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Longitudinal optical and spin Hall conductivities of Rashba conducting strips coupled
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A system composed of a conducting planar strip with Rashba spin-orbit coupling (RSOC), magnetically
coupled to a layer of localized magnetic moments, at equilibrium, is studied within a microscopic Hamiltonian
with numerical techniques at zero temperature in the clean limit. In particular, transport properties for the cases
of ferromagnetic (FM) and antiferromagnetic (AFM) coupled layers are computed in linear response on strips
of varying width. Some behaviors observed for these properties are consistent with the ones observed for the
corresponding Rashba helical currents. The case of uncoupled Rashba strips is also studied for comparison. In
the case of Rashba strips coupled to an AFM localized order, results for the longitudinal dc conductivity, for
small strip widths, suggest the proximity to a metal-insulator transition. More interesting, in the proximity of this
transition, and in general at intermediate values of the RSOC, a large spin Hall conductivity is observed that is
two orders of magnitude larger than the one for the FM order for the same values of the RSOC and strip widths.
There are clearly two different regimes for small and for large RSOC, which is also present in the behavior of
Rashba helical currents. Different contributions to the optical and the spin Hall conductivities, according to a
new classification of inter- or intraband origin proposed for planar strips in the clean limit, or coming from the
hopping or spin-orbit terms of the Hamiltonian, are examined. Finally, the effects of different orientation of the
coupled magnetic moments will be also studied.

DOI: 10.1103/PhysRevB.95.045146

I. INTRODUCTION

There is currently an increasing interest in studying and
developing new systems and devices that could process
information using the spin of the electron, which is the essence
of the field of spintronics [1–4]. In particular, a considerable
number of possibilities stem from the implementation of
effective couplings derived from microscopic spin-orbit (SO)
interactions, chief among them the Rashba spin-orbit coupling
(RSOC), which appears in systems with structural inversion
asymmetry [5–9].

It has been recently noticed [10–13] that a strong spin
torque can be induced on ferromagnets (FM) coupled to a two-
dimensional (2D) layer with Rashba SOC. This process was
observed when an electrical current flows in the plane of a Co
layer with asymmetric Pt and AlOx interfaces [13–15]. Even
more recently, it has been discussed the possibility of an anal-
ogous relativistic SO torque appearing when an antiferromag-
netic (AFM) layer is coupled to a conducting layer containing
RSOC [16,17]. It was also suggested that this possibility could
be realized in bulk Mn2Au, which although is centrosymmet-
ric, it can be divided into two sublattices that separately have
broken inversion symmetry. This second possibility is referred
to as a Néel SO torque (NSOT), to differentiate it from the
previously mentioned FM SO torque (FSOT). In these two
systems, the FM or AFM order in the magnetic layer is fixed
due to a large enough exchange interaction among localized
magnetic moments. Possible advantages of spintronic devices
involving AFM layers, for example, their fast magnetic dynam-
ics and the insensitivity to stray fields, are well-known [18,19].
Remarkably, it was recently found that the NSOT could drive
an antiferromagnetic domain wall at velocities two orders of
magnitude greater than the ones in ferromagnets [20,21].

Rashba SO coupling leads to the spin Hall effect [7,8],
which manifests itself on finite width systems or strips, as spin

accumulation at the strip edges [22–24]. Perhaps the most
important quantity related to these effects is the spin Hall
conductivity, which in clean 2D systems turned out to be a
constant independent of the Rashba strength for a wide range of
electron fillings [25]. Subsequent studies lead to the conclusion
that the spin Hall conductivity vanishes in the presence of
scattering [26]. This result led in turn to some controversial
interpretation of experimental data. Most of this theoretical
work has been performed on unbounded 2D systems and
using a parabolic band, that is, with infinite bandwidth. Many
shortcomings and peculiar results obtained for these systems
have been stressed in the literature. Specifically, the above
mentioned controversy concerning the spin Hall conductivity
was settled down once the effect of parabolic bands was
recognized, that is, the spin Hall conductivity is finite and
in general proportional to the square of the Rashba SOC, as
soon as the kinetic energy term departs from the parabolic
form [27]. On the other hand, planar strips or wires, rather
than unbounded 2D systems, and tight-binding bands with
finite bandwidth, are in general more realistic, particularly for
new materials or mechanisms which have been proposed for
spintronic devices and where larger electron fillings may be
involved, such as for example, those involving LaAlO3/SrTiO3

interfaces [28,29]. It should also be noticed that on planar
strips, at equilibrium, using second quantization, which allows
wave-functions to be finite at the edges, the presence of Rashba
helical currents close to the strip edges have been reported [30].

Hence the purpose of the present work is to study the
optical and spin Hall conductivities of conducting strips with
a Rashba SOC in contact with a magnetized slab with FM or
AFM orders. Although the above mentioned FSOT and NSOT
occur in off-equilibrium systems, the study of an appropriate
microscopic model Hamiltonian in second quantization at
equilibrium, and within linear response, could shed some
light on the behavior of systems in off-equilibrium regimes,
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particularly for strips. Certainly, the simplified model here
considered does not capture many details at the interfaces of
the actual devices [15,17,29], but this simplicity is necessary
to provide general insights that could help the search for
new materials or devices. These microscopic insights on the
various physical properties examined refer in the first place to
the hopping or Rashba SO origin of the involved currents,
and in second place, to a classification here proposed for
the energy subbands or modes as a function of momentum
that are characteristic of strips or wires. This classification
of energy-momentum points, discussed in Sec. IV A, leads
in turn to a classification of inter- and intraband transitions,
which should not be confused with the ones used in theoretical
studies for the unbound plane, in nonequilibrium regimes and
in the presence of disorder (see for example, Ref. [41]).

For the sake of comparison, the case of isolated Rashba
conducting strips, that is, not connected to a magnetic layer,
will also be studied. It is also interesting to examine the Rashba
helical currents, and to correlate their behavior is correlated
with the one observed through the optical and spin Hall
conductivities. These studies are performed assuming that the
magnetic moments are always collinear. This assumption is re-
alistic since the exchange interaction between moments in the
coupled layer is typically very larger [21]. In the final Section,
the effects of various possible orientations of the coupled mag-
netic order, for both the FM and AFM layers, will be examined,
particularly for the AFM case when the magnetic moments
are oriented along a direction that is parallel to the conducting
plane, which is the situation considered in Ref. [17].

II. MODEL AND METHODS

The Hamiltonian here studied is H = H0 + Hint, where
[17,31]

H0 = −t
∑

〈l,m〉,σ
(c†lσ cmσ + H.c.) + λ

∑

l

[c†l+x↓cl↑

− c
†
l+x↑cl↓ + i(c†l+y↓cl↑ + c

†
l+y↑cl↓) + H.c.]

Hint = −Jsd

∑

l

Sl · ŝl + J
∑

〈l,m〉
Sl · Sm, (1)

where l,m are sites on a square lattice, located on the {x,y}
plane, Sl are the localized magnetic moments, assumed classi-
cal, and ŝl are the spin of the conduction electrons (its operator
nature is made explicit for later usage). The longitudinal
(transversal) direction of the strip corresponds to the x axis (y
axis). H0 is the noninteracting part, which includes the hopping
and RSOC terms with coupling constants t and λ, respectively.
The RSOC term corresponds to an effective Rashba electric
field along the z axis, i.e., perpendicular to the plane of the strip.
Since both terms in H0 contribute to the total kinetic energy, we
choose the normalization t2 + λ2 = 1, whose square root will
then be adopted as the unit of energy. With this normalization,
the kinetic energy, and hence the total energy for fixed J,Jsd ,
turns out to be approximately constant as λ/t is varied [31].
Hence all the physical properties studied in the following will
solely depend on the ratio λ/t , for given values of J,Jsd . The
interacting part of the Hamiltonian contains a ferromagnetic
coupling between conduction electrons and localized magnetic

moments with strength Jsd , and an exchange interaction
between magnetic moments with coupling J . Hamiltonian (1)
is just a ferromagnetic Kondo lattice model with a Rashba SO
coupling.

For the FM case, for most of the calculations, a value of
Jsd = 10 will be adopted, which corresponds to the case of
well-separated spin-up and spin-down conduction bands. For
Jsd = 5, the bands are partially separated and in this case
an AFM or staggered order along the y direction would
be energetically favourable if the magnetic moments were
allowed to rotate, for J = 0 [32]. For this reason the AFM
order will be studied for Jsd = 5, although some results for
Jsd = 10 will be also presented. In general, results do not
qualitative change for this case in this range of Jsd . For the FM
case, some results obtained by varying Jsd will be discussed
in Sec. IV B though. Since FM and AFM orders are put by
hand, the value of J is irrelevant since it only adds a constant
to the total energy. The direction of the magnetic moments is
adopted to be along the z axis. Since model (1) corresponds to
a quantization axis along the z axis, it is expected that results
will depend on the direction of the magnetic moments, and
this issue will be examined in the final section.

Hamiltonian (1) will be studied on strips of length L and
width W , with periodic (open) boundary conditions along the
longitudinal (transversal) direction. N = LW is the number
of sites on the strip.

For classical localized magnetic moments, which is the
assumption usually adopted in this context, the Hamiltonian
becomes an extended tight-binding problem which is solved by
numerical exact diagonalization for clusters with 2 � W � 64
and 256 � L � 8000. In all results presented below, finite size
effects with respect to L are negligible. All results presented
below correspond to quarter filling, n = 0.5.

The main quantities studied are the spin-conserving cur-
rents, Jσ,μ̂, σ = ↑,↓, μ̂ = x,y, defined as the expectation value
of the operator:

ĵσ,l,μ̂ = it(c†l+μ̂,σ cl,σ − H.c.), (2)

in units where the electron charge e = 1, and h̄ = 1, and the
spin-flipping currents, JSO,μ̂, which are the expectation value
of the operators:

ĵSO,l,x̂ = −iλ(c†l+x↓cl↑ − c
†
l+x↑cl↓ − H.c.),

ĵSO,l,ŷ = λ(c†l+y↓cl↑ + c
†
l+y↑cl↓ + H.c.). (3)

These expressions can be obtained in an standard way by
introducing appropriate Peierls factors in the Hamiltonian (1)
and taking the first derivative with respect to the magnetic flux.
These currents also satisfy the charge conservation law, given
generically by ∇ · ĵ = −∂n/∂τ , where n is the occupation
number operator and τ is the time, as long as ∂n/∂τ = i[H0,n],
which will be further discussed below.

In equilibrium, due to translation invariance along x, all
currents along x depend only on the chain position given
by y. In all the cases analyzed below, in the absence of
external electromagnetic sources, the SO currents along the
strip direction are zero, except for the case of Rashba strips
connected to a FM layer as it will be discussed in Sec. IV B.
In all cases, vertical currents are also zero, except for the case
of a constant orientation of the magnetic moments forming an
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FIG. 1. Spin-up current on each chain as a function of the depth
of the chain (ν = 0, edge, ν = 1, center chain), for λ/t = 0.4, (a)
isolated Rashba conducting strip (Jsd = 0), (b) FM layer, Jsd = 10,
and (c) AFM layer, Jsd = 5. Results correspond to strips with width
W = 4 (diamonds), 8 (up triangles), 16 (circles), and 32 (crosses). In
(d), Spin-up currents are shown for various values of λ/t indicated
on the plot, AFM layer, Jsd = 5 (except the one corresponding to
Jsd = 10), W = 32.

angle θ = π/3 considered in Sec. V, where a more complex
pattern appears. Certainly, the sum over the strip section of
charge currents, as well as the sum over the strip section of
spin currents, is always zero.

III. RASHBA HELICAL CURRENTS

The Rashba helical currents (RHCs), are counterpropagat-
ing spin-up and spin-down electron currents, that is of hopping
or spin-conserving nature, at each link at the lattice [30], and
they appear due to the RSOC acting on both x and y directions
on the strip, in equilibrium and in the absence of any external
electromagnetic field. It should be emphasized that they appear
as a consequence of some boundary imposed on the system, or
eventually in the presence of impurities [33]. Their existence
can be inferred at an effective level [30] or by the structure of
the RSOC [33,34]. Of course, the total current along the strip
is zero. In the following we will compute RHCs, defined by
the spin-up current along x, J↑, on each chain of closed strips
of width W .

The RHCs on each chain as a function of its distance ν

to the edge [ν = 0, edge chain (y = W ), ν = 1, center chain
(y = W/2 + 1)] are shown in Figs. 1(a)–1(c) for various strip
widths, λ/t = 0.4, and different orderings of the magnetic
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FIG. 2. Spin-up current on the edge chain as a function of λ/t ,
for various strip width W indicated on the plot, (a) fixed FM state
Jsd = 10, (b) fixed AFM state Jsd = 5, and (c) isolated Rashba strip,
Jsd = 0.

layer. Figure 1(a) corresponds to conducting strips decoupled
from the magnetic layer, that is Jsd = 0. This is the case
previously studied, presenting characteristic sign oscillations
with wave vector π , at n = 0.5, and mostly concentrated near
the edges [30]. In Fig. 1(b), the conducting strip is coupled
to a FM layer by a large value of Jsd = 10, corresponding to
well-separated sz > 0 and sz < 0 bands, where sz = 〈ŝz〉sp,
〈...〉sp meaning the average over a single-particle state. This is
not a fully polarized system in the sense that for each band,
|sz| < 1/2. In this case, RHCs are only noticeable from zero
at the strip edge, and effects of finite strip width are negligible.
Sign oscillations are mostly absent. A very different behavior is
observed for the case of an AFM spin background, as shown in
Fig. 1(c). In this case, RHCs are also maximal near the edge.
At the edge, J↑(ν = 0) is more than an order of magnitude
larger than the one for the FM case, and it does not depend
on the strip width. Besides, similarly to the decoupled system,
they present sign oscillations as a function of ν. Notice also
that the direction of J↑(ν = 0) is the same as the one for the
pure Rashba strip and is opposite to the one of the FM coupled
layer case.

The dependence of RHCs with λ/t for the AFM back-
ground, for W = 32 and Jsd = 5, is shown in Fig. 1(d). It is
apparent that J↑(ν) grows with λ/t up to λ/t ≈ 0.4, in the
same way that it was predicted and observed for the case of
isolated conducting strips [30], and then it starts to decrease
for larger λ/t . By increasing Jsd , the RHCs decreases, as is
illustrated for λ/t = 0.4 and Jsd = 10.

For a more systematic study, from now on only the RHCs
on the outermost chains will be considered. In Fig. 2, the
values of the RHC on the edge chain (ν = 0) of strips with
various widths are shown for different magnetic coupled
layers as a function of λ/t . It can be seen in Fig. 2(a) that
for the FM layer, the edge RHC in absolute value increases
monotonically with λ/t in the range considered, with an initial
shape which approximately follows the predicted quadratic
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dependence for systems in the presence of a boundary [30].
At λ/t ≈ 0.5, J↑(0) experiences a change of curvature. This
behavior is also virtually independent of W except for the
smallest width considered, W = 2. In contrast, RHCs on the
edge chains follow a nonmonotonic behavior for the AFM
layer, as shown in Fig. 2(b). In this case, J↑(0) presents a
strong peak located at 0.2 � (λ/t)peak � 0.3 for all W . The
dependence with W is nonmonotonic for λ/t � (λ/t)peak,
with the largest peak reached for W = 4. This peak becomes
smoother and shifts to larger values of λ/t as W increases,
although this variation with W seems to have converged for
W ≈ 32. It can be observed also that the the RHC curves in
the region of λ/t > (λ/t)peak, fall onto a single curve, that is,
they become independent of the strip width. Eventually J↑(0)
decreases to zero for λ/t ≈ 1 for all W . Remarkably, for λ/t

closer to the peak position, the RHCs for the AFM coupled
layer are one order of magnitude larger than for the FM layer
for all W , in agreement with the results shown in Figs. 1(b)
and 1(c).

Results for the isolated conducting Rashba strip, Jsd = 0,
are shown in Fig. 2(c) for comparison. J↑(0) presents a
broad maximum for λ/t ≈ 0.5, that is larger than the peak
of the AFM coupled layer for W = 2 but decreases rapidly
by increasing W . Again, the dependence with W seems to be
converged for W ≈ 32. In all cases, the behavior of W = 2
seems somewhat different than for wider strips. This can
be attributed to the fact that for W = 2 both chains are
“outermost,” while W > 2, the RHCs are spread over the strip
section.

IV. TRANSPORT PROPERTIES

In this section, the main transport properties appearing
as the response to some applied electromagnetic field, and
that determine the suitability of Rashba strips coupled to
magnetic layers for spintronic applications, that is, the optical
conductivity and the spin Hall conductivity, are going to be
studied. It is also important to examine if the behavior of the
Rashba helical currents observed in the preceding section can
be correlated with the behavior of these transport properties.

The optical conductivity is defined as the real part of the
linear response to an electric field and can be written as [35]

σ (ω) = Dδ(ω) + σ reg(ω)

= Dδ(ω) + π

N

∑

n�=0

|〈�n|ĵx |�0〉|2
En − E0

δ(ω − (En − E0))

(4)

where the paramagnetic current along the x direction is defined
in terms of the currents defined in Eqs. (2) and (3) as

ĵx = ĵhop,x + ĵSO,x,

ĵhop,x = ĵ↑,x + ĵ↓,x,

ĵσ,x =
∑

l

ĵσ,l,x, σ = ↑,↓,

ĵSO,x =
∑

l

ĵSO,l,x, (5)

The Drude weight D is calculated from the f-sum rule as

D

2π
= −〈H0,x〉

2N
− Ireg, (6)

where −〈H0,x〉 is the total kinetic energy of electrons along
the x direction, and

Ireg = 1

N

∑

n�=0

|〈�n|ĵx |�0〉|2
En − E0

(7)

is the integral of the regular part of the optical conductivity.
Notice that from Eq. (1), 〈H0,x〉 = 〈H0,hop,x〉 + 〈H0,SO,x〉. In
addition, taking into account the two contributions to the
total current, given by Eq. (5), Ireg has a contribution from
hopping currents, |〈�n|ĵhop,x |�0〉|2, another contribution from
SO currents, |〈�n|ĵSO,x |�0〉|2, and the contribution from the
cross terms, 2Re{〈�n|ĵhop,x |�0〉〈�0|ĵSO,x |�n〉}.

The spin Hall conductivity σsH is defined as the ω = 0 limit
of the spin-charge transversal response function given by the
Kubo formula, at zero temperature [25,26]:

σ sc
xy (ω) = −i

1

πN

∑

n

∑

m

〈�n|ĵ s
y |�m〉〈�m|ĵx |�n〉

[(En − Em)2 − ω2]
, (8)

where j s
y is the spin current along the y direction. In the

first sum, the summation is performed only over states with
energies En larger than the Fermi energy EF , and in the second
sum only over states with energies Em < EF .

The definition of the spin current in Rashba systems has
been extensively discussed [36–38] and perhaps this issue is
still unresolved but a physically reasonable and well-defined
expression from the operatorial point of view is the one that
is derived from the spin conservation equation in the absence
of external torques: ∇ · ĵs + ∂Ŝz/∂τ = 0 (τ is the time). From
this expression, the spin current along the transversal direction
can be computed as

ĵ s
y,l = −i

[
Hy,l,ŝ

z
l

]
, (9)

where Hy,l contains the terms in Eq. (1) involving sites l

and l + y. This expression is a stronger form of the spin
conservation equation written above. Since on-site terms of
the Hamiltonian could not lead to quantities considered as
“currents,” then [Hy,l,ŝ

z
l ] should be replaced by [H0,y,l ,ŝ

z
l ]

[39], and the following expressions for ĵ s
y are obtained:

ĵ s
y = ĵ s

hop,y + ĵ s
SO,y,

ĵ s
hop,y = 1

2
(ĵ↑,y − ĵ↓,y), (10)

ĵ s
SO,y = −λ

2

∑

l

(c†l+y↓cl↑ − c
†
l+y↑cl↓ + H.c.).

This expression for the spin currents, containing two terms,
one from the hopping and another from the Rashba SO terms
of the Hamiltonian (1), is the second quantized equivalent
form of the one considered in previous works formulated in
first quantization and using a parabolic kinetic energy [25].
Clearly, from Eqs. (5) and (10), there will be in principle four
independent contributions to σsH which are computed and
studied separately.
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FIG. 3. (a) Energy bands with sy > 0 (black) or sy < 0 (red),
W = 4, λ/t = 0.4. k is the momentum along the longitudinal
direction. The dashed line indicates the chemical potential. (b)
Integral of the regular part of the optical conductivity, and (c) Drude
weight, as a function of λ/t for various strip widths W . Isolated,
Jsd = 0, L = 2000 Rashba strips.

A. Isolated Rashba strips

Let us start by examining isolated conducting Rashba strips
(Jsd = 0). In Fig. 3(a), the single-particle bands, E(k), where k

is the momentum along x, is shown for W = 4, λ/t = 0.4. The
number of bands is equal to the number of coupled chains or
“modes.” The RSOC splits each band into two subbands with
different sign of sy = 〈ŝy〉sp [9,40]. Note that for the strips here
considered, as a difference with the case of the unbounded 2D
system [40], sy is not a good quantum number. Also, due to
the breaking of spatial rotational invariance, only the value of
sy , related to the momentum along the strip axis, is needed to
label {k,E(k)} points. Note also that on each of the subbands,
the sign of sy changes.

In the following, the expressions “interband transitions” or
“intraband transitions” will refer to transitions between states
with opposite or the same sign of sy respectively. This is a
natural extension of the concept of intraband and interband
processes used for the infinite plane [25,26] to finite-width
strips, in the clean limit, and it also avoids the problem of the
presence of the multiple subbands appearing with strips. More
importantly, with this definition, interband transitions would
be detectable by optical experiments [40]. In the literature, in
systems in a nonequilibrium regime, and in the presence of
impurities, other definitions of inter- and intraband transitions
have been used [41].

A typical interband transition contributing to the lowest
peak in σ (ω) is shown in Fig. 3(a). The inter- and intraband
contributions to Ireg and σsH will be discussed below.

Clearly, the behavior of E(k) is metallic for all electron
fillings, and for n = 0.5, the chemical potential is located close
to a maximum of the density of states or van-Hove singularity.
In Fig. 3(b), results for the integral of the regular part of the
optical conductivity, Ireg, are shown as a function of λ/t for
various strip widths indicated on the plot. The main result is
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FIG. 4. (a) Total spin Hall conductivity, (b) inter- (dashed lines)
and intra- (full lines) band contributions to Ireg, and (c) inter- and
intraband contributions to the spin Hall conductivity, as a function of
λ/t for various strip widths W indicated on the plot. Isolated, Jsd = 0,
L = 2000 Rashba strips.

that Ireg is due entirely to the SO currents defined in Eq. (5).
The Drude weight D is shown in Fig. 3(c). Both quantities
present a nonmonotonic behavior as a function of W , and
cusps around λ/t ≈ 0.4–0.5 can be noticed for W = 2 and
4, which is consistent with the behavior of the RHCs shown
in Fig. 2(c),

In Fig. 4(a), the spin Hall conductivity is shown for various
strip widths as a function of λ/t . In this case, σsH turns out to
be entirely due to the 〈ĵSO,x ĵ

s
hop,y〉 (for short) contribution. σSH

has a strong dependence with W , with a maximum shifting to
lower vales of λ/t as W increases, although it seems that it is
converging for W = 64. For the largest widths considered,
W = 32 and 64, the spin Hall conductivity presents a flat
region reminiscent of the constant value predicted in Ref. [25],
although this prediction was obtained for the infinite 2D
system with a parabolic dispersion. Notice also that with
the normalization here adopted for the parameters t and λ,
presumably additional factors should have to be taken into
account to compare the present results with those of Ref. [25].
For the widest strips, the presence of a cusp separating two
different regimes is clearly visible, and in this case, the cusp
is not correlated with the peaks observed in the RHCs curves.

In Figs. 4(b) and 4(c), the inter- and intraband contributions
to the Ireg and to σsH are shown. In both cases, it is remarkable
that for W = 2 both quantities are purely of inter-band origin,
and that as W increases the inter- and intraband processes tend
to equally contribute to those quantities.

B. Coupled FM layer

Let us now consider the more interesting case of a fixed
FM layer coupled to the conducting strip by a ferromagnetic
exchange Jsd = 10. In Fig. 5(a), the dispersion relation for
W = 4 and λ/t = 0.4 is depicted. E(k) points have been
labeled by the sign of sy . The negative energy bands have
also sz > 0 and are separated from the positive energy bands
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with sz < 0 due to the finite value Jsd = 10. The optical
conductivity σ (ω) presents a single peak at ω ≈ 10 and it
is originated in interband transitions, as can be inferred from
the sy character of the bands. This will be further discussed
below.

In Fig. 5(b), Ireg is shown as a function of λ/t for various
strip widths W . Again, this quantity is due entirely to the
SO currents. and it is almost independent of W . The Drude
weight, shown in Fig. 5(c), decreases as W increases due to a
reduction of the kinetic energy along the longitudinal direction.
The vanishing of intraband contributions to the longitudinal
conductivity is consistent with recent results obtained for an
infinite isotropic two-dimensional system [42].

The spin Hall conductivity, shown in Fig. 5(d), also presents
a rather monotonic behavior as a function of λ/t . This
monotonic behavior in both D and σsH is also similar to the one
observed for the RHCs in Fig. 2(a), although there is no direct
causality between these features. The spin Hall conductivity is
also entirely due to the 〈ĵSO,x ĵ

s
hop,y〉 contribution, and it almost

entirely involves interband processes, except for marginal
intraband contributions. Notice that in the present case, as well
as in the previous case of isolated Rashba strips, σsH follows
an approximate quadratic dependence with the Rashba SOC,
particularly for small λ/t , consistently with the prediction
of Ref. [27].

Taking into account the different behaviors observed for the
isolated Rashba strip, Jsd = 0, and the strip coupled to a FM
layer with Jsd = 10, it is important and interesting to see the
evolution of the various properties examined so far as Jsd is
varied to zero to a large value. In principle, the behavior for the
FM layer is not extrapolatable to Jsd = 0 due to the condition
of well-separated bands, as shown in Fig. 5(a). The results of
this study are shown in Fig. 6, and, as expected, it becomes
apparent that this evolution with Jsd is nonmonotonous. It
is clear that there is a regime of large Jsd , where the sz up
and down bands are well separated, and a regime of small
Jsd , where these bands are partially overlapped. The crossover
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FM layer. In all plots, results for λ/t = 0.2 are shown with full lines,
while those for λ/t = 0.4, with dashed lines.

between both regimes takes place at Jsd ≈ 4. In the region of
large Jsd , Ireg, as mentioned above is purely of interband origin
and, as it can be observed in Fig. 6(a), this contribution decays
approximately as J−1

sd , as Jsd increases, for all values of W

and λ/t considered. On the other hand, Ireg,inter decreases as
Jsd is decreased from Jsd ≈ 4, and at the same time, as it can
be observed in the inset, the intraband contribution starts to
grow until it becomes of the same order as the interband one
at Jsd = 0.

The same behavior change can be observed in other
quantities. For example in Fig. 6(b), it is shown that the RHC
smoothly decreases in the large Jsd region as Jsd is increased,
and it also decreases as Jsd is decreased when Jsd varies from
Jsd ≈ 4 towards zero, and it even change sign in this interval.
It is also instructive to notice that for Rashba strips coupled to a
FM layer, not only Rashba helical currents, which are currents
of the hopping type, are present as in all systems considered
in the present work, but also currents of the spin-flipping type,
JSO(y), along x, defined in Eq. (3), have a finite average on
each chain. One could speculate that these currents appear for
the FM coupled layer because the Rashba SO naturally tends to
reduce the FM order, so the external fixing of a FM order leads
to these currents to counteract that Rashba effect. In fact, if
the orientation of the magnetic moments or the sign of Jsd are
changed, then these helical currents of the SO type change their
direction. The distribution of these SO currents over the strip
section, shown in the inset of Fig. 6(c) is such that its net value
is zero, as it should be in equilibrium. Again, as it can be seen
in Fig. 6(c), two different behaviors of JSO(0) can be noticed
for Jsd greater or smaller than ≈4. Of course, consistently
with the previous results, these spin-flipping currents have
vanishing expectation value for Jsd = 0.
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To end this subsection, it is instructive to examine the fre-
quency dependence of the optical conductivity for some typical
cases. In Fig. 7(a), σ (ω) is shown for the isolated Rashba strip
for W = 4, λ/t = 0.2 and 0.4. In this and related plots, a
Lorentzian broadening ε = 0.01 was adopted. For the W = 4
strip, consistently with the results shown in Fig. 4, for λ/t =
0.2, σ (ω) is almost entirely due to interband transitions, while
for λ/t = 0.4, there is a small contribution from intraband
transitions occurring at higher frequencies. On the other hand,
for a wider strip, W = 32, Fig. 7(b), the inter- and intra-band
contributions are approximately equal, and they are originated
in transitions located at roughly the same frequencies. As
noticed above regarding to Fig. 4, the optical conductivity for
isolated strips, as well as for Rashba strips coupled to FM lay-
ers, are entirely due to SO currents, hence its intensity is always
larger for larger λ/t . For the case of Rashba strips coupled to
FM layers, in the regime of well-separated bands, or large Jsd

region, the optical conductivity is purely of interband nature
and it presents a single peak located at ω ≈ |Jsd | for any value
of λ/t . This case is shown in Fig. 7(c) for Jsd = 6, and W =
16, although in this region results are mostly independent of W .
In the low Jsd region, when the bands start to overlap, as it can
be seen in Fig. 7(d) for Jsd = 2, W = 16, the position of the
largest peak starts to be shifted to to higher frequencies as λ/t

increases, and, more importantly, an intraband contribution
starts to grow. As discussed above, in this small Jsd region, one
could expect a monotonous evolution from the behavior shown
in Fig. 7(d) to the one in Fig. 7(b) as Jsd is reduced to zero.

C. Coupled AFM layer

Let us finally examine the most important case which is
the one of a Rashba conducting strip coupled to an AFM
layer. Figure 8(a) shows the lowest half energy bands of the
W = 4 strip, λ/t = 0.4, where again E(k) points have been
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weight, as a function of λ/t , for coupled AFM layer, Jsd = 5. Results
for 256 × W strips with symbols for various W indicated on the plot.
In (d), contributions to D from hopping (dashed line) and SO (dotted
line) currents for W = 2 are also included.

labelled according to the sign of sy . There is another set of
energy bands symmetrically located with respect to E = 0.
The two set of bands are separated in energy due to the finite
Jsd = 5 value. A remarkable difference with respect to the two
previous cases, is that the coupling to a AFM layer introduces
small gaps whose sizes decreases with W and increases with
Jsd . For Jsd = 5, the gap is present for W � 8, and disappears
for W � 16. For W � 8 and n = 0.5, the Fermi level is just
at the top of the energy branch below the gap, and hence close
to a high density of states.

Figure 8(b) shows Ireg for various strip widths W , and
Fig. 8(d) the corresponding results for the Drude weight.
For the smallest strip widths, W = 2,4 there is a cusp at
λ/t ≈ 0.3, and λ/t ≈ 0.8, that coincides with the value at
which the respective Drude weights vanish. Notice that for
widths W > 2, there is also a curvature change near λ/t = 0.2.
It seems then that the decaying of the RHCs after their peak,
shown in Fig. 2(b), may be correlated with the onset, for
W = 2, or the proximity to a metal-insulator transition for
W > 2. It is also interesting to note that the vanishing of
the Drude weight for W = 2,4 is due to equal and opposite
contributions from spin-conserving and spin- flipping currents,
as shown in Fig. 8(d) for W = 2.

As expected from the complex pattern of E(k) points with
positive and negative values of sy , and as expected from
the already discussed case of free Rashba strips (Jsd = 0),
Ireg will have contributions from both inter- and intraband
processes. More interesting, and perhaps more physically
appealing, Ireg has now contributions from both the SO
(spin-flipping) and the hopping (spin-conserving) currents, as
shown in Fig. 8(b). As expected, the contribution from ĵhop,x

(ĵSO,x) dominates at small (large) λ/t , Contributions from the
mixed term are marginal.
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To understand the previous results for the optical conduc-
tivity, let us now show the frequency dependence of its various
contributions. Figures 9(a) and 9(c) shows inter- and intraband
contributions to the part of σ (ω) due solely to hopping currents,
σhop(ω), for W = 4 and 32, respectively, while Figs. 9(b) and
9(d), shows inter- and intraband contributions to the purely SO
term, σSO(ω), for W = 4 and 32, respectively. In the first place,
consistently with the behavior shown in Fig. 8(c), the intensity
of the largest peaks in σhop is larger than the ones in σSO.
Second, σhop is mostly of interband transitions, while σSO has
contributions from both inter- and intraband transitions, and
these contributions become approximately equal particularly
as W and λ/t increase, similarly to what happens for isolated
Rashba strips. It is quite apparent also that σhop, which is absent
in the cases of isolated Rashba strips and strips coupled to a
FM layer shown in Fig. 7, presents the strongest peak located at
ω ≈ Jsd , while σSO has its strongest peaks at low frequencies,
and this behavior is again similar to the one observed for Jsd .

Perhaps the most important and interesting results of the
present effort are the ones for the spin Hall conductivity. For
the same reasons mentioned above, the spin Hall conductivity
will also have contributions from both inter- and intraband
processes. However, what may be more interesting, is the
fact that σsH has contributions from both 〈ĵhop,x ĵ

s
hop,y〉 and

〈ĵSO,x ĵ
s
hop,y〉 terms. Contributions from the former lead to the

term σsH,1, while contributions from the latter, to the term
σsH,2. Results for σsH,1 and σsH,2 are shown in Figs. 10(a)
and 10(b), respectively. The first conclusion is that both
contributions have opposite signs, except for λ/t � 1, where
both contributions are negative. It is also apparent that σsH,1 is
suppressed faster with W . The total σsH , shown in Fig. 10(c) is
hence dominated by the 〈ĵSO,x ĵ

s
hop,y〉 terms. The discontinuous

behavior above discussed is also noticeable in Figs. 10(a)
and 10(b), where a clear change of behavior can be seen in
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FIG. 10. (a) σsH,1 and (b) σsH,2 contributions to the spin Hall
conductivity (see text), and (c) total spin Hall conductivity, as a
function of λ/t , for coupled AFM layer, Jsd = 5, with symbols for
various W indicated on the plot.

0.2 � λ/t � 0.3, that is coincidentally with the peak in the
RHCs shown in Fig. 2(b).

The resulting behavior of σsH , shown in Fig. 10(c) is
strikingly different to the one for FM coupled layers. While for
the FM layer, as shown in Fig. 5(c), σsH increases with both
λ/t and W , for the AFM case, σsH reaches a maximum that
decreases with W , and this maximum is located at a value of
λ/t that also decreases with W . The overall behavior of σsH

is also similar to the one already reported for isolated Rashba
strips [Fig. 4(a)], including their magnitude.

Last but not least, it is remarkable that the maximum value
of σsH in the AFM background is more than two orders of
magnitude larger than the one for the FM case for the same W

and at the same value of λ/t , and this difference is even larger
for narrower strip widths. The discussion of the interband
or intraband character of the transitions leading to σsH are
deferred to the next section.

V. OTHER ORIENTATIONS OF THE COUPLED
MAGNETIC MOMENTS

Let us assume that the magnetic moments of the coupled
layer can have an arbitrary but uniform orientation, forming an
angle θ with respect to the z axis and an azimuthal angle ϕ with
the x axis. Of course, in the absence of a Rashba SO coupling,
the system is independent of θ , ϕ but for any nonzero λ, the
physical properties will depend on the global orientation of the
magnetic moments. Actually, by minimizing the ground-state
energy of Hamiltonian (1), it turns out that the lowest energy
state with uniform orientation of the magnetic moments, for
the FM case, corresponds to θ = π/2, ϕ = 0, that is, pointing
along the x axis, in the regime of large Jsd , due to essentially
a reduction of the Jsd exchange energy. The value of J is
irrelevant since for uniform orientation of magnetic moments
it would contribute to a constant independent of λ.

Alternatively, the magnetic moment orientation may be
fixed by the structure of the materials involved in a given
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device, so it is interesting to examine the dependence of
transport properties with different orientations. Resuming the
comment written after Eq. (9), notice that now due to the x

component of the magnetic moments, both ŝz and the occup-
ation number operators, nσ , do not commute with Hint.
However, the resulting contributions from these commutators
are local, fieldlike operators, no currentlike ones. Hence, in
the following, the previous expressions for charge and spin
currents, given by Eq. (5) and Eq. (10), respectively, will be
used to compute the optical and spin Hall conductivities.

In the following, two different global orientations of the
magnetic moments, θ = π/3 and π/2, with ϕ = 0, will be
analyzed. Results for these two global orientations of the
magnetic moments for the FM layer, Jsd = 10, are shown in
Fig. 11, together with previous results for θ = ϕ = 0 that are
included for comparison. Most of these results were obtained
for W = 4 but are qualitatively independent of the width, as it
can be seen in Figs. 11(c) and 11(d), where the corresponding
results for W = 32 were added. Figure 11(a) shows that the
RHCs of hopping origin at the strip’s edge, J↑(0), only slightly
decrease as θ increases from 0 to π/2, but the RHCs of SO
origin, which are nonzero for the FM layer as discussed before,
are strongly suppressed as θ is increased from zero, and vanish
for θ = π/2, that is when the magnetization is parallel to the
strip plane. This is consistent with the previous comment after
Fig. 6 about that the RHC-SO reverse their direction when the
magnetic moments are inverted.

Ireg, shown in Fig. 11(b), remains virtually unchanged when
θ changes from 0 to π/2. Its SO origin, discussed in Sec. IV B,
is also not modified by θ . There is a slight increase in the
intraband contribution to Ireg, but it still is much smaller
than the interband one. Hence, mainly due to a reduction
in the kinetic energy, it can be seen in Fig. 11(c), that the
Drude weight is homogeneously suppressed by increasing
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spin Hall conductivity, as a function of λ/t , for coupled AFM layer,
Jsd = 5, W = 4, and various orientations of the magnetic moments,
θ , indicated on the figure. The azimuthal angle ϕ = 0.

θ . It is also interesting to notice the enhancement of the
spin Hall conductivity for λ/t � 0.7 for W = 4 (λ/t � 0.7
for W = 32) as θ is increased from 0 to π/2, as it can be
observed in Fig. 11(d). This enhancement occurs even though
the 〈ĵSO,x ĵ

s
hop,y〉 origin of σsH , as well as its purely interband

character, are not modified by θ .
Let us now consider the also interesting case of the AFM

coupled layer. In this case, the direction of the magnetic
moments is uniformly tilted with the constraint that magnetic
moments on nearest-neighbor sites are kept antiparallel, that
is, maintaining the AFM order. In this case, as a difference with
the FM layer, if the antiparallel magnetic moments are freely
rotated, the minimum of the total energy of the Hamiltonian
would correspond to θ = ϕ = 0, that is, they would point along
the z axis.

Results for these two global orientations of the magnetic
moments, for the W = 4 strip, Jsd = 5, are shown in Fig. 12,
together with previous results for θ = ϕ = 0 which are
included for comparison. Figure 12(a) shows that Ireg does not
depend significantly on θ . On the other hand, the Drude weight
systematically increases with θ , particularly for λ/t > 0.5,
as shown in Fig. 12(b), and this behavior can be attributed
to the closing of the gaps shown in Fig. 8(a). However,
even for θ = π/2, a change in the curvature can still be
clearly observed. The total spin Hall conductivity is shown in
Fig. 12(d). At small values of the RSOC, σsH decreases with
θ , while for larger values of the RSOC, it increases with θ . It
is remarkable that for small values of λ/t , σsH has an opposite
signs for θ = 0 and θ = π/2. This behavior could be traced to
the behavior of the two nonzero contributions to σsH , shown
in Fig. 12(c). For small λ/t , the σsH,1 contribution, due to the
〈ĵhop,x ĵ

s
hop,y〉 terms, grows rapidly with θ , while σsH,2, due to

the 〈ĵSO,x ĵ
s
hop,y〉 terms, is virtually independent of θ . For large

λ/t , σsH,2 grows in absolute value more rapidly than σsH,1, thus
leading to the observed change in the behavior of the total σsH .
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The inter- or intraband character of the transitions leading
to σsH is shown in Fig. 13. Results depicted in Fig. 13(a), corre-
spond to the inter- and intraband contributions to σsH,1 [shown
with full lines in Fig. 12(c)], while the ones in Fig. 13(b),
are for σsH,2 [shown with dashed lines in Fig. 12(c)]. In both
cases, for virtually all values of λ/t , and for the three values of
θ considered, the interband transitions are clearly dominant,
but both inter- and intra-band contributions increase with θ .
The previous results, as well as those of Fig. 12, correspond to
the W = 4 strip. In Fig. 13(c), the two contributions σsH,1 and
σsH,2, are shown for the W = 32 strip. As in Fig. 12(c), there is
an increasing contribution from 〈ĵhop,x ĵ

s
hop,y〉 transitions, with

an opposite sign to the 〈ĵSO,x ĵ
s
hop,y〉, which in absolute value

are in all cases dominant. The total σsH for W = 32 is shown
in Fig. 13(d), and similar behaviors as those previously pointed
out for W = 4 are also present, particularly the sign change
for small λ/t as θ increases from 0 to π/2.

If individual magnetic moments are allowed to rotate in
order to minimize the ground state energy of Hamiltonian (1),
it is found that the AFM order is unstable towards an AFM
spiral, for J � 0.5. In this AFM spiral or double-spiral, the
orientation of the magnetic moments in one sublattice is given
by θ = κx, and the magnetic moments on the other sublattice
have the opposite directions thus keeping locally the AFM
order [32].

For Jsd = 5 or smaller, the AFM order is also unstable
towards an order that is staggered along the y direction
and spiral along the x direction, with θ = κx, κ varying
linearly between 0 for λ/t = 0, and π/2 for λ/t ≈ 0.8.
This instability of the AFM order, driven by the conduction
electrons, disappears for J � 0.5.

The FM order for Jsd > 5 is also unstable towards an order
that is uniform along the transversal direction and spiral along
the longitudinal direction again with a pitch κ varying linearly

between 0 and π/2 as in the previously mentioned staggered
spiral order, which is stable for Jsd < 5. The electronically
driven spiral instability of the FM layer has been already
reported [43], as mentioned above, but its dependence with
Jsd , λ/t , and W , has not been fully studied to the author’s
knowledge. A systematic study of these various parameters on
FM spiral orders will be presented in a forthcoming study [32].

VI. CONCLUSIONS

In this work, the effects of finite strip widths on transport
properties of Rashba conducting strips coupled to layers with
various magnetic orders have been studied numerically at
zero temperature. In the first place, it was found that for
the uncoupled Rashba strip (or coupled to a nonmagnetic
layer), the Drude weight slightly decreases with the Rashba SO
coupling, and has a weak dependence with W . For a Rashba
strip coupled to a FM layer, the Drude weight also slightly
decreases with λ/t but it is strongly reduced by increasing
the strip width. In both cases, the Rashba SO coupling
reduces the Drude weight through processes involving solely
the SO or spin-flipping currents. In addition, in the case of
the FM coupling, the processes contributing to the optical
conductivity are of interband origin, that is, connecting states
with opposite signs of sy . In contrast, for the uncoupled
Rashba strips, these processes are completely of interband
nature for the narrowest strip with W = 2, but the contribution
from intraband transitions starts to grow with increasing W

until it becomes approximately equal to the one of interband
transitions, in the whole range of λ/t examined.

For the AFM coupled layer, due to the opening of gaps in the
single-particle spectrum, the Drude weight has a more complex
behavior. For all strip widths and Rashba SO couplings
considered, its value is in general much smaller than for the
other two cases studied, and it is much strongly suppressed
by λ/t . This suppression is due both to processes involving
spin-conserving and spin-flipping currents. For the narrowest
strips, W = 2 and 4, D even vanishes at some finite value of
λ/t . Certainly, this different behavior with respect to the other
two cases, which are metallic, indicates the proximity to an
insulating behavior in the AFM case.

Of course, the most relevant results for spintronic applica-
tions are those concerning the spin Hall conductivity. In this
sense, the main result is that σsH in the coupled AFM system
is nearly two orders of magnitude larger than the one in the
coupled FM system for virtually all values of W and λ/t . It
would be tempting to relate this result with the recent finding
of Néel spin-orbit torques driving domain walls at velocities
two orders of magnitude greater than the ones in ferromagnets
[20,21], but this feature belongs to off-equilibrium regimes.

It is also important to emphasize that, for strips coupled
to an AFM layer, a larger value of σsH is achieved for narrow
(wide) strips at large (small) values of the Rashba SO coupling.
The crossover between both regimes occurs at a value of λ/t

that approximately coincides with the value at which a peak
appears on the edge helical currents. Actually, the behavior
of σsH with W and λ/t is quite similar to the one obtained
for uncoupled Rashba strips. However, in the uncoupled case,
σsH is entirely due to processes involving charge SO currents
along x and spin hopping currents along y, while in the AFM
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case, there are also contributions from processes involving spin
hopping currents along y, although these contributions have
opposite sign to the former ones, except for λ/t < 0.1.

The orientation of the magnetic moments for the AFM
coupled layer [21] has also been examined. It is interesting
to note that for W = 4, σsH is largest at small λ/t when the
magnetic moments are oriented along the z direction, while
for magnetic moments oriented along the x axis, which is the
case studied in Ref. [17], σsH is largest at large λ/t .

Finally, in systems where the conducting-magnetic layers
exchange Jsd is due to a Hund coupling between conducting
and localized orbitals of a transition metal oxide, which may be
the case of devices involving SrTiO3 interfaces, the ordering

of the magnetic moments is determined by the dynamics of
the competing degrees of freedom. In these systems, the AFM
order become unstable at small and intermediate values of λ/t

with respect to a double spiral order, where both the Drude
weight and σsH essentially vanish for all W .
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