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Abstract

The statistical thermodynamics of interacting polyatomic adsorbates (k-mers) on homogeneous surfaces was developed on a gener-
alization in the spirit of the lattice-gas model and the quasi-chemical approximation (QCA). The new theoretical framework is obtained
by combining (i) the exact analytical expression for the partition function of non-interacting linear k-mers adsorbed in one dimension
and its extension to higher dimensions, and (ii) a generalization of the classical QCA in which the adsorbate can occupy more than
one adsorption site. The coverage and temperature dependence of the Helmholtz free energy, chemical potential, configurational
entropy, configurational energy, isosteric heat of adsorption and specific heat are given. The formalism reproduces the classical QCA
for monomers, leads to the exact statistical thermodynamics of interacting k-mers adsorbed in one dimension, and provides a close
approximation for two-dimensional systems accounting multisite occupancy. Comparisons with analytical data from Bragg–Williams
approximation (BWA) and Monte Carlo simulations are performed in order to test the validity of the theoretical model. The resulting
thermodynamic description is significantly better than the BWA and still mathematically handable.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The adsorbate–adsorbate interactions in adsorbed films
on crystal surfaces have been attracting a great deal of
interest since long ago [1–3] and the progress in this field
has gained a particular impetu due to their effects on adsor-
bate structures and chemical reactions on catalyst surfaces,
microelectronics fabrication, chemical sensors and elec-
trodes, and surfaces undergoing corrosion [4,5]. Various
theories have been proposed to describe monolayer adsorp-
tion of interacting particles [1,2]. Particularly, the lattice-
gas approximation [1,2,6–8] is one of the most widely used
and practically applicable. In this framework, the adsorp-
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tion field is usually represented by a lattice of adsorption
sites.2 This reduction to simplicity has not only been of aca-
demic interest but essential for interpretation of adsorption
experiments, determination of gas–solid interaction poten-
tials, and characterization of solid adsorbents.

The introduction of intermolecular forces brings about
the possibility of phase transitions [8–11]. Among the com-
mon types of phase transitions are, condensation of gases,
melting of solids, transitions from paramagnet to ferro-
magnet and order–disorder transitions. From a theoretical
point of view, when nearest-neighbor interactions are pres-
ent, an extra term in the partition function for interaction
energy is required. With this extra term, only partition
functions for the whole system can be written. Ising [12]
gave an exact solution to the one-dimensional lattice prob-
lem in 1925. All other cases are expressed in terms of series
2 Such regular lattice systems with nearest-neighbor interactions are
frequently called ‘‘Ising models’’.
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solution [1,13], except for the special case of two-dimen-
sional lattices at half-coverage, which was exactly solved
by Onsager [14] in 1944. For the one-dimensional lattice,
there is no evidence of phase transitions. Close approxi-
mate solutions in dimensions higher than one can be ob-
tained, and the two most important of these are the
Bragg–Williams approximation (BWA) [1] and the quasi-
chemical approximation (QCA) [1,15]. Both show phase
transitions in two-dimensional systems and the BWA
incorrectly predicts a phase transition for a linear lattice.
These leading models, along with much recent contribu-
tions, have played a central role in the study of adsorption
systems in presence of lateral interactions between the ada-
toms. One fundamental feature is preserved in all these the-
ories. This is the assumption that an adsorbed molecule
occupies one adsorption site.

In practical situations, most adsorbates involved in
adsorption experiments are polyatomic in the sense that,
when adsorbed, their typical size is larger than the distance
between the nearest-neighbor local minima of the gas–solid
potential. For instance, this is true for most n-alkanes,
n-alkenes, cyclic hydrocarbons, etc. [16–19]. However, even
the simplest non-spherical molecules such as N2 and O2

may adsorb on more than one site depending on the sur-
face structure [20–25]. This effect, so-called multisite occu-
pancy adsorption, introduces a high degree of local
correlation in the adsorption theories. Consequently, it
has been difficult to formulate, analytically, the statistics
of occupation for polyatomics or k-mers (particles occupy-
ing several k contiguous lattice sites). In this sense, exact
solutions can be found for special cases, by using Pfaffians
[26,27] and the matrix transference method [28,29]. In other
words, from an analytical point of view, the problem in
which a two-dimensional lattice contains isolated lattice
points (vacancies) as well as k-mers has not been solved
in closed form and approximate methods have been uti-
lized to study this problem.

Three objectives motivated the development of the main
approximations existing in the literature, they are (1) to cal-
culate the different ways to array N k-mers on a regular
lattice of M equivalent sites, g(M,N); (2) to study the influ-
ence of surface heterogeneity on the main adsorption prop-
erties of polyatomics and (3) the possibility of phase
transitions in the adsorbate when nearest-neighbor inter-
acting k-mers are adsorbed on homogeneous surfaces.
With respect to the first point, several theoretical models
have been developed in the past in order to obtain the con-
figurational factor g(M,N). Namely, Flory–Huggins’s
model [30–32], Guggenheim’s model [33], one-dimensional
model and extension to higher dimensions [34,35], occupa-
tion balance approximation [35], virial expansion [35], etc.
In general, these studies can be separated in two groups,
according to the shape (or flexibility) of the adsorbate mol-
ecule considered: (i) those dealing with flexible k-mers [30–
32] and (ii) those dealing with linear k-mers [33–35]. More
recently, a new theory to describe adsorption with multisite
occupancy has been introduced [36], which incorporates
the configuration of the molecule in the adsorbed state as
a model’s parameter.

Regarding the point (2), the patchwise heterogeneous
surface can be solved relatively simple. One can apply the
solution to multisite occupancy adsorption on homoge-
neous surfaces, which are now the patches. In the case of
random heterogeneous surfaces, the problem becomes
much more complicated, and it was only two decades
ago, when the first solution of that problem was proposed
by Nitta et al. [16,37]. Nitta’s original approach could be
applied only to surfaces characterized by discrete distribu-
tions of adsorption energy. Later, Rudziński et al. [16, and
references therein] have developed further Nitta’s approach
to apply also continuous adsorption energy distributions.

Among the theories of the third group, an early seminal
contribution is the well-known Flory–Huggins approxi-
mation (FHA) [30–32] for binary solutions of polymers
molecules diluted in a monomeric solvent (it is worth men-
tioning that, in the framework of the lattice-gas approach,
the adsorption of k-mers on homogeneous surfaces is an
isomorphous problem to the binary solutions polymer-
monomeric solvent). Later, an important contribution to
the theoretical study of phase transitions in monolayers
of polyatomics has been made by Firpo et al. [38].
Although this model was proposed to describe monolayers
of long hydrocarbon chains spread at the gas–liquid inter-
face, its theoretical foundation would remain unchanged if
one wanted to apply it to gas–solid systems. In this ap-
proach, the configurational factor in the canonical parti-
tion function was obtained from the Di Marzio statistics
for rigid rod molecules [39]. More recently, Aranovich
and Donohue [40] have studied the adsorption of chain
molecules by using the Ono and Kondo theory [41]. In
all cases, the lateral interactions, which are the responsible
of the phase transitions occurring in the adsorbate, were
taken into account in the framework of the BWA. A com-
prehensive discussion on this subject is included in the
book of Des Cloiseaux and Janninck [42].

By following this line of reasoning, in recent contribu-
tions we reported different models [35,36,43] dealing with
adsorption of large molecules. In all cases, the partition
function was written as a product of two contributions,
the first being the different ways to array N k-mers on M

homogeneous sites and the second being a term that takes
into account the effect of the adsorbate–adsorbate interac-
tions in the framework of the BWA. The present article
goes a step further, including the nearest-neighbor interac-
tions by following the configuration-counting procedure of
the QCA. For this purpose, a new theoretical formalism is
presented based upon (i) the exact analytical expression for
the partition function of non-interacting linear k-mers ad-
sorbed in one dimension and its extension to higher dimen-
sions [34,35] and (ii) a generalization of the classical QCA
in which the adsorbate can occupy more than one adsorp-
tion site. In addition, Monte Carlo (MC) simulations are
performed in order to test the validity of the theoretical
model. The new theoretical scheme allows us (1) to obtain



3 The term N(k � 1) is subtracted since the total number of nearest-
neighbor pairs, cM/2, includes the N(k � 1) bonds belonging to the N

adsorbed k-mers.
4 In the case c = 2 (one-dimensional lattice), it is possible to write [34],

gðN ;MÞ ¼ ½M � ðk � 1ÞN �!
N !ðM � kNÞ! ; ð8Þ

which is an exact result.
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an approximation that is significantly better than the BWA
for polyatomics and, at the same time, mathematically han-
dable; (2) to reproduce the classical QCA for monomers [1]
and the exact statistical thermodynamics of interacting
k-mers adsorbed in one dimension [44]; (3) to develop
an accurate approximation for two-dimensional adlayers
accounting multisite occupancy and (4) to provide a simple
model from which experiments may be reinterpreted.

The paper is organized as follows: In Section 2, the qua-
si-chemical approximation for polyatomics is developed. In
addition, the basis of the Monte Carlo simulation scheme
in the grand canonical and canonical ensembles is given.
The results of the theoretical approach are presented in
Section 3, along with a comparison with Monte Carlo sim-
ulation data corresponding to interacting dimers adsorbed
on one-dimensional, honeycomb, square and triangular lat-
tices. Finally, the conclusions are drawn in Section 4.

2. Theory and Monte Carlo simulation

2.1. Quasi-chemical approximation for polyatomics

Here, we address the general case of adsorbates assumed
as linear molecules containing k identical units, each of one
occupies a lattice site. Small adsorbates with spherical sym-
metry would correspond to the monomers limit (k = 1).
The distance between k-mer units is assumed in registry
with the lattice constant a; hence exactly k sites are occu-
pied by a k-mer when adsorbed. Two different energies
are considered in the adsorption process: (1) U0, constant
interaction energy between a k-mer unit and an adsorption
site and (2) w, lateral interaction energy between two near-
est-neighbor units belonging to different k-mers. Then, the
canonical partition function can be written as [1]

QðN ;M ; T Þ ¼ qN
X
N11

gðN ;M ;N 11Þ exp½�bðwN 11 þ kNU 0Þ�;

ð1Þ
where q is the partition function for a single adsorbed mol-
ecule; M and N represent the number of adsorption sites
and adsorbed k-mers, respectively; N11 is the number of
pairs of nearest-neighbor units belonging to different
k-mers; g(N, M, N11) is the number of ways to array N

k-mers on M sites with N11 pair of occupied sites and
b = 1/kBT, being kB the Boltzmann constant.

As it is usual in the case of single-site occupation, it is
convenient to write the canonical partition function as a
function of N01, being N01 the number of pairs formed
by an empty site adjacent to a occupied site. For this pur-
pose, we calculate the relations between N11, N01 and N00

(being N00 the number of pairs of empty nearest-neighbor
sites):

2N 11 þ N 01 þ 2Nðk � 1Þ ¼ ckN ; ð2Þ
2N 00 þ N 01 ¼ cðM � kNÞ; ð3Þ
where ‘‘number of 01 pairs’’ = ‘‘number of 10 pairs’’ =
N01/2 and c is the coordination number of the lattice. In
the case of k = 1, the well-known relations for single-site
occupation are recovered [1].

Now, the canonical partition function can be written in
terms of N01

QðN ;M ; T Þ ¼ qN expf�bN ½kw=2þ kU 0�g

�
X
N01

gðN ;M ;N 01Þ expðbwN 01=2Þ ð4Þ

and k = (c � 2)k + 2.
By using the standard formalism of the QCA, the num-

ber of ways of assigning a total of [cM/2 � N(k � 1)] inde-
pendent pairs3 to the four categories 11, 10, 01, and 00,
with any number 0 through [cM/2 � N(k � 1)] per category
consistent with the total, is

~gðN ;M ;N 01Þ

¼ ½cM=2� Nðk � 1Þ�!
½ðN 01=2Þ!�2½cðM � kNÞ=2� N 01=2�!½kN=2� N 01=2�!

.

ð5Þ
This cannot be set equal to g(N,M,N01) in Eq. (4), because
treating the pairs as independent entities leads to some
unphysical configurations (see Ref. [1, p. 253]). Thus ~g
overcounts the number of configurations. To take care of
this, we must normalize ~g

gðN ;M ;N 01Þ ¼ CðN ;MÞ ~gðN ;M ;N 01Þ ð6Þ
and

gðN ;MÞ ¼
X
N01

gðN ;M ;N 01Þ

¼ CðN ;MÞ
X
N01

~gðN ;M ;N 01Þ; ð7Þ

where g(N,M) is number of ways to arrange N k-mers on
M sites. In general, g(N,M) depends on the spatial config-
uration of the k-mer and the surface geometry. Even in the
simplest case of linear k-mers, there not exist the exact
form of g(N,M) in two (or more) dimensions.4 However,
different approximations have been developed for g(N,M)
[35], which allow us to obtain C(N,M).

In order to calculate C(N,M), we replace
P

N01
~gðN ;M ;

N 01Þ by the maximum term in the sum, ~gðN ;M ;N �01Þ. By
taking logarithm in Eq. (5), using the Stirling’s approxima-
tion and operating, it results

ln ~gðN ;M ;N 01Þ
¼ ½cM=2� ðk � 1ÞN � ln½cM=2� ðk � 1ÞN � �N 01 ln N 01=2

� ½cðM � kNÞ=2� N 01=2� ln½cðM � kNÞ=2� N 01=2�
� ðkN=2�N 01=2Þ lnðkN=2� N 01=2Þ. ð9Þ



5 The solution N��01=cB ¼ ð1þ ffiffiffiffiffiffi� � �p Þ=2A is discarded for physical
reasons.
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By differentiating the last equation with respect to N01

~g0ðN ;M ;N 01Þ

¼ ~gðN ;M ;N 01Þ
2

ln
½cðM � kNÞ � N 01�ðkN � N 01Þ

N 2
01

� �
.

ð10Þ

Setting ~g0ðN ;M ;N 01Þ ¼ 0 and solving for N �01, the value of
N01 in the maximum term of ~g,

N �01 ¼
ckNðM � kNÞ

cM � 2ðk � 1ÞN ¼ kN � k2N 2

cB
ð11Þ

and

B ¼ M � 2ðk � 1ÞN=c. ð12Þ

Then,

~gðN ;M ;N �01Þ¼
ðcB=2Þ!

kN=2� k2N2

2cB

� �
!

h i2

cB=2�kNþ k2N2

2cB

� �
! k2N2

2cB

� �
!
;

ð13Þ

and, by simple algebra,

~gðN ;M ;N �01Þ ¼
B!

ðB� kN=cÞ!ðkN=cÞ!

� �c

. ð14Þ

Eq. (14) allows us to calculate C(N,M),

CðN ;MÞ ¼ gðN ;MÞ
~gðN ;M ;N �01Þ

¼ gðN ;MÞ ðB� kN=cÞ!ðkN=cÞ!
B!

� �c

. ð15Þ

Now, lnQ(N,M,T) [see Eq. (4)] can be written as

ln QðN ;M ; T Þ ¼ N ln q� bN ½kw=2þ kU 0�

þ ln
X
N01

CðN ;MÞ~gðN ;M ;N 01Þ expðbwN 01=2Þ
( )

.

ð16Þ

As in Eq. (7), we replace
P

N01
CðN ;MÞ~gðN ;M ;N 01Þ

expðbwN 01=2Þ by the maximum term in the sum,
CðN ;MÞ~gðN ;M ;N ��01Þ expðbwN ��01=2Þ. Thus,

CðN ;MÞ~g0ðN ;M ;N ��01Þ expðbwN ��01=2Þ
þ CðN ;MÞ~gðN ;M ;N ��01Þ expðbwN ��01=2Þbw=2 ¼ 0; ð17Þ

then,

~g0ðN ;M ;N ��01Þ
~gðN ;M ;N ��01Þ

¼ �bw=2. ð18Þ

From Eqs. (10) and (18),

ðcB� kN � N ��01ÞðkN � N ��01Þ ¼ N ��01
2 expð�bwÞ ð19Þ

and

½1� expð�bwÞ�N ��01
2 � cBN ��01 þ ðcB� kNÞkN ¼ 0. ð20Þ
Solving Eq. (20) we obtain5

N ��01

cB
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Að1� kN=cBÞðkN=cBÞ

p
2A

; ð21Þ

where A = 1 � exp(�bw).
Finally, the canonical partition function can be written

in terms of N ��01,

QðN ;M ; T Þ ¼ qN expf�bN ½kw=2þ kU 0�ggðN ;MÞ

� ðB� kN=cÞ!ðkN=cÞ!
B!

� �c

~gðN ;M ;N ��01Þ

� expðbwN ��01=2Þ. ð22Þ

In this work, we will use the following expression for
g(N,M):

gðN ;MÞ ¼ Kðc; kÞN ðB� kN=cþ NÞ!
N !ðB� kN=cÞ! ; ð23Þ

which is an extension to two dimensions of the exact con-
figurational factor obtained in one dimension [35]. K(c,k)
is, in general, a function of the connectivity and the size
of the molecules. In the particular case of rigid straight
k-mers, the simplest approximation provides K(c,k) = c/2.

Introducing Eq. (23) in Eq. (22), taking logarithm and
using the Stirling’s approximation, it results

ln QðN ;M ; T Þ ¼ N ln q� bN ½kw=2þ kU 0� þ N ln Kðc; kÞ
þ bwN ��01=2þ ðB� kN=cþ NÞ lnðB� kN=cþ NÞ
� N ln N þ ðc� 1ÞðB� kN=cÞ lnðB� kN=cÞ
þ kN ln kN=c� cB ln B

þ cB=2 ln cB=2� N ��01 ln N ��01=2

� ðcB=2� kN=2� N ��01=2Þ
� lnðcB=2� kN=2� N ��01=2Þ
� ðkN=2� N ��01=2Þ lnðkN=2� N ��01=2Þ. ð24Þ

From Eq. (24), the Helmholtz free energy per site,
f(N,M,T) = F(N,M,T)/M [being bF(N,M,T) = �lnQ(N,
M,T)], can be obtained as a function of surface coverage,
h = kN/M, and temperature,

bf ðh; T Þ ¼ � h
k

ln qKðc; kÞ þ bw
kh
2k
� a

	 


� c
2
� k � 1

k

	 

h

� �
ln

1� k�1
k

� �
h

 �2=cð1� hÞ2ðc�1Þ=c c
2
� k�1

k

� �
h

 �
1� 2

c
k�1

k

� �
h

 �2 c
2
ð1� hÞ � a

 �
( )

� h
k

ln
kh
ck

� �k c
2
ð1� hÞ � a

 �k=2

h
k 1� k�1

k

� �
h

 �ðk�cÞ=cð1� hÞðkc�kÞ=c kh
2k � a
 �k=2

( )

� 2a ln
c
2
ð1� hÞ � a

 �1=2 kh
2k � a
 �1=2

a

( )
; ð25Þ

where a is

a ¼ N ��01

2M
¼ kc

2k
hð1� hÞ

c
2
� k�1

k

� �
hþ b

 � ð26Þ



6 The dimer is the simplest case of a polyatomic adsorbate and contains
all the properties of the multisite occupancy adsorption.
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and

b ¼ c
2
� k � 1

k

	 

h

� �2

� kc
k

Ahð1� hÞ
( )1=2

. ð27Þ

The equilibrium properties of the adlayer can be de-
duced from Eq. (24) along with the differential form of F

in the canonical ensemble

dF ¼ �SdT �PdM þ ldN ; ð28Þ

where S, P and l represent the entropy, the spreading pres-
sure and the chemical potential, respectively.

Thus, the coverage dependence of the chemical poten-
tial, l[=(oF/oN)M,T], arises straightforwardly from Eqs.
(24) and (28)

Kðc; kÞ 2

c

	 
2ðk�1Þ

exp½bðl� wk=2Þ�

¼ h
k

ð1� hÞkðc�1Þ½k � ðk � 1Þh�k�1 kh
2k � a
 �k=2

ck
2
� ðk � 1Þh

 �k�1 c
2
ð1� hÞ � a

 �kc=2 kh
ck

� �k . ð29Þ

The configurational energy per site, u, can be calculated
as

u ¼ w
N ��01

M
¼ w

kN
2M
� N ��01

2M

	 

¼ w

kh
2k
� a

	 

. ð30Þ

In addition, f = u � Ts and the entropy per site, s, can
be obtained from Eqs. (25) and (30) as

s
kB

¼ h
k

ln qKðc; kÞ

þ c
2
� k � 1

k

	 

h

� �
ln

1� k�1
k

� �
h

 �2=cð1� hÞ2ðc�1Þ=c c
2
� k�1

k

� �
h

 �
1� 2

c
k�1

k

� �
h

 �2 c
2
ð1� hÞ � a

 �
( )

þ h
k

ln
kh
ck

� �k c
2
ð1� hÞ � a

 �k=2

h
k 1� k�1

k

� �
h

 �ðk�cÞ=cð1� hÞðkc�kÞ=c kh
2k � a
 �k=2

( )

þ 2a ln
c
2
ð1� hÞ � a

 �1=2 kh
2k � a
 �1=2

a

( )
. ð31Þ

The isosteric heat of adsorption qst is defined as [2]

obl
oT

	 

h

¼ qst

kBT 2
; ð32Þ

which can be calculated explicitly from Eq. (29):

qstðh; T Þ

¼ � kw
2
þ k

2

kh
2k
� a

	 
�1

� kc
2

c
2
ð1� hÞ � a

h i�1
( )

wa2 expð�bwÞ
b

.

ð33Þ

Finally, the heat capacity per site, cv, results

cv

kB

¼ 1

kB

ou
oT
¼ ðbwaÞ2 expð�bwÞ

b
. ð34Þ
2.2. Monte Carlo simulation scheme

MC simulations were used in order to test the applicabil-
ity of the new theoretical proposition. The system chosen
for the comparison was a lattice-gas of interacting dimers,6

whose Hamiltonian can be written as

H ¼ w
X
hi;ji

cicj � Nwþ U 0

X
i

ci; ð35Þ

where hi, ji represents pairs of nearest-neighbor sites and ci

is the occupation variable, which can take the following
values: ci = 0 if the corresponding site is empty and ci = 1
if the site is occupied. The term Nw is subtracted in Eq.
(35) since the summation over all the pairs of nearest-
neighbor sites overestimates the total energy by including
N bonds belonging to the N adsorbed dimers. In the simu-
lations, U0 is set equal zero, without any lost of generality.

The adsorption isotherm, configurational energy and
isosteric heat of adsorption are simulated through a grand
canonical ensemble Monte Carlo (GCEMC) method [45–
47], using Glauber’s dynamics. The procedure is as follows.
For a given value of the temperature T and chemical poten-
tial l, an initial configuration with N dimers adsorbed at
random positions (on 2N sites) is generated. Then an
adsorption–desorption process is started, where a pair of
nearest-neighbor sites is randomly chosen and a random
number n 2 [0, 1] is generated:

(1) If the two sites are empty then adsorb a molecule if
n 6W.

(2) If the two sites are occupied by atoms belonging to
the same molecule then desorb the molecule if n 6W.

(3) Otherwise, the attempt is rejected.

W is the transition probability given by the Metropolis [48]
rule.

A Monte Carlo Step (MCS) is achieved when M pair of
sites have been tested to change its occupancy state. The
equilibrium state can be well reproduced after discarding
the first m 0 = 105–106 MCS. Then, averages are taken over
m = 105 � 106 successive configurations.

Thermodynamic quantities, such as mean coverage,
h = 2hNi/M, and configurational energy, U = hHi, are ob-
tained as simple averages. In the case of isosteric heat of
adsorption, more calculations are required [49,46],

qst ¼ �
ohHi
ohNi ¼ �

hHNi � hHihNi
hN 2i � hNi2

; ð36Þ

where hHNi, hHi, hNi and hN2i can be evaluated via
GCEMC.

On the other hand, heat capacity per site and configura-
tional entropy per site are calculated by using a standard
importance sampling Monte Carlo method in the canonical
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ensemble (CEMC) [45–47]. The thermodynamic equilib-
rium is reached by following Kawasaki’s dynamics, gener-
alized to deal with polyatomic molecules [50]. In this
scheme, a dimer and a pair of nearest-neighbor empty sites
are randomly selected, and their positions are established.
Then, an attempt is made to interchange its occupancy
state with probability given by the Metropolis rule [48].
The approximation to thermodynamical equilibrium is
usually reached in 106 MCS. After that, mean values of
the adsorption energy U (at constant coverage and temper-
ature), are obtained by simple averages over 106 MCS
configurations.

The heat capacity results

cv

kB

¼ 1

M
hH 2i � hHi2

kBT 2
; ð37Þ

where hHi and hH2i are evaluated via CEMC.

The configurational entropy s of the adsorbate cannot
be directly computed. To calculate entropy, various meth-
ods have been developed [47]. Among them, the thermody-
namic integration method is one of the most widely used
and practically applicable. The method in the CEMC relies
upon integration of the configurational energy on temper-
ature along a reversible path between an arbitrary reference
state and the desired state of the system. In addition, in
order to obtain the entropy of a given state, the entropy
of a reference state must be known. Thus, for a system
made of N particles on M lattice sites at temperature T,
we have

oS
oT

	 

N ;M

¼ 1

T
oU
oT

	 

N ;M

ð38Þ

it follows

SðN ;M ; T Þ ¼ SðN ;M ;1Þ þ
Z T

1

dU
T

. ð39Þ

The last equation allows to calculate the entropy in dif-
ferent equilibrium states if S(N,M,1) (reference state) is
known, given that the integral in the second term can be
accurately estimated by evaluating U for various values
of T following the standard procedure of CEMC. Then,
U(T) is spline-fitted and numerically integrated [51,52].
The entropy in the reference state is obtained by using
the artificial Hamiltonian method [51,52].

3. Results and discussion

In the present section, we will analyze the main charac-
teristics of the thermodynamic functions given in Eqs. (29)
and (34), in comparison with simulation results for a lat-
tice-gas of interacting dimers on one-dimensional, honey-
comb, square and triangular lattices.

The computational simulations have been developed for
one-dimensional chains of 104 sites, and honeycomb,
square and triangular L · L lattices, with L = 144, 144
and 150, respectively, and periodic boundary conditions.
With this lattice size we verified that finite-size effects are
negligible. Note, however, that the linear dimension L

has to be properly chosen such that the adlayer structure
is not perturbed.

For comparison purposes, it is instructive to begin by
discussing the behavior of the one-dimensional case (Figs.
1–4), where two k-mers interact through their ends with
an interaction energy that amounts w when the ends are
nearest-neighbors. In this case, Eqs. (29) and (34) reduce
to the rigorous functions of interacting chains adsorbed flat
on a one-dimensional lattice [44]. From the experimental
point of view, the adsorption potential within the narrow-
est nanotubes can be matched to a homogeneous one-
dimensional lattice of adsorption sites. It has also been
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reported the one-dimensional character of adsorption in
grooves of surface crystal planes of TiO2 [53].

The coverage dependence of the chemical potential
(adsorption isotherm) is shown in Fig. 1 for various k-
mer’s sizes and interaction energies [attractive (w < 0) as
well as repulsive (w > 0)]. As it is expected, MC simulations
in the grand canonical ensemble (symbols) fully agree with
the predictions from QCA (solid lines).

For attractive interactions, isotherms shift to lower val-
ues of bl and their slope increases as the ratio bw increases.
Qualitatively, no significant changes are observed as the k-
mer size increases. However, the curves have a pronounced
plateau at h = k/(k + 1) for strongly repulsive interactions,
which smoothes out for already bw = +2. It is worth notic-
ing that although the double-steep isotherm may be indic-
ative of a second-order phase transition, it is well known
that no phase transition develops in a one-dimensional lat-
tice when weak coupling between neighboring particles
exists. This is clearly seen in Fig. 2 where the smooth
dependence of the specific heat on temperature is depicted
for various k-mers at h = 0.5. A continuum variation of
cv/kB on T is observed with a maximum that lowers and
broadens as the k-mers size increases.

In this case, the plateau in the adsorption isotherm
arises along with rearrangement of the adsorbate molecules
within the chain. This behavior can be better understood
from the curves of the isosteric heat of adsorption in
Fig. 3. Thus, qst is nearly zero for coverage h < k/(k + 1),
since the adsorbed particles can rest separated by more
or at least one empty site in this regime. Adsorption of a
k-mer for h > k/ (k + 1) requires to create a chain of k

empty sites, therefore k � 1 particles must be forced to
new positions becoming nearest-neighbors. The resulting
energy change for such process is given by the factor
(k � 1)w (because of the referred rearrangement of the
k � 1 molecules), plus 2w coming from the interaction of
the adsorbed k-mer with its neighbors. The value of the
differential heat at coverage h > k/k + 1 is qst = �[2w +
(k � 1)w].

The limit cases in Figs. 1 and 3 are compared with re-
sults from a mean-field approach, based on BWA. In this
framework, the isotherm equation and isosteric heat of
adsorption take the form [44,1]

Kðc; kÞk exp½bðl� kwhÞ� ¼
h 1� ðk�1Þ

k h
h iðk�1Þ

ð1� hÞk
ð40Þ

and

qstðhÞ ¼ �kwh; ð41Þ

respectively.
In the attractive case (bw = �5), a characteristic van der

Waals loop is observed in the adsorption isotherm and
BWA incorrectly predicts a phase transition for c = 2.
For strong repulsive couplings (bw = 10), the BWA curves
apart from the exact results and does not reproduce the
plateau in the adsorption isotherm. In addition, the isos-
teric heat of adsorption does not depend on k.

The limitations of the BWA can be much easily visual-
ized with the help of the entropy per site (see Fig. 4). In
fact, the main assumption of the BWA say that the config-
urational degeneracy and average nearest-neighbor interac-
tion energy are treated as though the molecules were
distributed randomly among the sites. Consequently, the
entropy per site does not depend on w and adopts the form

sðhÞ
kB

¼ 1� k � 1

k
h

� �
ln 1� k � 1

k
h

� �
� h

k
ln

h
k

� ð1� hÞ lnð1� hÞ þ h
k

ln Kðc; kÞ. ð42Þ

Eq. (42) is equivalent to giving all configurations of N

k-mers on M sites the same weight as they would have
w = 0. This situation is clearly reflected in Fig. 4.

The results in Figs. 1–4 allow us to validate the MC
scheme. Hereafter, we present the analysis of the adsorp-
tion thermodynamics of interacting k-mers on two
dimensions.
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Typical adsorption isotherms obtained by MC simula-
tions in the grand canonical ensemble (symbols) and com-
parison with QCA (solid lines) and BWA (dashed lines) are
shown in Figs. 5–7, for honeycomb, square and triangular
lattices, respectively.

For attractive interactions (Figs. 5(a), 6(a) and 7(a)), as
the temperature decreases, the system undergoes a first-
order phase transition that shows as the discontinuity in
the simulated isotherms and as the typical loops in the the-
oretical isotherms. In this situation, which has been
observed experimentally in numerous systems [2,8], the
only phase which one expects is a lattice-gas phase at low
coverage, separated by a two-phase coexistence region
from a ‘‘lattice-fluid’’ phase at higher coverage. This lat-
tice-fluid can be considered as a version of the registered
(1 · 1) phase (where every available site of the lattice is
occupied) diluted with vacancies.
-10 -8 -6 -4 -2 2 6

0.0

0.2

0.4

0.6

0.8

1.0

θ

β0 4

(a)
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Fig. 6. Adsorption isotherms for homonuclear dimers adsorbed on a square l
lines represent results from Monte Carlo simulations, QCA and BWA, respect
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bw = 7.5. Inset: Adsorption isotherms from QCA for bw = 7.5 and different v
This condensation of a two-dimensional gas to a two-
dimensional liquid is similar to that of a lattice-gas of
attractive monomers. However, the symmetry particle-va-
cancy (valid for monoatomic particles) is broken for k-mers
and the isotherms are asymmetric with respect to h = 0.5.

The isotherms in the repulsive case (Figs. 5(b), 6(b) and
7(b)) have more features because of the existence of or-
dered structures in the adlayer. These structures are clearly
evidence of subcritical behavior (the systems undergoes
continuous phase transitions, from disorder to ordered
structures [54,55]). At high temperatures, the isotherms
do not present any peculiar behavior. For low tempera-
tures, we can see the typical steps which correspond to
the developing of some ordered phase structures and the
shape of the isotherms is much dependent on the connectiv-
ity. In fact, as the chemical potential l increases and h var-
ies from 0 to 1, we found two different ordered phases in
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Fig. 7. Adsorption isotherms for homonuclear dimers adsorbed on a triangular lattice with nearest-neighbor interactions. Symbols, solid lines and dashed
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the adsorbate: (1) a low-coverage ordered phase (LCOP),
with 5/9, 1/2 and 2/5 of the sites occupied for honeycomb,
square and triangular lattices, respectively; and (2) a high-
coverage ordered phase (HCOP), with 2/3 of the sites filled
for the three geometries. Snapshots corresponding to
LCOP [part (a)] and HCOP [part (b)] for honeycomb,
QCA, θ = 

Ordered Phase at θ = 5/ 9 

(a)

(c)

Fig. 8. Snapshots of the ordered phases corresponding to repulsive dimers adso
(b) high-coverage ordered structure (HCOP) and (c) LCOP-HCOP mixture ac
square and triangular lattices are shown in Figs. 8–10.
For a more complete discussion of LCOP and HCOP,
interested readers are referred to Refs. [54,55].

In the attractive cases, the two theoretical approxima-
tions agree qualitatively well and the adsorption isotherms
for the BWA and QCA are hardly distinguishable from
Ordered Phase at θ = 2/ 3 

3/ 5 

(b)

rbed on a honeycomb lattice. (a) Low-coverage ordered structure (LCOP);
cording to the predictions of QCA.
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Fig. 9. As Fig. 8 for square lattices.
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Fig. 10. As Fig. 8 for triangular lattices.
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each other. However, it is known that the isotherms result-
ing from different approximations can look very similar [3].
The differences between numerical and theoretical results
can be much easily rationalized with the help of the abso-
lute error, ea(h), which is defined as

eaðhÞ ¼ jltheor � lsimjh; ð43Þ

where lsim (ltheor) represents the chemical potential ob-
tained by using MC simulation (analytical approach). Each
pair of values (lsim, ltheor) is obtained at fixed h.

As an example, Fig. 11(a) shows ea(h) for three typical
attractive cases: squares, bw = �3.0; triangles, bw = �1.5
and circles, bw = �0.5. Full and open symbols represent
results from BWA and QCA, respectively. In all cases,
QCA leads to appreciably better results than BWA. The
curves in Fig. 11 correspond to a honeycomb lattice. How-
ever, the behavior of ea(h) for square and triangular lattices
is very similar (data are not shown here for sake of
simplicity).

With respect to repulsive interactions, the differences be-
tween QCA and BWA are very appreciable. This situation
is clearly reflected in Fig. 11(b), where three repulsive cases
are depicted: squares, bw = 8.0; triangles, bw = 4.0 and cir-
cles, bw = 2.0. Full and open symbols are as in part (a).
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Fig. 11. Absolute error in kBT units, bea, versus surface coverage for
adsorption isotherms of dimers. The symbology is as follows: (a) Squares,
bw = �3.0; triangles, bw = �1.5 and circles, bw = �0.5. (b) Squares, b
w = 8.0; triangles, bw = 4.0 and circles, bw = 2.0. Full and open symbols
correspond to comparisons with BWA and QCA, respectively.
Beyond the quantitative discrepancies between QCA and
BWA, there exists qualitative differences between both
approximations. Thus, while BWA does not predict the
existence of ordered phases in the adsorbate, QCA iso-
therms present a pronounced plateau as the temperature
lowers. This singularity or critical coverage hQCA

c , which ap-
pears at a intermediate coverage between the LCOP and
the HCOP, depends on both the geometry of the substrate
and the size of the adsorbate. The value of hQCA

c can be
determined from the point of inflection in the adsorption
isotherm equation (Eq. (29)), calculated in the limit as
bw!1. Thus,

hQCA
c ¼ ðc=2Þk

ðc� 1Þk þ 1
. ð44Þ

Fig. 12 shows the behavior of hQCA
c as a function of the

k-mer’s size, for the different connectivities studied. In the
particular case of k = 2, hQCA

c ¼ 3=5; 4=7 and 6/11, for hon-
eycomb, square and triangular lattices, respectively. The
configuration of the adsorbate at hQCA

c ‘‘could be thought’’
as a mixture of LCOP and HCOP [see part (c) in Figs. 8–
10].

Summarizing, we define the integral error ei, which takes
into account the differences between theoretical and simu-
lation data in all range of coverage,

ei ¼
Z 1

0

eaðhÞdh. ð45Þ

The integral error is shown in Fig. 13 for all studied geom-
etries and for a wide range of values of bw. Several conclu-
sions can be drawn from the figure:

• In all cases, QCA gives a much better description of the
MC adsorption isotherms than the BWA. In the partic-
ular case of repulsive interactions, the disagreement
between MC and BWA turns out to be significantly
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Fig. 12. Critical coverage hQCA
c , as a function of the adsorbate size k for

different geometries: stars, one-dimensional lattices; hexagons, honeycomb
lattices; squares, square lattices and triangles, triangular lattices.
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large, while QCA appears as the simplest approximation
capable to take into account the main features of the
multisite occupancy adsorption.

• ei(h) increases as the lattice connectivity is increased. A
possible explanation for the deviation from QCA (and
BWA) observed for high connectivity is associated with
the choice of g(N,M) in Eqs. (7) and (23). In fact,
g(N,M) is an extension to two dimensions of the exact
configurational factor obtained in one dimension. Con-
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Fig. 14. Isosteric heat of adsorption in kBT units, bqst, versus surface
coverage for attractive [part (a)] as well-repulsive [part (b)] interacting
dimers and 5-mers adsorbed on a honeycomb lattice. The curves are
labeled as in Fig. 5. In two limit cases (bw = 10, k = 2 and bw = 10, k = 5),
the data are compared with BWA.
sequently, the accuracy of g(N,M) diminishes as c is
increased [35]. In the future, other expressions for
g(N,M) [35,36] will be investigated.

• There exists a wide range of bw’s (�1 6 bw 6 4), where
QCA provides an excellent fitting of the simulation data.
In addition, most of the experiments in surface science
are carried out in this range of interaction energy. Then,
QCA not only represents a qualitative advance in the
description of the adsorption k-mers with respect to
the BWA, but also gives a framework and compact
equations to consistently interpret thermodynamic
adsorption experiments of polyatomics species such as
alkanes, alkenes, and other hydrocarbons on regular
surfaces.

We now analyze the behavior of the isosteric heat of
adsorption. qst versus coverage is plotted in Figs. 14–16,
for honeycomb, square and triangular lattices, respectively.
The curves are denoted as in Figs. 5–7.

The general features of the coverage dependence of the
isosteric heat of adsorption for attractive k-mers are
the following [see part (a) in Figs. 14–16]: qst is monoto-
nically increasing on coverage. As the ratio bw is increased,
two main effects occur. (i) A plateau appears being
qst = (c � 1)w. This behavior demonstrates that the island
of adsorbed dimers grows through the perimeter, being
(c � 1)w, the involved energy in one adsorption–desorption
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Fig. 15. Isosteric heat of adsorption in kBT units, bqst, versus surface
coverage for attractive [part (a)] as well-repulsive [part (b)] interacting
dimers and 5-mers adsorbed on a square lattice. The curves are labeled as
in Fig. 6. In two limit cases (bw = 7.5, k = 2 and bw = 7.5, k = 5), the data
are compared with BWA.
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Fig. 16. Isosteric heat of adsorption in kBT units, bqst, versus surface
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Fig. 17. Entropy per site as a function of coverage for homonuclear
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of a dimer in the perimeter of the adsorbate island. (ii) The
plateau flattens over a wide range of coverage since adsor-
bate islands are more compact for larger bw.

As it can be noticed, the differences between the theoret-
ical approximations are notable. While QCA agrees very
well with the curves of qst, BWA presents a linear behavior
and does not reproduce the main characteristics of qst.

For the repulsive case [part (b) in Figs. 14–16], qst varies
from a smoothly decreasing (at high temperatures) to a
double stepped function of h (at low temperatures). The
abrupt steps are traced to the presence of the ordered
phases shown in Figs. 8–10. As in the attractive case,
BWA varies linearly with the coverage and appears as a
poor sensitive theory for studying qst. On the other hand,
even though QCA does not reproduce the two steps in
the curves at very low temperatures, the approach agrees
very well with the simulation data in a wide range of
bw’s and predicts the value of qst at high coverage,
qst(h! 1). As it has been widely discussed in Refs.
[43,55], the value of qst(h! 1) can be only understood
from reordering processes occurring in the adsorbate at
high coverage, which do not appear in the case of mono-
mers and, consequently, are a clear signal of the presence
of multisite occupancy adsorption. These findings reinforce
the validity of the proposed QCA to describe k-mers
adsorption thermodynamics.
Finally, the behavior of the configurational entropy per
site as a function of coverage is shown in Figs. 17–19. For
attractive interactions [part (a) in Figs. 17–19], the overall
behavior can be summarized as follows: for h! 0 the en-
tropy tends to zero. For low coverage, s(h) is an increasing
function of h, reaches a maximum, then decreases mono-
tonically. In the limit h! 1 the entropy tends to a finite
value, which is associated to the different ways to arrange
the dimers at full coverage. This value depends on the
geometry, being s(h = 1)/kB � 0.19, 0.29 and 0.44 for
c = 3, 4 and 6, respectively. The effect of the interactions
is to decrease the entropy for intermediate coverage
(0 < h < 1), remaining constant in the limits h! 0 and
h! 1. The curves from QCA present a qualitative agree-
ment with simulation data, but overestimate the value of
the entropy in the whole range of h.

In the case of repulsive interactions [part (b) in Figs. 17–
19], s/kB develops two minima as T decreases, correspond-
ing to the presence of the LCOP and the HCOP. In the case
of QCA, the curves present a minimum at hQCA

c . The value
of sðh ¼ hQCA

c Þ=kB decreases as bw is increased, reaching
negative values for high bw’s. This spurious behavior also
appears in the classical QCA for monomers [1,2]. On the
other hand and as it was discussed in Fig. 2, the entropy
per site from BWA does not depend on bw.
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Fig. 18. Entropy per site as a function of coverage for homonuclear
dimers and 5-mers adsorbed on a square lattice with nearest-neighbor
interactions. (a) Attractive case: full circles, bw = 0; open squares, bw =
�0.5; open up triangles, bw = �1.0 and open diamonds, bw = �1.4. (b)
Repulsive case: full circles, bw = 0; full squares, bw = 2.94; full up
triangles, bw = 3.13 and full diamonds, bw = 7.5. Solid lines from top to
bottom correspond one-to-one to the cases plotted with symbols. The
dotted lines are included in the figure as a guide for the eyes.
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4. Conclusions

A generalization of the quasi-chemical approximation
for interacting polyatomic adsorbates on homogeneous
surfaces has been presented. The main thermodynamic
functions of adsorption (adsorption isotherm, configura-
tional energy, isosteric heat of adsorption, specific heat
and configurational entropy of the adlayer) have been cal-
culated in the framework of the QCA and compared with
analytical results from the classical Bragg–Williams
approximation and MC simulation data for a lattice-gas
of interacting dimers on one-dimensional, honeycomb,
square and triangular lattices. The artificial effects that
the BWA induces on the main thermodynamic functions
can now be rationalized and compared with other analyti-
cal approaches.

The new formalism leads to exact results in one dimen-
sion and provides a close approximation to study adsorp-
tion of polyatomics on two-dimensional surfaces with
different geometries (square, honeycomb and triangular).

From the comparison with MC simulations, appreciable
differences can be seen for the different approximations,
QCA being the most accurate for all cases.
In summary, the proposed theoretical model is simple,
represents a qualitative advance with respect to the existing
development on k-mers thermodynamics and seems to be a
promising way toward a more accurate description of the
adsorption thermodynamics of polyatomic molecules. In
this sense, future efforts will be directed to (1) study the
critical behavior of the system for attractive and repulsive
interactions; (2) extend the calculations to kinetic proper-
ties as diffusion coefficient, thermal desorption; etc. and
(3) consider different forms for g(N,M) in Eqs. (7) and
(23), analyzing its influence on the thermodynamic
functions.
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