Taylor expansion we obtain

√
�2 − 4 D � (A − B) − 2

√
A − √

B√
A + √

B
|C|. (C2)

Therefore, after another expansion, the result is

λ1 �
√

A − |C|√
A + √

B
, λ2 �

√
B − |C|√

A + √
B

. (C3)

On the other hand, in the resonant case we have � = A + B + 2C and D = (
√

AB − C)2. Then, after a Taylor expansion we get

√
�2 − 4 D � (A − B) + 2

√
A + √

B√
A − √

B
C. (C4)

In order to arrive at the previous expression, it was used that (
√

A − √
B)2 > 4C. This in an immediate consequence of the

inequality in Eq. (13). The symplectic eigenvalues in this case are

λ1 �
√

A + C√
A − √

B
, λ2 �

√
B − C√

A − √
B

. (C5)

Now we can proceed to compute the mutual information and quantum discord. The mutual information is defined as [39]

I (σ) = f (
√

A) + f (
√

B) − f (λ1) − f (λ2), (C6)

where f (x) = (x + 1/2) ln(x + 1/2) − (x − 1/2) ln(x − 1/2). Using a first-order Taylor expansion in |C|/(
√

A ± √
B), we get

I±(σav ) � ±[ f ′(
√

A) ± f ′(
√

B)]
|C|√

A ± √
B

. (C7)

This is the expression shown in Eq. (11). The quantum discord is defined as [36]
←−
D (σ) = f (

√
B) − f (λ1) − f (λ2) + f (

√
Emin). (C8)

In our case, Emin is

Emin = 2C2 + (1/4 − B)(A − 4D) + 2|C|
√

C2 + (1/4 − B)(A − 4D)

4(1/4 − B)2
. (C9)

Replacing D = (
√

AB − |C|)2 in the equation above, the expression for Emin can be greatly simplified. Indeed, noticing that

2|C|2 + (1/4 − B)(A − 4D)

4(1/4 − B)2
=

(√
A −

√
B|C|

|1/4 − B|
)2

+
( |C|

2|1/4 − B|
)2

(C10)

and

2|C|
√

C2 + (1/4 − B)(A − 4D)

4(1/4 − B)2
= |C|

|1/4 − B|
(√

A −
√

B|C|
|1/4 − B|

)
, (C11)
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we arrive at

Emin =
(√

A − |C|
|1/2 + √

B|

)2

, (C12)

where we used the fact that 1/4 − B < 0 and
√

A >
√

B|C|/|1/4 − B|. Thus, using a first-order Taylor expansion in |C|/(|1/2 +√
B|), we get

f (
√

Emin) � f (
√

A) − f ′(
√

A)
|C|

|1/2 + √
B| . (C13)

Finally, the quantum discord can be written as shown in Eq. (15):

←−
D ±(σav ) � I±(σav ) − f ′(

√
A)

|C|
|1/2 + √

B| . (C14)

For the logarithmic negativity, we need the lowest symplectic eigenvalue of the transposed covariance matrix σ̃av . This is

λ̃2
2 = 1

2 (�̃ −
√

�̃2 − 4 D), (C15)

where �̃ = A + B − 2C [38,39]. In this case, we have√
�̃2 − 4 D � 2

√
|C|(

√
A +

√
B)

[
1 + (

√
A − √

B)2

8|C|
]

(C16)

and, therefore,

λ̃2
2 � 1

2
(A + B)

[
1 −

√
A + √

B

A + B

√
|C|

]
. (C17)

The logarithmic negativity as shown in Eq. (21) is obtained after computing max{0,− ln(2λ̃−)} and using the fact that ln(1 +
x) � x for small x.
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