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Abstract. In this paper, the percolation of (a) linear segments of size k and(b) k-mers of different structures
and forms deposited on a square lattice have been studied. In the latter case, site and bond percolation
have been examined. The analysis of results obtained by using finite size scaling theory is performed in
order to test the universality of the problem by determining the numerical values of the critical exponents
of the phase transition occurring in the system. It is also determined that the percolation threshold exhibits
a exponentially decreasing function when it is plotted as a function of the k-mer size. The characteristic
parameters of that function are dependent not only on the form and structure of the k-mers but also on
the properties of the lattice where they are deposited.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions –
68.35.Rh Phase transitions and critical phenomena – 68.35.Fx Diffusion; interface formation

1 Introduction

The study of random percolation have been attracting a
great deal of interest for many years and the activity in
this field is still growing [1–8]. Some aspects of the perco-
lation process like the geometrical phase transitions occur-
ring in the system have gained a particular impetus due to
the introduction of techniques like Monte Carlo (MC) sim-
ulations and series expansions [7,9]. Despite of the number
of contributions to this problem, there are many aspects
which are not yet completely solved. In fact, most of the
studies are devoted to the percolation of molecules with
single occupancy. However, if some sort of correlation ex-
ists, like particles occupying several (k) contiguous lattice
sites (k-mers), the statistical problem (multisite statistics)
becomes exceedingly difficult.

The difficulty in the analysis of multisite statistics is
mainly associated to three factors which differentiate the
k-mers statistics from the usual single particle statistics,
namely:

i) No statistical equivalence exists between particles and
vacancies.

ii) The occupation of a given lattice site ensures that at
least one of its nearest-neighbor sites is also occupied.

iii) An isolated vacancy cannot serve for determining
whether or not that site can ever become occupied.

For these reasons, it has been difficult to formulate, in
an analytical way, the statistics (and kinetics) of occu-
pation for correlated particles. However, several attempts
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were done in the past in order to solve the k-mers equi-
librium problem. An early seminal contribution to dimer
statistics was done by Fowler and Rushbrooke [10] while
an isomorphous system, namely adsorption of binary liq-
uid in two dimensions, was treated by Flory [11,12]. The
thermodynamic of dimers was made for partially [13,14]
and full coverage lattice [15,16] using exact and approx-
imate methods. More recently, Monte Carlo simulation
techniques have largely contributed to the understanding
of the basis of the problem [17–20].

The deposition (or irreversible adsorption) of parti-
cles on solid surfaces is a subject of considerable prac-
tical importance. In fact, in many experiments on adhe-
sion of colloidal particles and proteins on solid substrates,
the relaxation time scales are much longer than the times
of the formation of the deposit. As a consequence, the
study of irreversible adsorption of k-mers has also re-
ceived considerable attention in the last years. A well
known example of an irreversible monolayer deposition
process is the random sequential adsorption (RSA). This
process is well described in the literature and has been
investigated extensively in the last decades [21–24]. The
analysis of such phenomenon includes theoretical studies,
Monte Carlo simulations and experimental results. Exact
solutions are possible, mostly for one-dimensional prob-
lems [25].

From a different point of view, several authors have
produced seminal contributions for analyzing the perco-
lation of polyatomic species on different lattices [25–31].
More recently, in references [32–34] the percolation be-
havior of a RSA of linear segments with different size and
the percolation of dissociative dimers have been studied,
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respectively. In both cases, the dependencies of the perco-
lation threshold with the parameters of the problem and
the universality of the phase transition present in the sys-
tem has been discussed. However, the formers are limited
due to finite size effects while the later is just restricted
to the case k = 2. In this context, the present paper deals
with the percolation of k-mers on a square lattice in the
framework of a MC analysis. A detailed study of the finite
size effects is presented in order to discuss the universality
class of the phase transition which the system undergoes.
The main aim of the paper is to determine the dependence
of the percolation threshold on both the size and form of
the percolating k-mers and the properties of the lattice
where they are deposited.

The paper is organized as follows. In Section 2 the ba-
sis of the model of deposition of k-mers on either sites
or bonds of a square lattice is presented. The analysis
of results obtained by using finite size scaling theory is
discussed in Section 3. The main purpose of this section
is to test the universality of the problem by determin-
ing the numerical values of the critical exponents of the
phase transition. In Section 4 we discuss the dependence
of the percolation threshold on parameters of interest of
the model. Finally, conclusions are drawn in Section 5.

2 The model

Let us consider a periodic square lattice of linear size L
on which k-mers are deposited at random. Three differ-
ent situations have been considered. In the first (second)
of them, a k-uple of nearest neighbor sites (bonds) is
randomly selected; if it is vacant, the k-mer is then ad-
sorbed on those sites (bonds). Otherwise, the attempt is
rejected. In any case, the procedure is iterated until N k-
mers are adsorbed and the desired concentration [given by
p = (kN)/L2 (p = (kN)/(2L)2)] is reached. In addition,
the case when linear k-uples of sites (aligned along one
of the lattice axes) are dropped onto the lattice has also
been investigated.

The central idea of the percolation theory is based in
finding the minimum concentration p for which a clus-
ter [a group of occupied sites (bonds) in such a way that
each site (bond) has at least one occupied nearest neigh-
bor site (bond)] extends from one side to the opposite one
of the system. This particular value of the concentration
rate is named critical concentration or percolation thresh-
old and determines a phase transition in the system. In
the random percolation model, a single site (or a bond
connecting two sites) is occupied with probability p. For
the precise value of pc, the percolation threshold of sites
(bonds), at least one spanning cluster connects the bor-
ders of the system [indeed, there exist a finite probability
of finding n (> 1) spanning clusters [35–38]]. In that case,
a second order phase transition appears at pc which is
characterized by well defined critical exponents.

As it was already mentioned, the main goal of this
paper is (a) to determine how the percolation threshold
is modified whether the size of the k-mer increases and
(b) to verify the universality class of the phase transition

involved in the problem. For these purposes, long scale
numerical simulations (independent of the size of the k-
mer) are required in order to predict the behavior of the
system in the thermodynamic limit. The ratio k/L is kept
constant for avoiding spurious effects due to the k-mer size
in comparison with the lattice size. A study of the finite-
size effects allows us to make a reliable extrapolation to
the k → ∞ limit when the limit L → ∞ is taken before.
Details of this study will be given below.

3 Finite-size scaling

It is well known that it is a quite difficult matter to ana-
lytically determine, the value of the percolation threshold
for a given lattice [2,4,5,7,8]. For some special types of
lattices, geometrical considerations enable to derive their
percolation thresholds exactly. Thus, exact thresholds are
known for (a) square, triangular and honeycomb lattices
and (b) triangular and Kagomm’e lattice concerning to the
bond and site problem, respectively. In both cases, ana-
lytical results are obtained when a monomeric species is
considered. For different conditions, i.e. for systems which
do not present such a topological advantage, percolation
thresholds have to be estimated numerically by means of
computer simulations. An illustrative example is the per-
colation of polyatomic species which adds a new ingredient
to the problem: the influence of local correlation.

As the scaling theory predicts [9], the larger the system
size to study, the more accurate the values of the thresh-
old obtained therefrom. Thus, the finite-size scaling theory
give us the basis to achieve the percolation threshold and
the critical exponents of a system with a reasonable accu-
racy. For this purpose, the probability R = RX

L (p) that
a lattice composed of L × L elements (sites or bonds)
percolates at concentration p can be defined [2]. Here,
as in references [39,40], the following definitions can be
given according to the meaning of X : a) R

R(D)
L (p) = the

probability of finding a rightward (downward) percolating
cluster; b) RI

L(p) = the probability that we find a clus-
ter which percolates both in a rightward and in a down-
ward direction; c) RU

L (p) = the probability of finding ei-
ther a rightward or a downward percolating cluster and
d) RA

L(p) ≡ 1
2

[
RR

L(p) + RD
L (p)

] ≡ 1
2

[
RI

L(p) + RU
L (p)

]
.

The first step for determining the percolation threshold
consists in evaluating the effective threshold pc(L) for a
lattice of finite size L. In the MC simulations, RX

L (p) is
determined for each discrete value of p according to the
considered regular finite lattice. In order to express RX

L (p)
as a function of continuous values of p, it is convenient
to fit RX

L (p) to some approximation function through the
least mean-square method. The fitting curve is carried out
using the error function because dRX

L (p)/dp is expected to
behave like the Gaussian distribution [2,39,40]:

dRX
L (p)
dp

=
1√

2π∆X
L

exp

[
−1

2

[
p − pX

c (L)
∆X

L

]2
]

(1)
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Fig. 1. Fraction of percolating lattices as a function of the
concentration p defined as p = kN/L2 where k is the k-mer
size, N the number of deposited k-mers and L the lattice size.
Different criteria are used for establishing the spanning clus-
ter, namely, RU

L(p) the probability of finding either a right-
ward or a downward percolating cluster (circles); RI

L(p) the
probability that we find a cluster which percolates both in a
rightward and in a downward direction (squares); RA

L(p) ≡
1
2

[
RR

L(p) + RD
L (p)

] ≡ 1
2

[
RI

L(p) + RU
L (p)

]
(triangles). Open

symbols represent curves for k = 1 while filled symbols de-
note the case k = 5. Horizontal dashed lines show the RX∗

universal points. Vertical dashed lines denote the percolation
threshold in the thermodynamic limit L → ∞.

where pX
c (L) is the concentration at which the slope of

RX
L (p) is the largest and ∆X

L is the standard deviation
from pX

c (L).
These considerations allow us to establish a strategy

for determining the percolation threshold. Thus, each MC
run consists of the following steps: (a) the construction of
the lattice for a given coverage and (b) the cluster analysis
by using the Hoshen and Kopelman algorithm [41]. In the
late step, the number of clusters, ns, of size s (a cluster of
size s is composed by s connected elements) is determined
in order to verify whether exists a percolating island. This
spanning cluster could be determined by using the crite-
ria R, D, I or U . n runs of such two steps are carried out
for obtaining the number mX of them for which a perco-
lating cluster of the desired criterion X is found. Then,
RX

L (p) = mX/n is defined and the procedure is repeated
for different both values of p and lattice sizes. A set of
n = 5×104 independent samples are numerically prepared
for each value of p and L (L/k = 16, 32, 48, 64, 80, 96, 112).

In Figure 1, the probabilities RI
L(p) (squares), RU

L (p)
(circles) and RA

L(p) (triangles) are presented for the prob-
lem of site percolation. Two different values of k are
shown, open (filled) symbols represent k = 1 (k = 5).
From a first inspection of the figure (and from data do
not shown here for a sake of clarity) it is observed that:
(a) curves cross each other in a unique universal point,
RX∗

, which depends on the criterion X used; (b) those
points do not modify their numerical value for the dif-
ferent k-sizes used (ranged between k = 1 to k = 25)
as an indication that the universality class of the phase

Fig. 2. Extrapolation of pc(k) towards the thermodynamic
limit according to the theoretical prediction given by equa-
tion (3). Squares, triangles and circles denote the values of
pc(k) obtained by using the criteria I , A and U , respectively.
Different values of k are presented as indicated.

transition involved in the problem is conserved no matter
the value of k; (c) those points are located at very well
defined values in the p-axes determining the critical per-
colation threshold for each k and (d) pc shifts to the left
upon increasing the k-mer size. These observations are a
clear indication of that (i) the percolation threshold de-
creases upon increasing k and (ii) the problem belongs to
the same universality class no matter the size k used in
the experiment.

Taking into account equation (1), for each curve
RX

L (p), pX
c (L), ∆X

L and (dRX
L (p)
dp )max are determined by

least mean-square fitting. The second step is the extrap-
olation of pX

c (L) toward the limit L → ∞ by using the
scaling hypothesis. Thus, the correlation length, ξ, can be
expressed as:

ξ ∝ |p − pc|−ν (2)

where ν is the critical exponent which is analytically
shown to be equal to ν = 4/3 in the case of random per-
colation. As p = pX

c (L) the correlation length reaches to
the linear dimension L of the lattice. Thus, we have

pX
c (L) = pc(∞) + AXL−1/ν (3)

where AX is a non-universal constant. Figure 2 shows the
extrapolation towards the thermodynamic limit of pX

c (L)
according to equation (3) for different values of k as indi-
cated. This figure lends support to the assertion given by
equation (3): (a) all the curves (different criteria) are well
correlated by a linear function, (b) they have a quite sim-
ilar value for the ordinate in the limit L → ∞ and (c) the
fitting determines a different value of the constant A de-
pending of the type of criterion used. It is also important
to note that pA

c (L) gives a perfect horizontal line which
is a great advantage of the method because it does not
require precise values of critical exponents in the process
of estimating percolation thresholds. The maximum of the
differences between |pI

c(∞)−pA
c (∞)| and |pU

c (∞)−pA
c (∞)|

give the error bar for each determination of pc.
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Fig. 3. a) ln
(
∆A

L

)
as a function of ln(L/k) for different k-mers

as indicated. According to equation (4) the slope of each line

corresponds to −1/ν. b) ln
(

dR
dp

)
max

as a function of ln(L/k)

for different values of k. The symbols have the same mean-
ing as in (a). According to equation (7) the slope of each line
correspond to 1/ν.

As it was mentioned, (i) the correlation length ξ at
this point is similar to L, and (ii) taking into account
equation (3), we can write equation (2) in the following
form:

∆X
L ∝ L−1/ν. (4)

As an example of the validity of the last equation, Fig-
ure 3a shows ∆A

L as a function of L/k (note the log-
log scale) for different k-mers as indicated. According to
equation (4), the slope of each line corresponds to −1/ν.
The values obtained for this critical exponent are plotted
(stars) as a function of k in Figure 4.

Another alternative way for evaluating ν is given
through the scaling relationship for RX

RX = RX
(
(p − pc)L1/ν

)
, (5)

being RX(u) the scaling function.
The derivative of this expression is:

dRX

dp
= L1/νRX

(
(p − pc)L1/ν

)
(6)

Fig. 4. Critical exponents, α, β, γ, ν, τ and the fractal dimen-
sion of the spanning cluster, D as a function of k.

which leads to (
dRX

dp

)
max

∝ L1/ν . (7)

In Figure 3b we have plotted
(

dRA

dp

)
max

as a function of

L/k (note the log-log scale) for different k-mers as indi-
cated. According to equation (7) the slope of each line
corresponds to 1/ν. The values obtained for ν using this
procedure are plotted (down triangles) as a function of k
in Figure 4. As is clearly seen from this analysis, the prob-
lem belongs to the same universality class that the random
percolation regardless of the value of k considered.

The scaling law hypothesis also predicts the collapsing
of the curves RX

L (p) when they are plotted as a function
of a reduced variable u = (p − pc)L1/ν , see equation (5).
Thus, RX is a universal function with respect to the vari-
able u. In Figure 5a, we plot RA as a function of u for
each value of k as indicated (each value of k is represented
by using a different symbol). Similar behavior can be ob-
tained for U and I criteria. Two main conclusions can be
drawn from the figure. Namely, a) for a given value of k,
all the curves used in the experiment (for different values
of L/k) collapse into an universal curve according to the
theoretical prediction. This gives an additional proof for
the numerical value of the critical exponent ν. b) RX is
not only a function of p and L but also of k. As it can be
seen, the collapsing function is different for each value of
k considered. This fact determines that the scaling func-
tion RX is not an universal function with respect to the
variable k.

In order to determine the dependence of RX with k,
the main features of the data shown in Figure 5a have
to be considered. As it can be seen, the curves become
more steeper upon increasing the value of k. In fact, the
derivatives of the universal function RX with respect to
u behave as a Gaussian-like function. Thus, we can observe
that:

a) the derivatives become more pronounced as k in-
creases. It is possible to establish a power law
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Fig. 5. a) Collapsing plot of the curves for the fraction of per-
colating samples as a function of u. Each symbol denotes a dif-
ferent value of k as indicated. For each k, all the studied lattice
sizes (L/k = 16, 32, 48, 64, 80, 96 and 112) have been consid-
ered. The solid lines are simply a guide for the eye. b) The prob-
ability R as a function of the argument u′ = (p − pc) L1/νkλ

where the metric factor kλ is included in order to collapse all
the curves in Figure 5a onto a single one.

to describe this behavior. Then,(
∂RX

∂u

)
max

= Bkθ. (8)

In Figure 6a, the maxima of the derivatives for each
value of k as a function of k are plotted in a log-log
scale. The points are very well correlated by a linear
function, equation (8), being the fitting parameters
B = 0.79 ± 0.01 and θ = 0.61 ± 0.01 for the three
criteria used here.

b) The derivatives are narrowed upon increasing k. This
behavior can also be described by a power law accord-
ing to:

∆X = Ck−λ. (9)

where ∆X is the standard deviation of
(

∂RX

∂u

)
for each

curve. In Figure 6b, the standard deviation of each
derivative versus k is plotted in a log-log scale. The
points are very well correlated by a linear function,
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Fig. 6. a) The maxima of the derivatives of R for each value
of k as a function of the k-mer size in a log-log scale. b) The
standard deviation of each derivative ( ∂R

∂u
) for different values

of k as a function of the k-mer size (log-log scale). In both cases
the lines are least mean-square fitting.

equation (9), being the fitting parameters C = 0.71 ±
0.01 and λ = 0.55 ± 0.01 for A, U and I criteria.

According to the equations above, a metric factor might to
be included in the scaling function, equation (5) in order to
collapse all the curves in Figure 5a onto a single one. Fol-
lowing reference [42], in Figure 5b we plot the probability
RX as a function of the argument u′ = (p − pc)L1/νkλ. As
it is clearly observed, all the curves in Figure 5a collapse
onto a single one. It is remarkable that more than 6× 103

points are included in the collapsing curve. The metric
factor introduced here, kλ, gives an additional proof for
the numerical value of the exponent λ obtained in equa-
tion (9).

In the MC simulations, the cluster number distribu-
tion ns can be easily obtained. The m-moments of this
distribution allow us a complete determination of the as-
sociated critical exponents. In fact, according to the scal-
ing theory applied to the percolation problem, for p close
to pc,

Mo =
∑

ns(p) ∝ (p − pc)
2−α (10)

M1 = P =
∑

sns(p) ∝ (p − pc)
β (11)

M2 = S =
∑

s2ns(p) ∝ (p − pc)
−γ

. (12)
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Following to Stauffer [2], taking into account equation (2)
and noticing that the correlation length, ξ, at the critical
threshold is about L,

Mo ∝ L− 2−α
ν (13)

M1 ∝ L− β
ν (14)

M2 ∝ L
γ
ν . (15)

When these relations are illustrated in a log-log scale, the
slope of the corresponding lines are, respectively, 2−α

ν , β
ν

and γ
ν from which α, β and γ can be obtained (ν has been

already determined for any of the equivalent strategies
given by either Eq. (4) or Eq. (7)).

As an illustrative example, in Figure 7a we have plot-
ted the average cluster size, S, (second moment of the
ns distribution) as a function of the rate L/k for different
values of k as indicated. For each k, (a) the points are very
well linearly correlated and (b) from the slope, the criti-
cal exponent γ can be determined. The lines obtained are
parallel as a clear indication of that the universality of the
problem remains being the same no matter the value of k.
The numerical values for the critical exponent γ (and also
for (2 − α) and β) are collected in Figure 4 as a function
of k.

The fractal dimension, D, of the percolating cluster
can be defined as:

sperc ∝ LD (at p = pc) (16)

where sperc represents the number of elements which form
the spanning cluster. Thus, in Figure 7b sperc at pc versus
L/k is plotted in a log-log scale for different values of k, as
indicated. The slopes of these parallel curves give an esti-
mation of the fractal dimension of the percolating cluster.
The values obtained are presented as a function of k in
Figure 4.

At p = pc, the scaling theory also predicts that

ns(p) ∝ s−τ . (17)

Thus, from its definition, it is seen that the slope of
ln ns versus ln s gives the exponent τ . In Figure 7c, this
relation is plotted for different values of k as indicated.
Numerical values of τ are collected in Figure 4 as a func-
tion of k. A compilation of the numerical values of the
critical exponents obtained here is presented in Table 1.

In summary, it can be concluded that the phase tran-
sition involved in the problem considered in the present
paper belongs to the same universality class of the ran-
dom percolation. This conclusion is also valid when either
the percolating species is a linear segment or the k-mers
can be dropped only on the bonds of the lattice.

4 The percolation threshold

In this section we shall focus on the behavior of the perco-
lation threshold as a function of the k-mer size. We shall
also examine how that result is modified as the percolat-
ing k-mers are simply linear segments as it was considered

Fig. 7. a) The average cluster size, S (second moment of the
ns distribution) as a function of the rate L/k (log-log scale)
for different values of k as indicated. b) ln sperc at pc versus
ln(L/k) for different values of k, as indicated. sperc represents
the number of elements forming the spanning cluster. c) ln ns

versus ln s at pc for different values of k as in the previous
figures. The slopes of these parallel curves give an estimation
of the critical exponents γ (a), D (b) and τ (c), respectively.
Their numerical values are collected in Figure 4. The fact that
all the lines in each graphic are parallel is a clear insight of the
universal character of the associated critical exponent.

previously by Leroyer and Pommiers [32,33]. Finally, we
shall consider how the percolation threshold changes when
k-mers of different sizes are distributed on a bond lattice
of square symmetry.

In Figure 8, the percolation threshold for linear seg-
ments (open circles) is plotted as a function of k. At the
beginning, for small values of k, the curve rapidly de-
creases. However, it flatten out for larger values of k and
finally asymptotically converges towards a definite value
as k → ∞. The fact that pc(k) does not approach zero
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Table 1. Compilation of the numerical values of the critical exponents. νa (νb) denotes the values of the exponent ν as it is
evaluated with the methodology of Figure 3a (Fig. 3b).

k (2 − α) γ τ D νa νb β

1 2.598(7) 2.427(2) 2.001(10) 1.889(44) 1.369(36) 1.347(21) 0.131(5)

2 2.588(16) 2.452(13) 2.035(12) 1.854(52) 1.368(24) 1.373(23) 0.121(13)

3 2.571(8) 2.410(29) 2.048(13) 1.879(76) 1.406(26) 1.309(12) 0.123(10)

4 2.603(19) 2.442(20) 2.041(13) 1.845(4) 1.366(26) 1.379(9) 0.139(10)

5 2.600(18) 2.435(9) 2.067(17) 1.840(53) 1.361(12) 1.354(5) 0.147(4)

6 2.581(10) 2.426(25) 2.040(21) 1.922(13) 1.354(9) 1.334(12) 0.154(11)

7 2.632(32) 2.416(41) 2.038(14) 1.845(30) 1.361(7) 1.339(21) 0.140(16)

8 2.607(29) 2.422(17) 2.068(17) 1.836(48) 1.348(5) 1.357(12) 0.147(11)

9 2.602(80) 2.414(12) 2.036(11) 1.904(12) 1.354(12) 1.335(11) 0.175(15)

10 2.574(5) 2.382(55) 2.044(25) 1.893(11) 1.328(20) 1.312(10) 0.189(10)

Fig. 8. The percolation threshold as a function of k for linear
segments (open circles) and for any form of the k-mer (filled
circles). Percolation on sites of a square lattice is considered.
The behavior of the fitting curves are described according to
equation (18). The error in each measurement is specified but
in most of the cases it is smaller that the size of the symbols.
The asymptotic limits, p∗

c , [pc(k) for k → ∞] are shown.

when k goes to infinity is a consequence of the order in
which limits are taken since clearly when k is infinity it
will always give a percolating cluster. A compilation of the
numerical values is also presented in the first column of
Table 2. In previous studies of the same problem [32,33] an
abrupt increment of pc(k) is observed for values of k > 10.
This discrepancy with our results is explained because of
finite size effect not considered in references [32,33].

The monotonic behavior of the percolation threshold
as a function of the linear segment size can be associated
to an exponentially decreasing function according to the
following expression:

pc(k) = p∗c + Ω exp
[
−k

κ

]
(18)

being p∗c , Ω and κ fitting parameters. p∗c is the expected
value in the limit k → ∞. It is important to note that
the curve pc(k) does not respond to a 1/k behavior as it

Table 2. Compilation of the numerical values of the percola-
tion thresholds for linear segments, pls

c (second column) and
for any form of the k-mer, ps

c (third column) in the site per-
colation problem. pb

c (fourth column) gives the corresponding
values of the percolation threshold for the bond percolation.

k pls
c ps

c pb
c

1 0.593(2) 0.593(2) 0.5009(2)

2 0.564(2) 0.564(2) 0.4859(2)

3 0.529(2) 0.552(2) 0.4732(2)

4 0.504(2) 0.542(2) 0.4630(2)

5 0.491(2) 0.531(2) 0.4565(2)

6 0.480(2) 0.522(2) 0.4497(2)

7 0.472(2) 0.511(2) 0.4423(2)

8 0.469(2) 0.502(2) 0.4348(2)

9 0.467(2) 0.493(2) 0.4291(2)

10 0.466(2) 0.488(2) 0.4232(2)

11 0.465(2) 0.482(2) 0.4159(2)

12 0.465(2) 0.476(2) 0.4114(2)

13 0.464(2) 0.471(2) 0.4061(2)

14 0.464(2) 0.467(2) 0.4011(2)

15 0.463(2) 0.462(2) 0.3979(2)

was predicted in references [32,33]. In fact, Leroyer and
Pommiers [32] mentioned in their contribution that the
modelization used (oriented boxed by rigid boxes) “is pre-
sumably too simple to explain the slight rise for large k,
which may be due to the interpenetrability of these regions
and/or to their anisotropy”.

The fitting parameters obtained for percolation of lin-
ear segments of size k are the following: p∗c = 0.461±0.001,
Ω = 0.197± 0.02 and κ = 2.775 ± 0.02.

Once studied the problem of percolating linear seg-
ments, we shall discuss the case of percolating k-mers re-
gardless of its form. For this case, in Figure 8, the percola-
tion threshold as a function of k is plotted by using filled
circles (see also second column of Tab. 2). The behavior of
the curve is qualitatively similar to that discussed above
according to equation (18). However, for this case, the
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Fig. 9. The percolation threshold as a function of k for per-
colation on bonds of a square lattice. The line represents the
fitting according to equation (18). The error in each measure-
ment is specified but in most of the cases it is smaller that
the size of the symbols. The asymptotic limit, p∗

c , (pc(k) for
k → ∞) is shown.

fitting parameters are p∗c = 0.431±0.001, Ω = 8.175±0.02
and κ = 8.83 ± 0.02. These results show that the fitting
parameters depend on the form and structure of the per-
colating k-mer besides the properties of the lattice where
the k-mers are distributed.

In order to give an example of the veracity the last
conclusion, we have studied the percolation of k-mers on
the bonds of a square lattice. In this case, the behavior of
pc(k) is also reflected by a exponentially decreasing func-
tion as in equation (18), see Figure 9 and the third column
of Table 2 as well. In this case, the fitting parameters are
p∗c = 0.349± 0.001, Ω = 0.16± 0.02 and κ = 12.47± 0.02.
This shows that the coordination number of the lattice
also plays an important role for determining the values of
the fitting parameters. As it was discussed in Section 3
this problem also belongs to the random percolation uni-
versality class.

The dependence of the percolation threshold as a func-
tion of k obtained here is consistent with the behavior
observed in reference [43] for different two dimensional
geometries.

5 Conclusions

In the present paper, the monotonic behavior of the crit-
ical concentration has been studied for percolating sys-
tems of (a) linear segments of size k; (b) k-mers of dif-
ferent structures and forms deposited on a square lattice
(site and bond percolation). It was established that the
percolation threshold exhibits a exponentially decreasing
function when it is plotted as a function of the k-mer size.
The fitting parameters of that function are dependent not
only on the form and structure of the k-mers but also on
the properties of the lattice where they are deposited (for
example, the coordination number).

In order to test the universality of the problem, the
phase transition involved on it has been studied by using
finite-size scaling theory. In particular, it was established
that (a) the scaling functions are dependent with respect
to the k-mers size and (b) the problem, in all the stud-
ied cases, belongs to the random percolation universality
class. The last conclusion is confirmed by determining the
numerical values of the critical exponents, α, β, γ, ν, τ
and the fractal dimension D of the spanning cluster. In
addition, the corresponding curves collapse according to
the predictions of the finite size scaling theory.

Finally, the importance of the effect of this particular
degree of local correlation, determined by the k-mers, on
the percolation threshold is addressed.
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